]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge tag 'hw-cpus-20240119' of https://github.com/philmd/qemu into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
47
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
50
51 static void GRAPH_RDLOCK
52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
53 {
54 BdrvChild *c, *next;
55 IO_OR_GS_CODE();
56 assert_bdrv_graph_readable();
57
58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59 if (c == ignore) {
60 continue;
61 }
62 bdrv_parent_drained_begin_single(c);
63 }
64 }
65
66 void bdrv_parent_drained_end_single(BdrvChild *c)
67 {
68 GLOBAL_STATE_CODE();
69
70 assert(c->quiesced_parent);
71 c->quiesced_parent = false;
72
73 if (c->klass->drained_end) {
74 c->klass->drained_end(c);
75 }
76 }
77
78 static void GRAPH_RDLOCK
79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
80 {
81 BdrvChild *c;
82 IO_OR_GS_CODE();
83 assert_bdrv_graph_readable();
84
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore) {
87 continue;
88 }
89 bdrv_parent_drained_end_single(c);
90 }
91 }
92
93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95 IO_OR_GS_CODE();
96
97 if (c->klass->drained_poll) {
98 return c->klass->drained_poll(c);
99 }
100 return false;
101 }
102
103 static bool GRAPH_RDLOCK
104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105 bool ignore_bds_parents)
106 {
107 BdrvChild *c, *next;
108 bool busy = false;
109 IO_OR_GS_CODE();
110 assert_bdrv_graph_readable();
111
112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114 continue;
115 }
116 busy |= bdrv_parent_drained_poll_single(c);
117 }
118
119 return busy;
120 }
121
122 void bdrv_parent_drained_begin_single(BdrvChild *c)
123 {
124 GLOBAL_STATE_CODE();
125
126 assert(!c->quiesced_parent);
127 c->quiesced_parent = true;
128
129 if (c->klass->drained_begin) {
130 /* called with rdlock taken, but it doesn't really need it. */
131 c->klass->drained_begin(c);
132 }
133 }
134
135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
136 {
137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138 src->pdiscard_alignment);
139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142 src->max_hw_transfer);
143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144 src->opt_mem_alignment);
145 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146 src->min_mem_alignment);
147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
149 }
150
151 typedef struct BdrvRefreshLimitsState {
152 BlockDriverState *bs;
153 BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
155
156 static void bdrv_refresh_limits_abort(void *opaque)
157 {
158 BdrvRefreshLimitsState *s = opaque;
159
160 s->bs->bl = s->old_bl;
161 }
162
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164 .abort = bdrv_refresh_limits_abort,
165 .clean = g_free,
166 };
167
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
170 {
171 ERRP_GUARD();
172 BlockDriver *drv = bs->drv;
173 BdrvChild *c;
174 bool have_limits;
175
176 GLOBAL_STATE_CODE();
177
178 if (tran) {
179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180 *s = (BdrvRefreshLimitsState) {
181 .bs = bs,
182 .old_bl = bs->bl,
183 };
184 tran_add(tran, &bdrv_refresh_limits_drv, s);
185 }
186
187 memset(&bs->bl, 0, sizeof(bs->bl));
188
189 if (!drv) {
190 return;
191 }
192
193 /* Default alignment based on whether driver has byte interface */
194 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195 drv->bdrv_aio_preadv ||
196 drv->bdrv_co_preadv_part) ? 1 : 512;
197
198 /* Take some limits from the children as a default */
199 have_limits = false;
200 QLIST_FOREACH(c, &bs->children, next) {
201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
202 {
203 bdrv_merge_limits(&bs->bl, &c->bs->bl);
204 have_limits = true;
205 }
206
207 if (c->role & BDRV_CHILD_FILTERED) {
208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
209 }
210 }
211
212 if (!have_limits) {
213 bs->bl.min_mem_alignment = 512;
214 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
215
216 /* Safe default since most protocols use readv()/writev()/etc */
217 bs->bl.max_iov = IOV_MAX;
218 }
219
220 /* Then let the driver override it */
221 if (drv->bdrv_refresh_limits) {
222 drv->bdrv_refresh_limits(bs, errp);
223 if (*errp) {
224 return;
225 }
226 }
227
228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229 error_setg(errp, "Driver requires too large request alignment");
230 }
231 }
232
233 /**
234 * The copy-on-read flag is actually a reference count so multiple users may
235 * use the feature without worrying about clobbering its previous state.
236 * Copy-on-read stays enabled until all users have called to disable it.
237 */
238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
239 {
240 IO_CODE();
241 qatomic_inc(&bs->copy_on_read);
242 }
243
244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
245 {
246 int old = qatomic_fetch_dec(&bs->copy_on_read);
247 IO_CODE();
248 assert(old >= 1);
249 }
250
251 typedef struct {
252 Coroutine *co;
253 BlockDriverState *bs;
254 bool done;
255 bool begin;
256 bool poll;
257 BdrvChild *parent;
258 } BdrvCoDrainData;
259
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262 bool ignore_bds_parents)
263 {
264 GLOBAL_STATE_CODE();
265
266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267 return true;
268 }
269
270 if (qatomic_read(&bs->in_flight)) {
271 return true;
272 }
273
274 return false;
275 }
276
277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278 BdrvChild *ignore_parent)
279 {
280 GLOBAL_STATE_CODE();
281 GRAPH_RDLOCK_GUARD_MAINLOOP();
282
283 return bdrv_drain_poll(bs, ignore_parent, false);
284 }
285
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287 bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
289
290 static void bdrv_co_drain_bh_cb(void *opaque)
291 {
292 BdrvCoDrainData *data = opaque;
293 Coroutine *co = data->co;
294 BlockDriverState *bs = data->bs;
295
296 if (bs) {
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->parent, data->poll);
300 } else {
301 assert(!data->poll);
302 bdrv_do_drained_end(bs, data->parent);
303 }
304 } else {
305 assert(data->begin);
306 bdrv_drain_all_begin();
307 }
308
309 data->done = true;
310 aio_co_wake(co);
311 }
312
313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314 bool begin,
315 BdrvChild *parent,
316 bool poll)
317 {
318 BdrvCoDrainData data;
319 Coroutine *self = qemu_coroutine_self();
320
321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322 * other coroutines run if they were queued by aio_co_enter(). */
323
324 assert(qemu_in_coroutine());
325 data = (BdrvCoDrainData) {
326 .co = self,
327 .bs = bs,
328 .done = false,
329 .begin = begin,
330 .parent = parent,
331 .poll = poll,
332 };
333
334 if (bs) {
335 bdrv_inc_in_flight(bs);
336 }
337
338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339 bdrv_co_drain_bh_cb, &data);
340
341 qemu_coroutine_yield();
342 /* If we are resumed from some other event (such as an aio completion or a
343 * timer callback), it is a bug in the caller that should be fixed. */
344 assert(data.done);
345 }
346
347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348 bool poll)
349 {
350 IO_OR_GS_CODE();
351
352 if (qemu_in_coroutine()) {
353 bdrv_co_yield_to_drain(bs, true, parent, poll);
354 return;
355 }
356
357 GLOBAL_STATE_CODE();
358
359 /* Stop things in parent-to-child order */
360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361 GRAPH_RDLOCK_GUARD_MAINLOOP();
362 bdrv_parent_drained_begin(bs, parent);
363 if (bs->drv && bs->drv->bdrv_drain_begin) {
364 bs->drv->bdrv_drain_begin(bs);
365 }
366 }
367
368 /*
369 * Wait for drained requests to finish.
370 *
371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372 * call is needed so things in this AioContext can make progress even
373 * though we don't return to the main AioContext loop - this automatically
374 * includes other nodes in the same AioContext and therefore all child
375 * nodes.
376 */
377 if (poll) {
378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
379 }
380 }
381
382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
383 {
384 bdrv_do_drained_begin(bs, parent, false);
385 }
386
387 void coroutine_mixed_fn
388 bdrv_drained_begin(BlockDriverState *bs)
389 {
390 IO_OR_GS_CODE();
391 bdrv_do_drained_begin(bs, NULL, true);
392 }
393
394 /**
395 * This function does not poll, nor must any of its recursively called
396 * functions.
397 */
398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 {
400 int old_quiesce_counter;
401
402 IO_OR_GS_CODE();
403
404 if (qemu_in_coroutine()) {
405 bdrv_co_yield_to_drain(bs, false, parent, false);
406 return;
407 }
408
409 /* At this point, we should be always running in the main loop. */
410 GLOBAL_STATE_CODE();
411 assert(bs->quiesce_counter > 0);
412 GLOBAL_STATE_CODE();
413
414 /* Re-enable things in child-to-parent order */
415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416 if (old_quiesce_counter == 1) {
417 GRAPH_RDLOCK_GUARD_MAINLOOP();
418 if (bs->drv && bs->drv->bdrv_drain_end) {
419 bs->drv->bdrv_drain_end(bs);
420 }
421 bdrv_parent_drained_end(bs, parent);
422 }
423 }
424
425 void bdrv_drained_end(BlockDriverState *bs)
426 {
427 IO_OR_GS_CODE();
428 bdrv_do_drained_end(bs, NULL);
429 }
430
431 void bdrv_drain(BlockDriverState *bs)
432 {
433 IO_OR_GS_CODE();
434 bdrv_drained_begin(bs);
435 bdrv_drained_end(bs);
436 }
437
438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
439 {
440 BdrvChild *child, *next;
441 GLOBAL_STATE_CODE();
442 GRAPH_RDLOCK_GUARD_MAINLOOP();
443
444 assert(qatomic_read(&bs->in_flight) == 0);
445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446 bdrv_drain_assert_idle(child->bs);
447 }
448 }
449
450 unsigned int bdrv_drain_all_count = 0;
451
452 static bool bdrv_drain_all_poll(void)
453 {
454 BlockDriverState *bs = NULL;
455 bool result = false;
456
457 GLOBAL_STATE_CODE();
458 GRAPH_RDLOCK_GUARD_MAINLOOP();
459
460 /*
461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462 * so iterating bdrv_next_all_states() is safe.
463 */
464 while ((bs = bdrv_next_all_states(bs))) {
465 result |= bdrv_drain_poll(bs, NULL, true);
466 }
467
468 return result;
469 }
470
471 /*
472 * Wait for pending requests to complete across all BlockDriverStates
473 *
474 * This function does not flush data to disk, use bdrv_flush_all() for that
475 * after calling this function.
476 *
477 * This pauses all block jobs and disables external clients. It must
478 * be paired with bdrv_drain_all_end().
479 *
480 * NOTE: no new block jobs or BlockDriverStates can be created between
481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
482 */
483 void bdrv_drain_all_begin_nopoll(void)
484 {
485 BlockDriverState *bs = NULL;
486 GLOBAL_STATE_CODE();
487
488 /*
489 * bdrv queue is managed by record/replay,
490 * waiting for finishing the I/O requests may
491 * be infinite
492 */
493 if (replay_events_enabled()) {
494 return;
495 }
496
497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498 * loop AioContext, so make sure we're in the main context. */
499 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500 assert(bdrv_drain_all_count < INT_MAX);
501 bdrv_drain_all_count++;
502
503 /* Quiesce all nodes, without polling in-flight requests yet. The graph
504 * cannot change during this loop. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 bdrv_do_drained_begin(bs, NULL, false);
507 }
508 }
509
510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512 BlockDriverState *bs = NULL;
513
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
517 }
518
519 /*
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
523 */
524 if (replay_events_enabled()) {
525 return;
526 }
527
528 bdrv_drain_all_begin_nopoll();
529
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
535 }
536 }
537
538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540 GLOBAL_STATE_CODE();
541
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
544
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
547 }
548 }
549
550 void bdrv_drain_all_end(void)
551 {
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
554
555 /*
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
559 */
560 if (replay_events_enabled()) {
561 return;
562 }
563
564 while ((bs = bdrv_next_all_states(bs))) {
565 bdrv_do_drained_end(bs, NULL);
566 }
567
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 assert(bdrv_drain_all_count > 0);
570 bdrv_drain_all_count--;
571 }
572
573 void bdrv_drain_all(void)
574 {
575 GLOBAL_STATE_CODE();
576 bdrv_drain_all_begin();
577 bdrv_drain_all_end();
578 }
579
580 /**
581 * Remove an active request from the tracked requests list
582 *
583 * This function should be called when a tracked request is completing.
584 */
585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
586 {
587 if (req->serialising) {
588 qatomic_dec(&req->bs->serialising_in_flight);
589 }
590
591 qemu_mutex_lock(&req->bs->reqs_lock);
592 QLIST_REMOVE(req, list);
593 qemu_mutex_unlock(&req->bs->reqs_lock);
594
595 /*
596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597 * anymore because the request has been removed from the list, so it's safe
598 * to restart the queue outside reqs_lock to minimize the critical section.
599 */
600 qemu_co_queue_restart_all(&req->wait_queue);
601 }
602
603 /**
604 * Add an active request to the tracked requests list
605 */
606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607 BlockDriverState *bs,
608 int64_t offset,
609 int64_t bytes,
610 enum BdrvTrackedRequestType type)
611 {
612 bdrv_check_request(offset, bytes, &error_abort);
613
614 *req = (BdrvTrackedRequest){
615 .bs = bs,
616 .offset = offset,
617 .bytes = bytes,
618 .type = type,
619 .co = qemu_coroutine_self(),
620 .serialising = false,
621 .overlap_offset = offset,
622 .overlap_bytes = bytes,
623 };
624
625 qemu_co_queue_init(&req->wait_queue);
626
627 qemu_mutex_lock(&bs->reqs_lock);
628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629 qemu_mutex_unlock(&bs->reqs_lock);
630 }
631
632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633 int64_t offset, int64_t bytes)
634 {
635 bdrv_check_request(offset, bytes, &error_abort);
636
637 /* aaaa bbbb */
638 if (offset >= req->overlap_offset + req->overlap_bytes) {
639 return false;
640 }
641 /* bbbb aaaa */
642 if (req->overlap_offset >= offset + bytes) {
643 return false;
644 }
645 return true;
646 }
647
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
651 {
652 BdrvTrackedRequest *req;
653
654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655 if (req == self || (!req->serialising && !self->serialising)) {
656 continue;
657 }
658 if (tracked_request_overlaps(req, self->overlap_offset,
659 self->overlap_bytes))
660 {
661 /*
662 * Hitting this means there was a reentrant request, for
663 * example, a block driver issuing nested requests. This must
664 * never happen since it means deadlock.
665 */
666 assert(qemu_coroutine_self() != req->co);
667
668 /*
669 * If the request is already (indirectly) waiting for us, or
670 * will wait for us as soon as it wakes up, then just go on
671 * (instead of producing a deadlock in the former case).
672 */
673 if (!req->waiting_for) {
674 return req;
675 }
676 }
677 }
678
679 return NULL;
680 }
681
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
685 {
686 BdrvTrackedRequest *req;
687
688 while ((req = bdrv_find_conflicting_request(self))) {
689 self->waiting_for = req;
690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691 self->waiting_for = NULL;
692 }
693 }
694
695 /* Called with req->bs->reqs_lock held */
696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697 uint64_t align)
698 {
699 int64_t overlap_offset = req->offset & ~(align - 1);
700 int64_t overlap_bytes =
701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
702
703 bdrv_check_request(req->offset, req->bytes, &error_abort);
704
705 if (!req->serialising) {
706 qatomic_inc(&req->bs->serialising_in_flight);
707 req->serialising = true;
708 }
709
710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713
714 /**
715 * Return the tracked request on @bs for the current coroutine, or
716 * NULL if there is none.
717 */
718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
719 {
720 BdrvTrackedRequest *req;
721 Coroutine *self = qemu_coroutine_self();
722 IO_CODE();
723
724 QLIST_FOREACH(req, &bs->tracked_requests, list) {
725 if (req->co == self) {
726 return req;
727 }
728 }
729
730 return NULL;
731 }
732
733 /**
734 * Round a region to subcluster (if supported) or cluster boundaries
735 */
736 void coroutine_fn GRAPH_RDLOCK
737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738 int64_t *align_offset, int64_t *align_bytes)
739 {
740 BlockDriverInfo bdi;
741 IO_CODE();
742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743 *align_offset = offset;
744 *align_bytes = bytes;
745 } else {
746 int64_t c = bdi.subcluster_size;
747 *align_offset = QEMU_ALIGN_DOWN(offset, c);
748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
749 }
750 }
751
752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
753 {
754 BlockDriverInfo bdi;
755 int ret;
756
757 ret = bdrv_co_get_info(bs, &bdi);
758 if (ret < 0 || bdi.cluster_size == 0) {
759 return bs->bl.request_alignment;
760 } else {
761 return bdi.cluster_size;
762 }
763 }
764
765 void bdrv_inc_in_flight(BlockDriverState *bs)
766 {
767 IO_CODE();
768 qatomic_inc(&bs->in_flight);
769 }
770
771 void bdrv_wakeup(BlockDriverState *bs)
772 {
773 IO_CODE();
774 aio_wait_kick();
775 }
776
777 void bdrv_dec_in_flight(BlockDriverState *bs)
778 {
779 IO_CODE();
780 qatomic_dec(&bs->in_flight);
781 bdrv_wakeup(bs);
782 }
783
784 static void coroutine_fn
785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
786 {
787 BlockDriverState *bs = self->bs;
788
789 if (!qatomic_read(&bs->serialising_in_flight)) {
790 return;
791 }
792
793 qemu_mutex_lock(&bs->reqs_lock);
794 bdrv_wait_serialising_requests_locked(self);
795 qemu_mutex_unlock(&bs->reqs_lock);
796 }
797
798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799 uint64_t align)
800 {
801 IO_CODE();
802
803 qemu_mutex_lock(&req->bs->reqs_lock);
804
805 tracked_request_set_serialising(req, align);
806 bdrv_wait_serialising_requests_locked(req);
807
808 qemu_mutex_unlock(&req->bs->reqs_lock);
809 }
810
811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812 QEMUIOVector *qiov, size_t qiov_offset,
813 Error **errp)
814 {
815 /*
816 * Check generic offset/bytes correctness
817 */
818
819 if (offset < 0) {
820 error_setg(errp, "offset is negative: %" PRIi64, offset);
821 return -EIO;
822 }
823
824 if (bytes < 0) {
825 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826 return -EIO;
827 }
828
829 if (bytes > BDRV_MAX_LENGTH) {
830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831 bytes, BDRV_MAX_LENGTH);
832 return -EIO;
833 }
834
835 if (offset > BDRV_MAX_LENGTH) {
836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837 offset, BDRV_MAX_LENGTH);
838 return -EIO;
839 }
840
841 if (offset > BDRV_MAX_LENGTH - bytes) {
842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843 "exceeds maximum(%" PRIi64 ")", offset, bytes,
844 BDRV_MAX_LENGTH);
845 return -EIO;
846 }
847
848 if (!qiov) {
849 return 0;
850 }
851
852 /*
853 * Check qiov and qiov_offset
854 */
855
856 if (qiov_offset > qiov->size) {
857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858 qiov_offset, qiov->size);
859 return -EIO;
860 }
861
862 if (bytes > qiov->size - qiov_offset) {
863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864 "vector size(%zu)", bytes, qiov_offset, qiov->size);
865 return -EIO;
866 }
867
868 return 0;
869 }
870
871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
872 {
873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
874 }
875
876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877 QEMUIOVector *qiov, size_t qiov_offset)
878 {
879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880 if (ret < 0) {
881 return ret;
882 }
883
884 if (bytes > BDRV_REQUEST_MAX_BYTES) {
885 return -EIO;
886 }
887
888 return 0;
889 }
890
891 /*
892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893 * The operation is sped up by checking the block status and only writing
894 * zeroes to the device if they currently do not return zeroes. Optional
895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896 * BDRV_REQ_FUA).
897 *
898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
899 */
900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
901 {
902 int ret;
903 int64_t target_size, bytes, offset = 0;
904 BlockDriverState *bs = child->bs;
905 IO_CODE();
906
907 target_size = bdrv_getlength(bs);
908 if (target_size < 0) {
909 return target_size;
910 }
911
912 for (;;) {
913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914 if (bytes <= 0) {
915 return 0;
916 }
917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918 if (ret < 0) {
919 return ret;
920 }
921 if (ret & BDRV_BLOCK_ZERO) {
922 offset += bytes;
923 continue;
924 }
925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926 if (ret < 0) {
927 return ret;
928 }
929 offset += bytes;
930 }
931 }
932
933 /*
934 * Writes to the file and ensures that no writes are reordered across this
935 * request (acts as a barrier)
936 *
937 * Returns 0 on success, -errno in error cases.
938 */
939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940 int64_t bytes, const void *buf,
941 BdrvRequestFlags flags)
942 {
943 int ret;
944 IO_CODE();
945 assert_bdrv_graph_readable();
946
947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948 if (ret < 0) {
949 return ret;
950 }
951
952 ret = bdrv_co_flush(child->bs);
953 if (ret < 0) {
954 return ret;
955 }
956
957 return 0;
958 }
959
960 typedef struct CoroutineIOCompletion {
961 Coroutine *coroutine;
962 int ret;
963 } CoroutineIOCompletion;
964
965 static void bdrv_co_io_em_complete(void *opaque, int ret)
966 {
967 CoroutineIOCompletion *co = opaque;
968
969 co->ret = ret;
970 aio_co_wake(co->coroutine);
971 }
972
973 static int coroutine_fn GRAPH_RDLOCK
974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975 QEMUIOVector *qiov, size_t qiov_offset, int flags)
976 {
977 BlockDriver *drv = bs->drv;
978 int64_t sector_num;
979 unsigned int nb_sectors;
980 QEMUIOVector local_qiov;
981 int ret;
982 assert_bdrv_graph_readable();
983
984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985 assert(!(flags & ~bs->supported_read_flags));
986
987 if (!drv) {
988 return -ENOMEDIUM;
989 }
990
991 if (drv->bdrv_co_preadv_part) {
992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993 flags);
994 }
995
996 if (qiov_offset > 0 || bytes != qiov->size) {
997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998 qiov = &local_qiov;
999 }
1000
1001 if (drv->bdrv_co_preadv) {
1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003 goto out;
1004 }
1005
1006 if (drv->bdrv_aio_preadv) {
1007 BlockAIOCB *acb;
1008 CoroutineIOCompletion co = {
1009 .coroutine = qemu_coroutine_self(),
1010 };
1011
1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013 bdrv_co_io_em_complete, &co);
1014 if (acb == NULL) {
1015 ret = -EIO;
1016 goto out;
1017 } else {
1018 qemu_coroutine_yield();
1019 ret = co.ret;
1020 goto out;
1021 }
1022 }
1023
1024 sector_num = offset >> BDRV_SECTOR_BITS;
1025 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1026
1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030 assert(drv->bdrv_co_readv);
1031
1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1033
1034 out:
1035 if (qiov == &local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1037 }
1038
1039 return ret;
1040 }
1041
1042 static int coroutine_fn GRAPH_RDLOCK
1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044 QEMUIOVector *qiov, size_t qiov_offset,
1045 BdrvRequestFlags flags)
1046 {
1047 BlockDriver *drv = bs->drv;
1048 bool emulate_fua = false;
1049 int64_t sector_num;
1050 unsigned int nb_sectors;
1051 QEMUIOVector local_qiov;
1052 int ret;
1053 assert_bdrv_graph_readable();
1054
1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1056
1057 if (!drv) {
1058 return -ENOMEDIUM;
1059 }
1060
1061 if ((flags & BDRV_REQ_FUA) &&
1062 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1063 flags &= ~BDRV_REQ_FUA;
1064 emulate_fua = true;
1065 }
1066
1067 flags &= bs->supported_write_flags;
1068
1069 if (drv->bdrv_co_pwritev_part) {
1070 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1071 flags);
1072 goto emulate_flags;
1073 }
1074
1075 if (qiov_offset > 0 || bytes != qiov->size) {
1076 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1077 qiov = &local_qiov;
1078 }
1079
1080 if (drv->bdrv_co_pwritev) {
1081 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1082 goto emulate_flags;
1083 }
1084
1085 if (drv->bdrv_aio_pwritev) {
1086 BlockAIOCB *acb;
1087 CoroutineIOCompletion co = {
1088 .coroutine = qemu_coroutine_self(),
1089 };
1090
1091 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1092 bdrv_co_io_em_complete, &co);
1093 if (acb == NULL) {
1094 ret = -EIO;
1095 } else {
1096 qemu_coroutine_yield();
1097 ret = co.ret;
1098 }
1099 goto emulate_flags;
1100 }
1101
1102 sector_num = offset >> BDRV_SECTOR_BITS;
1103 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1104
1105 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1106 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1107 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1108
1109 assert(drv->bdrv_co_writev);
1110 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1111
1112 emulate_flags:
1113 if (ret == 0 && emulate_fua) {
1114 ret = bdrv_co_flush(bs);
1115 }
1116
1117 if (qiov == &local_qiov) {
1118 qemu_iovec_destroy(&local_qiov);
1119 }
1120
1121 return ret;
1122 }
1123
1124 static int coroutine_fn GRAPH_RDLOCK
1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1126 int64_t bytes, QEMUIOVector *qiov,
1127 size_t qiov_offset)
1128 {
1129 BlockDriver *drv = bs->drv;
1130 QEMUIOVector local_qiov;
1131 int ret;
1132 assert_bdrv_graph_readable();
1133
1134 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1135
1136 if (!drv) {
1137 return -ENOMEDIUM;
1138 }
1139
1140 if (!block_driver_can_compress(drv)) {
1141 return -ENOTSUP;
1142 }
1143
1144 if (drv->bdrv_co_pwritev_compressed_part) {
1145 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1146 qiov, qiov_offset);
1147 }
1148
1149 if (qiov_offset == 0) {
1150 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1151 }
1152
1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1155 qemu_iovec_destroy(&local_qiov);
1156
1157 return ret;
1158 }
1159
1160 static int coroutine_fn GRAPH_RDLOCK
1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1162 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1163 {
1164 BlockDriverState *bs = child->bs;
1165
1166 /* Perform I/O through a temporary buffer so that users who scribble over
1167 * their read buffer while the operation is in progress do not end up
1168 * modifying the image file. This is critical for zero-copy guest I/O
1169 * where anything might happen inside guest memory.
1170 */
1171 void *bounce_buffer = NULL;
1172
1173 BlockDriver *drv = bs->drv;
1174 int64_t align_offset;
1175 int64_t align_bytes;
1176 int64_t skip_bytes;
1177 int ret;
1178 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1179 BDRV_REQUEST_MAX_BYTES);
1180 int64_t progress = 0;
1181 bool skip_write;
1182
1183 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1184
1185 if (!drv) {
1186 return -ENOMEDIUM;
1187 }
1188
1189 /*
1190 * Do not write anything when the BDS is inactive. That is not
1191 * allowed, and it would not help.
1192 */
1193 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1194
1195 /* FIXME We cannot require callers to have write permissions when all they
1196 * are doing is a read request. If we did things right, write permissions
1197 * would be obtained anyway, but internally by the copy-on-read code. As
1198 * long as it is implemented here rather than in a separate filter driver,
1199 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1200 * it could request permissions. Therefore we have to bypass the permission
1201 * system for the moment. */
1202 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1203
1204 /* Cover entire cluster so no additional backing file I/O is required when
1205 * allocating cluster in the image file. Note that this value may exceed
1206 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1207 * is one reason we loop rather than doing it all at once.
1208 */
1209 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1210 skip_bytes = offset - align_offset;
1211
1212 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1213 align_offset, align_bytes);
1214
1215 while (align_bytes) {
1216 int64_t pnum;
1217
1218 if (skip_write) {
1219 ret = 1; /* "already allocated", so nothing will be copied */
1220 pnum = MIN(align_bytes, max_transfer);
1221 } else {
1222 ret = bdrv_co_is_allocated(bs, align_offset,
1223 MIN(align_bytes, max_transfer), &pnum);
1224 if (ret < 0) {
1225 /*
1226 * Safe to treat errors in querying allocation as if
1227 * unallocated; we'll probably fail again soon on the
1228 * read, but at least that will set a decent errno.
1229 */
1230 pnum = MIN(align_bytes, max_transfer);
1231 }
1232
1233 /* Stop at EOF if the image ends in the middle of the cluster */
1234 if (ret == 0 && pnum == 0) {
1235 assert(progress >= bytes);
1236 break;
1237 }
1238
1239 assert(skip_bytes < pnum);
1240 }
1241
1242 if (ret <= 0) {
1243 QEMUIOVector local_qiov;
1244
1245 /* Must copy-on-read; use the bounce buffer */
1246 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1247 if (!bounce_buffer) {
1248 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1249 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1250 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1251
1252 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1253 if (!bounce_buffer) {
1254 ret = -ENOMEM;
1255 goto err;
1256 }
1257 }
1258 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1259
1260 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1261 &local_qiov, 0, 0);
1262 if (ret < 0) {
1263 goto err;
1264 }
1265
1266 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1267 if (drv->bdrv_co_pwrite_zeroes &&
1268 buffer_is_zero(bounce_buffer, pnum)) {
1269 /* FIXME: Should we (perhaps conditionally) be setting
1270 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1271 * that still correctly reads as zero? */
1272 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1273 BDRV_REQ_WRITE_UNCHANGED);
1274 } else {
1275 /* This does not change the data on the disk, it is not
1276 * necessary to flush even in cache=writethrough mode.
1277 */
1278 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1279 &local_qiov, 0,
1280 BDRV_REQ_WRITE_UNCHANGED);
1281 }
1282
1283 if (ret < 0) {
1284 /* It might be okay to ignore write errors for guest
1285 * requests. If this is a deliberate copy-on-read
1286 * then we don't want to ignore the error. Simply
1287 * report it in all cases.
1288 */
1289 goto err;
1290 }
1291
1292 if (!(flags & BDRV_REQ_PREFETCH)) {
1293 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1294 bounce_buffer + skip_bytes,
1295 MIN(pnum - skip_bytes, bytes - progress));
1296 }
1297 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1298 /* Read directly into the destination */
1299 ret = bdrv_driver_preadv(bs, offset + progress,
1300 MIN(pnum - skip_bytes, bytes - progress),
1301 qiov, qiov_offset + progress, 0);
1302 if (ret < 0) {
1303 goto err;
1304 }
1305 }
1306
1307 align_offset += pnum;
1308 align_bytes -= pnum;
1309 progress += pnum - skip_bytes;
1310 skip_bytes = 0;
1311 }
1312 ret = 0;
1313
1314 err:
1315 qemu_vfree(bounce_buffer);
1316 return ret;
1317 }
1318
1319 /*
1320 * Forwards an already correctly aligned request to the BlockDriver. This
1321 * handles copy on read, zeroing after EOF, and fragmentation of large
1322 * reads; any other features must be implemented by the caller.
1323 */
1324 static int coroutine_fn GRAPH_RDLOCK
1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1326 int64_t offset, int64_t bytes, int64_t align,
1327 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1328 {
1329 BlockDriverState *bs = child->bs;
1330 int64_t total_bytes, max_bytes;
1331 int ret = 0;
1332 int64_t bytes_remaining = bytes;
1333 int max_transfer;
1334
1335 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1336 assert(is_power_of_2(align));
1337 assert((offset & (align - 1)) == 0);
1338 assert((bytes & (align - 1)) == 0);
1339 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1341 align);
1342
1343 /*
1344 * TODO: We would need a per-BDS .supported_read_flags and
1345 * potential fallback support, if we ever implement any read flags
1346 * to pass through to drivers. For now, there aren't any
1347 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1348 */
1349 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1350 BDRV_REQ_REGISTERED_BUF)));
1351
1352 /* Handle Copy on Read and associated serialisation */
1353 if (flags & BDRV_REQ_COPY_ON_READ) {
1354 /* If we touch the same cluster it counts as an overlap. This
1355 * guarantees that allocating writes will be serialized and not race
1356 * with each other for the same cluster. For example, in copy-on-read
1357 * it ensures that the CoR read and write operations are atomic and
1358 * guest writes cannot interleave between them. */
1359 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1360 } else {
1361 bdrv_wait_serialising_requests(req);
1362 }
1363
1364 if (flags & BDRV_REQ_COPY_ON_READ) {
1365 int64_t pnum;
1366
1367 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1368 flags &= ~BDRV_REQ_COPY_ON_READ;
1369
1370 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1371 if (ret < 0) {
1372 goto out;
1373 }
1374
1375 if (!ret || pnum != bytes) {
1376 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1377 qiov, qiov_offset, flags);
1378 goto out;
1379 } else if (flags & BDRV_REQ_PREFETCH) {
1380 goto out;
1381 }
1382 }
1383
1384 /* Forward the request to the BlockDriver, possibly fragmenting it */
1385 total_bytes = bdrv_co_getlength(bs);
1386 if (total_bytes < 0) {
1387 ret = total_bytes;
1388 goto out;
1389 }
1390
1391 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1392
1393 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1394 if (bytes <= max_bytes && bytes <= max_transfer) {
1395 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1396 goto out;
1397 }
1398
1399 while (bytes_remaining) {
1400 int64_t num;
1401
1402 if (max_bytes) {
1403 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1404 assert(num);
1405
1406 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1407 num, qiov,
1408 qiov_offset + bytes - bytes_remaining,
1409 flags);
1410 max_bytes -= num;
1411 } else {
1412 num = bytes_remaining;
1413 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1414 0, bytes_remaining);
1415 }
1416 if (ret < 0) {
1417 goto out;
1418 }
1419 bytes_remaining -= num;
1420 }
1421
1422 out:
1423 return ret < 0 ? ret : 0;
1424 }
1425
1426 /*
1427 * Request padding
1428 *
1429 * |<---- align ----->| |<----- align ---->|
1430 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1431 * | | | | | |
1432 * -*----------$-------*-------- ... --------*-----$------------*---
1433 * | | | | | |
1434 * | offset | | end |
1435 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1436 * [buf ... ) [tail_buf )
1437 *
1438 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1439 * is placed at the beginning of @buf and @tail at the @end.
1440 *
1441 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1442 * around tail, if tail exists.
1443 *
1444 * @merge_reads is true for small requests,
1445 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1446 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1447 *
1448 * @write is true for write requests, false for read requests.
1449 *
1450 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1451 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1452 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1453 * I/O vector elements so for read requests, the data can be copied back after
1454 * the read is done.
1455 */
1456 typedef struct BdrvRequestPadding {
1457 uint8_t *buf;
1458 size_t buf_len;
1459 uint8_t *tail_buf;
1460 size_t head;
1461 size_t tail;
1462 bool merge_reads;
1463 bool write;
1464 QEMUIOVector local_qiov;
1465
1466 uint8_t *collapse_bounce_buf;
1467 size_t collapse_len;
1468 QEMUIOVector pre_collapse_qiov;
1469 } BdrvRequestPadding;
1470
1471 static bool bdrv_init_padding(BlockDriverState *bs,
1472 int64_t offset, int64_t bytes,
1473 bool write,
1474 BdrvRequestPadding *pad)
1475 {
1476 int64_t align = bs->bl.request_alignment;
1477 int64_t sum;
1478
1479 bdrv_check_request(offset, bytes, &error_abort);
1480 assert(align <= INT_MAX); /* documented in block/block_int.h */
1481 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1482
1483 memset(pad, 0, sizeof(*pad));
1484
1485 pad->head = offset & (align - 1);
1486 pad->tail = ((offset + bytes) & (align - 1));
1487 if (pad->tail) {
1488 pad->tail = align - pad->tail;
1489 }
1490
1491 if (!pad->head && !pad->tail) {
1492 return false;
1493 }
1494
1495 assert(bytes); /* Nothing good in aligning zero-length requests */
1496
1497 sum = pad->head + bytes + pad->tail;
1498 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1499 pad->buf = qemu_blockalign(bs, pad->buf_len);
1500 pad->merge_reads = sum == pad->buf_len;
1501 if (pad->tail) {
1502 pad->tail_buf = pad->buf + pad->buf_len - align;
1503 }
1504
1505 pad->write = write;
1506
1507 return true;
1508 }
1509
1510 static int coroutine_fn GRAPH_RDLOCK
1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1512 BdrvRequestPadding *pad, bool zero_middle)
1513 {
1514 QEMUIOVector local_qiov;
1515 BlockDriverState *bs = child->bs;
1516 uint64_t align = bs->bl.request_alignment;
1517 int ret;
1518
1519 assert(req->serialising && pad->buf);
1520
1521 if (pad->head || pad->merge_reads) {
1522 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1523
1524 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1525
1526 if (pad->head) {
1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1528 }
1529 if (pad->merge_reads && pad->tail) {
1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1531 }
1532 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1533 align, &local_qiov, 0, 0);
1534 if (ret < 0) {
1535 return ret;
1536 }
1537 if (pad->head) {
1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1539 }
1540 if (pad->merge_reads && pad->tail) {
1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1542 }
1543
1544 if (pad->merge_reads) {
1545 goto zero_mem;
1546 }
1547 }
1548
1549 if (pad->tail) {
1550 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1551
1552 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1553 ret = bdrv_aligned_preadv(
1554 child, req,
1555 req->overlap_offset + req->overlap_bytes - align,
1556 align, align, &local_qiov, 0, 0);
1557 if (ret < 0) {
1558 return ret;
1559 }
1560 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1561 }
1562
1563 zero_mem:
1564 if (zero_middle) {
1565 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1566 }
1567
1568 return 0;
1569 }
1570
1571 /**
1572 * Free *pad's associated buffers, and perform any necessary finalization steps.
1573 */
1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1575 {
1576 if (pad->collapse_bounce_buf) {
1577 if (!pad->write) {
1578 /*
1579 * If padding required elements in the vector to be collapsed into a
1580 * bounce buffer, copy the bounce buffer content back
1581 */
1582 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1583 pad->collapse_bounce_buf, pad->collapse_len);
1584 }
1585 qemu_vfree(pad->collapse_bounce_buf);
1586 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1587 }
1588 if (pad->buf) {
1589 qemu_vfree(pad->buf);
1590 qemu_iovec_destroy(&pad->local_qiov);
1591 }
1592 memset(pad, 0, sizeof(*pad));
1593 }
1594
1595 /*
1596 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1597 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1598 *
1599 * To ensure this, when necessary, the first two or three elements of @iov are
1600 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1601 * bounce buffer in pad->local_qiov.
1602 *
1603 * After performing a read request, the data from the bounce buffer must be
1604 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1605 */
1606 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1607 BdrvRequestPadding *pad,
1608 struct iovec *iov, int niov,
1609 size_t iov_offset, size_t bytes)
1610 {
1611 int padded_niov, surplus_count, collapse_count;
1612
1613 /* Assert this invariant */
1614 assert(niov <= IOV_MAX);
1615
1616 /*
1617 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1618 * to the guest is not ideal, but there is little else we can do. At least
1619 * this will practically never happen on 64-bit systems.
1620 */
1621 if (SIZE_MAX - pad->head < bytes ||
1622 SIZE_MAX - pad->head - bytes < pad->tail)
1623 {
1624 return -EINVAL;
1625 }
1626
1627 /* Length of the resulting IOV if we just concatenated everything */
1628 padded_niov = !!pad->head + niov + !!pad->tail;
1629
1630 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1631
1632 if (pad->head) {
1633 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1634 }
1635
1636 /*
1637 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1638 * Instead, merge the first two or three elements of @iov to reduce the
1639 * number of vector elements as necessary.
1640 */
1641 if (padded_niov > IOV_MAX) {
1642 /*
1643 * Only head and tail can have lead to the number of entries exceeding
1644 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1645 * to reduce the number of elements by `surplus_count`, so we merge that
1646 * many elements plus one into one element.
1647 */
1648 surplus_count = padded_niov - IOV_MAX;
1649 assert(surplus_count <= !!pad->head + !!pad->tail);
1650 collapse_count = surplus_count + 1;
1651
1652 /*
1653 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1654 * advance `iov` (and associated variables) by those elements.
1655 */
1656 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1657 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1658 collapse_count, iov_offset, SIZE_MAX);
1659 iov += collapse_count;
1660 iov_offset = 0;
1661 niov -= collapse_count;
1662 bytes -= pad->pre_collapse_qiov.size;
1663
1664 /*
1665 * Construct the bounce buffer to match the length of the to-collapse
1666 * vector elements, and for write requests, initialize it with the data
1667 * from those elements. Then add it to `pad->local_qiov`.
1668 */
1669 pad->collapse_len = pad->pre_collapse_qiov.size;
1670 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1671 if (pad->write) {
1672 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1673 pad->collapse_bounce_buf, pad->collapse_len);
1674 }
1675 qemu_iovec_add(&pad->local_qiov,
1676 pad->collapse_bounce_buf, pad->collapse_len);
1677 }
1678
1679 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1680
1681 if (pad->tail) {
1682 qemu_iovec_add(&pad->local_qiov,
1683 pad->buf + pad->buf_len - pad->tail, pad->tail);
1684 }
1685
1686 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1687 return 0;
1688 }
1689
1690 /*
1691 * bdrv_pad_request
1692 *
1693 * Exchange request parameters with padded request if needed. Don't include RMW
1694 * read of padding, bdrv_padding_rmw_read() should be called separately if
1695 * needed.
1696 *
1697 * @write is true for write requests, false for read requests.
1698 *
1699 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1700 * - on function start they represent original request
1701 * - on failure or when padding is not needed they are unchanged
1702 * - on success when padding is needed they represent padded request
1703 */
1704 static int bdrv_pad_request(BlockDriverState *bs,
1705 QEMUIOVector **qiov, size_t *qiov_offset,
1706 int64_t *offset, int64_t *bytes,
1707 bool write,
1708 BdrvRequestPadding *pad, bool *padded,
1709 BdrvRequestFlags *flags)
1710 {
1711 int ret;
1712 struct iovec *sliced_iov;
1713 int sliced_niov;
1714 size_t sliced_head, sliced_tail;
1715
1716 /* Should have been checked by the caller already */
1717 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1718 if (ret < 0) {
1719 return ret;
1720 }
1721
1722 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1723 if (padded) {
1724 *padded = false;
1725 }
1726 return 0;
1727 }
1728
1729 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1730 &sliced_head, &sliced_tail,
1731 &sliced_niov);
1732
1733 /* Guaranteed by bdrv_check_request32() */
1734 assert(*bytes <= SIZE_MAX);
1735 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1736 sliced_head, *bytes);
1737 if (ret < 0) {
1738 bdrv_padding_finalize(pad);
1739 return ret;
1740 }
1741 *bytes += pad->head + pad->tail;
1742 *offset -= pad->head;
1743 *qiov = &pad->local_qiov;
1744 *qiov_offset = 0;
1745 if (padded) {
1746 *padded = true;
1747 }
1748 if (flags) {
1749 /* Can't use optimization hint with bounce buffer */
1750 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1751 }
1752
1753 return 0;
1754 }
1755
1756 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1757 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1758 BdrvRequestFlags flags)
1759 {
1760 IO_CODE();
1761 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1762 }
1763
1764 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1765 int64_t offset, int64_t bytes,
1766 QEMUIOVector *qiov, size_t qiov_offset,
1767 BdrvRequestFlags flags)
1768 {
1769 BlockDriverState *bs = child->bs;
1770 BdrvTrackedRequest req;
1771 BdrvRequestPadding pad;
1772 int ret;
1773 IO_CODE();
1774
1775 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1776
1777 if (!bdrv_co_is_inserted(bs)) {
1778 return -ENOMEDIUM;
1779 }
1780
1781 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1782 if (ret < 0) {
1783 return ret;
1784 }
1785
1786 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1787 /*
1788 * Aligning zero request is nonsense. Even if driver has special meaning
1789 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1790 * it to driver due to request_alignment.
1791 *
1792 * Still, no reason to return an error if someone do unaligned
1793 * zero-length read occasionally.
1794 */
1795 return 0;
1796 }
1797
1798 bdrv_inc_in_flight(bs);
1799
1800 /* Don't do copy-on-read if we read data before write operation */
1801 if (qatomic_read(&bs->copy_on_read)) {
1802 flags |= BDRV_REQ_COPY_ON_READ;
1803 }
1804
1805 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1806 &pad, NULL, &flags);
1807 if (ret < 0) {
1808 goto fail;
1809 }
1810
1811 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1812 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1813 bs->bl.request_alignment,
1814 qiov, qiov_offset, flags);
1815 tracked_request_end(&req);
1816 bdrv_padding_finalize(&pad);
1817
1818 fail:
1819 bdrv_dec_in_flight(bs);
1820
1821 return ret;
1822 }
1823
1824 static int coroutine_fn GRAPH_RDLOCK
1825 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1826 BdrvRequestFlags flags)
1827 {
1828 BlockDriver *drv = bs->drv;
1829 QEMUIOVector qiov;
1830 void *buf = NULL;
1831 int ret = 0;
1832 bool need_flush = false;
1833 int head = 0;
1834 int tail = 0;
1835
1836 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1837 INT64_MAX);
1838 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1839 bs->bl.request_alignment);
1840 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1841
1842 assert_bdrv_graph_readable();
1843 bdrv_check_request(offset, bytes, &error_abort);
1844
1845 if (!drv) {
1846 return -ENOMEDIUM;
1847 }
1848
1849 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1850 return -ENOTSUP;
1851 }
1852
1853 /* By definition there is no user buffer so this flag doesn't make sense */
1854 if (flags & BDRV_REQ_REGISTERED_BUF) {
1855 return -EINVAL;
1856 }
1857
1858 /* Invalidate the cached block-status data range if this write overlaps */
1859 bdrv_bsc_invalidate_range(bs, offset, bytes);
1860
1861 assert(alignment % bs->bl.request_alignment == 0);
1862 head = offset % alignment;
1863 tail = (offset + bytes) % alignment;
1864 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1865 assert(max_write_zeroes >= bs->bl.request_alignment);
1866
1867 while (bytes > 0 && !ret) {
1868 int64_t num = bytes;
1869
1870 /* Align request. Block drivers can expect the "bulk" of the request
1871 * to be aligned, and that unaligned requests do not cross cluster
1872 * boundaries.
1873 */
1874 if (head) {
1875 /* Make a small request up to the first aligned sector. For
1876 * convenience, limit this request to max_transfer even if
1877 * we don't need to fall back to writes. */
1878 num = MIN(MIN(bytes, max_transfer), alignment - head);
1879 head = (head + num) % alignment;
1880 assert(num < max_write_zeroes);
1881 } else if (tail && num > alignment) {
1882 /* Shorten the request to the last aligned sector. */
1883 num -= tail;
1884 }
1885
1886 /* limit request size */
1887 if (num > max_write_zeroes) {
1888 num = max_write_zeroes;
1889 }
1890
1891 ret = -ENOTSUP;
1892 /* First try the efficient write zeroes operation */
1893 if (drv->bdrv_co_pwrite_zeroes) {
1894 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1895 flags & bs->supported_zero_flags);
1896 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1897 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1898 need_flush = true;
1899 }
1900 } else {
1901 assert(!bs->supported_zero_flags);
1902 }
1903
1904 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1905 /* Fall back to bounce buffer if write zeroes is unsupported */
1906 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1907
1908 if ((flags & BDRV_REQ_FUA) &&
1909 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1910 /* No need for bdrv_driver_pwrite() to do a fallback
1911 * flush on each chunk; use just one at the end */
1912 write_flags &= ~BDRV_REQ_FUA;
1913 need_flush = true;
1914 }
1915 num = MIN(num, max_transfer);
1916 if (buf == NULL) {
1917 buf = qemu_try_blockalign0(bs, num);
1918 if (buf == NULL) {
1919 ret = -ENOMEM;
1920 goto fail;
1921 }
1922 }
1923 qemu_iovec_init_buf(&qiov, buf, num);
1924
1925 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1926
1927 /* Keep bounce buffer around if it is big enough for all
1928 * all future requests.
1929 */
1930 if (num < max_transfer) {
1931 qemu_vfree(buf);
1932 buf = NULL;
1933 }
1934 }
1935
1936 offset += num;
1937 bytes -= num;
1938 }
1939
1940 fail:
1941 if (ret == 0 && need_flush) {
1942 ret = bdrv_co_flush(bs);
1943 }
1944 qemu_vfree(buf);
1945 return ret;
1946 }
1947
1948 static inline int coroutine_fn GRAPH_RDLOCK
1949 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1950 BdrvTrackedRequest *req, int flags)
1951 {
1952 BlockDriverState *bs = child->bs;
1953
1954 bdrv_check_request(offset, bytes, &error_abort);
1955
1956 if (bdrv_is_read_only(bs)) {
1957 return -EPERM;
1958 }
1959
1960 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1961 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1962 assert(!(flags & ~BDRV_REQ_MASK));
1963 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1964
1965 if (flags & BDRV_REQ_SERIALISING) {
1966 QEMU_LOCK_GUARD(&bs->reqs_lock);
1967
1968 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1969
1970 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1971 return -EBUSY;
1972 }
1973
1974 bdrv_wait_serialising_requests_locked(req);
1975 } else {
1976 bdrv_wait_serialising_requests(req);
1977 }
1978
1979 assert(req->overlap_offset <= offset);
1980 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1981 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1982 child->perm & BLK_PERM_RESIZE);
1983
1984 switch (req->type) {
1985 case BDRV_TRACKED_WRITE:
1986 case BDRV_TRACKED_DISCARD:
1987 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1988 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1989 } else {
1990 assert(child->perm & BLK_PERM_WRITE);
1991 }
1992 bdrv_write_threshold_check_write(bs, offset, bytes);
1993 return 0;
1994 case BDRV_TRACKED_TRUNCATE:
1995 assert(child->perm & BLK_PERM_RESIZE);
1996 return 0;
1997 default:
1998 abort();
1999 }
2000 }
2001
2002 static inline void coroutine_fn GRAPH_RDLOCK
2003 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2004 BdrvTrackedRequest *req, int ret)
2005 {
2006 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2007 BlockDriverState *bs = child->bs;
2008
2009 bdrv_check_request(offset, bytes, &error_abort);
2010
2011 qatomic_inc(&bs->write_gen);
2012
2013 /*
2014 * Discard cannot extend the image, but in error handling cases, such as
2015 * when reverting a qcow2 cluster allocation, the discarded range can pass
2016 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2017 * here. Instead, just skip it, since semantically a discard request
2018 * beyond EOF cannot expand the image anyway.
2019 */
2020 if (ret == 0 &&
2021 (req->type == BDRV_TRACKED_TRUNCATE ||
2022 end_sector > bs->total_sectors) &&
2023 req->type != BDRV_TRACKED_DISCARD) {
2024 bs->total_sectors = end_sector;
2025 bdrv_parent_cb_resize(bs);
2026 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2027 }
2028 if (req->bytes) {
2029 switch (req->type) {
2030 case BDRV_TRACKED_WRITE:
2031 stat64_max(&bs->wr_highest_offset, offset + bytes);
2032 /* fall through, to set dirty bits */
2033 case BDRV_TRACKED_DISCARD:
2034 bdrv_set_dirty(bs, offset, bytes);
2035 break;
2036 default:
2037 break;
2038 }
2039 }
2040 }
2041
2042 /*
2043 * Forwards an already correctly aligned write request to the BlockDriver,
2044 * after possibly fragmenting it.
2045 */
2046 static int coroutine_fn GRAPH_RDLOCK
2047 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2048 int64_t offset, int64_t bytes, int64_t align,
2049 QEMUIOVector *qiov, size_t qiov_offset,
2050 BdrvRequestFlags flags)
2051 {
2052 BlockDriverState *bs = child->bs;
2053 BlockDriver *drv = bs->drv;
2054 int ret;
2055
2056 int64_t bytes_remaining = bytes;
2057 int max_transfer;
2058
2059 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2060
2061 if (!drv) {
2062 return -ENOMEDIUM;
2063 }
2064
2065 if (bdrv_has_readonly_bitmaps(bs)) {
2066 return -EPERM;
2067 }
2068
2069 assert(is_power_of_2(align));
2070 assert((offset & (align - 1)) == 0);
2071 assert((bytes & (align - 1)) == 0);
2072 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2073 align);
2074
2075 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2076
2077 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2078 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2079 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2080 flags |= BDRV_REQ_ZERO_WRITE;
2081 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2082 flags |= BDRV_REQ_MAY_UNMAP;
2083 }
2084
2085 /* Can't use optimization hint with bufferless zero write */
2086 flags &= ~BDRV_REQ_REGISTERED_BUF;
2087 }
2088
2089 if (ret < 0) {
2090 /* Do nothing, write notifier decided to fail this request */
2091 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2092 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2093 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2094 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2095 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2096 qiov, qiov_offset);
2097 } else if (bytes <= max_transfer) {
2098 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2099 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2100 } else {
2101 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2102 while (bytes_remaining) {
2103 int num = MIN(bytes_remaining, max_transfer);
2104 int local_flags = flags;
2105
2106 assert(num);
2107 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2108 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2109 /* If FUA is going to be emulated by flush, we only
2110 * need to flush on the last iteration */
2111 local_flags &= ~BDRV_REQ_FUA;
2112 }
2113
2114 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2115 num, qiov,
2116 qiov_offset + bytes - bytes_remaining,
2117 local_flags);
2118 if (ret < 0) {
2119 break;
2120 }
2121 bytes_remaining -= num;
2122 }
2123 }
2124 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2125
2126 if (ret >= 0) {
2127 ret = 0;
2128 }
2129 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2130
2131 return ret;
2132 }
2133
2134 static int coroutine_fn GRAPH_RDLOCK
2135 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2136 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2137 {
2138 BlockDriverState *bs = child->bs;
2139 QEMUIOVector local_qiov;
2140 uint64_t align = bs->bl.request_alignment;
2141 int ret = 0;
2142 bool padding;
2143 BdrvRequestPadding pad;
2144
2145 /* This flag doesn't make sense for padding or zero writes */
2146 flags &= ~BDRV_REQ_REGISTERED_BUF;
2147
2148 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2149 if (padding) {
2150 assert(!(flags & BDRV_REQ_NO_WAIT));
2151 bdrv_make_request_serialising(req, align);
2152
2153 bdrv_padding_rmw_read(child, req, &pad, true);
2154
2155 if (pad.head || pad.merge_reads) {
2156 int64_t aligned_offset = offset & ~(align - 1);
2157 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2158
2159 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2160 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2161 align, &local_qiov, 0,
2162 flags & ~BDRV_REQ_ZERO_WRITE);
2163 if (ret < 0 || pad.merge_reads) {
2164 /* Error or all work is done */
2165 goto out;
2166 }
2167 offset += write_bytes - pad.head;
2168 bytes -= write_bytes - pad.head;
2169 }
2170 }
2171
2172 assert(!bytes || (offset & (align - 1)) == 0);
2173 if (bytes >= align) {
2174 /* Write the aligned part in the middle. */
2175 int64_t aligned_bytes = bytes & ~(align - 1);
2176 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2177 NULL, 0, flags);
2178 if (ret < 0) {
2179 goto out;
2180 }
2181 bytes -= aligned_bytes;
2182 offset += aligned_bytes;
2183 }
2184
2185 assert(!bytes || (offset & (align - 1)) == 0);
2186 if (bytes) {
2187 assert(align == pad.tail + bytes);
2188
2189 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2190 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2191 &local_qiov, 0,
2192 flags & ~BDRV_REQ_ZERO_WRITE);
2193 }
2194
2195 out:
2196 bdrv_padding_finalize(&pad);
2197
2198 return ret;
2199 }
2200
2201 /*
2202 * Handle a write request in coroutine context
2203 */
2204 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2205 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2206 BdrvRequestFlags flags)
2207 {
2208 IO_CODE();
2209 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2210 }
2211
2212 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2213 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2214 BdrvRequestFlags flags)
2215 {
2216 BlockDriverState *bs = child->bs;
2217 BdrvTrackedRequest req;
2218 uint64_t align = bs->bl.request_alignment;
2219 BdrvRequestPadding pad;
2220 int ret;
2221 bool padded = false;
2222 IO_CODE();
2223
2224 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2225
2226 if (!bdrv_co_is_inserted(bs)) {
2227 return -ENOMEDIUM;
2228 }
2229
2230 if (flags & BDRV_REQ_ZERO_WRITE) {
2231 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2232 } else {
2233 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2234 }
2235 if (ret < 0) {
2236 return ret;
2237 }
2238
2239 /* If the request is misaligned then we can't make it efficient */
2240 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2241 !QEMU_IS_ALIGNED(offset | bytes, align))
2242 {
2243 return -ENOTSUP;
2244 }
2245
2246 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2247 /*
2248 * Aligning zero request is nonsense. Even if driver has special meaning
2249 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2250 * it to driver due to request_alignment.
2251 *
2252 * Still, no reason to return an error if someone do unaligned
2253 * zero-length write occasionally.
2254 */
2255 return 0;
2256 }
2257
2258 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2259 /*
2260 * Pad request for following read-modify-write cycle.
2261 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2262 * alignment only if there is no ZERO flag.
2263 */
2264 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2265 &pad, &padded, &flags);
2266 if (ret < 0) {
2267 return ret;
2268 }
2269 }
2270
2271 bdrv_inc_in_flight(bs);
2272 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2273
2274 if (flags & BDRV_REQ_ZERO_WRITE) {
2275 assert(!padded);
2276 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2277 goto out;
2278 }
2279
2280 if (padded) {
2281 /*
2282 * Request was unaligned to request_alignment and therefore
2283 * padded. We are going to do read-modify-write, and must
2284 * serialize the request to prevent interactions of the
2285 * widened region with other transactions.
2286 */
2287 assert(!(flags & BDRV_REQ_NO_WAIT));
2288 bdrv_make_request_serialising(&req, align);
2289 bdrv_padding_rmw_read(child, &req, &pad, false);
2290 }
2291
2292 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2293 qiov, qiov_offset, flags);
2294
2295 bdrv_padding_finalize(&pad);
2296
2297 out:
2298 tracked_request_end(&req);
2299 bdrv_dec_in_flight(bs);
2300
2301 return ret;
2302 }
2303
2304 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2305 int64_t bytes, BdrvRequestFlags flags)
2306 {
2307 IO_CODE();
2308 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2309 assert_bdrv_graph_readable();
2310
2311 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2312 flags &= ~BDRV_REQ_MAY_UNMAP;
2313 }
2314
2315 return bdrv_co_pwritev(child, offset, bytes, NULL,
2316 BDRV_REQ_ZERO_WRITE | flags);
2317 }
2318
2319 /*
2320 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2321 */
2322 int bdrv_flush_all(void)
2323 {
2324 BdrvNextIterator it;
2325 BlockDriverState *bs = NULL;
2326 int result = 0;
2327
2328 GLOBAL_STATE_CODE();
2329 GRAPH_RDLOCK_GUARD_MAINLOOP();
2330
2331 /*
2332 * bdrv queue is managed by record/replay,
2333 * creating new flush request for stopping
2334 * the VM may break the determinism
2335 */
2336 if (replay_events_enabled()) {
2337 return result;
2338 }
2339
2340 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2341 int ret = bdrv_flush(bs);
2342 if (ret < 0 && !result) {
2343 result = ret;
2344 }
2345 }
2346
2347 return result;
2348 }
2349
2350 /*
2351 * Returns the allocation status of the specified sectors.
2352 * Drivers not implementing the functionality are assumed to not support
2353 * backing files, hence all their sectors are reported as allocated.
2354 *
2355 * If 'want_zero' is true, the caller is querying for mapping
2356 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2357 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2358 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2359 *
2360 * If 'offset' is beyond the end of the disk image the return value is
2361 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2362 *
2363 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2364 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2365 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2366 *
2367 * 'pnum' is set to the number of bytes (including and immediately
2368 * following the specified offset) that are easily known to be in the
2369 * same allocated/unallocated state. Note that a second call starting
2370 * at the original offset plus returned pnum may have the same status.
2371 * The returned value is non-zero on success except at end-of-file.
2372 *
2373 * Returns negative errno on failure. Otherwise, if the
2374 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2375 * set to the host mapping and BDS corresponding to the guest offset.
2376 */
2377 static int coroutine_fn GRAPH_RDLOCK
2378 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2379 int64_t offset, int64_t bytes,
2380 int64_t *pnum, int64_t *map, BlockDriverState **file)
2381 {
2382 int64_t total_size;
2383 int64_t n; /* bytes */
2384 int ret;
2385 int64_t local_map = 0;
2386 BlockDriverState *local_file = NULL;
2387 int64_t aligned_offset, aligned_bytes;
2388 uint32_t align;
2389 bool has_filtered_child;
2390
2391 assert(pnum);
2392 assert_bdrv_graph_readable();
2393 *pnum = 0;
2394 total_size = bdrv_co_getlength(bs);
2395 if (total_size < 0) {
2396 ret = total_size;
2397 goto early_out;
2398 }
2399
2400 if (offset >= total_size) {
2401 ret = BDRV_BLOCK_EOF;
2402 goto early_out;
2403 }
2404 if (!bytes) {
2405 ret = 0;
2406 goto early_out;
2407 }
2408
2409 n = total_size - offset;
2410 if (n < bytes) {
2411 bytes = n;
2412 }
2413
2414 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2415 assert(bs->drv);
2416 has_filtered_child = bdrv_filter_child(bs);
2417 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2418 *pnum = bytes;
2419 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2420 if (offset + bytes == total_size) {
2421 ret |= BDRV_BLOCK_EOF;
2422 }
2423 if (bs->drv->protocol_name) {
2424 ret |= BDRV_BLOCK_OFFSET_VALID;
2425 local_map = offset;
2426 local_file = bs;
2427 }
2428 goto early_out;
2429 }
2430
2431 bdrv_inc_in_flight(bs);
2432
2433 /* Round out to request_alignment boundaries */
2434 align = bs->bl.request_alignment;
2435 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2436 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2437
2438 if (bs->drv->bdrv_co_block_status) {
2439 /*
2440 * Use the block-status cache only for protocol nodes: Format
2441 * drivers are generally quick to inquire the status, but protocol
2442 * drivers often need to get information from outside of qemu, so
2443 * we do not have control over the actual implementation. There
2444 * have been cases where inquiring the status took an unreasonably
2445 * long time, and we can do nothing in qemu to fix it.
2446 * This is especially problematic for images with large data areas,
2447 * because finding the few holes in them and giving them special
2448 * treatment does not gain much performance. Therefore, we try to
2449 * cache the last-identified data region.
2450 *
2451 * Second, limiting ourselves to protocol nodes allows us to assume
2452 * the block status for data regions to be DATA | OFFSET_VALID, and
2453 * that the host offset is the same as the guest offset.
2454 *
2455 * Note that it is possible that external writers zero parts of
2456 * the cached regions without the cache being invalidated, and so
2457 * we may report zeroes as data. This is not catastrophic,
2458 * however, because reporting zeroes as data is fine.
2459 */
2460 if (QLIST_EMPTY(&bs->children) &&
2461 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2462 {
2463 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2464 local_file = bs;
2465 local_map = aligned_offset;
2466 } else {
2467 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2468 aligned_bytes, pnum, &local_map,
2469 &local_file);
2470
2471 /*
2472 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2473 * the cache is queried above. Technically, we do not need to check
2474 * it here; the worst that can happen is that we fill the cache for
2475 * non-protocol nodes, and then it is never used. However, filling
2476 * the cache requires an RCU update, so double check here to avoid
2477 * such an update if possible.
2478 *
2479 * Check want_zero, because we only want to update the cache when we
2480 * have accurate information about what is zero and what is data.
2481 */
2482 if (want_zero &&
2483 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2484 QLIST_EMPTY(&bs->children))
2485 {
2486 /*
2487 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2488 * returned local_map value must be the same as the offset we
2489 * have passed (aligned_offset), and local_bs must be the node
2490 * itself.
2491 * Assert this, because we follow this rule when reading from
2492 * the cache (see the `local_file = bs` and
2493 * `local_map = aligned_offset` assignments above), and the
2494 * result the cache delivers must be the same as the driver
2495 * would deliver.
2496 */
2497 assert(local_file == bs);
2498 assert(local_map == aligned_offset);
2499 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2500 }
2501 }
2502 } else {
2503 /* Default code for filters */
2504
2505 local_file = bdrv_filter_bs(bs);
2506 assert(local_file);
2507
2508 *pnum = aligned_bytes;
2509 local_map = aligned_offset;
2510 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2511 }
2512 if (ret < 0) {
2513 *pnum = 0;
2514 goto out;
2515 }
2516
2517 /*
2518 * The driver's result must be a non-zero multiple of request_alignment.
2519 * Clamp pnum and adjust map to original request.
2520 */
2521 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2522 align > offset - aligned_offset);
2523 if (ret & BDRV_BLOCK_RECURSE) {
2524 assert(ret & BDRV_BLOCK_DATA);
2525 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2526 assert(!(ret & BDRV_BLOCK_ZERO));
2527 }
2528
2529 *pnum -= offset - aligned_offset;
2530 if (*pnum > bytes) {
2531 *pnum = bytes;
2532 }
2533 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2534 local_map += offset - aligned_offset;
2535 }
2536
2537 if (ret & BDRV_BLOCK_RAW) {
2538 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2539 ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2540 *pnum, pnum, &local_map, &local_file);
2541 goto out;
2542 }
2543
2544 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2545 ret |= BDRV_BLOCK_ALLOCATED;
2546 } else if (bs->drv->supports_backing) {
2547 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2548
2549 if (!cow_bs) {
2550 ret |= BDRV_BLOCK_ZERO;
2551 } else if (want_zero) {
2552 int64_t size2 = bdrv_co_getlength(cow_bs);
2553
2554 if (size2 >= 0 && offset >= size2) {
2555 ret |= BDRV_BLOCK_ZERO;
2556 }
2557 }
2558 }
2559
2560 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2561 local_file && local_file != bs &&
2562 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2563 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2564 int64_t file_pnum;
2565 int ret2;
2566
2567 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2568 *pnum, &file_pnum, NULL, NULL);
2569 if (ret2 >= 0) {
2570 /* Ignore errors. This is just providing extra information, it
2571 * is useful but not necessary.
2572 */
2573 if (ret2 & BDRV_BLOCK_EOF &&
2574 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2575 /*
2576 * It is valid for the format block driver to read
2577 * beyond the end of the underlying file's current
2578 * size; such areas read as zero.
2579 */
2580 ret |= BDRV_BLOCK_ZERO;
2581 } else {
2582 /* Limit request to the range reported by the protocol driver */
2583 *pnum = file_pnum;
2584 ret |= (ret2 & BDRV_BLOCK_ZERO);
2585 }
2586 }
2587 }
2588
2589 out:
2590 bdrv_dec_in_flight(bs);
2591 if (ret >= 0 && offset + *pnum == total_size) {
2592 ret |= BDRV_BLOCK_EOF;
2593 }
2594 early_out:
2595 if (file) {
2596 *file = local_file;
2597 }
2598 if (map) {
2599 *map = local_map;
2600 }
2601 return ret;
2602 }
2603
2604 int coroutine_fn
2605 bdrv_co_common_block_status_above(BlockDriverState *bs,
2606 BlockDriverState *base,
2607 bool include_base,
2608 bool want_zero,
2609 int64_t offset,
2610 int64_t bytes,
2611 int64_t *pnum,
2612 int64_t *map,
2613 BlockDriverState **file,
2614 int *depth)
2615 {
2616 int ret;
2617 BlockDriverState *p;
2618 int64_t eof = 0;
2619 int dummy;
2620 IO_CODE();
2621
2622 assert(!include_base || base); /* Can't include NULL base */
2623 assert_bdrv_graph_readable();
2624
2625 if (!depth) {
2626 depth = &dummy;
2627 }
2628 *depth = 0;
2629
2630 if (!include_base && bs == base) {
2631 *pnum = bytes;
2632 return 0;
2633 }
2634
2635 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2636 map, file);
2637 ++*depth;
2638 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2639 return ret;
2640 }
2641
2642 if (ret & BDRV_BLOCK_EOF) {
2643 eof = offset + *pnum;
2644 }
2645
2646 assert(*pnum <= bytes);
2647 bytes = *pnum;
2648
2649 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2650 p = bdrv_filter_or_cow_bs(p))
2651 {
2652 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2653 map, file);
2654 ++*depth;
2655 if (ret < 0) {
2656 return ret;
2657 }
2658 if (*pnum == 0) {
2659 /*
2660 * The top layer deferred to this layer, and because this layer is
2661 * short, any zeroes that we synthesize beyond EOF behave as if they
2662 * were allocated at this layer.
2663 *
2664 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2665 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2666 * below.
2667 */
2668 assert(ret & BDRV_BLOCK_EOF);
2669 *pnum = bytes;
2670 if (file) {
2671 *file = p;
2672 }
2673 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2674 break;
2675 }
2676 if (ret & BDRV_BLOCK_ALLOCATED) {
2677 /*
2678 * We've found the node and the status, we must break.
2679 *
2680 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2681 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2682 * below.
2683 */
2684 ret &= ~BDRV_BLOCK_EOF;
2685 break;
2686 }
2687
2688 if (p == base) {
2689 assert(include_base);
2690 break;
2691 }
2692
2693 /*
2694 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2695 * let's continue the diving.
2696 */
2697 assert(*pnum <= bytes);
2698 bytes = *pnum;
2699 }
2700
2701 if (offset + *pnum == eof) {
2702 ret |= BDRV_BLOCK_EOF;
2703 }
2704
2705 return ret;
2706 }
2707
2708 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2709 BlockDriverState *base,
2710 int64_t offset, int64_t bytes,
2711 int64_t *pnum, int64_t *map,
2712 BlockDriverState **file)
2713 {
2714 IO_CODE();
2715 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2716 bytes, pnum, map, file, NULL);
2717 }
2718
2719 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2720 int64_t bytes, int64_t *pnum,
2721 int64_t *map, BlockDriverState **file)
2722 {
2723 IO_CODE();
2724 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2725 offset, bytes, pnum, map, file);
2726 }
2727
2728 /*
2729 * Check @bs (and its backing chain) to see if the range defined
2730 * by @offset and @bytes is known to read as zeroes.
2731 * Return 1 if that is the case, 0 otherwise and -errno on error.
2732 * This test is meant to be fast rather than accurate so returning 0
2733 * does not guarantee non-zero data.
2734 */
2735 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2736 int64_t bytes)
2737 {
2738 int ret;
2739 int64_t pnum = bytes;
2740 IO_CODE();
2741
2742 if (!bytes) {
2743 return 1;
2744 }
2745
2746 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2747 bytes, &pnum, NULL, NULL, NULL);
2748
2749 if (ret < 0) {
2750 return ret;
2751 }
2752
2753 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2754 }
2755
2756 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2757 int64_t bytes, int64_t *pnum)
2758 {
2759 int ret;
2760 int64_t dummy;
2761 IO_CODE();
2762
2763 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2764 bytes, pnum ? pnum : &dummy, NULL,
2765 NULL, NULL);
2766 if (ret < 0) {
2767 return ret;
2768 }
2769 return !!(ret & BDRV_BLOCK_ALLOCATED);
2770 }
2771
2772 /*
2773 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2774 *
2775 * Return a positive depth if (a prefix of) the given range is allocated
2776 * in any image between BASE and TOP (BASE is only included if include_base
2777 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2778 * BASE can be NULL to check if the given offset is allocated in any
2779 * image of the chain. Return 0 otherwise, or negative errno on
2780 * failure.
2781 *
2782 * 'pnum' is set to the number of bytes (including and immediately
2783 * following the specified offset) that are known to be in the same
2784 * allocated/unallocated state. Note that a subsequent call starting
2785 * at 'offset + *pnum' may return the same allocation status (in other
2786 * words, the result is not necessarily the maximum possible range);
2787 * but 'pnum' will only be 0 when end of file is reached.
2788 */
2789 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2790 BlockDriverState *base,
2791 bool include_base, int64_t offset,
2792 int64_t bytes, int64_t *pnum)
2793 {
2794 int depth;
2795 int ret;
2796 IO_CODE();
2797
2798 ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2799 offset, bytes, pnum, NULL, NULL,
2800 &depth);
2801 if (ret < 0) {
2802 return ret;
2803 }
2804
2805 if (ret & BDRV_BLOCK_ALLOCATED) {
2806 return depth;
2807 }
2808 return 0;
2809 }
2810
2811 int coroutine_fn
2812 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2813 {
2814 BlockDriver *drv = bs->drv;
2815 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2816 int ret;
2817 IO_CODE();
2818 assert_bdrv_graph_readable();
2819
2820 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2821 if (ret < 0) {
2822 return ret;
2823 }
2824
2825 if (!drv) {
2826 return -ENOMEDIUM;
2827 }
2828
2829 bdrv_inc_in_flight(bs);
2830
2831 if (drv->bdrv_co_load_vmstate) {
2832 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2833 } else if (child_bs) {
2834 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2835 } else {
2836 ret = -ENOTSUP;
2837 }
2838
2839 bdrv_dec_in_flight(bs);
2840
2841 return ret;
2842 }
2843
2844 int coroutine_fn
2845 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2846 {
2847 BlockDriver *drv = bs->drv;
2848 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2849 int ret;
2850 IO_CODE();
2851 assert_bdrv_graph_readable();
2852
2853 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2854 if (ret < 0) {
2855 return ret;
2856 }
2857
2858 if (!drv) {
2859 return -ENOMEDIUM;
2860 }
2861
2862 bdrv_inc_in_flight(bs);
2863
2864 if (drv->bdrv_co_save_vmstate) {
2865 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2866 } else if (child_bs) {
2867 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2868 } else {
2869 ret = -ENOTSUP;
2870 }
2871
2872 bdrv_dec_in_flight(bs);
2873
2874 return ret;
2875 }
2876
2877 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2878 int64_t pos, int size)
2879 {
2880 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2881 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2882 IO_CODE();
2883
2884 return ret < 0 ? ret : size;
2885 }
2886
2887 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2888 int64_t pos, int size)
2889 {
2890 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2891 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2892 IO_CODE();
2893
2894 return ret < 0 ? ret : size;
2895 }
2896
2897 /**************************************************************/
2898 /* async I/Os */
2899
2900 /**
2901 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2902 * must be processed with the BQL held too (IOThreads are not allowed).
2903 *
2904 * Use bdrv_aio_cancel_async() instead when possible.
2905 */
2906 void bdrv_aio_cancel(BlockAIOCB *acb)
2907 {
2908 GLOBAL_STATE_CODE();
2909 qemu_aio_ref(acb);
2910 bdrv_aio_cancel_async(acb);
2911 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2912 qemu_aio_unref(acb);
2913 }
2914
2915 /* Async version of aio cancel. The caller is not blocked if the acb implements
2916 * cancel_async, otherwise we do nothing and let the request normally complete.
2917 * In either case the completion callback must be called. */
2918 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2919 {
2920 IO_CODE();
2921 if (acb->aiocb_info->cancel_async) {
2922 acb->aiocb_info->cancel_async(acb);
2923 }
2924 }
2925
2926 /**************************************************************/
2927 /* Coroutine block device emulation */
2928
2929 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2930 {
2931 BdrvChild *primary_child = bdrv_primary_child(bs);
2932 BdrvChild *child;
2933 int current_gen;
2934 int ret = 0;
2935 IO_CODE();
2936
2937 assert_bdrv_graph_readable();
2938 bdrv_inc_in_flight(bs);
2939
2940 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2941 bdrv_is_sg(bs)) {
2942 goto early_exit;
2943 }
2944
2945 qemu_mutex_lock(&bs->reqs_lock);
2946 current_gen = qatomic_read(&bs->write_gen);
2947
2948 /* Wait until any previous flushes are completed */
2949 while (bs->active_flush_req) {
2950 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2951 }
2952
2953 /* Flushes reach this point in nondecreasing current_gen order. */
2954 bs->active_flush_req = true;
2955 qemu_mutex_unlock(&bs->reqs_lock);
2956
2957 /* Write back all layers by calling one driver function */
2958 if (bs->drv->bdrv_co_flush) {
2959 ret = bs->drv->bdrv_co_flush(bs);
2960 goto out;
2961 }
2962
2963 /* Write back cached data to the OS even with cache=unsafe */
2964 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2965 if (bs->drv->bdrv_co_flush_to_os) {
2966 ret = bs->drv->bdrv_co_flush_to_os(bs);
2967 if (ret < 0) {
2968 goto out;
2969 }
2970 }
2971
2972 /* But don't actually force it to the disk with cache=unsafe */
2973 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2974 goto flush_children;
2975 }
2976
2977 /* Check if we really need to flush anything */
2978 if (bs->flushed_gen == current_gen) {
2979 goto flush_children;
2980 }
2981
2982 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2983 if (!bs->drv) {
2984 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2985 * (even in case of apparent success) */
2986 ret = -ENOMEDIUM;
2987 goto out;
2988 }
2989 if (bs->drv->bdrv_co_flush_to_disk) {
2990 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2991 } else if (bs->drv->bdrv_aio_flush) {
2992 BlockAIOCB *acb;
2993 CoroutineIOCompletion co = {
2994 .coroutine = qemu_coroutine_self(),
2995 };
2996
2997 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2998 if (acb == NULL) {
2999 ret = -EIO;
3000 } else {
3001 qemu_coroutine_yield();
3002 ret = co.ret;
3003 }
3004 } else {
3005 /*
3006 * Some block drivers always operate in either writethrough or unsafe
3007 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3008 * know how the server works (because the behaviour is hardcoded or
3009 * depends on server-side configuration), so we can't ensure that
3010 * everything is safe on disk. Returning an error doesn't work because
3011 * that would break guests even if the server operates in writethrough
3012 * mode.
3013 *
3014 * Let's hope the user knows what he's doing.
3015 */
3016 ret = 0;
3017 }
3018
3019 if (ret < 0) {
3020 goto out;
3021 }
3022
3023 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3024 * in the case of cache=unsafe, so there are no useless flushes.
3025 */
3026 flush_children:
3027 ret = 0;
3028 QLIST_FOREACH(child, &bs->children, next) {
3029 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3030 int this_child_ret = bdrv_co_flush(child->bs);
3031 if (!ret) {
3032 ret = this_child_ret;
3033 }
3034 }
3035 }
3036
3037 out:
3038 /* Notify any pending flushes that we have completed */
3039 if (ret == 0) {
3040 bs->flushed_gen = current_gen;
3041 }
3042
3043 qemu_mutex_lock(&bs->reqs_lock);
3044 bs->active_flush_req = false;
3045 /* Return value is ignored - it's ok if wait queue is empty */
3046 qemu_co_queue_next(&bs->flush_queue);
3047 qemu_mutex_unlock(&bs->reqs_lock);
3048
3049 early_exit:
3050 bdrv_dec_in_flight(bs);
3051 return ret;
3052 }
3053
3054 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3055 int64_t bytes)
3056 {
3057 BdrvTrackedRequest req;
3058 int ret;
3059 int64_t max_pdiscard;
3060 int head, tail, align;
3061 BlockDriverState *bs = child->bs;
3062 IO_CODE();
3063 assert_bdrv_graph_readable();
3064
3065 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3066 return -ENOMEDIUM;
3067 }
3068
3069 if (bdrv_has_readonly_bitmaps(bs)) {
3070 return -EPERM;
3071 }
3072
3073 ret = bdrv_check_request(offset, bytes, NULL);
3074 if (ret < 0) {
3075 return ret;
3076 }
3077
3078 /* Do nothing if disabled. */
3079 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3080 return 0;
3081 }
3082
3083 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3084 return 0;
3085 }
3086
3087 /* Invalidate the cached block-status data range if this discard overlaps */
3088 bdrv_bsc_invalidate_range(bs, offset, bytes);
3089
3090 /* Discard is advisory, but some devices track and coalesce
3091 * unaligned requests, so we must pass everything down rather than
3092 * round here. Still, most devices will just silently ignore
3093 * unaligned requests (by returning -ENOTSUP), so we must fragment
3094 * the request accordingly. */
3095 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3096 assert(align % bs->bl.request_alignment == 0);
3097 head = offset % align;
3098 tail = (offset + bytes) % align;
3099
3100 bdrv_inc_in_flight(bs);
3101 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3102
3103 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3104 if (ret < 0) {
3105 goto out;
3106 }
3107
3108 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3109 align);
3110 assert(max_pdiscard >= bs->bl.request_alignment);
3111
3112 while (bytes > 0) {
3113 int64_t num = bytes;
3114
3115 if (head) {
3116 /* Make small requests to get to alignment boundaries. */
3117 num = MIN(bytes, align - head);
3118 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3119 num %= bs->bl.request_alignment;
3120 }
3121 head = (head + num) % align;
3122 assert(num < max_pdiscard);
3123 } else if (tail) {
3124 if (num > align) {
3125 /* Shorten the request to the last aligned cluster. */
3126 num -= tail;
3127 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3128 tail > bs->bl.request_alignment) {
3129 tail %= bs->bl.request_alignment;
3130 num -= tail;
3131 }
3132 }
3133 /* limit request size */
3134 if (num > max_pdiscard) {
3135 num = max_pdiscard;
3136 }
3137
3138 if (!bs->drv) {
3139 ret = -ENOMEDIUM;
3140 goto out;
3141 }
3142 if (bs->drv->bdrv_co_pdiscard) {
3143 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3144 } else {
3145 BlockAIOCB *acb;
3146 CoroutineIOCompletion co = {
3147 .coroutine = qemu_coroutine_self(),
3148 };
3149
3150 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3151 bdrv_co_io_em_complete, &co);
3152 if (acb == NULL) {
3153 ret = -EIO;
3154 goto out;
3155 } else {
3156 qemu_coroutine_yield();
3157 ret = co.ret;
3158 }
3159 }
3160 if (ret && ret != -ENOTSUP) {
3161 goto out;
3162 }
3163
3164 offset += num;
3165 bytes -= num;
3166 }
3167 ret = 0;
3168 out:
3169 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3170 tracked_request_end(&req);
3171 bdrv_dec_in_flight(bs);
3172 return ret;
3173 }
3174
3175 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3176 {
3177 BlockDriver *drv = bs->drv;
3178 CoroutineIOCompletion co = {
3179 .coroutine = qemu_coroutine_self(),
3180 };
3181 BlockAIOCB *acb;
3182 IO_CODE();
3183 assert_bdrv_graph_readable();
3184
3185 bdrv_inc_in_flight(bs);
3186 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3187 co.ret = -ENOTSUP;
3188 goto out;
3189 }
3190
3191 if (drv->bdrv_co_ioctl) {
3192 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3193 } else {
3194 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3195 if (!acb) {
3196 co.ret = -ENOTSUP;
3197 goto out;
3198 }
3199 qemu_coroutine_yield();
3200 }
3201 out:
3202 bdrv_dec_in_flight(bs);
3203 return co.ret;
3204 }
3205
3206 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3207 unsigned int *nr_zones,
3208 BlockZoneDescriptor *zones)
3209 {
3210 BlockDriver *drv = bs->drv;
3211 CoroutineIOCompletion co = {
3212 .coroutine = qemu_coroutine_self(),
3213 };
3214 IO_CODE();
3215
3216 bdrv_inc_in_flight(bs);
3217 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3218 co.ret = -ENOTSUP;
3219 goto out;
3220 }
3221 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3222 out:
3223 bdrv_dec_in_flight(bs);
3224 return co.ret;
3225 }
3226
3227 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3228 int64_t offset, int64_t len)
3229 {
3230 BlockDriver *drv = bs->drv;
3231 CoroutineIOCompletion co = {
3232 .coroutine = qemu_coroutine_self(),
3233 };
3234 IO_CODE();
3235
3236 bdrv_inc_in_flight(bs);
3237 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3238 co.ret = -ENOTSUP;
3239 goto out;
3240 }
3241 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3242 out:
3243 bdrv_dec_in_flight(bs);
3244 return co.ret;
3245 }
3246
3247 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3248 QEMUIOVector *qiov,
3249 BdrvRequestFlags flags)
3250 {
3251 int ret;
3252 BlockDriver *drv = bs->drv;
3253 CoroutineIOCompletion co = {
3254 .coroutine = qemu_coroutine_self(),
3255 };
3256 IO_CODE();
3257
3258 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3259 if (ret < 0) {
3260 return ret;
3261 }
3262
3263 bdrv_inc_in_flight(bs);
3264 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3265 co.ret = -ENOTSUP;
3266 goto out;
3267 }
3268 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3269 out:
3270 bdrv_dec_in_flight(bs);
3271 return co.ret;
3272 }
3273
3274 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3275 {
3276 IO_CODE();
3277 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3278 }
3279
3280 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3281 {
3282 IO_CODE();
3283 return memset(qemu_blockalign(bs, size), 0, size);
3284 }
3285
3286 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3287 {
3288 size_t align = bdrv_opt_mem_align(bs);
3289 IO_CODE();
3290
3291 /* Ensure that NULL is never returned on success */
3292 assert(align > 0);
3293 if (size == 0) {
3294 size = align;
3295 }
3296
3297 return qemu_try_memalign(align, size);
3298 }
3299
3300 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3301 {
3302 void *mem = qemu_try_blockalign(bs, size);
3303 IO_CODE();
3304
3305 if (mem) {
3306 memset(mem, 0, size);
3307 }
3308
3309 return mem;
3310 }
3311
3312 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3313 static void GRAPH_RDLOCK
3314 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3315 BdrvChild *final_child)
3316 {
3317 BdrvChild *child;
3318
3319 GLOBAL_STATE_CODE();
3320 assert_bdrv_graph_readable();
3321
3322 QLIST_FOREACH(child, &bs->children, next) {
3323 if (child == final_child) {
3324 break;
3325 }
3326
3327 bdrv_unregister_buf(child->bs, host, size);
3328 }
3329
3330 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3331 bs->drv->bdrv_unregister_buf(bs, host, size);
3332 }
3333 }
3334
3335 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3336 Error **errp)
3337 {
3338 BdrvChild *child;
3339
3340 GLOBAL_STATE_CODE();
3341 GRAPH_RDLOCK_GUARD_MAINLOOP();
3342
3343 if (bs->drv && bs->drv->bdrv_register_buf) {
3344 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3345 return false;
3346 }
3347 }
3348 QLIST_FOREACH(child, &bs->children, next) {
3349 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3350 bdrv_register_buf_rollback(bs, host, size, child);
3351 return false;
3352 }
3353 }
3354 return true;
3355 }
3356
3357 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3358 {
3359 BdrvChild *child;
3360
3361 GLOBAL_STATE_CODE();
3362 GRAPH_RDLOCK_GUARD_MAINLOOP();
3363
3364 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3365 bs->drv->bdrv_unregister_buf(bs, host, size);
3366 }
3367 QLIST_FOREACH(child, &bs->children, next) {
3368 bdrv_unregister_buf(child->bs, host, size);
3369 }
3370 }
3371
3372 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3373 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3374 int64_t dst_offset, int64_t bytes,
3375 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3376 bool recurse_src)
3377 {
3378 BdrvTrackedRequest req;
3379 int ret;
3380 assert_bdrv_graph_readable();
3381
3382 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3383 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3384 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3385 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3386 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3387
3388 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3389 return -ENOMEDIUM;
3390 }
3391 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3392 if (ret) {
3393 return ret;
3394 }
3395 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3396 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3397 }
3398
3399 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3400 return -ENOMEDIUM;
3401 }
3402 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3403 if (ret) {
3404 return ret;
3405 }
3406
3407 if (!src->bs->drv->bdrv_co_copy_range_from
3408 || !dst->bs->drv->bdrv_co_copy_range_to
3409 || src->bs->encrypted || dst->bs->encrypted) {
3410 return -ENOTSUP;
3411 }
3412
3413 if (recurse_src) {
3414 bdrv_inc_in_flight(src->bs);
3415 tracked_request_begin(&req, src->bs, src_offset, bytes,
3416 BDRV_TRACKED_READ);
3417
3418 /* BDRV_REQ_SERIALISING is only for write operation */
3419 assert(!(read_flags & BDRV_REQ_SERIALISING));
3420 bdrv_wait_serialising_requests(&req);
3421
3422 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3423 src, src_offset,
3424 dst, dst_offset,
3425 bytes,
3426 read_flags, write_flags);
3427
3428 tracked_request_end(&req);
3429 bdrv_dec_in_flight(src->bs);
3430 } else {
3431 bdrv_inc_in_flight(dst->bs);
3432 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3433 BDRV_TRACKED_WRITE);
3434 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3435 write_flags);
3436 if (!ret) {
3437 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3438 src, src_offset,
3439 dst, dst_offset,
3440 bytes,
3441 read_flags, write_flags);
3442 }
3443 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3444 tracked_request_end(&req);
3445 bdrv_dec_in_flight(dst->bs);
3446 }
3447
3448 return ret;
3449 }
3450
3451 /* Copy range from @src to @dst.
3452 *
3453 * See the comment of bdrv_co_copy_range for the parameter and return value
3454 * semantics. */
3455 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3456 BdrvChild *dst, int64_t dst_offset,
3457 int64_t bytes,
3458 BdrvRequestFlags read_flags,
3459 BdrvRequestFlags write_flags)
3460 {
3461 IO_CODE();
3462 assert_bdrv_graph_readable();
3463 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3464 read_flags, write_flags);
3465 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3466 bytes, read_flags, write_flags, true);
3467 }
3468
3469 /* Copy range from @src to @dst.
3470 *
3471 * See the comment of bdrv_co_copy_range for the parameter and return value
3472 * semantics. */
3473 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3474 BdrvChild *dst, int64_t dst_offset,
3475 int64_t bytes,
3476 BdrvRequestFlags read_flags,
3477 BdrvRequestFlags write_flags)
3478 {
3479 IO_CODE();
3480 assert_bdrv_graph_readable();
3481 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3482 read_flags, write_flags);
3483 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3484 bytes, read_flags, write_flags, false);
3485 }
3486
3487 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3488 BdrvChild *dst, int64_t dst_offset,
3489 int64_t bytes, BdrvRequestFlags read_flags,
3490 BdrvRequestFlags write_flags)
3491 {
3492 IO_CODE();
3493 assert_bdrv_graph_readable();
3494
3495 return bdrv_co_copy_range_from(src, src_offset,
3496 dst, dst_offset,
3497 bytes, read_flags, write_flags);
3498 }
3499
3500 static void coroutine_fn GRAPH_RDLOCK
3501 bdrv_parent_cb_resize(BlockDriverState *bs)
3502 {
3503 BdrvChild *c;
3504
3505 assert_bdrv_graph_readable();
3506
3507 QLIST_FOREACH(c, &bs->parents, next_parent) {
3508 if (c->klass->resize) {
3509 c->klass->resize(c);
3510 }
3511 }
3512 }
3513
3514 /**
3515 * Truncate file to 'offset' bytes (needed only for file protocols)
3516 *
3517 * If 'exact' is true, the file must be resized to exactly the given
3518 * 'offset'. Otherwise, it is sufficient for the node to be at least
3519 * 'offset' bytes in length.
3520 */
3521 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3522 PreallocMode prealloc, BdrvRequestFlags flags,
3523 Error **errp)
3524 {
3525 BlockDriverState *bs = child->bs;
3526 BdrvChild *filtered, *backing;
3527 BlockDriver *drv = bs->drv;
3528 BdrvTrackedRequest req;
3529 int64_t old_size, new_bytes;
3530 int ret;
3531 IO_CODE();
3532 assert_bdrv_graph_readable();
3533
3534 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3535 if (!drv) {
3536 error_setg(errp, "No medium inserted");
3537 return -ENOMEDIUM;
3538 }
3539 if (offset < 0) {
3540 error_setg(errp, "Image size cannot be negative");
3541 return -EINVAL;
3542 }
3543
3544 ret = bdrv_check_request(offset, 0, errp);
3545 if (ret < 0) {
3546 return ret;
3547 }
3548
3549 old_size = bdrv_co_getlength(bs);
3550 if (old_size < 0) {
3551 error_setg_errno(errp, -old_size, "Failed to get old image size");
3552 return old_size;
3553 }
3554
3555 if (bdrv_is_read_only(bs)) {
3556 error_setg(errp, "Image is read-only");
3557 return -EACCES;
3558 }
3559
3560 if (offset > old_size) {
3561 new_bytes = offset - old_size;
3562 } else {
3563 new_bytes = 0;
3564 }
3565
3566 bdrv_inc_in_flight(bs);
3567 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3568 BDRV_TRACKED_TRUNCATE);
3569
3570 /* If we are growing the image and potentially using preallocation for the
3571 * new area, we need to make sure that no write requests are made to it
3572 * concurrently or they might be overwritten by preallocation. */
3573 if (new_bytes) {
3574 bdrv_make_request_serialising(&req, 1);
3575 }
3576 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3577 0);
3578 if (ret < 0) {
3579 error_setg_errno(errp, -ret,
3580 "Failed to prepare request for truncation");
3581 goto out;
3582 }
3583
3584 filtered = bdrv_filter_child(bs);
3585 backing = bdrv_cow_child(bs);
3586
3587 /*
3588 * If the image has a backing file that is large enough that it would
3589 * provide data for the new area, we cannot leave it unallocated because
3590 * then the backing file content would become visible. Instead, zero-fill
3591 * the new area.
3592 *
3593 * Note that if the image has a backing file, but was opened without the
3594 * backing file, taking care of keeping things consistent with that backing
3595 * file is the user's responsibility.
3596 */
3597 if (new_bytes && backing) {
3598 int64_t backing_len;
3599
3600 backing_len = bdrv_co_getlength(backing->bs);
3601 if (backing_len < 0) {
3602 ret = backing_len;
3603 error_setg_errno(errp, -ret, "Could not get backing file size");
3604 goto out;
3605 }
3606
3607 if (backing_len > old_size) {
3608 flags |= BDRV_REQ_ZERO_WRITE;
3609 }
3610 }
3611
3612 if (drv->bdrv_co_truncate) {
3613 if (flags & ~bs->supported_truncate_flags) {
3614 error_setg(errp, "Block driver does not support requested flags");
3615 ret = -ENOTSUP;
3616 goto out;
3617 }
3618 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3619 } else if (filtered) {
3620 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3621 } else {
3622 error_setg(errp, "Image format driver does not support resize");
3623 ret = -ENOTSUP;
3624 goto out;
3625 }
3626 if (ret < 0) {
3627 goto out;
3628 }
3629
3630 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3631 if (ret < 0) {
3632 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3633 } else {
3634 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3635 }
3636 /*
3637 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3638 * failed, but the latter doesn't affect how we should finish the request.
3639 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3640 */
3641 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3642
3643 out:
3644 tracked_request_end(&req);
3645 bdrv_dec_in_flight(bs);
3646
3647 return ret;
3648 }
3649
3650 void bdrv_cancel_in_flight(BlockDriverState *bs)
3651 {
3652 GLOBAL_STATE_CODE();
3653 GRAPH_RDLOCK_GUARD_MAINLOOP();
3654
3655 if (!bs || !bs->drv) {
3656 return;
3657 }
3658
3659 if (bs->drv->bdrv_cancel_in_flight) {
3660 bs->drv->bdrv_cancel_in_flight(bs);
3661 }
3662 }
3663
3664 int coroutine_fn
3665 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3666 QEMUIOVector *qiov, size_t qiov_offset)
3667 {
3668 BlockDriverState *bs = child->bs;
3669 BlockDriver *drv = bs->drv;
3670 int ret;
3671 IO_CODE();
3672 assert_bdrv_graph_readable();
3673
3674 if (!drv) {
3675 return -ENOMEDIUM;
3676 }
3677
3678 if (!drv->bdrv_co_preadv_snapshot) {
3679 return -ENOTSUP;
3680 }
3681
3682 bdrv_inc_in_flight(bs);
3683 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3684 bdrv_dec_in_flight(bs);
3685
3686 return ret;
3687 }
3688
3689 int coroutine_fn
3690 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3691 bool want_zero, int64_t offset, int64_t bytes,
3692 int64_t *pnum, int64_t *map,
3693 BlockDriverState **file)
3694 {
3695 BlockDriver *drv = bs->drv;
3696 int ret;
3697 IO_CODE();
3698 assert_bdrv_graph_readable();
3699
3700 if (!drv) {
3701 return -ENOMEDIUM;
3702 }
3703
3704 if (!drv->bdrv_co_snapshot_block_status) {
3705 return -ENOTSUP;
3706 }
3707
3708 bdrv_inc_in_flight(bs);
3709 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3710 pnum, map, file);
3711 bdrv_dec_in_flight(bs);
3712
3713 return ret;
3714 }
3715
3716 int coroutine_fn
3717 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3718 {
3719 BlockDriver *drv = bs->drv;
3720 int ret;
3721 IO_CODE();
3722 assert_bdrv_graph_readable();
3723
3724 if (!drv) {
3725 return -ENOMEDIUM;
3726 }
3727
3728 if (!drv->bdrv_co_pdiscard_snapshot) {
3729 return -ENOTSUP;
3730 }
3731
3732 bdrv_inc_in_flight(bs);
3733 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3734 bdrv_dec_in_flight(bs);
3735
3736 return ret;
3737 }