]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge remote-tracking branch 'remotes/kevin/tags/for-upstream' into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "block/throttle-groups.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36
37 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
38 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
39 BlockCompletionFunc *cb, void *opaque);
40 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
41 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
42 BlockCompletionFunc *cb, void *opaque);
43 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
44 int64_t sector_num, int nb_sectors,
45 QEMUIOVector *iov);
46 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
47 int64_t sector_num, int nb_sectors,
48 QEMUIOVector *iov);
49 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
50 int64_t sector_num,
51 QEMUIOVector *qiov,
52 int nb_sectors,
53 BdrvRequestFlags flags,
54 BlockCompletionFunc *cb,
55 void *opaque,
56 bool is_write);
57 static void coroutine_fn bdrv_co_do_rw(void *opaque);
58 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
59 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
60
61 /* throttling disk I/O limits */
62 void bdrv_set_io_limits(BlockDriverState *bs,
63 ThrottleConfig *cfg)
64 {
65 int i;
66
67 throttle_group_config(bs, cfg);
68
69 for (i = 0; i < 2; i++) {
70 qemu_co_enter_next(&bs->throttled_reqs[i]);
71 }
72 }
73
74 /* this function drain all the throttled IOs */
75 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
76 {
77 bool drained = false;
78 bool enabled = bs->io_limits_enabled;
79 int i;
80
81 bs->io_limits_enabled = false;
82
83 for (i = 0; i < 2; i++) {
84 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
85 drained = true;
86 }
87 }
88
89 bs->io_limits_enabled = enabled;
90
91 return drained;
92 }
93
94 void bdrv_io_limits_disable(BlockDriverState *bs)
95 {
96 bs->io_limits_enabled = false;
97 bdrv_start_throttled_reqs(bs);
98 throttle_group_unregister_bs(bs);
99 }
100
101 /* should be called before bdrv_set_io_limits if a limit is set */
102 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
103 {
104 assert(!bs->io_limits_enabled);
105 throttle_group_register_bs(bs, group);
106 bs->io_limits_enabled = true;
107 }
108
109 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
110 {
111 /* this bs is not part of any group */
112 if (!bs->throttle_state) {
113 return;
114 }
115
116 /* this bs is a part of the same group than the one we want */
117 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
118 return;
119 }
120
121 /* need to change the group this bs belong to */
122 bdrv_io_limits_disable(bs);
123 bdrv_io_limits_enable(bs, group);
124 }
125
126 void bdrv_setup_io_funcs(BlockDriver *bdrv)
127 {
128 /* Block drivers without coroutine functions need emulation */
129 if (!bdrv->bdrv_co_readv) {
130 bdrv->bdrv_co_readv = bdrv_co_readv_em;
131 bdrv->bdrv_co_writev = bdrv_co_writev_em;
132
133 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
134 * the block driver lacks aio we need to emulate that too.
135 */
136 if (!bdrv->bdrv_aio_readv) {
137 /* add AIO emulation layer */
138 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
139 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
140 }
141 }
142 }
143
144 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
145 {
146 BlockDriver *drv = bs->drv;
147 Error *local_err = NULL;
148
149 memset(&bs->bl, 0, sizeof(bs->bl));
150
151 if (!drv) {
152 return;
153 }
154
155 /* Take some limits from the children as a default */
156 if (bs->file) {
157 bdrv_refresh_limits(bs->file->bs, &local_err);
158 if (local_err) {
159 error_propagate(errp, local_err);
160 return;
161 }
162 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
163 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
164 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
165 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
166 bs->bl.max_iov = bs->file->bs->bl.max_iov;
167 } else {
168 bs->bl.min_mem_alignment = 512;
169 bs->bl.opt_mem_alignment = getpagesize();
170
171 /* Safe default since most protocols use readv()/writev()/etc */
172 bs->bl.max_iov = IOV_MAX;
173 }
174
175 if (bs->backing) {
176 bdrv_refresh_limits(bs->backing->bs, &local_err);
177 if (local_err) {
178 error_propagate(errp, local_err);
179 return;
180 }
181 bs->bl.opt_transfer_length =
182 MAX(bs->bl.opt_transfer_length,
183 bs->backing->bs->bl.opt_transfer_length);
184 bs->bl.max_transfer_length =
185 MIN_NON_ZERO(bs->bl.max_transfer_length,
186 bs->backing->bs->bl.max_transfer_length);
187 bs->bl.opt_mem_alignment =
188 MAX(bs->bl.opt_mem_alignment,
189 bs->backing->bs->bl.opt_mem_alignment);
190 bs->bl.min_mem_alignment =
191 MAX(bs->bl.min_mem_alignment,
192 bs->backing->bs->bl.min_mem_alignment);
193 bs->bl.max_iov =
194 MIN(bs->bl.max_iov,
195 bs->backing->bs->bl.max_iov);
196 }
197
198 /* Then let the driver override it */
199 if (drv->bdrv_refresh_limits) {
200 drv->bdrv_refresh_limits(bs, errp);
201 }
202 }
203
204 /**
205 * The copy-on-read flag is actually a reference count so multiple users may
206 * use the feature without worrying about clobbering its previous state.
207 * Copy-on-read stays enabled until all users have called to disable it.
208 */
209 void bdrv_enable_copy_on_read(BlockDriverState *bs)
210 {
211 bs->copy_on_read++;
212 }
213
214 void bdrv_disable_copy_on_read(BlockDriverState *bs)
215 {
216 assert(bs->copy_on_read > 0);
217 bs->copy_on_read--;
218 }
219
220 /* Check if any requests are in-flight (including throttled requests) */
221 bool bdrv_requests_pending(BlockDriverState *bs)
222 {
223 BdrvChild *child;
224
225 if (!QLIST_EMPTY(&bs->tracked_requests)) {
226 return true;
227 }
228 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
229 return true;
230 }
231 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
232 return true;
233 }
234
235 QLIST_FOREACH(child, &bs->children, next) {
236 if (bdrv_requests_pending(child->bs)) {
237 return true;
238 }
239 }
240
241 return false;
242 }
243
244 static void bdrv_drain_recurse(BlockDriverState *bs)
245 {
246 BdrvChild *child;
247
248 if (bs->drv && bs->drv->bdrv_drain) {
249 bs->drv->bdrv_drain(bs);
250 }
251 QLIST_FOREACH(child, &bs->children, next) {
252 bdrv_drain_recurse(child->bs);
253 }
254 }
255
256 typedef struct {
257 Coroutine *co;
258 BlockDriverState *bs;
259 QEMUBH *bh;
260 bool done;
261 } BdrvCoDrainData;
262
263 static void bdrv_co_drain_bh_cb(void *opaque)
264 {
265 BdrvCoDrainData *data = opaque;
266 Coroutine *co = data->co;
267
268 qemu_bh_delete(data->bh);
269 bdrv_drain(data->bs);
270 data->done = true;
271 qemu_coroutine_enter(co, NULL);
272 }
273
274 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
275 {
276 BdrvCoDrainData data;
277
278 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
279 * other coroutines run if they were queued from
280 * qemu_co_queue_run_restart(). */
281
282 assert(qemu_in_coroutine());
283 data = (BdrvCoDrainData) {
284 .co = qemu_coroutine_self(),
285 .bs = bs,
286 .done = false,
287 .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
288 };
289 qemu_bh_schedule(data.bh);
290
291 qemu_coroutine_yield();
292 /* If we are resumed from some other event (such as an aio completion or a
293 * timer callback), it is a bug in the caller that should be fixed. */
294 assert(data.done);
295 }
296
297 /*
298 * Wait for pending requests to complete on a single BlockDriverState subtree,
299 * and suspend block driver's internal I/O until next request arrives.
300 *
301 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
302 * AioContext.
303 *
304 * Only this BlockDriverState's AioContext is run, so in-flight requests must
305 * not depend on events in other AioContexts. In that case, use
306 * bdrv_drain_all() instead.
307 */
308 void bdrv_drain(BlockDriverState *bs)
309 {
310 bool busy = true;
311
312 bdrv_drain_recurse(bs);
313 if (qemu_in_coroutine()) {
314 bdrv_co_drain(bs);
315 return;
316 }
317 while (busy) {
318 /* Keep iterating */
319 bdrv_flush_io_queue(bs);
320 busy = bdrv_requests_pending(bs);
321 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
322 }
323 }
324
325 /*
326 * Wait for pending requests to complete across all BlockDriverStates
327 *
328 * This function does not flush data to disk, use bdrv_flush_all() for that
329 * after calling this function.
330 */
331 void bdrv_drain_all(void)
332 {
333 /* Always run first iteration so any pending completion BHs run */
334 bool busy = true;
335 BlockDriverState *bs = NULL;
336 GSList *aio_ctxs = NULL, *ctx;
337
338 while ((bs = bdrv_next(bs))) {
339 AioContext *aio_context = bdrv_get_aio_context(bs);
340
341 aio_context_acquire(aio_context);
342 if (bs->job) {
343 block_job_pause(bs->job);
344 }
345 bdrv_drain_recurse(bs);
346 aio_context_release(aio_context);
347
348 if (!g_slist_find(aio_ctxs, aio_context)) {
349 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
350 }
351 }
352
353 /* Note that completion of an asynchronous I/O operation can trigger any
354 * number of other I/O operations on other devices---for example a
355 * coroutine can submit an I/O request to another device in response to
356 * request completion. Therefore we must keep looping until there was no
357 * more activity rather than simply draining each device independently.
358 */
359 while (busy) {
360 busy = false;
361
362 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
363 AioContext *aio_context = ctx->data;
364 bs = NULL;
365
366 aio_context_acquire(aio_context);
367 while ((bs = bdrv_next(bs))) {
368 if (aio_context == bdrv_get_aio_context(bs)) {
369 bdrv_flush_io_queue(bs);
370 if (bdrv_requests_pending(bs)) {
371 busy = true;
372 aio_poll(aio_context, busy);
373 }
374 }
375 }
376 busy |= aio_poll(aio_context, false);
377 aio_context_release(aio_context);
378 }
379 }
380
381 bs = NULL;
382 while ((bs = bdrv_next(bs))) {
383 AioContext *aio_context = bdrv_get_aio_context(bs);
384
385 aio_context_acquire(aio_context);
386 if (bs->job) {
387 block_job_resume(bs->job);
388 }
389 aio_context_release(aio_context);
390 }
391 g_slist_free(aio_ctxs);
392 }
393
394 /**
395 * Remove an active request from the tracked requests list
396 *
397 * This function should be called when a tracked request is completing.
398 */
399 static void tracked_request_end(BdrvTrackedRequest *req)
400 {
401 if (req->serialising) {
402 req->bs->serialising_in_flight--;
403 }
404
405 QLIST_REMOVE(req, list);
406 qemu_co_queue_restart_all(&req->wait_queue);
407 }
408
409 /**
410 * Add an active request to the tracked requests list
411 */
412 static void tracked_request_begin(BdrvTrackedRequest *req,
413 BlockDriverState *bs,
414 int64_t offset,
415 unsigned int bytes,
416 enum BdrvTrackedRequestType type)
417 {
418 *req = (BdrvTrackedRequest){
419 .bs = bs,
420 .offset = offset,
421 .bytes = bytes,
422 .type = type,
423 .co = qemu_coroutine_self(),
424 .serialising = false,
425 .overlap_offset = offset,
426 .overlap_bytes = bytes,
427 };
428
429 qemu_co_queue_init(&req->wait_queue);
430
431 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
432 }
433
434 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
435 {
436 int64_t overlap_offset = req->offset & ~(align - 1);
437 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
438 - overlap_offset;
439
440 if (!req->serialising) {
441 req->bs->serialising_in_flight++;
442 req->serialising = true;
443 }
444
445 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
446 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
447 }
448
449 /**
450 * Round a region to cluster boundaries
451 */
452 void bdrv_round_to_clusters(BlockDriverState *bs,
453 int64_t sector_num, int nb_sectors,
454 int64_t *cluster_sector_num,
455 int *cluster_nb_sectors)
456 {
457 BlockDriverInfo bdi;
458
459 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
460 *cluster_sector_num = sector_num;
461 *cluster_nb_sectors = nb_sectors;
462 } else {
463 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
464 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
465 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
466 nb_sectors, c);
467 }
468 }
469
470 static int bdrv_get_cluster_size(BlockDriverState *bs)
471 {
472 BlockDriverInfo bdi;
473 int ret;
474
475 ret = bdrv_get_info(bs, &bdi);
476 if (ret < 0 || bdi.cluster_size == 0) {
477 return bs->request_alignment;
478 } else {
479 return bdi.cluster_size;
480 }
481 }
482
483 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
484 int64_t offset, unsigned int bytes)
485 {
486 /* aaaa bbbb */
487 if (offset >= req->overlap_offset + req->overlap_bytes) {
488 return false;
489 }
490 /* bbbb aaaa */
491 if (req->overlap_offset >= offset + bytes) {
492 return false;
493 }
494 return true;
495 }
496
497 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
498 {
499 BlockDriverState *bs = self->bs;
500 BdrvTrackedRequest *req;
501 bool retry;
502 bool waited = false;
503
504 if (!bs->serialising_in_flight) {
505 return false;
506 }
507
508 do {
509 retry = false;
510 QLIST_FOREACH(req, &bs->tracked_requests, list) {
511 if (req == self || (!req->serialising && !self->serialising)) {
512 continue;
513 }
514 if (tracked_request_overlaps(req, self->overlap_offset,
515 self->overlap_bytes))
516 {
517 /* Hitting this means there was a reentrant request, for
518 * example, a block driver issuing nested requests. This must
519 * never happen since it means deadlock.
520 */
521 assert(qemu_coroutine_self() != req->co);
522
523 /* If the request is already (indirectly) waiting for us, or
524 * will wait for us as soon as it wakes up, then just go on
525 * (instead of producing a deadlock in the former case). */
526 if (!req->waiting_for) {
527 self->waiting_for = req;
528 qemu_co_queue_wait(&req->wait_queue);
529 self->waiting_for = NULL;
530 retry = true;
531 waited = true;
532 break;
533 }
534 }
535 }
536 } while (retry);
537
538 return waited;
539 }
540
541 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
542 size_t size)
543 {
544 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
545 return -EIO;
546 }
547
548 if (!bdrv_is_inserted(bs)) {
549 return -ENOMEDIUM;
550 }
551
552 if (offset < 0) {
553 return -EIO;
554 }
555
556 return 0;
557 }
558
559 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
560 int nb_sectors)
561 {
562 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
563 return -EIO;
564 }
565
566 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
567 nb_sectors * BDRV_SECTOR_SIZE);
568 }
569
570 typedef struct RwCo {
571 BlockDriverState *bs;
572 int64_t offset;
573 QEMUIOVector *qiov;
574 bool is_write;
575 int ret;
576 BdrvRequestFlags flags;
577 } RwCo;
578
579 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
580 {
581 RwCo *rwco = opaque;
582
583 if (!rwco->is_write) {
584 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
585 rwco->qiov->size, rwco->qiov,
586 rwco->flags);
587 } else {
588 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
589 rwco->qiov->size, rwco->qiov,
590 rwco->flags);
591 }
592 }
593
594 /*
595 * Process a vectored synchronous request using coroutines
596 */
597 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
598 QEMUIOVector *qiov, bool is_write,
599 BdrvRequestFlags flags)
600 {
601 Coroutine *co;
602 RwCo rwco = {
603 .bs = bs,
604 .offset = offset,
605 .qiov = qiov,
606 .is_write = is_write,
607 .ret = NOT_DONE,
608 .flags = flags,
609 };
610
611 /**
612 * In sync call context, when the vcpu is blocked, this throttling timer
613 * will not fire; so the I/O throttling function has to be disabled here
614 * if it has been enabled.
615 */
616 if (bs->io_limits_enabled) {
617 fprintf(stderr, "Disabling I/O throttling on '%s' due "
618 "to synchronous I/O.\n", bdrv_get_device_name(bs));
619 bdrv_io_limits_disable(bs);
620 }
621
622 if (qemu_in_coroutine()) {
623 /* Fast-path if already in coroutine context */
624 bdrv_rw_co_entry(&rwco);
625 } else {
626 AioContext *aio_context = bdrv_get_aio_context(bs);
627
628 co = qemu_coroutine_create(bdrv_rw_co_entry);
629 qemu_coroutine_enter(co, &rwco);
630 while (rwco.ret == NOT_DONE) {
631 aio_poll(aio_context, true);
632 }
633 }
634 return rwco.ret;
635 }
636
637 /*
638 * Process a synchronous request using coroutines
639 */
640 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
641 int nb_sectors, bool is_write, BdrvRequestFlags flags)
642 {
643 QEMUIOVector qiov;
644 struct iovec iov = {
645 .iov_base = (void *)buf,
646 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
647 };
648
649 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
650 return -EINVAL;
651 }
652
653 qemu_iovec_init_external(&qiov, &iov, 1);
654 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
655 &qiov, is_write, flags);
656 }
657
658 /* return < 0 if error. See bdrv_write() for the return codes */
659 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
660 uint8_t *buf, int nb_sectors)
661 {
662 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
663 }
664
665 /* Return < 0 if error. Important errors are:
666 -EIO generic I/O error (may happen for all errors)
667 -ENOMEDIUM No media inserted.
668 -EINVAL Invalid sector number or nb_sectors
669 -EACCES Trying to write a read-only device
670 */
671 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
672 const uint8_t *buf, int nb_sectors)
673 {
674 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
675 }
676
677 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
678 int nb_sectors, BdrvRequestFlags flags)
679 {
680 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
681 BDRV_REQ_ZERO_WRITE | flags);
682 }
683
684 /*
685 * Completely zero out a block device with the help of bdrv_write_zeroes.
686 * The operation is sped up by checking the block status and only writing
687 * zeroes to the device if they currently do not return zeroes. Optional
688 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
689 *
690 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
691 */
692 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
693 {
694 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
695 BlockDriverState *file;
696 int n;
697
698 target_sectors = bdrv_nb_sectors(bs);
699 if (target_sectors < 0) {
700 return target_sectors;
701 }
702
703 for (;;) {
704 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
705 if (nb_sectors <= 0) {
706 return 0;
707 }
708 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
709 if (ret < 0) {
710 error_report("error getting block status at sector %" PRId64 ": %s",
711 sector_num, strerror(-ret));
712 return ret;
713 }
714 if (ret & BDRV_BLOCK_ZERO) {
715 sector_num += n;
716 continue;
717 }
718 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
719 if (ret < 0) {
720 error_report("error writing zeroes at sector %" PRId64 ": %s",
721 sector_num, strerror(-ret));
722 return ret;
723 }
724 sector_num += n;
725 }
726 }
727
728 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
729 {
730 QEMUIOVector qiov;
731 struct iovec iov = {
732 .iov_base = (void *)buf,
733 .iov_len = bytes,
734 };
735 int ret;
736
737 if (bytes < 0) {
738 return -EINVAL;
739 }
740
741 qemu_iovec_init_external(&qiov, &iov, 1);
742 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
743 if (ret < 0) {
744 return ret;
745 }
746
747 return bytes;
748 }
749
750 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
751 {
752 int ret;
753
754 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
755 if (ret < 0) {
756 return ret;
757 }
758
759 return qiov->size;
760 }
761
762 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
763 const void *buf, int bytes)
764 {
765 QEMUIOVector qiov;
766 struct iovec iov = {
767 .iov_base = (void *) buf,
768 .iov_len = bytes,
769 };
770
771 if (bytes < 0) {
772 return -EINVAL;
773 }
774
775 qemu_iovec_init_external(&qiov, &iov, 1);
776 return bdrv_pwritev(bs, offset, &qiov);
777 }
778
779 /*
780 * Writes to the file and ensures that no writes are reordered across this
781 * request (acts as a barrier)
782 *
783 * Returns 0 on success, -errno in error cases.
784 */
785 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
786 const void *buf, int count)
787 {
788 int ret;
789
790 ret = bdrv_pwrite(bs, offset, buf, count);
791 if (ret < 0) {
792 return ret;
793 }
794
795 ret = bdrv_flush(bs);
796 if (ret < 0) {
797 return ret;
798 }
799
800 return 0;
801 }
802
803 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
804 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
805 {
806 /* Perform I/O through a temporary buffer so that users who scribble over
807 * their read buffer while the operation is in progress do not end up
808 * modifying the image file. This is critical for zero-copy guest I/O
809 * where anything might happen inside guest memory.
810 */
811 void *bounce_buffer;
812
813 BlockDriver *drv = bs->drv;
814 struct iovec iov;
815 QEMUIOVector bounce_qiov;
816 int64_t cluster_sector_num;
817 int cluster_nb_sectors;
818 size_t skip_bytes;
819 int ret;
820
821 /* Cover entire cluster so no additional backing file I/O is required when
822 * allocating cluster in the image file.
823 */
824 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
825 &cluster_sector_num, &cluster_nb_sectors);
826
827 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
828 cluster_sector_num, cluster_nb_sectors);
829
830 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
831 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
832 if (bounce_buffer == NULL) {
833 ret = -ENOMEM;
834 goto err;
835 }
836
837 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
838
839 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
840 &bounce_qiov);
841 if (ret < 0) {
842 goto err;
843 }
844
845 if (drv->bdrv_co_write_zeroes &&
846 buffer_is_zero(bounce_buffer, iov.iov_len)) {
847 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
848 cluster_nb_sectors, 0);
849 } else {
850 /* This does not change the data on the disk, it is not necessary
851 * to flush even in cache=writethrough mode.
852 */
853 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
854 &bounce_qiov);
855 }
856
857 if (ret < 0) {
858 /* It might be okay to ignore write errors for guest requests. If this
859 * is a deliberate copy-on-read then we don't want to ignore the error.
860 * Simply report it in all cases.
861 */
862 goto err;
863 }
864
865 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
866 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
867 nb_sectors * BDRV_SECTOR_SIZE);
868
869 err:
870 qemu_vfree(bounce_buffer);
871 return ret;
872 }
873
874 /*
875 * Forwards an already correctly aligned request to the BlockDriver. This
876 * handles copy on read and zeroing after EOF; any other features must be
877 * implemented by the caller.
878 */
879 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
880 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
881 int64_t align, QEMUIOVector *qiov, int flags)
882 {
883 BlockDriver *drv = bs->drv;
884 int ret;
885
886 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
887 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
888
889 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
890 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
891 assert(!qiov || bytes == qiov->size);
892 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
893
894 /* Handle Copy on Read and associated serialisation */
895 if (flags & BDRV_REQ_COPY_ON_READ) {
896 /* If we touch the same cluster it counts as an overlap. This
897 * guarantees that allocating writes will be serialized and not race
898 * with each other for the same cluster. For example, in copy-on-read
899 * it ensures that the CoR read and write operations are atomic and
900 * guest writes cannot interleave between them. */
901 mark_request_serialising(req, bdrv_get_cluster_size(bs));
902 }
903
904 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
905 wait_serialising_requests(req);
906 }
907
908 if (flags & BDRV_REQ_COPY_ON_READ) {
909 int pnum;
910
911 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
912 if (ret < 0) {
913 goto out;
914 }
915
916 if (!ret || pnum != nb_sectors) {
917 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
918 goto out;
919 }
920 }
921
922 /* Forward the request to the BlockDriver */
923 if (!bs->zero_beyond_eof) {
924 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
925 } else {
926 /* Read zeros after EOF */
927 int64_t total_sectors, max_nb_sectors;
928
929 total_sectors = bdrv_nb_sectors(bs);
930 if (total_sectors < 0) {
931 ret = total_sectors;
932 goto out;
933 }
934
935 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
936 align >> BDRV_SECTOR_BITS);
937 if (nb_sectors < max_nb_sectors) {
938 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
939 } else if (max_nb_sectors > 0) {
940 QEMUIOVector local_qiov;
941
942 qemu_iovec_init(&local_qiov, qiov->niov);
943 qemu_iovec_concat(&local_qiov, qiov, 0,
944 max_nb_sectors * BDRV_SECTOR_SIZE);
945
946 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
947 &local_qiov);
948
949 qemu_iovec_destroy(&local_qiov);
950 } else {
951 ret = 0;
952 }
953
954 /* Reading beyond end of file is supposed to produce zeroes */
955 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
956 uint64_t offset = MAX(0, total_sectors - sector_num);
957 uint64_t bytes = (sector_num + nb_sectors - offset) *
958 BDRV_SECTOR_SIZE;
959 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
960 }
961 }
962
963 out:
964 return ret;
965 }
966
967 /*
968 * Handle a read request in coroutine context
969 */
970 int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
971 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
972 BdrvRequestFlags flags)
973 {
974 BlockDriver *drv = bs->drv;
975 BdrvTrackedRequest req;
976
977 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
978 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
979 uint8_t *head_buf = NULL;
980 uint8_t *tail_buf = NULL;
981 QEMUIOVector local_qiov;
982 bool use_local_qiov = false;
983 int ret;
984
985 if (!drv) {
986 return -ENOMEDIUM;
987 }
988
989 ret = bdrv_check_byte_request(bs, offset, bytes);
990 if (ret < 0) {
991 return ret;
992 }
993
994 /* Don't do copy-on-read if we read data before write operation */
995 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
996 flags |= BDRV_REQ_COPY_ON_READ;
997 }
998
999 /* throttling disk I/O */
1000 if (bs->io_limits_enabled) {
1001 throttle_group_co_io_limits_intercept(bs, bytes, false);
1002 }
1003
1004 /* Align read if necessary by padding qiov */
1005 if (offset & (align - 1)) {
1006 head_buf = qemu_blockalign(bs, align);
1007 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1008 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1009 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1010 use_local_qiov = true;
1011
1012 bytes += offset & (align - 1);
1013 offset = offset & ~(align - 1);
1014 }
1015
1016 if ((offset + bytes) & (align - 1)) {
1017 if (!use_local_qiov) {
1018 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1019 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1020 use_local_qiov = true;
1021 }
1022 tail_buf = qemu_blockalign(bs, align);
1023 qemu_iovec_add(&local_qiov, tail_buf,
1024 align - ((offset + bytes) & (align - 1)));
1025
1026 bytes = ROUND_UP(bytes, align);
1027 }
1028
1029 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1030 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1031 use_local_qiov ? &local_qiov : qiov,
1032 flags);
1033 tracked_request_end(&req);
1034
1035 if (use_local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1037 qemu_vfree(head_buf);
1038 qemu_vfree(tail_buf);
1039 }
1040
1041 return ret;
1042 }
1043
1044 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1045 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1046 BdrvRequestFlags flags)
1047 {
1048 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1049 return -EINVAL;
1050 }
1051
1052 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1053 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1054 }
1055
1056 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1057 int nb_sectors, QEMUIOVector *qiov)
1058 {
1059 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1060
1061 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1062 }
1063
1064 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1065 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1066 {
1067 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1068
1069 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1070 BDRV_REQ_NO_SERIALISING);
1071 }
1072
1073 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1074 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1075 {
1076 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1077
1078 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1079 BDRV_REQ_COPY_ON_READ);
1080 }
1081
1082 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1083
1084 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1085 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1086 {
1087 BlockDriver *drv = bs->drv;
1088 QEMUIOVector qiov;
1089 struct iovec iov = {0};
1090 int ret = 0;
1091
1092 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1093 BDRV_REQUEST_MAX_SECTORS);
1094
1095 while (nb_sectors > 0 && !ret) {
1096 int num = nb_sectors;
1097
1098 /* Align request. Block drivers can expect the "bulk" of the request
1099 * to be aligned.
1100 */
1101 if (bs->bl.write_zeroes_alignment
1102 && num > bs->bl.write_zeroes_alignment) {
1103 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1104 /* Make a small request up to the first aligned sector. */
1105 num = bs->bl.write_zeroes_alignment;
1106 num -= sector_num % bs->bl.write_zeroes_alignment;
1107 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1108 /* Shorten the request to the last aligned sector. num cannot
1109 * underflow because num > bs->bl.write_zeroes_alignment.
1110 */
1111 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1112 }
1113 }
1114
1115 /* limit request size */
1116 if (num > max_write_zeroes) {
1117 num = max_write_zeroes;
1118 }
1119
1120 ret = -ENOTSUP;
1121 /* First try the efficient write zeroes operation */
1122 if (drv->bdrv_co_write_zeroes) {
1123 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1124 }
1125
1126 if (ret == -ENOTSUP) {
1127 /* Fall back to bounce buffer if write zeroes is unsupported */
1128 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1129 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1130 num = MIN(num, max_xfer_len);
1131 iov.iov_len = num * BDRV_SECTOR_SIZE;
1132 if (iov.iov_base == NULL) {
1133 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1134 if (iov.iov_base == NULL) {
1135 ret = -ENOMEM;
1136 goto fail;
1137 }
1138 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1139 }
1140 qemu_iovec_init_external(&qiov, &iov, 1);
1141
1142 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1143
1144 /* Keep bounce buffer around if it is big enough for all
1145 * all future requests.
1146 */
1147 if (num < max_xfer_len) {
1148 qemu_vfree(iov.iov_base);
1149 iov.iov_base = NULL;
1150 }
1151 }
1152
1153 sector_num += num;
1154 nb_sectors -= num;
1155 }
1156
1157 fail:
1158 qemu_vfree(iov.iov_base);
1159 return ret;
1160 }
1161
1162 /*
1163 * Forwards an already correctly aligned write request to the BlockDriver.
1164 */
1165 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1166 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1167 QEMUIOVector *qiov, int flags)
1168 {
1169 BlockDriver *drv = bs->drv;
1170 bool waited;
1171 int ret;
1172
1173 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1174 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1175
1176 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1177 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1178 assert(!qiov || bytes == qiov->size);
1179 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1180
1181 waited = wait_serialising_requests(req);
1182 assert(!waited || !req->serialising);
1183 assert(req->overlap_offset <= offset);
1184 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1185
1186 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1187
1188 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1189 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1190 qemu_iovec_is_zero(qiov)) {
1191 flags |= BDRV_REQ_ZERO_WRITE;
1192 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1193 flags |= BDRV_REQ_MAY_UNMAP;
1194 }
1195 }
1196
1197 if (ret < 0) {
1198 /* Do nothing, write notifier decided to fail this request */
1199 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1200 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1201 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1202 } else if (drv->bdrv_co_writev_flags) {
1203 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1204 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
1205 flags);
1206 } else {
1207 assert(drv->supported_write_flags == 0);
1208 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1209 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1210 }
1211 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1212
1213 if (ret == 0 && (flags & BDRV_REQ_FUA) &&
1214 !(drv->supported_write_flags & BDRV_REQ_FUA))
1215 {
1216 ret = bdrv_co_flush(bs);
1217 }
1218
1219 bdrv_set_dirty(bs, sector_num, nb_sectors);
1220
1221 if (bs->wr_highest_offset < offset + bytes) {
1222 bs->wr_highest_offset = offset + bytes;
1223 }
1224
1225 if (ret >= 0) {
1226 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1227 }
1228
1229 return ret;
1230 }
1231
1232 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1233 int64_t offset,
1234 unsigned int bytes,
1235 BdrvRequestFlags flags,
1236 BdrvTrackedRequest *req)
1237 {
1238 uint8_t *buf = NULL;
1239 QEMUIOVector local_qiov;
1240 struct iovec iov;
1241 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1242 unsigned int head_padding_bytes, tail_padding_bytes;
1243 int ret = 0;
1244
1245 head_padding_bytes = offset & (align - 1);
1246 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1247
1248
1249 assert(flags & BDRV_REQ_ZERO_WRITE);
1250 if (head_padding_bytes || tail_padding_bytes) {
1251 buf = qemu_blockalign(bs, align);
1252 iov = (struct iovec) {
1253 .iov_base = buf,
1254 .iov_len = align,
1255 };
1256 qemu_iovec_init_external(&local_qiov, &iov, 1);
1257 }
1258 if (head_padding_bytes) {
1259 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1260
1261 /* RMW the unaligned part before head. */
1262 mark_request_serialising(req, align);
1263 wait_serialising_requests(req);
1264 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1265 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1266 align, &local_qiov, 0);
1267 if (ret < 0) {
1268 goto fail;
1269 }
1270 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1271
1272 memset(buf + head_padding_bytes, 0, zero_bytes);
1273 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1274 &local_qiov,
1275 flags & ~BDRV_REQ_ZERO_WRITE);
1276 if (ret < 0) {
1277 goto fail;
1278 }
1279 offset += zero_bytes;
1280 bytes -= zero_bytes;
1281 }
1282
1283 assert(!bytes || (offset & (align - 1)) == 0);
1284 if (bytes >= align) {
1285 /* Write the aligned part in the middle. */
1286 uint64_t aligned_bytes = bytes & ~(align - 1);
1287 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1288 NULL, flags);
1289 if (ret < 0) {
1290 goto fail;
1291 }
1292 bytes -= aligned_bytes;
1293 offset += aligned_bytes;
1294 }
1295
1296 assert(!bytes || (offset & (align - 1)) == 0);
1297 if (bytes) {
1298 assert(align == tail_padding_bytes + bytes);
1299 /* RMW the unaligned part after tail. */
1300 mark_request_serialising(req, align);
1301 wait_serialising_requests(req);
1302 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1303 ret = bdrv_aligned_preadv(bs, req, offset, align,
1304 align, &local_qiov, 0);
1305 if (ret < 0) {
1306 goto fail;
1307 }
1308 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1309
1310 memset(buf, 0, bytes);
1311 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1312 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1313 }
1314 fail:
1315 qemu_vfree(buf);
1316 return ret;
1317
1318 }
1319
1320 /*
1321 * Handle a write request in coroutine context
1322 */
1323 int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1324 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1325 BdrvRequestFlags flags)
1326 {
1327 BdrvTrackedRequest req;
1328 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1329 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1330 uint8_t *head_buf = NULL;
1331 uint8_t *tail_buf = NULL;
1332 QEMUIOVector local_qiov;
1333 bool use_local_qiov = false;
1334 int ret;
1335
1336 if (!bs->drv) {
1337 return -ENOMEDIUM;
1338 }
1339 if (bs->read_only) {
1340 return -EPERM;
1341 }
1342 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1343
1344 ret = bdrv_check_byte_request(bs, offset, bytes);
1345 if (ret < 0) {
1346 return ret;
1347 }
1348
1349 /* throttling disk I/O */
1350 if (bs->io_limits_enabled) {
1351 throttle_group_co_io_limits_intercept(bs, bytes, true);
1352 }
1353
1354 /*
1355 * Align write if necessary by performing a read-modify-write cycle.
1356 * Pad qiov with the read parts and be sure to have a tracked request not
1357 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1358 */
1359 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1360
1361 if (!qiov) {
1362 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1363 goto out;
1364 }
1365
1366 if (offset & (align - 1)) {
1367 QEMUIOVector head_qiov;
1368 struct iovec head_iov;
1369
1370 mark_request_serialising(&req, align);
1371 wait_serialising_requests(&req);
1372
1373 head_buf = qemu_blockalign(bs, align);
1374 head_iov = (struct iovec) {
1375 .iov_base = head_buf,
1376 .iov_len = align,
1377 };
1378 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1379
1380 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1381 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1382 align, &head_qiov, 0);
1383 if (ret < 0) {
1384 goto fail;
1385 }
1386 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1387
1388 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1389 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1390 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1391 use_local_qiov = true;
1392
1393 bytes += offset & (align - 1);
1394 offset = offset & ~(align - 1);
1395 }
1396
1397 if ((offset + bytes) & (align - 1)) {
1398 QEMUIOVector tail_qiov;
1399 struct iovec tail_iov;
1400 size_t tail_bytes;
1401 bool waited;
1402
1403 mark_request_serialising(&req, align);
1404 waited = wait_serialising_requests(&req);
1405 assert(!waited || !use_local_qiov);
1406
1407 tail_buf = qemu_blockalign(bs, align);
1408 tail_iov = (struct iovec) {
1409 .iov_base = tail_buf,
1410 .iov_len = align,
1411 };
1412 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1413
1414 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1415 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1416 align, &tail_qiov, 0);
1417 if (ret < 0) {
1418 goto fail;
1419 }
1420 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1421
1422 if (!use_local_qiov) {
1423 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1424 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1425 use_local_qiov = true;
1426 }
1427
1428 tail_bytes = (offset + bytes) & (align - 1);
1429 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1430
1431 bytes = ROUND_UP(bytes, align);
1432 }
1433
1434 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1435 use_local_qiov ? &local_qiov : qiov,
1436 flags);
1437
1438 fail:
1439
1440 if (use_local_qiov) {
1441 qemu_iovec_destroy(&local_qiov);
1442 }
1443 qemu_vfree(head_buf);
1444 qemu_vfree(tail_buf);
1445 out:
1446 tracked_request_end(&req);
1447 return ret;
1448 }
1449
1450 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1451 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1452 BdrvRequestFlags flags)
1453 {
1454 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1455 return -EINVAL;
1456 }
1457
1458 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1459 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1460 }
1461
1462 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1463 int nb_sectors, QEMUIOVector *qiov)
1464 {
1465 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1466
1467 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1468 }
1469
1470 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1471 int64_t sector_num, int nb_sectors,
1472 BdrvRequestFlags flags)
1473 {
1474 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1475
1476 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1477 flags &= ~BDRV_REQ_MAY_UNMAP;
1478 }
1479
1480 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1481 BDRV_REQ_ZERO_WRITE | flags);
1482 }
1483
1484 typedef struct BdrvCoGetBlockStatusData {
1485 BlockDriverState *bs;
1486 BlockDriverState *base;
1487 BlockDriverState **file;
1488 int64_t sector_num;
1489 int nb_sectors;
1490 int *pnum;
1491 int64_t ret;
1492 bool done;
1493 } BdrvCoGetBlockStatusData;
1494
1495 /*
1496 * Returns the allocation status of the specified sectors.
1497 * Drivers not implementing the functionality are assumed to not support
1498 * backing files, hence all their sectors are reported as allocated.
1499 *
1500 * If 'sector_num' is beyond the end of the disk image the return value is 0
1501 * and 'pnum' is set to 0.
1502 *
1503 * 'pnum' is set to the number of sectors (including and immediately following
1504 * the specified sector) that are known to be in the same
1505 * allocated/unallocated state.
1506 *
1507 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1508 * beyond the end of the disk image it will be clamped.
1509 *
1510 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1511 * points to the BDS which the sector range is allocated in.
1512 */
1513 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1514 int64_t sector_num,
1515 int nb_sectors, int *pnum,
1516 BlockDriverState **file)
1517 {
1518 int64_t total_sectors;
1519 int64_t n;
1520 int64_t ret, ret2;
1521
1522 total_sectors = bdrv_nb_sectors(bs);
1523 if (total_sectors < 0) {
1524 return total_sectors;
1525 }
1526
1527 if (sector_num >= total_sectors) {
1528 *pnum = 0;
1529 return 0;
1530 }
1531
1532 n = total_sectors - sector_num;
1533 if (n < nb_sectors) {
1534 nb_sectors = n;
1535 }
1536
1537 if (!bs->drv->bdrv_co_get_block_status) {
1538 *pnum = nb_sectors;
1539 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1540 if (bs->drv->protocol_name) {
1541 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1542 }
1543 return ret;
1544 }
1545
1546 *file = NULL;
1547 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1548 file);
1549 if (ret < 0) {
1550 *pnum = 0;
1551 return ret;
1552 }
1553
1554 if (ret & BDRV_BLOCK_RAW) {
1555 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1556 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1557 *pnum, pnum, file);
1558 }
1559
1560 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1561 ret |= BDRV_BLOCK_ALLOCATED;
1562 } else {
1563 if (bdrv_unallocated_blocks_are_zero(bs)) {
1564 ret |= BDRV_BLOCK_ZERO;
1565 } else if (bs->backing) {
1566 BlockDriverState *bs2 = bs->backing->bs;
1567 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1568 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1569 ret |= BDRV_BLOCK_ZERO;
1570 }
1571 }
1572 }
1573
1574 if (*file && *file != bs &&
1575 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1576 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1577 BlockDriverState *file2;
1578 int file_pnum;
1579
1580 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1581 *pnum, &file_pnum, &file2);
1582 if (ret2 >= 0) {
1583 /* Ignore errors. This is just providing extra information, it
1584 * is useful but not necessary.
1585 */
1586 if (!file_pnum) {
1587 /* !file_pnum indicates an offset at or beyond the EOF; it is
1588 * perfectly valid for the format block driver to point to such
1589 * offsets, so catch it and mark everything as zero */
1590 ret |= BDRV_BLOCK_ZERO;
1591 } else {
1592 /* Limit request to the range reported by the protocol driver */
1593 *pnum = file_pnum;
1594 ret |= (ret2 & BDRV_BLOCK_ZERO);
1595 }
1596 }
1597 }
1598
1599 return ret;
1600 }
1601
1602 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1603 BlockDriverState *base,
1604 int64_t sector_num,
1605 int nb_sectors,
1606 int *pnum,
1607 BlockDriverState **file)
1608 {
1609 BlockDriverState *p;
1610 int64_t ret = 0;
1611
1612 assert(bs != base);
1613 for (p = bs; p != base; p = backing_bs(p)) {
1614 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1615 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1616 break;
1617 }
1618 /* [sector_num, pnum] unallocated on this layer, which could be only
1619 * the first part of [sector_num, nb_sectors]. */
1620 nb_sectors = MIN(nb_sectors, *pnum);
1621 }
1622 return ret;
1623 }
1624
1625 /* Coroutine wrapper for bdrv_get_block_status_above() */
1626 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1627 {
1628 BdrvCoGetBlockStatusData *data = opaque;
1629
1630 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1631 data->sector_num,
1632 data->nb_sectors,
1633 data->pnum,
1634 data->file);
1635 data->done = true;
1636 }
1637
1638 /*
1639 * Synchronous wrapper around bdrv_co_get_block_status_above().
1640 *
1641 * See bdrv_co_get_block_status_above() for details.
1642 */
1643 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1644 BlockDriverState *base,
1645 int64_t sector_num,
1646 int nb_sectors, int *pnum,
1647 BlockDriverState **file)
1648 {
1649 Coroutine *co;
1650 BdrvCoGetBlockStatusData data = {
1651 .bs = bs,
1652 .base = base,
1653 .file = file,
1654 .sector_num = sector_num,
1655 .nb_sectors = nb_sectors,
1656 .pnum = pnum,
1657 .done = false,
1658 };
1659
1660 if (qemu_in_coroutine()) {
1661 /* Fast-path if already in coroutine context */
1662 bdrv_get_block_status_above_co_entry(&data);
1663 } else {
1664 AioContext *aio_context = bdrv_get_aio_context(bs);
1665
1666 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1667 qemu_coroutine_enter(co, &data);
1668 while (!data.done) {
1669 aio_poll(aio_context, true);
1670 }
1671 }
1672 return data.ret;
1673 }
1674
1675 int64_t bdrv_get_block_status(BlockDriverState *bs,
1676 int64_t sector_num,
1677 int nb_sectors, int *pnum,
1678 BlockDriverState **file)
1679 {
1680 return bdrv_get_block_status_above(bs, backing_bs(bs),
1681 sector_num, nb_sectors, pnum, file);
1682 }
1683
1684 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1685 int nb_sectors, int *pnum)
1686 {
1687 BlockDriverState *file;
1688 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1689 &file);
1690 if (ret < 0) {
1691 return ret;
1692 }
1693 return !!(ret & BDRV_BLOCK_ALLOCATED);
1694 }
1695
1696 /*
1697 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1698 *
1699 * Return true if the given sector is allocated in any image between
1700 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1701 * sector is allocated in any image of the chain. Return false otherwise.
1702 *
1703 * 'pnum' is set to the number of sectors (including and immediately following
1704 * the specified sector) that are known to be in the same
1705 * allocated/unallocated state.
1706 *
1707 */
1708 int bdrv_is_allocated_above(BlockDriverState *top,
1709 BlockDriverState *base,
1710 int64_t sector_num,
1711 int nb_sectors, int *pnum)
1712 {
1713 BlockDriverState *intermediate;
1714 int ret, n = nb_sectors;
1715
1716 intermediate = top;
1717 while (intermediate && intermediate != base) {
1718 int pnum_inter;
1719 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1720 &pnum_inter);
1721 if (ret < 0) {
1722 return ret;
1723 } else if (ret) {
1724 *pnum = pnum_inter;
1725 return 1;
1726 }
1727
1728 /*
1729 * [sector_num, nb_sectors] is unallocated on top but intermediate
1730 * might have
1731 *
1732 * [sector_num+x, nr_sectors] allocated.
1733 */
1734 if (n > pnum_inter &&
1735 (intermediate == top ||
1736 sector_num + pnum_inter < intermediate->total_sectors)) {
1737 n = pnum_inter;
1738 }
1739
1740 intermediate = backing_bs(intermediate);
1741 }
1742
1743 *pnum = n;
1744 return 0;
1745 }
1746
1747 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1748 const uint8_t *buf, int nb_sectors)
1749 {
1750 BlockDriver *drv = bs->drv;
1751 int ret;
1752
1753 if (!drv) {
1754 return -ENOMEDIUM;
1755 }
1756 if (!drv->bdrv_write_compressed) {
1757 return -ENOTSUP;
1758 }
1759 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1760 if (ret < 0) {
1761 return ret;
1762 }
1763
1764 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1765
1766 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1767 }
1768
1769 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1770 int64_t pos, int size)
1771 {
1772 QEMUIOVector qiov;
1773 struct iovec iov = {
1774 .iov_base = (void *) buf,
1775 .iov_len = size,
1776 };
1777
1778 qemu_iovec_init_external(&qiov, &iov, 1);
1779 return bdrv_writev_vmstate(bs, &qiov, pos);
1780 }
1781
1782 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1783 {
1784 BlockDriver *drv = bs->drv;
1785
1786 if (!drv) {
1787 return -ENOMEDIUM;
1788 } else if (drv->bdrv_save_vmstate) {
1789 return drv->bdrv_save_vmstate(bs, qiov, pos);
1790 } else if (bs->file) {
1791 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1792 }
1793
1794 return -ENOTSUP;
1795 }
1796
1797 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1798 int64_t pos, int size)
1799 {
1800 BlockDriver *drv = bs->drv;
1801 if (!drv)
1802 return -ENOMEDIUM;
1803 if (drv->bdrv_load_vmstate)
1804 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1805 if (bs->file)
1806 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1807 return -ENOTSUP;
1808 }
1809
1810 /**************************************************************/
1811 /* async I/Os */
1812
1813 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1814 QEMUIOVector *qiov, int nb_sectors,
1815 BlockCompletionFunc *cb, void *opaque)
1816 {
1817 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1818
1819 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1820 cb, opaque, false);
1821 }
1822
1823 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1824 QEMUIOVector *qiov, int nb_sectors,
1825 BlockCompletionFunc *cb, void *opaque)
1826 {
1827 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1828
1829 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1830 cb, opaque, true);
1831 }
1832
1833 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1834 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1835 BlockCompletionFunc *cb, void *opaque)
1836 {
1837 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1838
1839 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1840 BDRV_REQ_ZERO_WRITE | flags,
1841 cb, opaque, true);
1842 }
1843
1844
1845 typedef struct MultiwriteCB {
1846 int error;
1847 int num_requests;
1848 int num_callbacks;
1849 struct {
1850 BlockCompletionFunc *cb;
1851 void *opaque;
1852 QEMUIOVector *free_qiov;
1853 } callbacks[];
1854 } MultiwriteCB;
1855
1856 static void multiwrite_user_cb(MultiwriteCB *mcb)
1857 {
1858 int i;
1859
1860 for (i = 0; i < mcb->num_callbacks; i++) {
1861 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1862 if (mcb->callbacks[i].free_qiov) {
1863 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1864 }
1865 g_free(mcb->callbacks[i].free_qiov);
1866 }
1867 }
1868
1869 static void multiwrite_cb(void *opaque, int ret)
1870 {
1871 MultiwriteCB *mcb = opaque;
1872
1873 trace_multiwrite_cb(mcb, ret);
1874
1875 if (ret < 0 && !mcb->error) {
1876 mcb->error = ret;
1877 }
1878
1879 mcb->num_requests--;
1880 if (mcb->num_requests == 0) {
1881 multiwrite_user_cb(mcb);
1882 g_free(mcb);
1883 }
1884 }
1885
1886 static int multiwrite_req_compare(const void *a, const void *b)
1887 {
1888 const BlockRequest *req1 = a, *req2 = b;
1889
1890 /*
1891 * Note that we can't simply subtract req2->sector from req1->sector
1892 * here as that could overflow the return value.
1893 */
1894 if (req1->sector > req2->sector) {
1895 return 1;
1896 } else if (req1->sector < req2->sector) {
1897 return -1;
1898 } else {
1899 return 0;
1900 }
1901 }
1902
1903 /*
1904 * Takes a bunch of requests and tries to merge them. Returns the number of
1905 * requests that remain after merging.
1906 */
1907 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1908 int num_reqs, MultiwriteCB *mcb)
1909 {
1910 int i, outidx;
1911
1912 // Sort requests by start sector
1913 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1914
1915 // Check if adjacent requests touch the same clusters. If so, combine them,
1916 // filling up gaps with zero sectors.
1917 outidx = 0;
1918 for (i = 1; i < num_reqs; i++) {
1919 int merge = 0;
1920 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1921
1922 // Handle exactly sequential writes and overlapping writes.
1923 if (reqs[i].sector <= oldreq_last) {
1924 merge = 1;
1925 }
1926
1927 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 >
1928 bs->bl.max_iov) {
1929 merge = 0;
1930 }
1931
1932 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1933 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1934 merge = 0;
1935 }
1936
1937 if (merge) {
1938 size_t size;
1939 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1940 qemu_iovec_init(qiov,
1941 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1942
1943 // Add the first request to the merged one. If the requests are
1944 // overlapping, drop the last sectors of the first request.
1945 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1946 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1947
1948 // We should need to add any zeros between the two requests
1949 assert (reqs[i].sector <= oldreq_last);
1950
1951 // Add the second request
1952 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1953
1954 // Add tail of first request, if necessary
1955 if (qiov->size < reqs[outidx].qiov->size) {
1956 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1957 reqs[outidx].qiov->size - qiov->size);
1958 }
1959
1960 reqs[outidx].nb_sectors = qiov->size >> 9;
1961 reqs[outidx].qiov = qiov;
1962
1963 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1964 } else {
1965 outidx++;
1966 reqs[outidx].sector = reqs[i].sector;
1967 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1968 reqs[outidx].qiov = reqs[i].qiov;
1969 }
1970 }
1971
1972 if (bs->blk) {
1973 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1974 num_reqs - outidx - 1);
1975 }
1976
1977 return outidx + 1;
1978 }
1979
1980 /*
1981 * Submit multiple AIO write requests at once.
1982 *
1983 * On success, the function returns 0 and all requests in the reqs array have
1984 * been submitted. In error case this function returns -1, and any of the
1985 * requests may or may not be submitted yet. In particular, this means that the
1986 * callback will be called for some of the requests, for others it won't. The
1987 * caller must check the error field of the BlockRequest to wait for the right
1988 * callbacks (if error != 0, no callback will be called).
1989 *
1990 * The implementation may modify the contents of the reqs array, e.g. to merge
1991 * requests. However, the fields opaque and error are left unmodified as they
1992 * are used to signal failure for a single request to the caller.
1993 */
1994 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1995 {
1996 MultiwriteCB *mcb;
1997 int i;
1998
1999 /* don't submit writes if we don't have a medium */
2000 if (bs->drv == NULL) {
2001 for (i = 0; i < num_reqs; i++) {
2002 reqs[i].error = -ENOMEDIUM;
2003 }
2004 return -1;
2005 }
2006
2007 if (num_reqs == 0) {
2008 return 0;
2009 }
2010
2011 // Create MultiwriteCB structure
2012 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
2013 mcb->num_requests = 0;
2014 mcb->num_callbacks = num_reqs;
2015
2016 for (i = 0; i < num_reqs; i++) {
2017 mcb->callbacks[i].cb = reqs[i].cb;
2018 mcb->callbacks[i].opaque = reqs[i].opaque;
2019 }
2020
2021 // Check for mergable requests
2022 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
2023
2024 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
2025
2026 /* Run the aio requests. */
2027 mcb->num_requests = num_reqs;
2028 for (i = 0; i < num_reqs; i++) {
2029 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
2030 reqs[i].nb_sectors, reqs[i].flags,
2031 multiwrite_cb, mcb,
2032 true);
2033 }
2034
2035 return 0;
2036 }
2037
2038 void bdrv_aio_cancel(BlockAIOCB *acb)
2039 {
2040 qemu_aio_ref(acb);
2041 bdrv_aio_cancel_async(acb);
2042 while (acb->refcnt > 1) {
2043 if (acb->aiocb_info->get_aio_context) {
2044 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2045 } else if (acb->bs) {
2046 aio_poll(bdrv_get_aio_context(acb->bs), true);
2047 } else {
2048 abort();
2049 }
2050 }
2051 qemu_aio_unref(acb);
2052 }
2053
2054 /* Async version of aio cancel. The caller is not blocked if the acb implements
2055 * cancel_async, otherwise we do nothing and let the request normally complete.
2056 * In either case the completion callback must be called. */
2057 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2058 {
2059 if (acb->aiocb_info->cancel_async) {
2060 acb->aiocb_info->cancel_async(acb);
2061 }
2062 }
2063
2064 /**************************************************************/
2065 /* async block device emulation */
2066
2067 typedef struct BlockAIOCBSync {
2068 BlockAIOCB common;
2069 QEMUBH *bh;
2070 int ret;
2071 /* vector translation state */
2072 QEMUIOVector *qiov;
2073 uint8_t *bounce;
2074 int is_write;
2075 } BlockAIOCBSync;
2076
2077 static const AIOCBInfo bdrv_em_aiocb_info = {
2078 .aiocb_size = sizeof(BlockAIOCBSync),
2079 };
2080
2081 static void bdrv_aio_bh_cb(void *opaque)
2082 {
2083 BlockAIOCBSync *acb = opaque;
2084
2085 if (!acb->is_write && acb->ret >= 0) {
2086 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2087 }
2088 qemu_vfree(acb->bounce);
2089 acb->common.cb(acb->common.opaque, acb->ret);
2090 qemu_bh_delete(acb->bh);
2091 acb->bh = NULL;
2092 qemu_aio_unref(acb);
2093 }
2094
2095 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2096 int64_t sector_num,
2097 QEMUIOVector *qiov,
2098 int nb_sectors,
2099 BlockCompletionFunc *cb,
2100 void *opaque,
2101 int is_write)
2102
2103 {
2104 BlockAIOCBSync *acb;
2105
2106 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2107 acb->is_write = is_write;
2108 acb->qiov = qiov;
2109 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2110 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2111
2112 if (acb->bounce == NULL) {
2113 acb->ret = -ENOMEM;
2114 } else if (is_write) {
2115 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2116 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2117 } else {
2118 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2119 }
2120
2121 qemu_bh_schedule(acb->bh);
2122
2123 return &acb->common;
2124 }
2125
2126 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2127 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2128 BlockCompletionFunc *cb, void *opaque)
2129 {
2130 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2131 }
2132
2133 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2134 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2135 BlockCompletionFunc *cb, void *opaque)
2136 {
2137 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2138 }
2139
2140
2141 typedef struct BlockAIOCBCoroutine {
2142 BlockAIOCB common;
2143 BlockRequest req;
2144 bool is_write;
2145 bool need_bh;
2146 bool *done;
2147 QEMUBH* bh;
2148 } BlockAIOCBCoroutine;
2149
2150 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2151 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2152 };
2153
2154 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2155 {
2156 if (!acb->need_bh) {
2157 acb->common.cb(acb->common.opaque, acb->req.error);
2158 qemu_aio_unref(acb);
2159 }
2160 }
2161
2162 static void bdrv_co_em_bh(void *opaque)
2163 {
2164 BlockAIOCBCoroutine *acb = opaque;
2165
2166 assert(!acb->need_bh);
2167 qemu_bh_delete(acb->bh);
2168 bdrv_co_complete(acb);
2169 }
2170
2171 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2172 {
2173 acb->need_bh = false;
2174 if (acb->req.error != -EINPROGRESS) {
2175 BlockDriverState *bs = acb->common.bs;
2176
2177 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2178 qemu_bh_schedule(acb->bh);
2179 }
2180 }
2181
2182 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2183 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2184 {
2185 BlockAIOCBCoroutine *acb = opaque;
2186 BlockDriverState *bs = acb->common.bs;
2187
2188 if (!acb->is_write) {
2189 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2190 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2191 } else {
2192 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2193 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2194 }
2195
2196 bdrv_co_complete(acb);
2197 }
2198
2199 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2200 int64_t sector_num,
2201 QEMUIOVector *qiov,
2202 int nb_sectors,
2203 BdrvRequestFlags flags,
2204 BlockCompletionFunc *cb,
2205 void *opaque,
2206 bool is_write)
2207 {
2208 Coroutine *co;
2209 BlockAIOCBCoroutine *acb;
2210
2211 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2212 acb->need_bh = true;
2213 acb->req.error = -EINPROGRESS;
2214 acb->req.sector = sector_num;
2215 acb->req.nb_sectors = nb_sectors;
2216 acb->req.qiov = qiov;
2217 acb->req.flags = flags;
2218 acb->is_write = is_write;
2219
2220 co = qemu_coroutine_create(bdrv_co_do_rw);
2221 qemu_coroutine_enter(co, acb);
2222
2223 bdrv_co_maybe_schedule_bh(acb);
2224 return &acb->common;
2225 }
2226
2227 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2228 {
2229 BlockAIOCBCoroutine *acb = opaque;
2230 BlockDriverState *bs = acb->common.bs;
2231
2232 acb->req.error = bdrv_co_flush(bs);
2233 bdrv_co_complete(acb);
2234 }
2235
2236 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2237 BlockCompletionFunc *cb, void *opaque)
2238 {
2239 trace_bdrv_aio_flush(bs, opaque);
2240
2241 Coroutine *co;
2242 BlockAIOCBCoroutine *acb;
2243
2244 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2245 acb->need_bh = true;
2246 acb->req.error = -EINPROGRESS;
2247
2248 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2249 qemu_coroutine_enter(co, acb);
2250
2251 bdrv_co_maybe_schedule_bh(acb);
2252 return &acb->common;
2253 }
2254
2255 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2256 {
2257 BlockAIOCBCoroutine *acb = opaque;
2258 BlockDriverState *bs = acb->common.bs;
2259
2260 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2261 bdrv_co_complete(acb);
2262 }
2263
2264 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2265 int64_t sector_num, int nb_sectors,
2266 BlockCompletionFunc *cb, void *opaque)
2267 {
2268 Coroutine *co;
2269 BlockAIOCBCoroutine *acb;
2270
2271 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2272
2273 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2274 acb->need_bh = true;
2275 acb->req.error = -EINPROGRESS;
2276 acb->req.sector = sector_num;
2277 acb->req.nb_sectors = nb_sectors;
2278 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2279 qemu_coroutine_enter(co, acb);
2280
2281 bdrv_co_maybe_schedule_bh(acb);
2282 return &acb->common;
2283 }
2284
2285 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2286 BlockCompletionFunc *cb, void *opaque)
2287 {
2288 BlockAIOCB *acb;
2289
2290 acb = g_malloc(aiocb_info->aiocb_size);
2291 acb->aiocb_info = aiocb_info;
2292 acb->bs = bs;
2293 acb->cb = cb;
2294 acb->opaque = opaque;
2295 acb->refcnt = 1;
2296 return acb;
2297 }
2298
2299 void qemu_aio_ref(void *p)
2300 {
2301 BlockAIOCB *acb = p;
2302 acb->refcnt++;
2303 }
2304
2305 void qemu_aio_unref(void *p)
2306 {
2307 BlockAIOCB *acb = p;
2308 assert(acb->refcnt > 0);
2309 if (--acb->refcnt == 0) {
2310 g_free(acb);
2311 }
2312 }
2313
2314 /**************************************************************/
2315 /* Coroutine block device emulation */
2316
2317 typedef struct CoroutineIOCompletion {
2318 Coroutine *coroutine;
2319 int ret;
2320 } CoroutineIOCompletion;
2321
2322 static void bdrv_co_io_em_complete(void *opaque, int ret)
2323 {
2324 CoroutineIOCompletion *co = opaque;
2325
2326 co->ret = ret;
2327 qemu_coroutine_enter(co->coroutine, NULL);
2328 }
2329
2330 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2331 int nb_sectors, QEMUIOVector *iov,
2332 bool is_write)
2333 {
2334 CoroutineIOCompletion co = {
2335 .coroutine = qemu_coroutine_self(),
2336 };
2337 BlockAIOCB *acb;
2338
2339 if (is_write) {
2340 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2341 bdrv_co_io_em_complete, &co);
2342 } else {
2343 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2344 bdrv_co_io_em_complete, &co);
2345 }
2346
2347 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2348 if (!acb) {
2349 return -EIO;
2350 }
2351 qemu_coroutine_yield();
2352
2353 return co.ret;
2354 }
2355
2356 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2357 int64_t sector_num, int nb_sectors,
2358 QEMUIOVector *iov)
2359 {
2360 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2361 }
2362
2363 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2364 int64_t sector_num, int nb_sectors,
2365 QEMUIOVector *iov)
2366 {
2367 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2368 }
2369
2370 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2371 {
2372 RwCo *rwco = opaque;
2373
2374 rwco->ret = bdrv_co_flush(rwco->bs);
2375 }
2376
2377 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2378 {
2379 int ret;
2380 BdrvTrackedRequest req;
2381
2382 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2383 bdrv_is_sg(bs)) {
2384 return 0;
2385 }
2386
2387 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2388
2389 /* Write back all layers by calling one driver function */
2390 if (bs->drv->bdrv_co_flush) {
2391 ret = bs->drv->bdrv_co_flush(bs);
2392 goto out;
2393 }
2394
2395 /* Write back cached data to the OS even with cache=unsafe */
2396 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2397 if (bs->drv->bdrv_co_flush_to_os) {
2398 ret = bs->drv->bdrv_co_flush_to_os(bs);
2399 if (ret < 0) {
2400 goto out;
2401 }
2402 }
2403
2404 /* But don't actually force it to the disk with cache=unsafe */
2405 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2406 goto flush_parent;
2407 }
2408
2409 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2410 if (bs->drv->bdrv_co_flush_to_disk) {
2411 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2412 } else if (bs->drv->bdrv_aio_flush) {
2413 BlockAIOCB *acb;
2414 CoroutineIOCompletion co = {
2415 .coroutine = qemu_coroutine_self(),
2416 };
2417
2418 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2419 if (acb == NULL) {
2420 ret = -EIO;
2421 } else {
2422 qemu_coroutine_yield();
2423 ret = co.ret;
2424 }
2425 } else {
2426 /*
2427 * Some block drivers always operate in either writethrough or unsafe
2428 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2429 * know how the server works (because the behaviour is hardcoded or
2430 * depends on server-side configuration), so we can't ensure that
2431 * everything is safe on disk. Returning an error doesn't work because
2432 * that would break guests even if the server operates in writethrough
2433 * mode.
2434 *
2435 * Let's hope the user knows what he's doing.
2436 */
2437 ret = 0;
2438 }
2439 if (ret < 0) {
2440 goto out;
2441 }
2442
2443 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2444 * in the case of cache=unsafe, so there are no useless flushes.
2445 */
2446 flush_parent:
2447 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2448 out:
2449 tracked_request_end(&req);
2450 return ret;
2451 }
2452
2453 int bdrv_flush(BlockDriverState *bs)
2454 {
2455 Coroutine *co;
2456 RwCo rwco = {
2457 .bs = bs,
2458 .ret = NOT_DONE,
2459 };
2460
2461 if (qemu_in_coroutine()) {
2462 /* Fast-path if already in coroutine context */
2463 bdrv_flush_co_entry(&rwco);
2464 } else {
2465 AioContext *aio_context = bdrv_get_aio_context(bs);
2466
2467 co = qemu_coroutine_create(bdrv_flush_co_entry);
2468 qemu_coroutine_enter(co, &rwco);
2469 while (rwco.ret == NOT_DONE) {
2470 aio_poll(aio_context, true);
2471 }
2472 }
2473
2474 return rwco.ret;
2475 }
2476
2477 typedef struct DiscardCo {
2478 BlockDriverState *bs;
2479 int64_t sector_num;
2480 int nb_sectors;
2481 int ret;
2482 } DiscardCo;
2483 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2484 {
2485 DiscardCo *rwco = opaque;
2486
2487 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2488 }
2489
2490 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2491 int nb_sectors)
2492 {
2493 BdrvTrackedRequest req;
2494 int max_discard, ret;
2495
2496 if (!bs->drv) {
2497 return -ENOMEDIUM;
2498 }
2499
2500 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2501 if (ret < 0) {
2502 return ret;
2503 } else if (bs->read_only) {
2504 return -EPERM;
2505 }
2506 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2507
2508 /* Do nothing if disabled. */
2509 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2510 return 0;
2511 }
2512
2513 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2514 return 0;
2515 }
2516
2517 tracked_request_begin(&req, bs, sector_num, nb_sectors,
2518 BDRV_TRACKED_DISCARD);
2519 bdrv_set_dirty(bs, sector_num, nb_sectors);
2520
2521 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2522 while (nb_sectors > 0) {
2523 int ret;
2524 int num = nb_sectors;
2525
2526 /* align request */
2527 if (bs->bl.discard_alignment &&
2528 num >= bs->bl.discard_alignment &&
2529 sector_num % bs->bl.discard_alignment) {
2530 if (num > bs->bl.discard_alignment) {
2531 num = bs->bl.discard_alignment;
2532 }
2533 num -= sector_num % bs->bl.discard_alignment;
2534 }
2535
2536 /* limit request size */
2537 if (num > max_discard) {
2538 num = max_discard;
2539 }
2540
2541 if (bs->drv->bdrv_co_discard) {
2542 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2543 } else {
2544 BlockAIOCB *acb;
2545 CoroutineIOCompletion co = {
2546 .coroutine = qemu_coroutine_self(),
2547 };
2548
2549 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2550 bdrv_co_io_em_complete, &co);
2551 if (acb == NULL) {
2552 ret = -EIO;
2553 goto out;
2554 } else {
2555 qemu_coroutine_yield();
2556 ret = co.ret;
2557 }
2558 }
2559 if (ret && ret != -ENOTSUP) {
2560 goto out;
2561 }
2562
2563 sector_num += num;
2564 nb_sectors -= num;
2565 }
2566 ret = 0;
2567 out:
2568 tracked_request_end(&req);
2569 return ret;
2570 }
2571
2572 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2573 {
2574 Coroutine *co;
2575 DiscardCo rwco = {
2576 .bs = bs,
2577 .sector_num = sector_num,
2578 .nb_sectors = nb_sectors,
2579 .ret = NOT_DONE,
2580 };
2581
2582 if (qemu_in_coroutine()) {
2583 /* Fast-path if already in coroutine context */
2584 bdrv_discard_co_entry(&rwco);
2585 } else {
2586 AioContext *aio_context = bdrv_get_aio_context(bs);
2587
2588 co = qemu_coroutine_create(bdrv_discard_co_entry);
2589 qemu_coroutine_enter(co, &rwco);
2590 while (rwco.ret == NOT_DONE) {
2591 aio_poll(aio_context, true);
2592 }
2593 }
2594
2595 return rwco.ret;
2596 }
2597
2598 typedef struct {
2599 CoroutineIOCompletion *co;
2600 QEMUBH *bh;
2601 } BdrvIoctlCompletionData;
2602
2603 static void bdrv_ioctl_bh_cb(void *opaque)
2604 {
2605 BdrvIoctlCompletionData *data = opaque;
2606
2607 bdrv_co_io_em_complete(data->co, -ENOTSUP);
2608 qemu_bh_delete(data->bh);
2609 }
2610
2611 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2612 {
2613 BlockDriver *drv = bs->drv;
2614 BdrvTrackedRequest tracked_req;
2615 CoroutineIOCompletion co = {
2616 .coroutine = qemu_coroutine_self(),
2617 };
2618 BlockAIOCB *acb;
2619
2620 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2621 if (!drv || !drv->bdrv_aio_ioctl) {
2622 co.ret = -ENOTSUP;
2623 goto out;
2624 }
2625
2626 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2627 if (!acb) {
2628 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2629 data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2630 bdrv_ioctl_bh_cb, data);
2631 data->co = &co;
2632 qemu_bh_schedule(data->bh);
2633 }
2634 qemu_coroutine_yield();
2635 out:
2636 tracked_request_end(&tracked_req);
2637 return co.ret;
2638 }
2639
2640 typedef struct {
2641 BlockDriverState *bs;
2642 int req;
2643 void *buf;
2644 int ret;
2645 } BdrvIoctlCoData;
2646
2647 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2648 {
2649 BdrvIoctlCoData *data = opaque;
2650 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2651 }
2652
2653 /* needed for generic scsi interface */
2654 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2655 {
2656 BdrvIoctlCoData data = {
2657 .bs = bs,
2658 .req = req,
2659 .buf = buf,
2660 .ret = -EINPROGRESS,
2661 };
2662
2663 if (qemu_in_coroutine()) {
2664 /* Fast-path if already in coroutine context */
2665 bdrv_co_ioctl_entry(&data);
2666 } else {
2667 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2668
2669 qemu_coroutine_enter(co, &data);
2670 while (data.ret == -EINPROGRESS) {
2671 aio_poll(bdrv_get_aio_context(bs), true);
2672 }
2673 }
2674 return data.ret;
2675 }
2676
2677 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2678 {
2679 BlockAIOCBCoroutine *acb = opaque;
2680 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2681 acb->req.req, acb->req.buf);
2682 bdrv_co_complete(acb);
2683 }
2684
2685 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2686 unsigned long int req, void *buf,
2687 BlockCompletionFunc *cb, void *opaque)
2688 {
2689 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2690 bs, cb, opaque);
2691 Coroutine *co;
2692
2693 acb->need_bh = true;
2694 acb->req.error = -EINPROGRESS;
2695 acb->req.req = req;
2696 acb->req.buf = buf;
2697 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2698 qemu_coroutine_enter(co, acb);
2699
2700 bdrv_co_maybe_schedule_bh(acb);
2701 return &acb->common;
2702 }
2703
2704 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2705 {
2706 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2707 }
2708
2709 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2710 {
2711 return memset(qemu_blockalign(bs, size), 0, size);
2712 }
2713
2714 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2715 {
2716 size_t align = bdrv_opt_mem_align(bs);
2717
2718 /* Ensure that NULL is never returned on success */
2719 assert(align > 0);
2720 if (size == 0) {
2721 size = align;
2722 }
2723
2724 return qemu_try_memalign(align, size);
2725 }
2726
2727 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2728 {
2729 void *mem = qemu_try_blockalign(bs, size);
2730
2731 if (mem) {
2732 memset(mem, 0, size);
2733 }
2734
2735 return mem;
2736 }
2737
2738 /*
2739 * Check if all memory in this vector is sector aligned.
2740 */
2741 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2742 {
2743 int i;
2744 size_t alignment = bdrv_min_mem_align(bs);
2745
2746 for (i = 0; i < qiov->niov; i++) {
2747 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2748 return false;
2749 }
2750 if (qiov->iov[i].iov_len % alignment) {
2751 return false;
2752 }
2753 }
2754
2755 return true;
2756 }
2757
2758 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2759 NotifierWithReturn *notifier)
2760 {
2761 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2762 }
2763
2764 void bdrv_io_plug(BlockDriverState *bs)
2765 {
2766 BlockDriver *drv = bs->drv;
2767 if (drv && drv->bdrv_io_plug) {
2768 drv->bdrv_io_plug(bs);
2769 } else if (bs->file) {
2770 bdrv_io_plug(bs->file->bs);
2771 }
2772 }
2773
2774 void bdrv_io_unplug(BlockDriverState *bs)
2775 {
2776 BlockDriver *drv = bs->drv;
2777 if (drv && drv->bdrv_io_unplug) {
2778 drv->bdrv_io_unplug(bs);
2779 } else if (bs->file) {
2780 bdrv_io_unplug(bs->file->bs);
2781 }
2782 }
2783
2784 void bdrv_flush_io_queue(BlockDriverState *bs)
2785 {
2786 BlockDriver *drv = bs->drv;
2787 if (drv && drv->bdrv_flush_io_queue) {
2788 drv->bdrv_flush_io_queue(bs);
2789 } else if (bs->file) {
2790 bdrv_flush_io_queue(bs->file->bs);
2791 }
2792 bdrv_start_throttled_reqs(bs);
2793 }
2794
2795 void bdrv_drained_begin(BlockDriverState *bs)
2796 {
2797 if (!bs->quiesce_counter++) {
2798 aio_disable_external(bdrv_get_aio_context(bs));
2799 }
2800 bdrv_drain(bs);
2801 }
2802
2803 void bdrv_drained_end(BlockDriverState *bs)
2804 {
2805 assert(bs->quiesce_counter > 0);
2806 if (--bs->quiesce_counter > 0) {
2807 return;
2808 }
2809 aio_enable_external(bdrv_get_aio_context(bs));
2810 }