]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block/qcow2: Metadata preallocation for truncate
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38 int64_t offset, int bytes, BdrvRequestFlags flags);
39
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
41 {
42 BdrvChild *c;
43
44 QLIST_FOREACH(c, &bs->parents, next_parent) {
45 if (c->role->drained_begin) {
46 c->role->drained_begin(c);
47 }
48 }
49 }
50
51 void bdrv_parent_drained_end(BlockDriverState *bs)
52 {
53 BdrvChild *c;
54
55 QLIST_FOREACH(c, &bs->parents, next_parent) {
56 if (c->role->drained_end) {
57 c->role->drained_end(c);
58 }
59 }
60 }
61
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
63 {
64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67 src->opt_mem_alignment);
68 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69 src->min_mem_alignment);
70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
71 }
72
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
74 {
75 BlockDriver *drv = bs->drv;
76 Error *local_err = NULL;
77
78 memset(&bs->bl, 0, sizeof(bs->bl));
79
80 if (!drv) {
81 return;
82 }
83
84 /* Default alignment based on whether driver has byte interface */
85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
86
87 /* Take some limits from the children as a default */
88 if (bs->file) {
89 bdrv_refresh_limits(bs->file->bs, &local_err);
90 if (local_err) {
91 error_propagate(errp, local_err);
92 return;
93 }
94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
95 } else {
96 bs->bl.min_mem_alignment = 512;
97 bs->bl.opt_mem_alignment = getpagesize();
98
99 /* Safe default since most protocols use readv()/writev()/etc */
100 bs->bl.max_iov = IOV_MAX;
101 }
102
103 if (bs->backing) {
104 bdrv_refresh_limits(bs->backing->bs, &local_err);
105 if (local_err) {
106 error_propagate(errp, local_err);
107 return;
108 }
109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
110 }
111
112 /* Then let the driver override it */
113 if (drv->bdrv_refresh_limits) {
114 drv->bdrv_refresh_limits(bs, errp);
115 }
116 }
117
118 /**
119 * The copy-on-read flag is actually a reference count so multiple users may
120 * use the feature without worrying about clobbering its previous state.
121 * Copy-on-read stays enabled until all users have called to disable it.
122 */
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
124 {
125 atomic_inc(&bs->copy_on_read);
126 }
127
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
129 {
130 int old = atomic_fetch_dec(&bs->copy_on_read);
131 assert(old >= 1);
132 }
133
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
136 {
137 BdrvChild *child;
138
139 if (atomic_read(&bs->in_flight)) {
140 return true;
141 }
142
143 QLIST_FOREACH(child, &bs->children, next) {
144 if (bdrv_requests_pending(child->bs)) {
145 return true;
146 }
147 }
148
149 return false;
150 }
151
152 static bool bdrv_drain_recurse(BlockDriverState *bs)
153 {
154 BdrvChild *child, *tmp;
155 bool waited;
156
157 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
158
159 if (bs->drv && bs->drv->bdrv_drain) {
160 bs->drv->bdrv_drain(bs);
161 }
162
163 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
164 BlockDriverState *bs = child->bs;
165 bool in_main_loop =
166 qemu_get_current_aio_context() == qemu_get_aio_context();
167 assert(bs->refcnt > 0);
168 if (in_main_loop) {
169 /* In case the recursive bdrv_drain_recurse processes a
170 * block_job_defer_to_main_loop BH and modifies the graph,
171 * let's hold a reference to bs until we are done.
172 *
173 * IOThread doesn't have such a BH, and it is not safe to call
174 * bdrv_unref without BQL, so skip doing it there.
175 */
176 bdrv_ref(bs);
177 }
178 waited |= bdrv_drain_recurse(bs);
179 if (in_main_loop) {
180 bdrv_unref(bs);
181 }
182 }
183
184 return waited;
185 }
186
187 typedef struct {
188 Coroutine *co;
189 BlockDriverState *bs;
190 bool done;
191 } BdrvCoDrainData;
192
193 static void bdrv_co_drain_bh_cb(void *opaque)
194 {
195 BdrvCoDrainData *data = opaque;
196 Coroutine *co = data->co;
197 BlockDriverState *bs = data->bs;
198
199 bdrv_dec_in_flight(bs);
200 bdrv_drained_begin(bs);
201 data->done = true;
202 aio_co_wake(co);
203 }
204
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
206 {
207 BdrvCoDrainData data;
208
209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210 * other coroutines run if they were queued from
211 * qemu_co_queue_run_restart(). */
212
213 assert(qemu_in_coroutine());
214 data = (BdrvCoDrainData) {
215 .co = qemu_coroutine_self(),
216 .bs = bs,
217 .done = false,
218 };
219 bdrv_inc_in_flight(bs);
220 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
221 bdrv_co_drain_bh_cb, &data);
222
223 qemu_coroutine_yield();
224 /* If we are resumed from some other event (such as an aio completion or a
225 * timer callback), it is a bug in the caller that should be fixed. */
226 assert(data.done);
227 }
228
229 void bdrv_drained_begin(BlockDriverState *bs)
230 {
231 if (qemu_in_coroutine()) {
232 bdrv_co_yield_to_drain(bs);
233 return;
234 }
235
236 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
237 aio_disable_external(bdrv_get_aio_context(bs));
238 bdrv_parent_drained_begin(bs);
239 }
240
241 bdrv_drain_recurse(bs);
242 }
243
244 void bdrv_drained_end(BlockDriverState *bs)
245 {
246 assert(bs->quiesce_counter > 0);
247 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
248 return;
249 }
250
251 bdrv_parent_drained_end(bs);
252 aio_enable_external(bdrv_get_aio_context(bs));
253 }
254
255 /*
256 * Wait for pending requests to complete on a single BlockDriverState subtree,
257 * and suspend block driver's internal I/O until next request arrives.
258 *
259 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
260 * AioContext.
261 *
262 * Only this BlockDriverState's AioContext is run, so in-flight requests must
263 * not depend on events in other AioContexts. In that case, use
264 * bdrv_drain_all() instead.
265 */
266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
267 {
268 assert(qemu_in_coroutine());
269 bdrv_drained_begin(bs);
270 bdrv_drained_end(bs);
271 }
272
273 void bdrv_drain(BlockDriverState *bs)
274 {
275 bdrv_drained_begin(bs);
276 bdrv_drained_end(bs);
277 }
278
279 /*
280 * Wait for pending requests to complete across all BlockDriverStates
281 *
282 * This function does not flush data to disk, use bdrv_flush_all() for that
283 * after calling this function.
284 *
285 * This pauses all block jobs and disables external clients. It must
286 * be paired with bdrv_drain_all_end().
287 *
288 * NOTE: no new block jobs or BlockDriverStates can be created between
289 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
290 */
291 void bdrv_drain_all_begin(void)
292 {
293 /* Always run first iteration so any pending completion BHs run */
294 bool waited = true;
295 BlockDriverState *bs;
296 BdrvNextIterator it;
297 GSList *aio_ctxs = NULL, *ctx;
298
299 block_job_pause_all();
300
301 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
302 AioContext *aio_context = bdrv_get_aio_context(bs);
303
304 aio_context_acquire(aio_context);
305 bdrv_parent_drained_begin(bs);
306 aio_disable_external(aio_context);
307 aio_context_release(aio_context);
308
309 if (!g_slist_find(aio_ctxs, aio_context)) {
310 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311 }
312 }
313
314 /* Note that completion of an asynchronous I/O operation can trigger any
315 * number of other I/O operations on other devices---for example a
316 * coroutine can submit an I/O request to another device in response to
317 * request completion. Therefore we must keep looping until there was no
318 * more activity rather than simply draining each device independently.
319 */
320 while (waited) {
321 waited = false;
322
323 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324 AioContext *aio_context = ctx->data;
325
326 aio_context_acquire(aio_context);
327 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328 if (aio_context == bdrv_get_aio_context(bs)) {
329 waited |= bdrv_drain_recurse(bs);
330 }
331 }
332 aio_context_release(aio_context);
333 }
334 }
335
336 g_slist_free(aio_ctxs);
337 }
338
339 void bdrv_drain_all_end(void)
340 {
341 BlockDriverState *bs;
342 BdrvNextIterator it;
343
344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
345 AioContext *aio_context = bdrv_get_aio_context(bs);
346
347 aio_context_acquire(aio_context);
348 aio_enable_external(aio_context);
349 bdrv_parent_drained_end(bs);
350 aio_context_release(aio_context);
351 }
352
353 block_job_resume_all();
354 }
355
356 void bdrv_drain_all(void)
357 {
358 bdrv_drain_all_begin();
359 bdrv_drain_all_end();
360 }
361
362 /**
363 * Remove an active request from the tracked requests list
364 *
365 * This function should be called when a tracked request is completing.
366 */
367 static void tracked_request_end(BdrvTrackedRequest *req)
368 {
369 if (req->serialising) {
370 atomic_dec(&req->bs->serialising_in_flight);
371 }
372
373 qemu_co_mutex_lock(&req->bs->reqs_lock);
374 QLIST_REMOVE(req, list);
375 qemu_co_queue_restart_all(&req->wait_queue);
376 qemu_co_mutex_unlock(&req->bs->reqs_lock);
377 }
378
379 /**
380 * Add an active request to the tracked requests list
381 */
382 static void tracked_request_begin(BdrvTrackedRequest *req,
383 BlockDriverState *bs,
384 int64_t offset,
385 unsigned int bytes,
386 enum BdrvTrackedRequestType type)
387 {
388 *req = (BdrvTrackedRequest){
389 .bs = bs,
390 .offset = offset,
391 .bytes = bytes,
392 .type = type,
393 .co = qemu_coroutine_self(),
394 .serialising = false,
395 .overlap_offset = offset,
396 .overlap_bytes = bytes,
397 };
398
399 qemu_co_queue_init(&req->wait_queue);
400
401 qemu_co_mutex_lock(&bs->reqs_lock);
402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
403 qemu_co_mutex_unlock(&bs->reqs_lock);
404 }
405
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
407 {
408 int64_t overlap_offset = req->offset & ~(align - 1);
409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410 - overlap_offset;
411
412 if (!req->serialising) {
413 atomic_inc(&req->bs->serialising_in_flight);
414 req->serialising = true;
415 }
416
417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
419 }
420
421 /**
422 * Round a region to cluster boundaries
423 */
424 void bdrv_round_to_clusters(BlockDriverState *bs,
425 int64_t offset, unsigned int bytes,
426 int64_t *cluster_offset,
427 unsigned int *cluster_bytes)
428 {
429 BlockDriverInfo bdi;
430
431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432 *cluster_offset = offset;
433 *cluster_bytes = bytes;
434 } else {
435 int64_t c = bdi.cluster_size;
436 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
437 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
438 }
439 }
440
441 static int bdrv_get_cluster_size(BlockDriverState *bs)
442 {
443 BlockDriverInfo bdi;
444 int ret;
445
446 ret = bdrv_get_info(bs, &bdi);
447 if (ret < 0 || bdi.cluster_size == 0) {
448 return bs->bl.request_alignment;
449 } else {
450 return bdi.cluster_size;
451 }
452 }
453
454 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
455 int64_t offset, unsigned int bytes)
456 {
457 /* aaaa bbbb */
458 if (offset >= req->overlap_offset + req->overlap_bytes) {
459 return false;
460 }
461 /* bbbb aaaa */
462 if (req->overlap_offset >= offset + bytes) {
463 return false;
464 }
465 return true;
466 }
467
468 void bdrv_inc_in_flight(BlockDriverState *bs)
469 {
470 atomic_inc(&bs->in_flight);
471 }
472
473 static void dummy_bh_cb(void *opaque)
474 {
475 }
476
477 void bdrv_wakeup(BlockDriverState *bs)
478 {
479 /* The barrier (or an atomic op) is in the caller. */
480 if (atomic_read(&bs->wakeup)) {
481 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
482 }
483 }
484
485 void bdrv_dec_in_flight(BlockDriverState *bs)
486 {
487 atomic_dec(&bs->in_flight);
488 bdrv_wakeup(bs);
489 }
490
491 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
492 {
493 BlockDriverState *bs = self->bs;
494 BdrvTrackedRequest *req;
495 bool retry;
496 bool waited = false;
497
498 if (!atomic_read(&bs->serialising_in_flight)) {
499 return false;
500 }
501
502 do {
503 retry = false;
504 qemu_co_mutex_lock(&bs->reqs_lock);
505 QLIST_FOREACH(req, &bs->tracked_requests, list) {
506 if (req == self || (!req->serialising && !self->serialising)) {
507 continue;
508 }
509 if (tracked_request_overlaps(req, self->overlap_offset,
510 self->overlap_bytes))
511 {
512 /* Hitting this means there was a reentrant request, for
513 * example, a block driver issuing nested requests. This must
514 * never happen since it means deadlock.
515 */
516 assert(qemu_coroutine_self() != req->co);
517
518 /* If the request is already (indirectly) waiting for us, or
519 * will wait for us as soon as it wakes up, then just go on
520 * (instead of producing a deadlock in the former case). */
521 if (!req->waiting_for) {
522 self->waiting_for = req;
523 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
524 self->waiting_for = NULL;
525 retry = true;
526 waited = true;
527 break;
528 }
529 }
530 }
531 qemu_co_mutex_unlock(&bs->reqs_lock);
532 } while (retry);
533
534 return waited;
535 }
536
537 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
538 size_t size)
539 {
540 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
541 return -EIO;
542 }
543
544 if (!bdrv_is_inserted(bs)) {
545 return -ENOMEDIUM;
546 }
547
548 if (offset < 0) {
549 return -EIO;
550 }
551
552 return 0;
553 }
554
555 typedef struct RwCo {
556 BdrvChild *child;
557 int64_t offset;
558 QEMUIOVector *qiov;
559 bool is_write;
560 int ret;
561 BdrvRequestFlags flags;
562 } RwCo;
563
564 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
565 {
566 RwCo *rwco = opaque;
567
568 if (!rwco->is_write) {
569 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
570 rwco->qiov->size, rwco->qiov,
571 rwco->flags);
572 } else {
573 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
574 rwco->qiov->size, rwco->qiov,
575 rwco->flags);
576 }
577 }
578
579 /*
580 * Process a vectored synchronous request using coroutines
581 */
582 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
583 QEMUIOVector *qiov, bool is_write,
584 BdrvRequestFlags flags)
585 {
586 Coroutine *co;
587 RwCo rwco = {
588 .child = child,
589 .offset = offset,
590 .qiov = qiov,
591 .is_write = is_write,
592 .ret = NOT_DONE,
593 .flags = flags,
594 };
595
596 if (qemu_in_coroutine()) {
597 /* Fast-path if already in coroutine context */
598 bdrv_rw_co_entry(&rwco);
599 } else {
600 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
601 bdrv_coroutine_enter(child->bs, co);
602 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
603 }
604 return rwco.ret;
605 }
606
607 /*
608 * Process a synchronous request using coroutines
609 */
610 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
611 int nb_sectors, bool is_write, BdrvRequestFlags flags)
612 {
613 QEMUIOVector qiov;
614 struct iovec iov = {
615 .iov_base = (void *)buf,
616 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
617 };
618
619 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
620 return -EINVAL;
621 }
622
623 qemu_iovec_init_external(&qiov, &iov, 1);
624 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
625 &qiov, is_write, flags);
626 }
627
628 /* return < 0 if error. See bdrv_write() for the return codes */
629 int bdrv_read(BdrvChild *child, int64_t sector_num,
630 uint8_t *buf, int nb_sectors)
631 {
632 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
633 }
634
635 /* Return < 0 if error. Important errors are:
636 -EIO generic I/O error (may happen for all errors)
637 -ENOMEDIUM No media inserted.
638 -EINVAL Invalid sector number or nb_sectors
639 -EACCES Trying to write a read-only device
640 */
641 int bdrv_write(BdrvChild *child, int64_t sector_num,
642 const uint8_t *buf, int nb_sectors)
643 {
644 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
645 }
646
647 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
648 int bytes, BdrvRequestFlags flags)
649 {
650 QEMUIOVector qiov;
651 struct iovec iov = {
652 .iov_base = NULL,
653 .iov_len = bytes,
654 };
655
656 qemu_iovec_init_external(&qiov, &iov, 1);
657 return bdrv_prwv_co(child, offset, &qiov, true,
658 BDRV_REQ_ZERO_WRITE | flags);
659 }
660
661 /*
662 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
663 * The operation is sped up by checking the block status and only writing
664 * zeroes to the device if they currently do not return zeroes. Optional
665 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
666 * BDRV_REQ_FUA).
667 *
668 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
669 */
670 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
671 {
672 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
673 BlockDriverState *bs = child->bs;
674 BlockDriverState *file;
675 int n;
676
677 target_sectors = bdrv_nb_sectors(bs);
678 if (target_sectors < 0) {
679 return target_sectors;
680 }
681
682 for (;;) {
683 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
684 if (nb_sectors <= 0) {
685 return 0;
686 }
687 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
688 if (ret < 0) {
689 error_report("error getting block status at sector %" PRId64 ": %s",
690 sector_num, strerror(-ret));
691 return ret;
692 }
693 if (ret & BDRV_BLOCK_ZERO) {
694 sector_num += n;
695 continue;
696 }
697 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
698 n << BDRV_SECTOR_BITS, flags);
699 if (ret < 0) {
700 error_report("error writing zeroes at sector %" PRId64 ": %s",
701 sector_num, strerror(-ret));
702 return ret;
703 }
704 sector_num += n;
705 }
706 }
707
708 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
709 {
710 int ret;
711
712 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
713 if (ret < 0) {
714 return ret;
715 }
716
717 return qiov->size;
718 }
719
720 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
721 {
722 QEMUIOVector qiov;
723 struct iovec iov = {
724 .iov_base = (void *)buf,
725 .iov_len = bytes,
726 };
727
728 if (bytes < 0) {
729 return -EINVAL;
730 }
731
732 qemu_iovec_init_external(&qiov, &iov, 1);
733 return bdrv_preadv(child, offset, &qiov);
734 }
735
736 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
737 {
738 int ret;
739
740 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
741 if (ret < 0) {
742 return ret;
743 }
744
745 return qiov->size;
746 }
747
748 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
749 {
750 QEMUIOVector qiov;
751 struct iovec iov = {
752 .iov_base = (void *) buf,
753 .iov_len = bytes,
754 };
755
756 if (bytes < 0) {
757 return -EINVAL;
758 }
759
760 qemu_iovec_init_external(&qiov, &iov, 1);
761 return bdrv_pwritev(child, offset, &qiov);
762 }
763
764 /*
765 * Writes to the file and ensures that no writes are reordered across this
766 * request (acts as a barrier)
767 *
768 * Returns 0 on success, -errno in error cases.
769 */
770 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
771 const void *buf, int count)
772 {
773 int ret;
774
775 ret = bdrv_pwrite(child, offset, buf, count);
776 if (ret < 0) {
777 return ret;
778 }
779
780 ret = bdrv_flush(child->bs);
781 if (ret < 0) {
782 return ret;
783 }
784
785 return 0;
786 }
787
788 typedef struct CoroutineIOCompletion {
789 Coroutine *coroutine;
790 int ret;
791 } CoroutineIOCompletion;
792
793 static void bdrv_co_io_em_complete(void *opaque, int ret)
794 {
795 CoroutineIOCompletion *co = opaque;
796
797 co->ret = ret;
798 aio_co_wake(co->coroutine);
799 }
800
801 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
802 uint64_t offset, uint64_t bytes,
803 QEMUIOVector *qiov, int flags)
804 {
805 BlockDriver *drv = bs->drv;
806 int64_t sector_num;
807 unsigned int nb_sectors;
808
809 assert(!(flags & ~BDRV_REQ_MASK));
810
811 if (drv->bdrv_co_preadv) {
812 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
813 }
814
815 sector_num = offset >> BDRV_SECTOR_BITS;
816 nb_sectors = bytes >> BDRV_SECTOR_BITS;
817
818 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
819 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
820 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
821
822 if (drv->bdrv_co_readv) {
823 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
824 } else {
825 BlockAIOCB *acb;
826 CoroutineIOCompletion co = {
827 .coroutine = qemu_coroutine_self(),
828 };
829
830 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
831 bdrv_co_io_em_complete, &co);
832 if (acb == NULL) {
833 return -EIO;
834 } else {
835 qemu_coroutine_yield();
836 return co.ret;
837 }
838 }
839 }
840
841 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
842 uint64_t offset, uint64_t bytes,
843 QEMUIOVector *qiov, int flags)
844 {
845 BlockDriver *drv = bs->drv;
846 int64_t sector_num;
847 unsigned int nb_sectors;
848 int ret;
849
850 assert(!(flags & ~BDRV_REQ_MASK));
851
852 if (drv->bdrv_co_pwritev) {
853 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
854 flags & bs->supported_write_flags);
855 flags &= ~bs->supported_write_flags;
856 goto emulate_flags;
857 }
858
859 sector_num = offset >> BDRV_SECTOR_BITS;
860 nb_sectors = bytes >> BDRV_SECTOR_BITS;
861
862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
864 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
865
866 if (drv->bdrv_co_writev_flags) {
867 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
868 flags & bs->supported_write_flags);
869 flags &= ~bs->supported_write_flags;
870 } else if (drv->bdrv_co_writev) {
871 assert(!bs->supported_write_flags);
872 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
873 } else {
874 BlockAIOCB *acb;
875 CoroutineIOCompletion co = {
876 .coroutine = qemu_coroutine_self(),
877 };
878
879 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
880 bdrv_co_io_em_complete, &co);
881 if (acb == NULL) {
882 ret = -EIO;
883 } else {
884 qemu_coroutine_yield();
885 ret = co.ret;
886 }
887 }
888
889 emulate_flags:
890 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
891 ret = bdrv_co_flush(bs);
892 }
893
894 return ret;
895 }
896
897 static int coroutine_fn
898 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
899 uint64_t bytes, QEMUIOVector *qiov)
900 {
901 BlockDriver *drv = bs->drv;
902
903 if (!drv->bdrv_co_pwritev_compressed) {
904 return -ENOTSUP;
905 }
906
907 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
908 }
909
910 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
911 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
912 {
913 BlockDriverState *bs = child->bs;
914
915 /* Perform I/O through a temporary buffer so that users who scribble over
916 * their read buffer while the operation is in progress do not end up
917 * modifying the image file. This is critical for zero-copy guest I/O
918 * where anything might happen inside guest memory.
919 */
920 void *bounce_buffer;
921
922 BlockDriver *drv = bs->drv;
923 struct iovec iov;
924 QEMUIOVector bounce_qiov;
925 int64_t cluster_offset;
926 unsigned int cluster_bytes;
927 size_t skip_bytes;
928 int ret;
929
930 /* FIXME We cannot require callers to have write permissions when all they
931 * are doing is a read request. If we did things right, write permissions
932 * would be obtained anyway, but internally by the copy-on-read code. As
933 * long as it is implemented here rather than in a separat filter driver,
934 * the copy-on-read code doesn't have its own BdrvChild, however, for which
935 * it could request permissions. Therefore we have to bypass the permission
936 * system for the moment. */
937 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
938
939 /* Cover entire cluster so no additional backing file I/O is required when
940 * allocating cluster in the image file.
941 */
942 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
943
944 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
945 cluster_offset, cluster_bytes);
946
947 iov.iov_len = cluster_bytes;
948 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
949 if (bounce_buffer == NULL) {
950 ret = -ENOMEM;
951 goto err;
952 }
953
954 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
955
956 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
957 &bounce_qiov, 0);
958 if (ret < 0) {
959 goto err;
960 }
961
962 if (drv->bdrv_co_pwrite_zeroes &&
963 buffer_is_zero(bounce_buffer, iov.iov_len)) {
964 /* FIXME: Should we (perhaps conditionally) be setting
965 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
966 * that still correctly reads as zero? */
967 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
968 } else {
969 /* This does not change the data on the disk, it is not necessary
970 * to flush even in cache=writethrough mode.
971 */
972 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
973 &bounce_qiov, 0);
974 }
975
976 if (ret < 0) {
977 /* It might be okay to ignore write errors for guest requests. If this
978 * is a deliberate copy-on-read then we don't want to ignore the error.
979 * Simply report it in all cases.
980 */
981 goto err;
982 }
983
984 skip_bytes = offset - cluster_offset;
985 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
986
987 err:
988 qemu_vfree(bounce_buffer);
989 return ret;
990 }
991
992 /*
993 * Forwards an already correctly aligned request to the BlockDriver. This
994 * handles copy on read, zeroing after EOF, and fragmentation of large
995 * reads; any other features must be implemented by the caller.
996 */
997 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
998 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
999 int64_t align, QEMUIOVector *qiov, int flags)
1000 {
1001 BlockDriverState *bs = child->bs;
1002 int64_t total_bytes, max_bytes;
1003 int ret = 0;
1004 uint64_t bytes_remaining = bytes;
1005 int max_transfer;
1006
1007 assert(is_power_of_2(align));
1008 assert((offset & (align - 1)) == 0);
1009 assert((bytes & (align - 1)) == 0);
1010 assert(!qiov || bytes == qiov->size);
1011 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1012 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1013 align);
1014
1015 /* TODO: We would need a per-BDS .supported_read_flags and
1016 * potential fallback support, if we ever implement any read flags
1017 * to pass through to drivers. For now, there aren't any
1018 * passthrough flags. */
1019 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1020
1021 /* Handle Copy on Read and associated serialisation */
1022 if (flags & BDRV_REQ_COPY_ON_READ) {
1023 /* If we touch the same cluster it counts as an overlap. This
1024 * guarantees that allocating writes will be serialized and not race
1025 * with each other for the same cluster. For example, in copy-on-read
1026 * it ensures that the CoR read and write operations are atomic and
1027 * guest writes cannot interleave between them. */
1028 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1029 }
1030
1031 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1032 wait_serialising_requests(req);
1033 }
1034
1035 if (flags & BDRV_REQ_COPY_ON_READ) {
1036 /* TODO: Simplify further once bdrv_is_allocated no longer
1037 * requires sector alignment */
1038 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
1039 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE);
1040 int64_t pnum;
1041
1042 ret = bdrv_is_allocated(bs, start, end - start, &pnum);
1043 if (ret < 0) {
1044 goto out;
1045 }
1046
1047 if (!ret || pnum != end - start) {
1048 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1049 goto out;
1050 }
1051 }
1052
1053 /* Forward the request to the BlockDriver, possibly fragmenting it */
1054 total_bytes = bdrv_getlength(bs);
1055 if (total_bytes < 0) {
1056 ret = total_bytes;
1057 goto out;
1058 }
1059
1060 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1061 if (bytes <= max_bytes && bytes <= max_transfer) {
1062 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1063 goto out;
1064 }
1065
1066 while (bytes_remaining) {
1067 int num;
1068
1069 if (max_bytes) {
1070 QEMUIOVector local_qiov;
1071
1072 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1073 assert(num);
1074 qemu_iovec_init(&local_qiov, qiov->niov);
1075 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1076
1077 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1078 num, &local_qiov, 0);
1079 max_bytes -= num;
1080 qemu_iovec_destroy(&local_qiov);
1081 } else {
1082 num = bytes_remaining;
1083 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1084 bytes_remaining);
1085 }
1086 if (ret < 0) {
1087 goto out;
1088 }
1089 bytes_remaining -= num;
1090 }
1091
1092 out:
1093 return ret < 0 ? ret : 0;
1094 }
1095
1096 /*
1097 * Handle a read request in coroutine context
1098 */
1099 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1100 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1101 BdrvRequestFlags flags)
1102 {
1103 BlockDriverState *bs = child->bs;
1104 BlockDriver *drv = bs->drv;
1105 BdrvTrackedRequest req;
1106
1107 uint64_t align = bs->bl.request_alignment;
1108 uint8_t *head_buf = NULL;
1109 uint8_t *tail_buf = NULL;
1110 QEMUIOVector local_qiov;
1111 bool use_local_qiov = false;
1112 int ret;
1113
1114 if (!drv) {
1115 return -ENOMEDIUM;
1116 }
1117
1118 ret = bdrv_check_byte_request(bs, offset, bytes);
1119 if (ret < 0) {
1120 return ret;
1121 }
1122
1123 bdrv_inc_in_flight(bs);
1124
1125 /* Don't do copy-on-read if we read data before write operation */
1126 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1127 flags |= BDRV_REQ_COPY_ON_READ;
1128 }
1129
1130 /* Align read if necessary by padding qiov */
1131 if (offset & (align - 1)) {
1132 head_buf = qemu_blockalign(bs, align);
1133 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1134 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1135 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1136 use_local_qiov = true;
1137
1138 bytes += offset & (align - 1);
1139 offset = offset & ~(align - 1);
1140 }
1141
1142 if ((offset + bytes) & (align - 1)) {
1143 if (!use_local_qiov) {
1144 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1145 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1146 use_local_qiov = true;
1147 }
1148 tail_buf = qemu_blockalign(bs, align);
1149 qemu_iovec_add(&local_qiov, tail_buf,
1150 align - ((offset + bytes) & (align - 1)));
1151
1152 bytes = ROUND_UP(bytes, align);
1153 }
1154
1155 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1156 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1157 use_local_qiov ? &local_qiov : qiov,
1158 flags);
1159 tracked_request_end(&req);
1160 bdrv_dec_in_flight(bs);
1161
1162 if (use_local_qiov) {
1163 qemu_iovec_destroy(&local_qiov);
1164 qemu_vfree(head_buf);
1165 qemu_vfree(tail_buf);
1166 }
1167
1168 return ret;
1169 }
1170
1171 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1172 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1173 BdrvRequestFlags flags)
1174 {
1175 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1176 return -EINVAL;
1177 }
1178
1179 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1180 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1181 }
1182
1183 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1184 int nb_sectors, QEMUIOVector *qiov)
1185 {
1186 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1187
1188 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1189 }
1190
1191 /* Maximum buffer for write zeroes fallback, in bytes */
1192 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1193
1194 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1195 int64_t offset, int bytes, BdrvRequestFlags flags)
1196 {
1197 BlockDriver *drv = bs->drv;
1198 QEMUIOVector qiov;
1199 struct iovec iov = {0};
1200 int ret = 0;
1201 bool need_flush = false;
1202 int head = 0;
1203 int tail = 0;
1204
1205 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1206 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1207 bs->bl.request_alignment);
1208 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1209 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1210
1211 assert(alignment % bs->bl.request_alignment == 0);
1212 head = offset % alignment;
1213 tail = (offset + bytes) % alignment;
1214 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1215 assert(max_write_zeroes >= bs->bl.request_alignment);
1216
1217 while (bytes > 0 && !ret) {
1218 int num = bytes;
1219
1220 /* Align request. Block drivers can expect the "bulk" of the request
1221 * to be aligned, and that unaligned requests do not cross cluster
1222 * boundaries.
1223 */
1224 if (head) {
1225 /* Make a small request up to the first aligned sector. For
1226 * convenience, limit this request to max_transfer even if
1227 * we don't need to fall back to writes. */
1228 num = MIN(MIN(bytes, max_transfer), alignment - head);
1229 head = (head + num) % alignment;
1230 assert(num < max_write_zeroes);
1231 } else if (tail && num > alignment) {
1232 /* Shorten the request to the last aligned sector. */
1233 num -= tail;
1234 }
1235
1236 /* limit request size */
1237 if (num > max_write_zeroes) {
1238 num = max_write_zeroes;
1239 }
1240
1241 ret = -ENOTSUP;
1242 /* First try the efficient write zeroes operation */
1243 if (drv->bdrv_co_pwrite_zeroes) {
1244 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1245 flags & bs->supported_zero_flags);
1246 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1247 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1248 need_flush = true;
1249 }
1250 } else {
1251 assert(!bs->supported_zero_flags);
1252 }
1253
1254 if (ret == -ENOTSUP) {
1255 /* Fall back to bounce buffer if write zeroes is unsupported */
1256 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1257
1258 if ((flags & BDRV_REQ_FUA) &&
1259 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1260 /* No need for bdrv_driver_pwrite() to do a fallback
1261 * flush on each chunk; use just one at the end */
1262 write_flags &= ~BDRV_REQ_FUA;
1263 need_flush = true;
1264 }
1265 num = MIN(num, max_transfer);
1266 iov.iov_len = num;
1267 if (iov.iov_base == NULL) {
1268 iov.iov_base = qemu_try_blockalign(bs, num);
1269 if (iov.iov_base == NULL) {
1270 ret = -ENOMEM;
1271 goto fail;
1272 }
1273 memset(iov.iov_base, 0, num);
1274 }
1275 qemu_iovec_init_external(&qiov, &iov, 1);
1276
1277 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1278
1279 /* Keep bounce buffer around if it is big enough for all
1280 * all future requests.
1281 */
1282 if (num < max_transfer) {
1283 qemu_vfree(iov.iov_base);
1284 iov.iov_base = NULL;
1285 }
1286 }
1287
1288 offset += num;
1289 bytes -= num;
1290 }
1291
1292 fail:
1293 if (ret == 0 && need_flush) {
1294 ret = bdrv_co_flush(bs);
1295 }
1296 qemu_vfree(iov.iov_base);
1297 return ret;
1298 }
1299
1300 /*
1301 * Forwards an already correctly aligned write request to the BlockDriver,
1302 * after possibly fragmenting it.
1303 */
1304 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1305 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1306 int64_t align, QEMUIOVector *qiov, int flags)
1307 {
1308 BlockDriverState *bs = child->bs;
1309 BlockDriver *drv = bs->drv;
1310 bool waited;
1311 int ret;
1312
1313 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1314 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1315 uint64_t bytes_remaining = bytes;
1316 int max_transfer;
1317
1318 if (bdrv_has_readonly_bitmaps(bs)) {
1319 return -EPERM;
1320 }
1321
1322 assert(is_power_of_2(align));
1323 assert((offset & (align - 1)) == 0);
1324 assert((bytes & (align - 1)) == 0);
1325 assert(!qiov || bytes == qiov->size);
1326 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1327 assert(!(flags & ~BDRV_REQ_MASK));
1328 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1329 align);
1330
1331 waited = wait_serialising_requests(req);
1332 assert(!waited || !req->serialising);
1333 assert(req->overlap_offset <= offset);
1334 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1335 assert(child->perm & BLK_PERM_WRITE);
1336 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1337
1338 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1339
1340 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1341 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1342 qemu_iovec_is_zero(qiov)) {
1343 flags |= BDRV_REQ_ZERO_WRITE;
1344 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1345 flags |= BDRV_REQ_MAY_UNMAP;
1346 }
1347 }
1348
1349 if (ret < 0) {
1350 /* Do nothing, write notifier decided to fail this request */
1351 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1352 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1353 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1354 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1355 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1356 } else if (bytes <= max_transfer) {
1357 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1358 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1359 } else {
1360 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1361 while (bytes_remaining) {
1362 int num = MIN(bytes_remaining, max_transfer);
1363 QEMUIOVector local_qiov;
1364 int local_flags = flags;
1365
1366 assert(num);
1367 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1368 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1369 /* If FUA is going to be emulated by flush, we only
1370 * need to flush on the last iteration */
1371 local_flags &= ~BDRV_REQ_FUA;
1372 }
1373 qemu_iovec_init(&local_qiov, qiov->niov);
1374 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1375
1376 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1377 num, &local_qiov, local_flags);
1378 qemu_iovec_destroy(&local_qiov);
1379 if (ret < 0) {
1380 break;
1381 }
1382 bytes_remaining -= num;
1383 }
1384 }
1385 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1386
1387 atomic_inc(&bs->write_gen);
1388 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1389
1390 stat64_max(&bs->wr_highest_offset, offset + bytes);
1391
1392 if (ret >= 0) {
1393 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1394 ret = 0;
1395 }
1396
1397 return ret;
1398 }
1399
1400 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1401 int64_t offset,
1402 unsigned int bytes,
1403 BdrvRequestFlags flags,
1404 BdrvTrackedRequest *req)
1405 {
1406 BlockDriverState *bs = child->bs;
1407 uint8_t *buf = NULL;
1408 QEMUIOVector local_qiov;
1409 struct iovec iov;
1410 uint64_t align = bs->bl.request_alignment;
1411 unsigned int head_padding_bytes, tail_padding_bytes;
1412 int ret = 0;
1413
1414 head_padding_bytes = offset & (align - 1);
1415 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1416
1417
1418 assert(flags & BDRV_REQ_ZERO_WRITE);
1419 if (head_padding_bytes || tail_padding_bytes) {
1420 buf = qemu_blockalign(bs, align);
1421 iov = (struct iovec) {
1422 .iov_base = buf,
1423 .iov_len = align,
1424 };
1425 qemu_iovec_init_external(&local_qiov, &iov, 1);
1426 }
1427 if (head_padding_bytes) {
1428 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1429
1430 /* RMW the unaligned part before head. */
1431 mark_request_serialising(req, align);
1432 wait_serialising_requests(req);
1433 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1434 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1435 align, &local_qiov, 0);
1436 if (ret < 0) {
1437 goto fail;
1438 }
1439 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1440
1441 memset(buf + head_padding_bytes, 0, zero_bytes);
1442 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1443 align, &local_qiov,
1444 flags & ~BDRV_REQ_ZERO_WRITE);
1445 if (ret < 0) {
1446 goto fail;
1447 }
1448 offset += zero_bytes;
1449 bytes -= zero_bytes;
1450 }
1451
1452 assert(!bytes || (offset & (align - 1)) == 0);
1453 if (bytes >= align) {
1454 /* Write the aligned part in the middle. */
1455 uint64_t aligned_bytes = bytes & ~(align - 1);
1456 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1457 NULL, flags);
1458 if (ret < 0) {
1459 goto fail;
1460 }
1461 bytes -= aligned_bytes;
1462 offset += aligned_bytes;
1463 }
1464
1465 assert(!bytes || (offset & (align - 1)) == 0);
1466 if (bytes) {
1467 assert(align == tail_padding_bytes + bytes);
1468 /* RMW the unaligned part after tail. */
1469 mark_request_serialising(req, align);
1470 wait_serialising_requests(req);
1471 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1472 ret = bdrv_aligned_preadv(child, req, offset, align,
1473 align, &local_qiov, 0);
1474 if (ret < 0) {
1475 goto fail;
1476 }
1477 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1478
1479 memset(buf, 0, bytes);
1480 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1481 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1482 }
1483 fail:
1484 qemu_vfree(buf);
1485 return ret;
1486
1487 }
1488
1489 /*
1490 * Handle a write request in coroutine context
1491 */
1492 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1493 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1494 BdrvRequestFlags flags)
1495 {
1496 BlockDriverState *bs = child->bs;
1497 BdrvTrackedRequest req;
1498 uint64_t align = bs->bl.request_alignment;
1499 uint8_t *head_buf = NULL;
1500 uint8_t *tail_buf = NULL;
1501 QEMUIOVector local_qiov;
1502 bool use_local_qiov = false;
1503 int ret;
1504
1505 if (!bs->drv) {
1506 return -ENOMEDIUM;
1507 }
1508 if (bs->read_only) {
1509 return -EPERM;
1510 }
1511 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1512
1513 ret = bdrv_check_byte_request(bs, offset, bytes);
1514 if (ret < 0) {
1515 return ret;
1516 }
1517
1518 bdrv_inc_in_flight(bs);
1519 /*
1520 * Align write if necessary by performing a read-modify-write cycle.
1521 * Pad qiov with the read parts and be sure to have a tracked request not
1522 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1523 */
1524 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1525
1526 if (!qiov) {
1527 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1528 goto out;
1529 }
1530
1531 if (offset & (align - 1)) {
1532 QEMUIOVector head_qiov;
1533 struct iovec head_iov;
1534
1535 mark_request_serialising(&req, align);
1536 wait_serialising_requests(&req);
1537
1538 head_buf = qemu_blockalign(bs, align);
1539 head_iov = (struct iovec) {
1540 .iov_base = head_buf,
1541 .iov_len = align,
1542 };
1543 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1544
1545 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1546 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1547 align, &head_qiov, 0);
1548 if (ret < 0) {
1549 goto fail;
1550 }
1551 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1552
1553 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1554 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1555 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1556 use_local_qiov = true;
1557
1558 bytes += offset & (align - 1);
1559 offset = offset & ~(align - 1);
1560
1561 /* We have read the tail already if the request is smaller
1562 * than one aligned block.
1563 */
1564 if (bytes < align) {
1565 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1566 bytes = align;
1567 }
1568 }
1569
1570 if ((offset + bytes) & (align - 1)) {
1571 QEMUIOVector tail_qiov;
1572 struct iovec tail_iov;
1573 size_t tail_bytes;
1574 bool waited;
1575
1576 mark_request_serialising(&req, align);
1577 waited = wait_serialising_requests(&req);
1578 assert(!waited || !use_local_qiov);
1579
1580 tail_buf = qemu_blockalign(bs, align);
1581 tail_iov = (struct iovec) {
1582 .iov_base = tail_buf,
1583 .iov_len = align,
1584 };
1585 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1586
1587 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1588 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1589 align, align, &tail_qiov, 0);
1590 if (ret < 0) {
1591 goto fail;
1592 }
1593 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1594
1595 if (!use_local_qiov) {
1596 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1597 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1598 use_local_qiov = true;
1599 }
1600
1601 tail_bytes = (offset + bytes) & (align - 1);
1602 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1603
1604 bytes = ROUND_UP(bytes, align);
1605 }
1606
1607 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1608 use_local_qiov ? &local_qiov : qiov,
1609 flags);
1610
1611 fail:
1612
1613 if (use_local_qiov) {
1614 qemu_iovec_destroy(&local_qiov);
1615 }
1616 qemu_vfree(head_buf);
1617 qemu_vfree(tail_buf);
1618 out:
1619 tracked_request_end(&req);
1620 bdrv_dec_in_flight(bs);
1621 return ret;
1622 }
1623
1624 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1625 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1626 BdrvRequestFlags flags)
1627 {
1628 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1629 return -EINVAL;
1630 }
1631
1632 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1633 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1634 }
1635
1636 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1637 int nb_sectors, QEMUIOVector *qiov)
1638 {
1639 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1640
1641 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1642 }
1643
1644 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1645 int bytes, BdrvRequestFlags flags)
1646 {
1647 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1648
1649 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1650 flags &= ~BDRV_REQ_MAY_UNMAP;
1651 }
1652
1653 return bdrv_co_pwritev(child, offset, bytes, NULL,
1654 BDRV_REQ_ZERO_WRITE | flags);
1655 }
1656
1657 /*
1658 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1659 */
1660 int bdrv_flush_all(void)
1661 {
1662 BdrvNextIterator it;
1663 BlockDriverState *bs = NULL;
1664 int result = 0;
1665
1666 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1667 AioContext *aio_context = bdrv_get_aio_context(bs);
1668 int ret;
1669
1670 aio_context_acquire(aio_context);
1671 ret = bdrv_flush(bs);
1672 if (ret < 0 && !result) {
1673 result = ret;
1674 }
1675 aio_context_release(aio_context);
1676 }
1677
1678 return result;
1679 }
1680
1681
1682 typedef struct BdrvCoGetBlockStatusData {
1683 BlockDriverState *bs;
1684 BlockDriverState *base;
1685 BlockDriverState **file;
1686 int64_t sector_num;
1687 int nb_sectors;
1688 int *pnum;
1689 int64_t ret;
1690 bool done;
1691 } BdrvCoGetBlockStatusData;
1692
1693 /*
1694 * Returns the allocation status of the specified sectors.
1695 * Drivers not implementing the functionality are assumed to not support
1696 * backing files, hence all their sectors are reported as allocated.
1697 *
1698 * If 'sector_num' is beyond the end of the disk image the return value is
1699 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1700 *
1701 * 'pnum' is set to the number of sectors (including and immediately following
1702 * the specified sector) that are known to be in the same
1703 * allocated/unallocated state.
1704 *
1705 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1706 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1707 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1708 *
1709 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1710 * points to the BDS which the sector range is allocated in.
1711 */
1712 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1713 int64_t sector_num,
1714 int nb_sectors, int *pnum,
1715 BlockDriverState **file)
1716 {
1717 int64_t total_sectors;
1718 int64_t n;
1719 int64_t ret, ret2;
1720
1721 *file = NULL;
1722 total_sectors = bdrv_nb_sectors(bs);
1723 if (total_sectors < 0) {
1724 return total_sectors;
1725 }
1726
1727 if (sector_num >= total_sectors) {
1728 *pnum = 0;
1729 return BDRV_BLOCK_EOF;
1730 }
1731
1732 n = total_sectors - sector_num;
1733 if (n < nb_sectors) {
1734 nb_sectors = n;
1735 }
1736
1737 if (!bs->drv->bdrv_co_get_block_status) {
1738 *pnum = nb_sectors;
1739 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1740 if (sector_num + nb_sectors == total_sectors) {
1741 ret |= BDRV_BLOCK_EOF;
1742 }
1743 if (bs->drv->protocol_name) {
1744 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1745 *file = bs;
1746 }
1747 return ret;
1748 }
1749
1750 bdrv_inc_in_flight(bs);
1751 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1752 file);
1753 if (ret < 0) {
1754 *pnum = 0;
1755 goto out;
1756 }
1757
1758 if (ret & BDRV_BLOCK_RAW) {
1759 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1760 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1761 *pnum, pnum, file);
1762 goto out;
1763 }
1764
1765 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1766 ret |= BDRV_BLOCK_ALLOCATED;
1767 } else {
1768 if (bdrv_unallocated_blocks_are_zero(bs)) {
1769 ret |= BDRV_BLOCK_ZERO;
1770 } else if (bs->backing) {
1771 BlockDriverState *bs2 = bs->backing->bs;
1772 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1773 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1774 ret |= BDRV_BLOCK_ZERO;
1775 }
1776 }
1777 }
1778
1779 if (*file && *file != bs &&
1780 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1781 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1782 BlockDriverState *file2;
1783 int file_pnum;
1784
1785 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1786 *pnum, &file_pnum, &file2);
1787 if (ret2 >= 0) {
1788 /* Ignore errors. This is just providing extra information, it
1789 * is useful but not necessary.
1790 */
1791 if (ret2 & BDRV_BLOCK_EOF &&
1792 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1793 /*
1794 * It is valid for the format block driver to read
1795 * beyond the end of the underlying file's current
1796 * size; such areas read as zero.
1797 */
1798 ret |= BDRV_BLOCK_ZERO;
1799 } else {
1800 /* Limit request to the range reported by the protocol driver */
1801 *pnum = file_pnum;
1802 ret |= (ret2 & BDRV_BLOCK_ZERO);
1803 }
1804 }
1805 }
1806
1807 out:
1808 bdrv_dec_in_flight(bs);
1809 if (ret >= 0 && sector_num + *pnum == total_sectors) {
1810 ret |= BDRV_BLOCK_EOF;
1811 }
1812 return ret;
1813 }
1814
1815 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1816 BlockDriverState *base,
1817 int64_t sector_num,
1818 int nb_sectors,
1819 int *pnum,
1820 BlockDriverState **file)
1821 {
1822 BlockDriverState *p;
1823 int64_t ret = 0;
1824 bool first = true;
1825
1826 assert(bs != base);
1827 for (p = bs; p != base; p = backing_bs(p)) {
1828 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1829 if (ret < 0) {
1830 break;
1831 }
1832 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1833 /*
1834 * Reading beyond the end of the file continues to read
1835 * zeroes, but we can only widen the result to the
1836 * unallocated length we learned from an earlier
1837 * iteration.
1838 */
1839 *pnum = nb_sectors;
1840 }
1841 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1842 break;
1843 }
1844 /* [sector_num, pnum] unallocated on this layer, which could be only
1845 * the first part of [sector_num, nb_sectors]. */
1846 nb_sectors = MIN(nb_sectors, *pnum);
1847 first = false;
1848 }
1849 return ret;
1850 }
1851
1852 /* Coroutine wrapper for bdrv_get_block_status_above() */
1853 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1854 {
1855 BdrvCoGetBlockStatusData *data = opaque;
1856
1857 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1858 data->sector_num,
1859 data->nb_sectors,
1860 data->pnum,
1861 data->file);
1862 data->done = true;
1863 }
1864
1865 /*
1866 * Synchronous wrapper around bdrv_co_get_block_status_above().
1867 *
1868 * See bdrv_co_get_block_status_above() for details.
1869 */
1870 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1871 BlockDriverState *base,
1872 int64_t sector_num,
1873 int nb_sectors, int *pnum,
1874 BlockDriverState **file)
1875 {
1876 Coroutine *co;
1877 BdrvCoGetBlockStatusData data = {
1878 .bs = bs,
1879 .base = base,
1880 .file = file,
1881 .sector_num = sector_num,
1882 .nb_sectors = nb_sectors,
1883 .pnum = pnum,
1884 .done = false,
1885 };
1886
1887 if (qemu_in_coroutine()) {
1888 /* Fast-path if already in coroutine context */
1889 bdrv_get_block_status_above_co_entry(&data);
1890 } else {
1891 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1892 &data);
1893 bdrv_coroutine_enter(bs, co);
1894 BDRV_POLL_WHILE(bs, !data.done);
1895 }
1896 return data.ret;
1897 }
1898
1899 int64_t bdrv_get_block_status(BlockDriverState *bs,
1900 int64_t sector_num,
1901 int nb_sectors, int *pnum,
1902 BlockDriverState **file)
1903 {
1904 return bdrv_get_block_status_above(bs, backing_bs(bs),
1905 sector_num, nb_sectors, pnum, file);
1906 }
1907
1908 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
1909 int64_t bytes, int64_t *pnum)
1910 {
1911 BlockDriverState *file;
1912 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1913 int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1914 int64_t ret;
1915 int psectors;
1916
1917 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1918 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX);
1919 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors,
1920 &file);
1921 if (ret < 0) {
1922 return ret;
1923 }
1924 if (pnum) {
1925 *pnum = psectors * BDRV_SECTOR_SIZE;
1926 }
1927 return !!(ret & BDRV_BLOCK_ALLOCATED);
1928 }
1929
1930 /*
1931 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1932 *
1933 * Return true if (a prefix of) the given range is allocated in any image
1934 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
1935 * offset is allocated in any image of the chain. Return false otherwise,
1936 * or negative errno on failure.
1937 *
1938 * 'pnum' is set to the number of bytes (including and immediately
1939 * following the specified offset) that are known to be in the same
1940 * allocated/unallocated state. Note that a subsequent call starting
1941 * at 'offset + *pnum' may return the same allocation status (in other
1942 * words, the result is not necessarily the maximum possible range);
1943 * but 'pnum' will only be 0 when end of file is reached.
1944 *
1945 */
1946 int bdrv_is_allocated_above(BlockDriverState *top,
1947 BlockDriverState *base,
1948 int64_t offset, int64_t bytes, int64_t *pnum)
1949 {
1950 BlockDriverState *intermediate;
1951 int ret;
1952 int64_t n = bytes;
1953
1954 intermediate = top;
1955 while (intermediate && intermediate != base) {
1956 int64_t pnum_inter;
1957 int64_t size_inter;
1958
1959 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
1960 if (ret < 0) {
1961 return ret;
1962 }
1963 if (ret) {
1964 *pnum = pnum_inter;
1965 return 1;
1966 }
1967
1968 size_inter = bdrv_getlength(intermediate);
1969 if (size_inter < 0) {
1970 return size_inter;
1971 }
1972 if (n > pnum_inter &&
1973 (intermediate == top || offset + pnum_inter < size_inter)) {
1974 n = pnum_inter;
1975 }
1976
1977 intermediate = backing_bs(intermediate);
1978 }
1979
1980 *pnum = n;
1981 return 0;
1982 }
1983
1984 typedef struct BdrvVmstateCo {
1985 BlockDriverState *bs;
1986 QEMUIOVector *qiov;
1987 int64_t pos;
1988 bool is_read;
1989 int ret;
1990 } BdrvVmstateCo;
1991
1992 static int coroutine_fn
1993 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1994 bool is_read)
1995 {
1996 BlockDriver *drv = bs->drv;
1997 int ret = -ENOTSUP;
1998
1999 bdrv_inc_in_flight(bs);
2000
2001 if (!drv) {
2002 ret = -ENOMEDIUM;
2003 } else if (drv->bdrv_load_vmstate) {
2004 if (is_read) {
2005 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2006 } else {
2007 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2008 }
2009 } else if (bs->file) {
2010 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2011 }
2012
2013 bdrv_dec_in_flight(bs);
2014 return ret;
2015 }
2016
2017 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2018 {
2019 BdrvVmstateCo *co = opaque;
2020 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2021 }
2022
2023 static inline int
2024 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2025 bool is_read)
2026 {
2027 if (qemu_in_coroutine()) {
2028 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2029 } else {
2030 BdrvVmstateCo data = {
2031 .bs = bs,
2032 .qiov = qiov,
2033 .pos = pos,
2034 .is_read = is_read,
2035 .ret = -EINPROGRESS,
2036 };
2037 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2038
2039 bdrv_coroutine_enter(bs, co);
2040 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2041 return data.ret;
2042 }
2043 }
2044
2045 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2046 int64_t pos, int size)
2047 {
2048 QEMUIOVector qiov;
2049 struct iovec iov = {
2050 .iov_base = (void *) buf,
2051 .iov_len = size,
2052 };
2053 int ret;
2054
2055 qemu_iovec_init_external(&qiov, &iov, 1);
2056
2057 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2058 if (ret < 0) {
2059 return ret;
2060 }
2061
2062 return size;
2063 }
2064
2065 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2066 {
2067 return bdrv_rw_vmstate(bs, qiov, pos, false);
2068 }
2069
2070 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2071 int64_t pos, int size)
2072 {
2073 QEMUIOVector qiov;
2074 struct iovec iov = {
2075 .iov_base = buf,
2076 .iov_len = size,
2077 };
2078 int ret;
2079
2080 qemu_iovec_init_external(&qiov, &iov, 1);
2081 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2082 if (ret < 0) {
2083 return ret;
2084 }
2085
2086 return size;
2087 }
2088
2089 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2090 {
2091 return bdrv_rw_vmstate(bs, qiov, pos, true);
2092 }
2093
2094 /**************************************************************/
2095 /* async I/Os */
2096
2097 void bdrv_aio_cancel(BlockAIOCB *acb)
2098 {
2099 qemu_aio_ref(acb);
2100 bdrv_aio_cancel_async(acb);
2101 while (acb->refcnt > 1) {
2102 if (acb->aiocb_info->get_aio_context) {
2103 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2104 } else if (acb->bs) {
2105 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2106 * assert that we're not using an I/O thread. Thread-safe
2107 * code should use bdrv_aio_cancel_async exclusively.
2108 */
2109 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2110 aio_poll(bdrv_get_aio_context(acb->bs), true);
2111 } else {
2112 abort();
2113 }
2114 }
2115 qemu_aio_unref(acb);
2116 }
2117
2118 /* Async version of aio cancel. The caller is not blocked if the acb implements
2119 * cancel_async, otherwise we do nothing and let the request normally complete.
2120 * In either case the completion callback must be called. */
2121 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2122 {
2123 if (acb->aiocb_info->cancel_async) {
2124 acb->aiocb_info->cancel_async(acb);
2125 }
2126 }
2127
2128 /**************************************************************/
2129 /* Coroutine block device emulation */
2130
2131 typedef struct FlushCo {
2132 BlockDriverState *bs;
2133 int ret;
2134 } FlushCo;
2135
2136
2137 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2138 {
2139 FlushCo *rwco = opaque;
2140
2141 rwco->ret = bdrv_co_flush(rwco->bs);
2142 }
2143
2144 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2145 {
2146 int current_gen;
2147 int ret = 0;
2148
2149 bdrv_inc_in_flight(bs);
2150
2151 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2152 bdrv_is_sg(bs)) {
2153 goto early_exit;
2154 }
2155
2156 qemu_co_mutex_lock(&bs->reqs_lock);
2157 current_gen = atomic_read(&bs->write_gen);
2158
2159 /* Wait until any previous flushes are completed */
2160 while (bs->active_flush_req) {
2161 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2162 }
2163
2164 /* Flushes reach this point in nondecreasing current_gen order. */
2165 bs->active_flush_req = true;
2166 qemu_co_mutex_unlock(&bs->reqs_lock);
2167
2168 /* Write back all layers by calling one driver function */
2169 if (bs->drv->bdrv_co_flush) {
2170 ret = bs->drv->bdrv_co_flush(bs);
2171 goto out;
2172 }
2173
2174 /* Write back cached data to the OS even with cache=unsafe */
2175 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2176 if (bs->drv->bdrv_co_flush_to_os) {
2177 ret = bs->drv->bdrv_co_flush_to_os(bs);
2178 if (ret < 0) {
2179 goto out;
2180 }
2181 }
2182
2183 /* But don't actually force it to the disk with cache=unsafe */
2184 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2185 goto flush_parent;
2186 }
2187
2188 /* Check if we really need to flush anything */
2189 if (bs->flushed_gen == current_gen) {
2190 goto flush_parent;
2191 }
2192
2193 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2194 if (bs->drv->bdrv_co_flush_to_disk) {
2195 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2196 } else if (bs->drv->bdrv_aio_flush) {
2197 BlockAIOCB *acb;
2198 CoroutineIOCompletion co = {
2199 .coroutine = qemu_coroutine_self(),
2200 };
2201
2202 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2203 if (acb == NULL) {
2204 ret = -EIO;
2205 } else {
2206 qemu_coroutine_yield();
2207 ret = co.ret;
2208 }
2209 } else {
2210 /*
2211 * Some block drivers always operate in either writethrough or unsafe
2212 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2213 * know how the server works (because the behaviour is hardcoded or
2214 * depends on server-side configuration), so we can't ensure that
2215 * everything is safe on disk. Returning an error doesn't work because
2216 * that would break guests even if the server operates in writethrough
2217 * mode.
2218 *
2219 * Let's hope the user knows what he's doing.
2220 */
2221 ret = 0;
2222 }
2223
2224 if (ret < 0) {
2225 goto out;
2226 }
2227
2228 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2229 * in the case of cache=unsafe, so there are no useless flushes.
2230 */
2231 flush_parent:
2232 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2233 out:
2234 /* Notify any pending flushes that we have completed */
2235 if (ret == 0) {
2236 bs->flushed_gen = current_gen;
2237 }
2238
2239 qemu_co_mutex_lock(&bs->reqs_lock);
2240 bs->active_flush_req = false;
2241 /* Return value is ignored - it's ok if wait queue is empty */
2242 qemu_co_queue_next(&bs->flush_queue);
2243 qemu_co_mutex_unlock(&bs->reqs_lock);
2244
2245 early_exit:
2246 bdrv_dec_in_flight(bs);
2247 return ret;
2248 }
2249
2250 int bdrv_flush(BlockDriverState *bs)
2251 {
2252 Coroutine *co;
2253 FlushCo flush_co = {
2254 .bs = bs,
2255 .ret = NOT_DONE,
2256 };
2257
2258 if (qemu_in_coroutine()) {
2259 /* Fast-path if already in coroutine context */
2260 bdrv_flush_co_entry(&flush_co);
2261 } else {
2262 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2263 bdrv_coroutine_enter(bs, co);
2264 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2265 }
2266
2267 return flush_co.ret;
2268 }
2269
2270 typedef struct DiscardCo {
2271 BlockDriverState *bs;
2272 int64_t offset;
2273 int bytes;
2274 int ret;
2275 } DiscardCo;
2276 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2277 {
2278 DiscardCo *rwco = opaque;
2279
2280 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2281 }
2282
2283 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2284 int bytes)
2285 {
2286 BdrvTrackedRequest req;
2287 int max_pdiscard, ret;
2288 int head, tail, align;
2289
2290 if (!bs->drv) {
2291 return -ENOMEDIUM;
2292 }
2293
2294 if (bdrv_has_readonly_bitmaps(bs)) {
2295 return -EPERM;
2296 }
2297
2298 ret = bdrv_check_byte_request(bs, offset, bytes);
2299 if (ret < 0) {
2300 return ret;
2301 } else if (bs->read_only) {
2302 return -EPERM;
2303 }
2304 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2305
2306 /* Do nothing if disabled. */
2307 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2308 return 0;
2309 }
2310
2311 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2312 return 0;
2313 }
2314
2315 /* Discard is advisory, but some devices track and coalesce
2316 * unaligned requests, so we must pass everything down rather than
2317 * round here. Still, most devices will just silently ignore
2318 * unaligned requests (by returning -ENOTSUP), so we must fragment
2319 * the request accordingly. */
2320 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2321 assert(align % bs->bl.request_alignment == 0);
2322 head = offset % align;
2323 tail = (offset + bytes) % align;
2324
2325 bdrv_inc_in_flight(bs);
2326 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2327
2328 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2329 if (ret < 0) {
2330 goto out;
2331 }
2332
2333 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2334 align);
2335 assert(max_pdiscard >= bs->bl.request_alignment);
2336
2337 while (bytes > 0) {
2338 int ret;
2339 int num = bytes;
2340
2341 if (head) {
2342 /* Make small requests to get to alignment boundaries. */
2343 num = MIN(bytes, align - head);
2344 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2345 num %= bs->bl.request_alignment;
2346 }
2347 head = (head + num) % align;
2348 assert(num < max_pdiscard);
2349 } else if (tail) {
2350 if (num > align) {
2351 /* Shorten the request to the last aligned cluster. */
2352 num -= tail;
2353 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2354 tail > bs->bl.request_alignment) {
2355 tail %= bs->bl.request_alignment;
2356 num -= tail;
2357 }
2358 }
2359 /* limit request size */
2360 if (num > max_pdiscard) {
2361 num = max_pdiscard;
2362 }
2363
2364 if (bs->drv->bdrv_co_pdiscard) {
2365 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2366 } else {
2367 BlockAIOCB *acb;
2368 CoroutineIOCompletion co = {
2369 .coroutine = qemu_coroutine_self(),
2370 };
2371
2372 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2373 bdrv_co_io_em_complete, &co);
2374 if (acb == NULL) {
2375 ret = -EIO;
2376 goto out;
2377 } else {
2378 qemu_coroutine_yield();
2379 ret = co.ret;
2380 }
2381 }
2382 if (ret && ret != -ENOTSUP) {
2383 goto out;
2384 }
2385
2386 offset += num;
2387 bytes -= num;
2388 }
2389 ret = 0;
2390 out:
2391 atomic_inc(&bs->write_gen);
2392 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2393 req.bytes >> BDRV_SECTOR_BITS);
2394 tracked_request_end(&req);
2395 bdrv_dec_in_flight(bs);
2396 return ret;
2397 }
2398
2399 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2400 {
2401 Coroutine *co;
2402 DiscardCo rwco = {
2403 .bs = bs,
2404 .offset = offset,
2405 .bytes = bytes,
2406 .ret = NOT_DONE,
2407 };
2408
2409 if (qemu_in_coroutine()) {
2410 /* Fast-path if already in coroutine context */
2411 bdrv_pdiscard_co_entry(&rwco);
2412 } else {
2413 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2414 bdrv_coroutine_enter(bs, co);
2415 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2416 }
2417
2418 return rwco.ret;
2419 }
2420
2421 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2422 {
2423 BlockDriver *drv = bs->drv;
2424 CoroutineIOCompletion co = {
2425 .coroutine = qemu_coroutine_self(),
2426 };
2427 BlockAIOCB *acb;
2428
2429 bdrv_inc_in_flight(bs);
2430 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2431 co.ret = -ENOTSUP;
2432 goto out;
2433 }
2434
2435 if (drv->bdrv_co_ioctl) {
2436 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2437 } else {
2438 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2439 if (!acb) {
2440 co.ret = -ENOTSUP;
2441 goto out;
2442 }
2443 qemu_coroutine_yield();
2444 }
2445 out:
2446 bdrv_dec_in_flight(bs);
2447 return co.ret;
2448 }
2449
2450 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2451 {
2452 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2453 }
2454
2455 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2456 {
2457 return memset(qemu_blockalign(bs, size), 0, size);
2458 }
2459
2460 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2461 {
2462 size_t align = bdrv_opt_mem_align(bs);
2463
2464 /* Ensure that NULL is never returned on success */
2465 assert(align > 0);
2466 if (size == 0) {
2467 size = align;
2468 }
2469
2470 return qemu_try_memalign(align, size);
2471 }
2472
2473 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2474 {
2475 void *mem = qemu_try_blockalign(bs, size);
2476
2477 if (mem) {
2478 memset(mem, 0, size);
2479 }
2480
2481 return mem;
2482 }
2483
2484 /*
2485 * Check if all memory in this vector is sector aligned.
2486 */
2487 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2488 {
2489 int i;
2490 size_t alignment = bdrv_min_mem_align(bs);
2491
2492 for (i = 0; i < qiov->niov; i++) {
2493 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2494 return false;
2495 }
2496 if (qiov->iov[i].iov_len % alignment) {
2497 return false;
2498 }
2499 }
2500
2501 return true;
2502 }
2503
2504 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2505 NotifierWithReturn *notifier)
2506 {
2507 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2508 }
2509
2510 void bdrv_io_plug(BlockDriverState *bs)
2511 {
2512 BdrvChild *child;
2513
2514 QLIST_FOREACH(child, &bs->children, next) {
2515 bdrv_io_plug(child->bs);
2516 }
2517
2518 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2519 BlockDriver *drv = bs->drv;
2520 if (drv && drv->bdrv_io_plug) {
2521 drv->bdrv_io_plug(bs);
2522 }
2523 }
2524 }
2525
2526 void bdrv_io_unplug(BlockDriverState *bs)
2527 {
2528 BdrvChild *child;
2529
2530 assert(bs->io_plugged);
2531 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2532 BlockDriver *drv = bs->drv;
2533 if (drv && drv->bdrv_io_unplug) {
2534 drv->bdrv_io_unplug(bs);
2535 }
2536 }
2537
2538 QLIST_FOREACH(child, &bs->children, next) {
2539 bdrv_io_unplug(child->bs);
2540 }
2541 }