]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
vnc: fix use-after-free
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40
41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
42 int64_t offset, int bytes, BdrvRequestFlags flags);
43
44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 {
46 BdrvChild *c, *next;
47
48 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
49 if (c == ignore) {
50 continue;
51 }
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
54 }
55 }
56 }
57
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 {
60 BdrvChild *c, *next;
61
62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63 if (c == ignore) {
64 continue;
65 }
66 if (c->role->drained_end) {
67 c->role->drained_end(c);
68 }
69 }
70 }
71
72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 {
74 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
75 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
76 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
77 src->opt_mem_alignment);
78 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
79 src->min_mem_alignment);
80 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
81 }
82
83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 {
85 BlockDriver *drv = bs->drv;
86 Error *local_err = NULL;
87
88 memset(&bs->bl, 0, sizeof(bs->bl));
89
90 if (!drv) {
91 return;
92 }
93
94 /* Default alignment based on whether driver has byte interface */
95 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
96
97 /* Take some limits from the children as a default */
98 if (bs->file) {
99 bdrv_refresh_limits(bs->file->bs, &local_err);
100 if (local_err) {
101 error_propagate(errp, local_err);
102 return;
103 }
104 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
105 } else {
106 bs->bl.min_mem_alignment = 512;
107 bs->bl.opt_mem_alignment = getpagesize();
108
109 /* Safe default since most protocols use readv()/writev()/etc */
110 bs->bl.max_iov = IOV_MAX;
111 }
112
113 if (bs->backing) {
114 bdrv_refresh_limits(bs->backing->bs, &local_err);
115 if (local_err) {
116 error_propagate(errp, local_err);
117 return;
118 }
119 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
120 }
121
122 /* Then let the driver override it */
123 if (drv->bdrv_refresh_limits) {
124 drv->bdrv_refresh_limits(bs, errp);
125 }
126 }
127
128 /**
129 * The copy-on-read flag is actually a reference count so multiple users may
130 * use the feature without worrying about clobbering its previous state.
131 * Copy-on-read stays enabled until all users have called to disable it.
132 */
133 void bdrv_enable_copy_on_read(BlockDriverState *bs)
134 {
135 atomic_inc(&bs->copy_on_read);
136 }
137
138 void bdrv_disable_copy_on_read(BlockDriverState *bs)
139 {
140 int old = atomic_fetch_dec(&bs->copy_on_read);
141 assert(old >= 1);
142 }
143
144 typedef struct {
145 Coroutine *co;
146 BlockDriverState *bs;
147 bool done;
148 bool begin;
149 bool recursive;
150 BdrvChild *parent;
151 } BdrvCoDrainData;
152
153 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
154 {
155 BdrvCoDrainData *data = opaque;
156 BlockDriverState *bs = data->bs;
157
158 if (data->begin) {
159 bs->drv->bdrv_co_drain_begin(bs);
160 } else {
161 bs->drv->bdrv_co_drain_end(bs);
162 }
163
164 /* Set data->done before reading bs->wakeup. */
165 atomic_mb_set(&data->done, true);
166 bdrv_wakeup(bs);
167 }
168
169 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
170 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
171 {
172 BdrvChild *child, *tmp;
173 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
174
175 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
176 (!begin && !bs->drv->bdrv_co_drain_end)) {
177 return;
178 }
179
180 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
181 bdrv_coroutine_enter(bs, data.co);
182 BDRV_POLL_WHILE(bs, !data.done);
183
184 if (recursive) {
185 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
186 bdrv_drain_invoke(child->bs, begin, true);
187 }
188 }
189 }
190
191 static bool bdrv_drain_recurse(BlockDriverState *bs)
192 {
193 BdrvChild *child, *tmp;
194 bool waited;
195
196 /* Wait for drained requests to finish */
197 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
198
199 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
200 BlockDriverState *bs = child->bs;
201 bool in_main_loop =
202 qemu_get_current_aio_context() == qemu_get_aio_context();
203 assert(bs->refcnt > 0);
204 if (in_main_loop) {
205 /* In case the recursive bdrv_drain_recurse processes a
206 * block_job_defer_to_main_loop BH and modifies the graph,
207 * let's hold a reference to bs until we are done.
208 *
209 * IOThread doesn't have such a BH, and it is not safe to call
210 * bdrv_unref without BQL, so skip doing it there.
211 */
212 bdrv_ref(bs);
213 }
214 waited |= bdrv_drain_recurse(bs);
215 if (in_main_loop) {
216 bdrv_unref(bs);
217 }
218 }
219
220 return waited;
221 }
222
223 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
224 BdrvChild *parent);
225 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
226 BdrvChild *parent);
227
228 static void bdrv_co_drain_bh_cb(void *opaque)
229 {
230 BdrvCoDrainData *data = opaque;
231 Coroutine *co = data->co;
232 BlockDriverState *bs = data->bs;
233
234 bdrv_dec_in_flight(bs);
235 if (data->begin) {
236 bdrv_do_drained_begin(bs, data->recursive, data->parent);
237 } else {
238 bdrv_do_drained_end(bs, data->recursive, data->parent);
239 }
240
241 data->done = true;
242 aio_co_wake(co);
243 }
244
245 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
246 bool begin, bool recursive,
247 BdrvChild *parent)
248 {
249 BdrvCoDrainData data;
250
251 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
252 * other coroutines run if they were queued by aio_co_enter(). */
253
254 assert(qemu_in_coroutine());
255 data = (BdrvCoDrainData) {
256 .co = qemu_coroutine_self(),
257 .bs = bs,
258 .done = false,
259 .begin = begin,
260 .recursive = recursive,
261 .parent = parent,
262 };
263 bdrv_inc_in_flight(bs);
264 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
265 bdrv_co_drain_bh_cb, &data);
266
267 qemu_coroutine_yield();
268 /* If we are resumed from some other event (such as an aio completion or a
269 * timer callback), it is a bug in the caller that should be fixed. */
270 assert(data.done);
271 }
272
273 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
274 BdrvChild *parent)
275 {
276 BdrvChild *child, *next;
277
278 if (qemu_in_coroutine()) {
279 bdrv_co_yield_to_drain(bs, true, recursive, parent);
280 return;
281 }
282
283 /* Stop things in parent-to-child order */
284 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
285 aio_disable_external(bdrv_get_aio_context(bs));
286 }
287
288 bdrv_parent_drained_begin(bs, parent);
289 bdrv_drain_invoke(bs, true, false);
290 bdrv_drain_recurse(bs);
291
292 if (recursive) {
293 bs->recursive_quiesce_counter++;
294 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
295 bdrv_do_drained_begin(child->bs, true, child);
296 }
297 }
298 }
299
300 void bdrv_drained_begin(BlockDriverState *bs)
301 {
302 bdrv_do_drained_begin(bs, false, NULL);
303 }
304
305 void bdrv_subtree_drained_begin(BlockDriverState *bs)
306 {
307 bdrv_do_drained_begin(bs, true, NULL);
308 }
309
310 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
311 BdrvChild *parent)
312 {
313 BdrvChild *child, *next;
314 int old_quiesce_counter;
315
316 if (qemu_in_coroutine()) {
317 bdrv_co_yield_to_drain(bs, false, recursive, parent);
318 return;
319 }
320 assert(bs->quiesce_counter > 0);
321 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
322
323 /* Re-enable things in child-to-parent order */
324 bdrv_drain_invoke(bs, false, false);
325 bdrv_parent_drained_end(bs, parent);
326 if (old_quiesce_counter == 1) {
327 aio_enable_external(bdrv_get_aio_context(bs));
328 }
329
330 if (recursive) {
331 bs->recursive_quiesce_counter--;
332 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
333 bdrv_do_drained_end(child->bs, true, child);
334 }
335 }
336 }
337
338 void bdrv_drained_end(BlockDriverState *bs)
339 {
340 bdrv_do_drained_end(bs, false, NULL);
341 }
342
343 void bdrv_subtree_drained_end(BlockDriverState *bs)
344 {
345 bdrv_do_drained_end(bs, true, NULL);
346 }
347
348 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
349 {
350 int i;
351
352 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
353 bdrv_do_drained_begin(child->bs, true, child);
354 }
355 }
356
357 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
358 {
359 int i;
360
361 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
362 bdrv_do_drained_end(child->bs, true, child);
363 }
364 }
365
366 /*
367 * Wait for pending requests to complete on a single BlockDriverState subtree,
368 * and suspend block driver's internal I/O until next request arrives.
369 *
370 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
371 * AioContext.
372 *
373 * Only this BlockDriverState's AioContext is run, so in-flight requests must
374 * not depend on events in other AioContexts. In that case, use
375 * bdrv_drain_all() instead.
376 */
377 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
378 {
379 assert(qemu_in_coroutine());
380 bdrv_drained_begin(bs);
381 bdrv_drained_end(bs);
382 }
383
384 void bdrv_drain(BlockDriverState *bs)
385 {
386 bdrv_drained_begin(bs);
387 bdrv_drained_end(bs);
388 }
389
390 /*
391 * Wait for pending requests to complete across all BlockDriverStates
392 *
393 * This function does not flush data to disk, use bdrv_flush_all() for that
394 * after calling this function.
395 *
396 * This pauses all block jobs and disables external clients. It must
397 * be paired with bdrv_drain_all_end().
398 *
399 * NOTE: no new block jobs or BlockDriverStates can be created between
400 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
401 */
402 void bdrv_drain_all_begin(void)
403 {
404 /* Always run first iteration so any pending completion BHs run */
405 bool waited = true;
406 BlockDriverState *bs;
407 BdrvNextIterator it;
408 GSList *aio_ctxs = NULL, *ctx;
409
410 /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
411 * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
412 * nodes in several different AioContexts, so make sure we're in the main
413 * context. */
414 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
415
416 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
417 AioContext *aio_context = bdrv_get_aio_context(bs);
418
419 /* Stop things in parent-to-child order */
420 aio_context_acquire(aio_context);
421 aio_disable_external(aio_context);
422 bdrv_parent_drained_begin(bs, NULL);
423 bdrv_drain_invoke(bs, true, true);
424 aio_context_release(aio_context);
425
426 if (!g_slist_find(aio_ctxs, aio_context)) {
427 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
428 }
429 }
430
431 /* Note that completion of an asynchronous I/O operation can trigger any
432 * number of other I/O operations on other devices---for example a
433 * coroutine can submit an I/O request to another device in response to
434 * request completion. Therefore we must keep looping until there was no
435 * more activity rather than simply draining each device independently.
436 */
437 while (waited) {
438 waited = false;
439
440 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
441 AioContext *aio_context = ctx->data;
442
443 aio_context_acquire(aio_context);
444 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
445 if (aio_context == bdrv_get_aio_context(bs)) {
446 waited |= bdrv_drain_recurse(bs);
447 }
448 }
449 aio_context_release(aio_context);
450 }
451 }
452
453 g_slist_free(aio_ctxs);
454 }
455
456 void bdrv_drain_all_end(void)
457 {
458 BlockDriverState *bs;
459 BdrvNextIterator it;
460
461 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
462 AioContext *aio_context = bdrv_get_aio_context(bs);
463
464 /* Re-enable things in child-to-parent order */
465 aio_context_acquire(aio_context);
466 bdrv_drain_invoke(bs, false, true);
467 bdrv_parent_drained_end(bs, NULL);
468 aio_enable_external(aio_context);
469 aio_context_release(aio_context);
470 }
471 }
472
473 void bdrv_drain_all(void)
474 {
475 bdrv_drain_all_begin();
476 bdrv_drain_all_end();
477 }
478
479 /**
480 * Remove an active request from the tracked requests list
481 *
482 * This function should be called when a tracked request is completing.
483 */
484 static void tracked_request_end(BdrvTrackedRequest *req)
485 {
486 if (req->serialising) {
487 atomic_dec(&req->bs->serialising_in_flight);
488 }
489
490 qemu_co_mutex_lock(&req->bs->reqs_lock);
491 QLIST_REMOVE(req, list);
492 qemu_co_queue_restart_all(&req->wait_queue);
493 qemu_co_mutex_unlock(&req->bs->reqs_lock);
494 }
495
496 /**
497 * Add an active request to the tracked requests list
498 */
499 static void tracked_request_begin(BdrvTrackedRequest *req,
500 BlockDriverState *bs,
501 int64_t offset,
502 unsigned int bytes,
503 enum BdrvTrackedRequestType type)
504 {
505 *req = (BdrvTrackedRequest){
506 .bs = bs,
507 .offset = offset,
508 .bytes = bytes,
509 .type = type,
510 .co = qemu_coroutine_self(),
511 .serialising = false,
512 .overlap_offset = offset,
513 .overlap_bytes = bytes,
514 };
515
516 qemu_co_queue_init(&req->wait_queue);
517
518 qemu_co_mutex_lock(&bs->reqs_lock);
519 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
520 qemu_co_mutex_unlock(&bs->reqs_lock);
521 }
522
523 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
524 {
525 int64_t overlap_offset = req->offset & ~(align - 1);
526 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
527 - overlap_offset;
528
529 if (!req->serialising) {
530 atomic_inc(&req->bs->serialising_in_flight);
531 req->serialising = true;
532 }
533
534 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
535 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
536 }
537
538 /**
539 * Round a region to cluster boundaries
540 */
541 void bdrv_round_to_clusters(BlockDriverState *bs,
542 int64_t offset, int64_t bytes,
543 int64_t *cluster_offset,
544 int64_t *cluster_bytes)
545 {
546 BlockDriverInfo bdi;
547
548 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
549 *cluster_offset = offset;
550 *cluster_bytes = bytes;
551 } else {
552 int64_t c = bdi.cluster_size;
553 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
554 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
555 }
556 }
557
558 static int bdrv_get_cluster_size(BlockDriverState *bs)
559 {
560 BlockDriverInfo bdi;
561 int ret;
562
563 ret = bdrv_get_info(bs, &bdi);
564 if (ret < 0 || bdi.cluster_size == 0) {
565 return bs->bl.request_alignment;
566 } else {
567 return bdi.cluster_size;
568 }
569 }
570
571 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
572 int64_t offset, unsigned int bytes)
573 {
574 /* aaaa bbbb */
575 if (offset >= req->overlap_offset + req->overlap_bytes) {
576 return false;
577 }
578 /* bbbb aaaa */
579 if (req->overlap_offset >= offset + bytes) {
580 return false;
581 }
582 return true;
583 }
584
585 void bdrv_inc_in_flight(BlockDriverState *bs)
586 {
587 atomic_inc(&bs->in_flight);
588 }
589
590 void bdrv_wakeup(BlockDriverState *bs)
591 {
592 aio_wait_kick(bdrv_get_aio_wait(bs));
593 }
594
595 void bdrv_dec_in_flight(BlockDriverState *bs)
596 {
597 atomic_dec(&bs->in_flight);
598 bdrv_wakeup(bs);
599 }
600
601 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
602 {
603 BlockDriverState *bs = self->bs;
604 BdrvTrackedRequest *req;
605 bool retry;
606 bool waited = false;
607
608 if (!atomic_read(&bs->serialising_in_flight)) {
609 return false;
610 }
611
612 do {
613 retry = false;
614 qemu_co_mutex_lock(&bs->reqs_lock);
615 QLIST_FOREACH(req, &bs->tracked_requests, list) {
616 if (req == self || (!req->serialising && !self->serialising)) {
617 continue;
618 }
619 if (tracked_request_overlaps(req, self->overlap_offset,
620 self->overlap_bytes))
621 {
622 /* Hitting this means there was a reentrant request, for
623 * example, a block driver issuing nested requests. This must
624 * never happen since it means deadlock.
625 */
626 assert(qemu_coroutine_self() != req->co);
627
628 /* If the request is already (indirectly) waiting for us, or
629 * will wait for us as soon as it wakes up, then just go on
630 * (instead of producing a deadlock in the former case). */
631 if (!req->waiting_for) {
632 self->waiting_for = req;
633 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
634 self->waiting_for = NULL;
635 retry = true;
636 waited = true;
637 break;
638 }
639 }
640 }
641 qemu_co_mutex_unlock(&bs->reqs_lock);
642 } while (retry);
643
644 return waited;
645 }
646
647 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
648 size_t size)
649 {
650 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
651 return -EIO;
652 }
653
654 if (!bdrv_is_inserted(bs)) {
655 return -ENOMEDIUM;
656 }
657
658 if (offset < 0) {
659 return -EIO;
660 }
661
662 return 0;
663 }
664
665 typedef struct RwCo {
666 BdrvChild *child;
667 int64_t offset;
668 QEMUIOVector *qiov;
669 bool is_write;
670 int ret;
671 BdrvRequestFlags flags;
672 } RwCo;
673
674 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
675 {
676 RwCo *rwco = opaque;
677
678 if (!rwco->is_write) {
679 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
680 rwco->qiov->size, rwco->qiov,
681 rwco->flags);
682 } else {
683 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
684 rwco->qiov->size, rwco->qiov,
685 rwco->flags);
686 }
687 }
688
689 /*
690 * Process a vectored synchronous request using coroutines
691 */
692 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
693 QEMUIOVector *qiov, bool is_write,
694 BdrvRequestFlags flags)
695 {
696 Coroutine *co;
697 RwCo rwco = {
698 .child = child,
699 .offset = offset,
700 .qiov = qiov,
701 .is_write = is_write,
702 .ret = NOT_DONE,
703 .flags = flags,
704 };
705
706 if (qemu_in_coroutine()) {
707 /* Fast-path if already in coroutine context */
708 bdrv_rw_co_entry(&rwco);
709 } else {
710 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
711 bdrv_coroutine_enter(child->bs, co);
712 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
713 }
714 return rwco.ret;
715 }
716
717 /*
718 * Process a synchronous request using coroutines
719 */
720 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
721 int nb_sectors, bool is_write, BdrvRequestFlags flags)
722 {
723 QEMUIOVector qiov;
724 struct iovec iov = {
725 .iov_base = (void *)buf,
726 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
727 };
728
729 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
730 return -EINVAL;
731 }
732
733 qemu_iovec_init_external(&qiov, &iov, 1);
734 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
735 &qiov, is_write, flags);
736 }
737
738 /* return < 0 if error. See bdrv_write() for the return codes */
739 int bdrv_read(BdrvChild *child, int64_t sector_num,
740 uint8_t *buf, int nb_sectors)
741 {
742 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
743 }
744
745 /* Return < 0 if error. Important errors are:
746 -EIO generic I/O error (may happen for all errors)
747 -ENOMEDIUM No media inserted.
748 -EINVAL Invalid sector number or nb_sectors
749 -EACCES Trying to write a read-only device
750 */
751 int bdrv_write(BdrvChild *child, int64_t sector_num,
752 const uint8_t *buf, int nb_sectors)
753 {
754 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
755 }
756
757 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
758 int bytes, BdrvRequestFlags flags)
759 {
760 QEMUIOVector qiov;
761 struct iovec iov = {
762 .iov_base = NULL,
763 .iov_len = bytes,
764 };
765
766 qemu_iovec_init_external(&qiov, &iov, 1);
767 return bdrv_prwv_co(child, offset, &qiov, true,
768 BDRV_REQ_ZERO_WRITE | flags);
769 }
770
771 /*
772 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
773 * The operation is sped up by checking the block status and only writing
774 * zeroes to the device if they currently do not return zeroes. Optional
775 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
776 * BDRV_REQ_FUA).
777 *
778 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
779 */
780 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
781 {
782 int ret;
783 int64_t target_size, bytes, offset = 0;
784 BlockDriverState *bs = child->bs;
785
786 target_size = bdrv_getlength(bs);
787 if (target_size < 0) {
788 return target_size;
789 }
790
791 for (;;) {
792 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
793 if (bytes <= 0) {
794 return 0;
795 }
796 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
797 if (ret < 0) {
798 error_report("error getting block status at offset %" PRId64 ": %s",
799 offset, strerror(-ret));
800 return ret;
801 }
802 if (ret & BDRV_BLOCK_ZERO) {
803 offset += bytes;
804 continue;
805 }
806 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
807 if (ret < 0) {
808 error_report("error writing zeroes at offset %" PRId64 ": %s",
809 offset, strerror(-ret));
810 return ret;
811 }
812 offset += bytes;
813 }
814 }
815
816 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
817 {
818 int ret;
819
820 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
821 if (ret < 0) {
822 return ret;
823 }
824
825 return qiov->size;
826 }
827
828 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
829 {
830 QEMUIOVector qiov;
831 struct iovec iov = {
832 .iov_base = (void *)buf,
833 .iov_len = bytes,
834 };
835
836 if (bytes < 0) {
837 return -EINVAL;
838 }
839
840 qemu_iovec_init_external(&qiov, &iov, 1);
841 return bdrv_preadv(child, offset, &qiov);
842 }
843
844 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
845 {
846 int ret;
847
848 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
849 if (ret < 0) {
850 return ret;
851 }
852
853 return qiov->size;
854 }
855
856 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
857 {
858 QEMUIOVector qiov;
859 struct iovec iov = {
860 .iov_base = (void *) buf,
861 .iov_len = bytes,
862 };
863
864 if (bytes < 0) {
865 return -EINVAL;
866 }
867
868 qemu_iovec_init_external(&qiov, &iov, 1);
869 return bdrv_pwritev(child, offset, &qiov);
870 }
871
872 /*
873 * Writes to the file and ensures that no writes are reordered across this
874 * request (acts as a barrier)
875 *
876 * Returns 0 on success, -errno in error cases.
877 */
878 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
879 const void *buf, int count)
880 {
881 int ret;
882
883 ret = bdrv_pwrite(child, offset, buf, count);
884 if (ret < 0) {
885 return ret;
886 }
887
888 ret = bdrv_flush(child->bs);
889 if (ret < 0) {
890 return ret;
891 }
892
893 return 0;
894 }
895
896 typedef struct CoroutineIOCompletion {
897 Coroutine *coroutine;
898 int ret;
899 } CoroutineIOCompletion;
900
901 static void bdrv_co_io_em_complete(void *opaque, int ret)
902 {
903 CoroutineIOCompletion *co = opaque;
904
905 co->ret = ret;
906 aio_co_wake(co->coroutine);
907 }
908
909 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
910 uint64_t offset, uint64_t bytes,
911 QEMUIOVector *qiov, int flags)
912 {
913 BlockDriver *drv = bs->drv;
914 int64_t sector_num;
915 unsigned int nb_sectors;
916
917 assert(!(flags & ~BDRV_REQ_MASK));
918
919 if (!drv) {
920 return -ENOMEDIUM;
921 }
922
923 if (drv->bdrv_co_preadv) {
924 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
925 }
926
927 sector_num = offset >> BDRV_SECTOR_BITS;
928 nb_sectors = bytes >> BDRV_SECTOR_BITS;
929
930 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
931 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
932 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
933
934 if (drv->bdrv_co_readv) {
935 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
936 } else {
937 BlockAIOCB *acb;
938 CoroutineIOCompletion co = {
939 .coroutine = qemu_coroutine_self(),
940 };
941
942 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
943 bdrv_co_io_em_complete, &co);
944 if (acb == NULL) {
945 return -EIO;
946 } else {
947 qemu_coroutine_yield();
948 return co.ret;
949 }
950 }
951 }
952
953 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
954 uint64_t offset, uint64_t bytes,
955 QEMUIOVector *qiov, int flags)
956 {
957 BlockDriver *drv = bs->drv;
958 int64_t sector_num;
959 unsigned int nb_sectors;
960 int ret;
961
962 assert(!(flags & ~BDRV_REQ_MASK));
963
964 if (!drv) {
965 return -ENOMEDIUM;
966 }
967
968 if (drv->bdrv_co_pwritev) {
969 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
970 flags & bs->supported_write_flags);
971 flags &= ~bs->supported_write_flags;
972 goto emulate_flags;
973 }
974
975 sector_num = offset >> BDRV_SECTOR_BITS;
976 nb_sectors = bytes >> BDRV_SECTOR_BITS;
977
978 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
979 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
980 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
981
982 if (drv->bdrv_co_writev_flags) {
983 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
984 flags & bs->supported_write_flags);
985 flags &= ~bs->supported_write_flags;
986 } else if (drv->bdrv_co_writev) {
987 assert(!bs->supported_write_flags);
988 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
989 } else {
990 BlockAIOCB *acb;
991 CoroutineIOCompletion co = {
992 .coroutine = qemu_coroutine_self(),
993 };
994
995 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
996 bdrv_co_io_em_complete, &co);
997 if (acb == NULL) {
998 ret = -EIO;
999 } else {
1000 qemu_coroutine_yield();
1001 ret = co.ret;
1002 }
1003 }
1004
1005 emulate_flags:
1006 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1007 ret = bdrv_co_flush(bs);
1008 }
1009
1010 return ret;
1011 }
1012
1013 static int coroutine_fn
1014 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1015 uint64_t bytes, QEMUIOVector *qiov)
1016 {
1017 BlockDriver *drv = bs->drv;
1018
1019 if (!drv) {
1020 return -ENOMEDIUM;
1021 }
1022
1023 if (!drv->bdrv_co_pwritev_compressed) {
1024 return -ENOTSUP;
1025 }
1026
1027 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1028 }
1029
1030 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1031 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1032 {
1033 BlockDriverState *bs = child->bs;
1034
1035 /* Perform I/O through a temporary buffer so that users who scribble over
1036 * their read buffer while the operation is in progress do not end up
1037 * modifying the image file. This is critical for zero-copy guest I/O
1038 * where anything might happen inside guest memory.
1039 */
1040 void *bounce_buffer;
1041
1042 BlockDriver *drv = bs->drv;
1043 struct iovec iov;
1044 QEMUIOVector local_qiov;
1045 int64_t cluster_offset;
1046 int64_t cluster_bytes;
1047 size_t skip_bytes;
1048 int ret;
1049 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1050 BDRV_REQUEST_MAX_BYTES);
1051 unsigned int progress = 0;
1052
1053 if (!drv) {
1054 return -ENOMEDIUM;
1055 }
1056
1057 /* FIXME We cannot require callers to have write permissions when all they
1058 * are doing is a read request. If we did things right, write permissions
1059 * would be obtained anyway, but internally by the copy-on-read code. As
1060 * long as it is implemented here rather than in a separate filter driver,
1061 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1062 * it could request permissions. Therefore we have to bypass the permission
1063 * system for the moment. */
1064 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1065
1066 /* Cover entire cluster so no additional backing file I/O is required when
1067 * allocating cluster in the image file. Note that this value may exceed
1068 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1069 * is one reason we loop rather than doing it all at once.
1070 */
1071 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1072 skip_bytes = offset - cluster_offset;
1073
1074 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1075 cluster_offset, cluster_bytes);
1076
1077 bounce_buffer = qemu_try_blockalign(bs,
1078 MIN(MIN(max_transfer, cluster_bytes),
1079 MAX_BOUNCE_BUFFER));
1080 if (bounce_buffer == NULL) {
1081 ret = -ENOMEM;
1082 goto err;
1083 }
1084
1085 while (cluster_bytes) {
1086 int64_t pnum;
1087
1088 ret = bdrv_is_allocated(bs, cluster_offset,
1089 MIN(cluster_bytes, max_transfer), &pnum);
1090 if (ret < 0) {
1091 /* Safe to treat errors in querying allocation as if
1092 * unallocated; we'll probably fail again soon on the
1093 * read, but at least that will set a decent errno.
1094 */
1095 pnum = MIN(cluster_bytes, max_transfer);
1096 }
1097
1098 assert(skip_bytes < pnum);
1099
1100 if (ret <= 0) {
1101 /* Must copy-on-read; use the bounce buffer */
1102 iov.iov_base = bounce_buffer;
1103 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1104 qemu_iovec_init_external(&local_qiov, &iov, 1);
1105
1106 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1107 &local_qiov, 0);
1108 if (ret < 0) {
1109 goto err;
1110 }
1111
1112 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1113 if (drv->bdrv_co_pwrite_zeroes &&
1114 buffer_is_zero(bounce_buffer, pnum)) {
1115 /* FIXME: Should we (perhaps conditionally) be setting
1116 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1117 * that still correctly reads as zero? */
1118 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1119 } else {
1120 /* This does not change the data on the disk, it is not
1121 * necessary to flush even in cache=writethrough mode.
1122 */
1123 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1124 &local_qiov, 0);
1125 }
1126
1127 if (ret < 0) {
1128 /* It might be okay to ignore write errors for guest
1129 * requests. If this is a deliberate copy-on-read
1130 * then we don't want to ignore the error. Simply
1131 * report it in all cases.
1132 */
1133 goto err;
1134 }
1135
1136 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1137 pnum - skip_bytes);
1138 } else {
1139 /* Read directly into the destination */
1140 qemu_iovec_init(&local_qiov, qiov->niov);
1141 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1142 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1143 &local_qiov, 0);
1144 qemu_iovec_destroy(&local_qiov);
1145 if (ret < 0) {
1146 goto err;
1147 }
1148 }
1149
1150 cluster_offset += pnum;
1151 cluster_bytes -= pnum;
1152 progress += pnum - skip_bytes;
1153 skip_bytes = 0;
1154 }
1155 ret = 0;
1156
1157 err:
1158 qemu_vfree(bounce_buffer);
1159 return ret;
1160 }
1161
1162 /*
1163 * Forwards an already correctly aligned request to the BlockDriver. This
1164 * handles copy on read, zeroing after EOF, and fragmentation of large
1165 * reads; any other features must be implemented by the caller.
1166 */
1167 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1168 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1169 int64_t align, QEMUIOVector *qiov, int flags)
1170 {
1171 BlockDriverState *bs = child->bs;
1172 int64_t total_bytes, max_bytes;
1173 int ret = 0;
1174 uint64_t bytes_remaining = bytes;
1175 int max_transfer;
1176
1177 assert(is_power_of_2(align));
1178 assert((offset & (align - 1)) == 0);
1179 assert((bytes & (align - 1)) == 0);
1180 assert(!qiov || bytes == qiov->size);
1181 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1182 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1183 align);
1184
1185 /* TODO: We would need a per-BDS .supported_read_flags and
1186 * potential fallback support, if we ever implement any read flags
1187 * to pass through to drivers. For now, there aren't any
1188 * passthrough flags. */
1189 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1190
1191 /* Handle Copy on Read and associated serialisation */
1192 if (flags & BDRV_REQ_COPY_ON_READ) {
1193 /* If we touch the same cluster it counts as an overlap. This
1194 * guarantees that allocating writes will be serialized and not race
1195 * with each other for the same cluster. For example, in copy-on-read
1196 * it ensures that the CoR read and write operations are atomic and
1197 * guest writes cannot interleave between them. */
1198 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1199 }
1200
1201 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1202 wait_serialising_requests(req);
1203 }
1204
1205 if (flags & BDRV_REQ_COPY_ON_READ) {
1206 int64_t pnum;
1207
1208 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1209 if (ret < 0) {
1210 goto out;
1211 }
1212
1213 if (!ret || pnum != bytes) {
1214 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1215 goto out;
1216 }
1217 }
1218
1219 /* Forward the request to the BlockDriver, possibly fragmenting it */
1220 total_bytes = bdrv_getlength(bs);
1221 if (total_bytes < 0) {
1222 ret = total_bytes;
1223 goto out;
1224 }
1225
1226 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1227 if (bytes <= max_bytes && bytes <= max_transfer) {
1228 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1229 goto out;
1230 }
1231
1232 while (bytes_remaining) {
1233 int num;
1234
1235 if (max_bytes) {
1236 QEMUIOVector local_qiov;
1237
1238 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1239 assert(num);
1240 qemu_iovec_init(&local_qiov, qiov->niov);
1241 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1242
1243 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1244 num, &local_qiov, 0);
1245 max_bytes -= num;
1246 qemu_iovec_destroy(&local_qiov);
1247 } else {
1248 num = bytes_remaining;
1249 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1250 bytes_remaining);
1251 }
1252 if (ret < 0) {
1253 goto out;
1254 }
1255 bytes_remaining -= num;
1256 }
1257
1258 out:
1259 return ret < 0 ? ret : 0;
1260 }
1261
1262 /*
1263 * Handle a read request in coroutine context
1264 */
1265 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1266 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1267 BdrvRequestFlags flags)
1268 {
1269 BlockDriverState *bs = child->bs;
1270 BlockDriver *drv = bs->drv;
1271 BdrvTrackedRequest req;
1272
1273 uint64_t align = bs->bl.request_alignment;
1274 uint8_t *head_buf = NULL;
1275 uint8_t *tail_buf = NULL;
1276 QEMUIOVector local_qiov;
1277 bool use_local_qiov = false;
1278 int ret;
1279
1280 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1281
1282 if (!drv) {
1283 return -ENOMEDIUM;
1284 }
1285
1286 ret = bdrv_check_byte_request(bs, offset, bytes);
1287 if (ret < 0) {
1288 return ret;
1289 }
1290
1291 bdrv_inc_in_flight(bs);
1292
1293 /* Don't do copy-on-read if we read data before write operation */
1294 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1295 flags |= BDRV_REQ_COPY_ON_READ;
1296 }
1297
1298 /* Align read if necessary by padding qiov */
1299 if (offset & (align - 1)) {
1300 head_buf = qemu_blockalign(bs, align);
1301 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1302 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1303 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1304 use_local_qiov = true;
1305
1306 bytes += offset & (align - 1);
1307 offset = offset & ~(align - 1);
1308 }
1309
1310 if ((offset + bytes) & (align - 1)) {
1311 if (!use_local_qiov) {
1312 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1313 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1314 use_local_qiov = true;
1315 }
1316 tail_buf = qemu_blockalign(bs, align);
1317 qemu_iovec_add(&local_qiov, tail_buf,
1318 align - ((offset + bytes) & (align - 1)));
1319
1320 bytes = ROUND_UP(bytes, align);
1321 }
1322
1323 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1324 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1325 use_local_qiov ? &local_qiov : qiov,
1326 flags);
1327 tracked_request_end(&req);
1328 bdrv_dec_in_flight(bs);
1329
1330 if (use_local_qiov) {
1331 qemu_iovec_destroy(&local_qiov);
1332 qemu_vfree(head_buf);
1333 qemu_vfree(tail_buf);
1334 }
1335
1336 return ret;
1337 }
1338
1339 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1340 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1341 BdrvRequestFlags flags)
1342 {
1343 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1344 return -EINVAL;
1345 }
1346
1347 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1348 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1349 }
1350
1351 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1352 int nb_sectors, QEMUIOVector *qiov)
1353 {
1354 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1355 }
1356
1357 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1358 int64_t offset, int bytes, BdrvRequestFlags flags)
1359 {
1360 BlockDriver *drv = bs->drv;
1361 QEMUIOVector qiov;
1362 struct iovec iov = {0};
1363 int ret = 0;
1364 bool need_flush = false;
1365 int head = 0;
1366 int tail = 0;
1367
1368 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1369 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1370 bs->bl.request_alignment);
1371 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1372
1373 if (!drv) {
1374 return -ENOMEDIUM;
1375 }
1376
1377 assert(alignment % bs->bl.request_alignment == 0);
1378 head = offset % alignment;
1379 tail = (offset + bytes) % alignment;
1380 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1381 assert(max_write_zeroes >= bs->bl.request_alignment);
1382
1383 while (bytes > 0 && !ret) {
1384 int num = bytes;
1385
1386 /* Align request. Block drivers can expect the "bulk" of the request
1387 * to be aligned, and that unaligned requests do not cross cluster
1388 * boundaries.
1389 */
1390 if (head) {
1391 /* Make a small request up to the first aligned sector. For
1392 * convenience, limit this request to max_transfer even if
1393 * we don't need to fall back to writes. */
1394 num = MIN(MIN(bytes, max_transfer), alignment - head);
1395 head = (head + num) % alignment;
1396 assert(num < max_write_zeroes);
1397 } else if (tail && num > alignment) {
1398 /* Shorten the request to the last aligned sector. */
1399 num -= tail;
1400 }
1401
1402 /* limit request size */
1403 if (num > max_write_zeroes) {
1404 num = max_write_zeroes;
1405 }
1406
1407 ret = -ENOTSUP;
1408 /* First try the efficient write zeroes operation */
1409 if (drv->bdrv_co_pwrite_zeroes) {
1410 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1411 flags & bs->supported_zero_flags);
1412 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1413 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1414 need_flush = true;
1415 }
1416 } else {
1417 assert(!bs->supported_zero_flags);
1418 }
1419
1420 if (ret == -ENOTSUP) {
1421 /* Fall back to bounce buffer if write zeroes is unsupported */
1422 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1423
1424 if ((flags & BDRV_REQ_FUA) &&
1425 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1426 /* No need for bdrv_driver_pwrite() to do a fallback
1427 * flush on each chunk; use just one at the end */
1428 write_flags &= ~BDRV_REQ_FUA;
1429 need_flush = true;
1430 }
1431 num = MIN(num, max_transfer);
1432 iov.iov_len = num;
1433 if (iov.iov_base == NULL) {
1434 iov.iov_base = qemu_try_blockalign(bs, num);
1435 if (iov.iov_base == NULL) {
1436 ret = -ENOMEM;
1437 goto fail;
1438 }
1439 memset(iov.iov_base, 0, num);
1440 }
1441 qemu_iovec_init_external(&qiov, &iov, 1);
1442
1443 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1444
1445 /* Keep bounce buffer around if it is big enough for all
1446 * all future requests.
1447 */
1448 if (num < max_transfer) {
1449 qemu_vfree(iov.iov_base);
1450 iov.iov_base = NULL;
1451 }
1452 }
1453
1454 offset += num;
1455 bytes -= num;
1456 }
1457
1458 fail:
1459 if (ret == 0 && need_flush) {
1460 ret = bdrv_co_flush(bs);
1461 }
1462 qemu_vfree(iov.iov_base);
1463 return ret;
1464 }
1465
1466 /*
1467 * Forwards an already correctly aligned write request to the BlockDriver,
1468 * after possibly fragmenting it.
1469 */
1470 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1471 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1472 int64_t align, QEMUIOVector *qiov, int flags)
1473 {
1474 BlockDriverState *bs = child->bs;
1475 BlockDriver *drv = bs->drv;
1476 bool waited;
1477 int ret;
1478
1479 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1480 uint64_t bytes_remaining = bytes;
1481 int max_transfer;
1482
1483 if (!drv) {
1484 return -ENOMEDIUM;
1485 }
1486
1487 if (bdrv_has_readonly_bitmaps(bs)) {
1488 return -EPERM;
1489 }
1490
1491 assert(is_power_of_2(align));
1492 assert((offset & (align - 1)) == 0);
1493 assert((bytes & (align - 1)) == 0);
1494 assert(!qiov || bytes == qiov->size);
1495 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1496 assert(!(flags & ~BDRV_REQ_MASK));
1497 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1498 align);
1499
1500 waited = wait_serialising_requests(req);
1501 assert(!waited || !req->serialising);
1502 assert(req->overlap_offset <= offset);
1503 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1504 assert(child->perm & BLK_PERM_WRITE);
1505 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1506
1507 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1508
1509 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1510 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1511 qemu_iovec_is_zero(qiov)) {
1512 flags |= BDRV_REQ_ZERO_WRITE;
1513 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1514 flags |= BDRV_REQ_MAY_UNMAP;
1515 }
1516 }
1517
1518 if (ret < 0) {
1519 /* Do nothing, write notifier decided to fail this request */
1520 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1521 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1522 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1523 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1524 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1525 } else if (bytes <= max_transfer) {
1526 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1527 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1528 } else {
1529 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1530 while (bytes_remaining) {
1531 int num = MIN(bytes_remaining, max_transfer);
1532 QEMUIOVector local_qiov;
1533 int local_flags = flags;
1534
1535 assert(num);
1536 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1537 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1538 /* If FUA is going to be emulated by flush, we only
1539 * need to flush on the last iteration */
1540 local_flags &= ~BDRV_REQ_FUA;
1541 }
1542 qemu_iovec_init(&local_qiov, qiov->niov);
1543 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1544
1545 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1546 num, &local_qiov, local_flags);
1547 qemu_iovec_destroy(&local_qiov);
1548 if (ret < 0) {
1549 break;
1550 }
1551 bytes_remaining -= num;
1552 }
1553 }
1554 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1555
1556 atomic_inc(&bs->write_gen);
1557 bdrv_set_dirty(bs, offset, bytes);
1558
1559 stat64_max(&bs->wr_highest_offset, offset + bytes);
1560
1561 if (ret >= 0) {
1562 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1563 ret = 0;
1564 }
1565
1566 return ret;
1567 }
1568
1569 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1570 int64_t offset,
1571 unsigned int bytes,
1572 BdrvRequestFlags flags,
1573 BdrvTrackedRequest *req)
1574 {
1575 BlockDriverState *bs = child->bs;
1576 uint8_t *buf = NULL;
1577 QEMUIOVector local_qiov;
1578 struct iovec iov;
1579 uint64_t align = bs->bl.request_alignment;
1580 unsigned int head_padding_bytes, tail_padding_bytes;
1581 int ret = 0;
1582
1583 head_padding_bytes = offset & (align - 1);
1584 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1585
1586
1587 assert(flags & BDRV_REQ_ZERO_WRITE);
1588 if (head_padding_bytes || tail_padding_bytes) {
1589 buf = qemu_blockalign(bs, align);
1590 iov = (struct iovec) {
1591 .iov_base = buf,
1592 .iov_len = align,
1593 };
1594 qemu_iovec_init_external(&local_qiov, &iov, 1);
1595 }
1596 if (head_padding_bytes) {
1597 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1598
1599 /* RMW the unaligned part before head. */
1600 mark_request_serialising(req, align);
1601 wait_serialising_requests(req);
1602 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1603 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1604 align, &local_qiov, 0);
1605 if (ret < 0) {
1606 goto fail;
1607 }
1608 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1609
1610 memset(buf + head_padding_bytes, 0, zero_bytes);
1611 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1612 align, &local_qiov,
1613 flags & ~BDRV_REQ_ZERO_WRITE);
1614 if (ret < 0) {
1615 goto fail;
1616 }
1617 offset += zero_bytes;
1618 bytes -= zero_bytes;
1619 }
1620
1621 assert(!bytes || (offset & (align - 1)) == 0);
1622 if (bytes >= align) {
1623 /* Write the aligned part in the middle. */
1624 uint64_t aligned_bytes = bytes & ~(align - 1);
1625 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1626 NULL, flags);
1627 if (ret < 0) {
1628 goto fail;
1629 }
1630 bytes -= aligned_bytes;
1631 offset += aligned_bytes;
1632 }
1633
1634 assert(!bytes || (offset & (align - 1)) == 0);
1635 if (bytes) {
1636 assert(align == tail_padding_bytes + bytes);
1637 /* RMW the unaligned part after tail. */
1638 mark_request_serialising(req, align);
1639 wait_serialising_requests(req);
1640 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1641 ret = bdrv_aligned_preadv(child, req, offset, align,
1642 align, &local_qiov, 0);
1643 if (ret < 0) {
1644 goto fail;
1645 }
1646 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1647
1648 memset(buf, 0, bytes);
1649 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1650 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1651 }
1652 fail:
1653 qemu_vfree(buf);
1654 return ret;
1655
1656 }
1657
1658 /*
1659 * Handle a write request in coroutine context
1660 */
1661 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1662 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1663 BdrvRequestFlags flags)
1664 {
1665 BlockDriverState *bs = child->bs;
1666 BdrvTrackedRequest req;
1667 uint64_t align = bs->bl.request_alignment;
1668 uint8_t *head_buf = NULL;
1669 uint8_t *tail_buf = NULL;
1670 QEMUIOVector local_qiov;
1671 bool use_local_qiov = false;
1672 int ret;
1673
1674 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1675
1676 if (!bs->drv) {
1677 return -ENOMEDIUM;
1678 }
1679 if (bs->read_only) {
1680 return -EPERM;
1681 }
1682 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1683
1684 ret = bdrv_check_byte_request(bs, offset, bytes);
1685 if (ret < 0) {
1686 return ret;
1687 }
1688
1689 bdrv_inc_in_flight(bs);
1690 /*
1691 * Align write if necessary by performing a read-modify-write cycle.
1692 * Pad qiov with the read parts and be sure to have a tracked request not
1693 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1694 */
1695 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1696
1697 if (flags & BDRV_REQ_ZERO_WRITE) {
1698 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1699 goto out;
1700 }
1701
1702 if (offset & (align - 1)) {
1703 QEMUIOVector head_qiov;
1704 struct iovec head_iov;
1705
1706 mark_request_serialising(&req, align);
1707 wait_serialising_requests(&req);
1708
1709 head_buf = qemu_blockalign(bs, align);
1710 head_iov = (struct iovec) {
1711 .iov_base = head_buf,
1712 .iov_len = align,
1713 };
1714 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1715
1716 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1717 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1718 align, &head_qiov, 0);
1719 if (ret < 0) {
1720 goto fail;
1721 }
1722 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1723
1724 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1725 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1726 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1727 use_local_qiov = true;
1728
1729 bytes += offset & (align - 1);
1730 offset = offset & ~(align - 1);
1731
1732 /* We have read the tail already if the request is smaller
1733 * than one aligned block.
1734 */
1735 if (bytes < align) {
1736 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1737 bytes = align;
1738 }
1739 }
1740
1741 if ((offset + bytes) & (align - 1)) {
1742 QEMUIOVector tail_qiov;
1743 struct iovec tail_iov;
1744 size_t tail_bytes;
1745 bool waited;
1746
1747 mark_request_serialising(&req, align);
1748 waited = wait_serialising_requests(&req);
1749 assert(!waited || !use_local_qiov);
1750
1751 tail_buf = qemu_blockalign(bs, align);
1752 tail_iov = (struct iovec) {
1753 .iov_base = tail_buf,
1754 .iov_len = align,
1755 };
1756 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1757
1758 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1759 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1760 align, align, &tail_qiov, 0);
1761 if (ret < 0) {
1762 goto fail;
1763 }
1764 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1765
1766 if (!use_local_qiov) {
1767 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1768 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1769 use_local_qiov = true;
1770 }
1771
1772 tail_bytes = (offset + bytes) & (align - 1);
1773 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1774
1775 bytes = ROUND_UP(bytes, align);
1776 }
1777
1778 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1779 use_local_qiov ? &local_qiov : qiov,
1780 flags);
1781
1782 fail:
1783
1784 if (use_local_qiov) {
1785 qemu_iovec_destroy(&local_qiov);
1786 }
1787 qemu_vfree(head_buf);
1788 qemu_vfree(tail_buf);
1789 out:
1790 tracked_request_end(&req);
1791 bdrv_dec_in_flight(bs);
1792 return ret;
1793 }
1794
1795 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1796 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1797 BdrvRequestFlags flags)
1798 {
1799 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1800 return -EINVAL;
1801 }
1802
1803 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1804 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1805 }
1806
1807 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1808 int nb_sectors, QEMUIOVector *qiov)
1809 {
1810 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1811 }
1812
1813 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1814 int bytes, BdrvRequestFlags flags)
1815 {
1816 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1817
1818 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1819 flags &= ~BDRV_REQ_MAY_UNMAP;
1820 }
1821
1822 return bdrv_co_pwritev(child, offset, bytes, NULL,
1823 BDRV_REQ_ZERO_WRITE | flags);
1824 }
1825
1826 /*
1827 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1828 */
1829 int bdrv_flush_all(void)
1830 {
1831 BdrvNextIterator it;
1832 BlockDriverState *bs = NULL;
1833 int result = 0;
1834
1835 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1836 AioContext *aio_context = bdrv_get_aio_context(bs);
1837 int ret;
1838
1839 aio_context_acquire(aio_context);
1840 ret = bdrv_flush(bs);
1841 if (ret < 0 && !result) {
1842 result = ret;
1843 }
1844 aio_context_release(aio_context);
1845 }
1846
1847 return result;
1848 }
1849
1850
1851 typedef struct BdrvCoBlockStatusData {
1852 BlockDriverState *bs;
1853 BlockDriverState *base;
1854 bool want_zero;
1855 int64_t offset;
1856 int64_t bytes;
1857 int64_t *pnum;
1858 int64_t *map;
1859 BlockDriverState **file;
1860 int ret;
1861 bool done;
1862 } BdrvCoBlockStatusData;
1863
1864 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1865 bool want_zero,
1866 int64_t offset,
1867 int64_t bytes,
1868 int64_t *pnum,
1869 int64_t *map,
1870 BlockDriverState **file)
1871 {
1872 assert(bs->file && bs->file->bs);
1873 *pnum = bytes;
1874 *map = offset;
1875 *file = bs->file->bs;
1876 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1877 }
1878
1879 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1880 bool want_zero,
1881 int64_t offset,
1882 int64_t bytes,
1883 int64_t *pnum,
1884 int64_t *map,
1885 BlockDriverState **file)
1886 {
1887 assert(bs->backing && bs->backing->bs);
1888 *pnum = bytes;
1889 *map = offset;
1890 *file = bs->backing->bs;
1891 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1892 }
1893
1894 /*
1895 * Returns the allocation status of the specified sectors.
1896 * Drivers not implementing the functionality are assumed to not support
1897 * backing files, hence all their sectors are reported as allocated.
1898 *
1899 * If 'want_zero' is true, the caller is querying for mapping
1900 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1901 * _ZERO where possible; otherwise, the result favors larger 'pnum',
1902 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
1903 *
1904 * If 'offset' is beyond the end of the disk image the return value is
1905 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1906 *
1907 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
1908 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1909 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1910 *
1911 * 'pnum' is set to the number of bytes (including and immediately
1912 * following the specified offset) that are easily known to be in the
1913 * same allocated/unallocated state. Note that a second call starting
1914 * at the original offset plus returned pnum may have the same status.
1915 * The returned value is non-zero on success except at end-of-file.
1916 *
1917 * Returns negative errno on failure. Otherwise, if the
1918 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1919 * set to the host mapping and BDS corresponding to the guest offset.
1920 */
1921 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1922 bool want_zero,
1923 int64_t offset, int64_t bytes,
1924 int64_t *pnum, int64_t *map,
1925 BlockDriverState **file)
1926 {
1927 int64_t total_size;
1928 int64_t n; /* bytes */
1929 int ret;
1930 int64_t local_map = 0;
1931 BlockDriverState *local_file = NULL;
1932 int64_t aligned_offset, aligned_bytes;
1933 uint32_t align;
1934
1935 assert(pnum);
1936 *pnum = 0;
1937 total_size = bdrv_getlength(bs);
1938 if (total_size < 0) {
1939 ret = total_size;
1940 goto early_out;
1941 }
1942
1943 if (offset >= total_size) {
1944 ret = BDRV_BLOCK_EOF;
1945 goto early_out;
1946 }
1947 if (!bytes) {
1948 ret = 0;
1949 goto early_out;
1950 }
1951
1952 n = total_size - offset;
1953 if (n < bytes) {
1954 bytes = n;
1955 }
1956
1957 /* Must be non-NULL or bdrv_getlength() would have failed */
1958 assert(bs->drv);
1959 if (!bs->drv->bdrv_co_block_status) {
1960 *pnum = bytes;
1961 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1962 if (offset + bytes == total_size) {
1963 ret |= BDRV_BLOCK_EOF;
1964 }
1965 if (bs->drv->protocol_name) {
1966 ret |= BDRV_BLOCK_OFFSET_VALID;
1967 local_map = offset;
1968 local_file = bs;
1969 }
1970 goto early_out;
1971 }
1972
1973 bdrv_inc_in_flight(bs);
1974
1975 /* Round out to request_alignment boundaries */
1976 align = bs->bl.request_alignment;
1977 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1978 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1979
1980 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
1981 aligned_bytes, pnum, &local_map,
1982 &local_file);
1983 if (ret < 0) {
1984 *pnum = 0;
1985 goto out;
1986 }
1987
1988 /*
1989 * The driver's result must be a non-zero multiple of request_alignment.
1990 * Clamp pnum and adjust map to original request.
1991 */
1992 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
1993 align > offset - aligned_offset);
1994 *pnum -= offset - aligned_offset;
1995 if (*pnum > bytes) {
1996 *pnum = bytes;
1997 }
1998 if (ret & BDRV_BLOCK_OFFSET_VALID) {
1999 local_map += offset - aligned_offset;
2000 }
2001
2002 if (ret & BDRV_BLOCK_RAW) {
2003 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2004 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2005 *pnum, pnum, &local_map, &local_file);
2006 goto out;
2007 }
2008
2009 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2010 ret |= BDRV_BLOCK_ALLOCATED;
2011 } else if (want_zero) {
2012 if (bdrv_unallocated_blocks_are_zero(bs)) {
2013 ret |= BDRV_BLOCK_ZERO;
2014 } else if (bs->backing) {
2015 BlockDriverState *bs2 = bs->backing->bs;
2016 int64_t size2 = bdrv_getlength(bs2);
2017
2018 if (size2 >= 0 && offset >= size2) {
2019 ret |= BDRV_BLOCK_ZERO;
2020 }
2021 }
2022 }
2023
2024 if (want_zero && local_file && local_file != bs &&
2025 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2026 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2027 int64_t file_pnum;
2028 int ret2;
2029
2030 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2031 *pnum, &file_pnum, NULL, NULL);
2032 if (ret2 >= 0) {
2033 /* Ignore errors. This is just providing extra information, it
2034 * is useful but not necessary.
2035 */
2036 if (ret2 & BDRV_BLOCK_EOF &&
2037 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2038 /*
2039 * It is valid for the format block driver to read
2040 * beyond the end of the underlying file's current
2041 * size; such areas read as zero.
2042 */
2043 ret |= BDRV_BLOCK_ZERO;
2044 } else {
2045 /* Limit request to the range reported by the protocol driver */
2046 *pnum = file_pnum;
2047 ret |= (ret2 & BDRV_BLOCK_ZERO);
2048 }
2049 }
2050 }
2051
2052 out:
2053 bdrv_dec_in_flight(bs);
2054 if (ret >= 0 && offset + *pnum == total_size) {
2055 ret |= BDRV_BLOCK_EOF;
2056 }
2057 early_out:
2058 if (file) {
2059 *file = local_file;
2060 }
2061 if (map) {
2062 *map = local_map;
2063 }
2064 return ret;
2065 }
2066
2067 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2068 BlockDriverState *base,
2069 bool want_zero,
2070 int64_t offset,
2071 int64_t bytes,
2072 int64_t *pnum,
2073 int64_t *map,
2074 BlockDriverState **file)
2075 {
2076 BlockDriverState *p;
2077 int ret = 0;
2078 bool first = true;
2079
2080 assert(bs != base);
2081 for (p = bs; p != base; p = backing_bs(p)) {
2082 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2083 file);
2084 if (ret < 0) {
2085 break;
2086 }
2087 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2088 /*
2089 * Reading beyond the end of the file continues to read
2090 * zeroes, but we can only widen the result to the
2091 * unallocated length we learned from an earlier
2092 * iteration.
2093 */
2094 *pnum = bytes;
2095 }
2096 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2097 break;
2098 }
2099 /* [offset, pnum] unallocated on this layer, which could be only
2100 * the first part of [offset, bytes]. */
2101 bytes = MIN(bytes, *pnum);
2102 first = false;
2103 }
2104 return ret;
2105 }
2106
2107 /* Coroutine wrapper for bdrv_block_status_above() */
2108 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2109 {
2110 BdrvCoBlockStatusData *data = opaque;
2111
2112 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2113 data->want_zero,
2114 data->offset, data->bytes,
2115 data->pnum, data->map, data->file);
2116 data->done = true;
2117 }
2118
2119 /*
2120 * Synchronous wrapper around bdrv_co_block_status_above().
2121 *
2122 * See bdrv_co_block_status_above() for details.
2123 */
2124 static int bdrv_common_block_status_above(BlockDriverState *bs,
2125 BlockDriverState *base,
2126 bool want_zero, int64_t offset,
2127 int64_t bytes, int64_t *pnum,
2128 int64_t *map,
2129 BlockDriverState **file)
2130 {
2131 Coroutine *co;
2132 BdrvCoBlockStatusData data = {
2133 .bs = bs,
2134 .base = base,
2135 .want_zero = want_zero,
2136 .offset = offset,
2137 .bytes = bytes,
2138 .pnum = pnum,
2139 .map = map,
2140 .file = file,
2141 .done = false,
2142 };
2143
2144 if (qemu_in_coroutine()) {
2145 /* Fast-path if already in coroutine context */
2146 bdrv_block_status_above_co_entry(&data);
2147 } else {
2148 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2149 bdrv_coroutine_enter(bs, co);
2150 BDRV_POLL_WHILE(bs, !data.done);
2151 }
2152 return data.ret;
2153 }
2154
2155 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2156 int64_t offset, int64_t bytes, int64_t *pnum,
2157 int64_t *map, BlockDriverState **file)
2158 {
2159 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2160 pnum, map, file);
2161 }
2162
2163 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2164 int64_t *pnum, int64_t *map, BlockDriverState **file)
2165 {
2166 return bdrv_block_status_above(bs, backing_bs(bs),
2167 offset, bytes, pnum, map, file);
2168 }
2169
2170 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2171 int64_t bytes, int64_t *pnum)
2172 {
2173 int ret;
2174 int64_t dummy;
2175
2176 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2177 bytes, pnum ? pnum : &dummy, NULL,
2178 NULL);
2179 if (ret < 0) {
2180 return ret;
2181 }
2182 return !!(ret & BDRV_BLOCK_ALLOCATED);
2183 }
2184
2185 /*
2186 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2187 *
2188 * Return true if (a prefix of) the given range is allocated in any image
2189 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2190 * offset is allocated in any image of the chain. Return false otherwise,
2191 * or negative errno on failure.
2192 *
2193 * 'pnum' is set to the number of bytes (including and immediately
2194 * following the specified offset) that are known to be in the same
2195 * allocated/unallocated state. Note that a subsequent call starting
2196 * at 'offset + *pnum' may return the same allocation status (in other
2197 * words, the result is not necessarily the maximum possible range);
2198 * but 'pnum' will only be 0 when end of file is reached.
2199 *
2200 */
2201 int bdrv_is_allocated_above(BlockDriverState *top,
2202 BlockDriverState *base,
2203 int64_t offset, int64_t bytes, int64_t *pnum)
2204 {
2205 BlockDriverState *intermediate;
2206 int ret;
2207 int64_t n = bytes;
2208
2209 intermediate = top;
2210 while (intermediate && intermediate != base) {
2211 int64_t pnum_inter;
2212 int64_t size_inter;
2213
2214 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2215 if (ret < 0) {
2216 return ret;
2217 }
2218 if (ret) {
2219 *pnum = pnum_inter;
2220 return 1;
2221 }
2222
2223 size_inter = bdrv_getlength(intermediate);
2224 if (size_inter < 0) {
2225 return size_inter;
2226 }
2227 if (n > pnum_inter &&
2228 (intermediate == top || offset + pnum_inter < size_inter)) {
2229 n = pnum_inter;
2230 }
2231
2232 intermediate = backing_bs(intermediate);
2233 }
2234
2235 *pnum = n;
2236 return 0;
2237 }
2238
2239 typedef struct BdrvVmstateCo {
2240 BlockDriverState *bs;
2241 QEMUIOVector *qiov;
2242 int64_t pos;
2243 bool is_read;
2244 int ret;
2245 } BdrvVmstateCo;
2246
2247 static int coroutine_fn
2248 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2249 bool is_read)
2250 {
2251 BlockDriver *drv = bs->drv;
2252 int ret = -ENOTSUP;
2253
2254 bdrv_inc_in_flight(bs);
2255
2256 if (!drv) {
2257 ret = -ENOMEDIUM;
2258 } else if (drv->bdrv_load_vmstate) {
2259 if (is_read) {
2260 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2261 } else {
2262 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2263 }
2264 } else if (bs->file) {
2265 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2266 }
2267
2268 bdrv_dec_in_flight(bs);
2269 return ret;
2270 }
2271
2272 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2273 {
2274 BdrvVmstateCo *co = opaque;
2275 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2276 }
2277
2278 static inline int
2279 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2280 bool is_read)
2281 {
2282 if (qemu_in_coroutine()) {
2283 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2284 } else {
2285 BdrvVmstateCo data = {
2286 .bs = bs,
2287 .qiov = qiov,
2288 .pos = pos,
2289 .is_read = is_read,
2290 .ret = -EINPROGRESS,
2291 };
2292 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2293
2294 bdrv_coroutine_enter(bs, co);
2295 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2296 return data.ret;
2297 }
2298 }
2299
2300 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2301 int64_t pos, int size)
2302 {
2303 QEMUIOVector qiov;
2304 struct iovec iov = {
2305 .iov_base = (void *) buf,
2306 .iov_len = size,
2307 };
2308 int ret;
2309
2310 qemu_iovec_init_external(&qiov, &iov, 1);
2311
2312 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2313 if (ret < 0) {
2314 return ret;
2315 }
2316
2317 return size;
2318 }
2319
2320 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2321 {
2322 return bdrv_rw_vmstate(bs, qiov, pos, false);
2323 }
2324
2325 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2326 int64_t pos, int size)
2327 {
2328 QEMUIOVector qiov;
2329 struct iovec iov = {
2330 .iov_base = buf,
2331 .iov_len = size,
2332 };
2333 int ret;
2334
2335 qemu_iovec_init_external(&qiov, &iov, 1);
2336 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2337 if (ret < 0) {
2338 return ret;
2339 }
2340
2341 return size;
2342 }
2343
2344 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2345 {
2346 return bdrv_rw_vmstate(bs, qiov, pos, true);
2347 }
2348
2349 /**************************************************************/
2350 /* async I/Os */
2351
2352 void bdrv_aio_cancel(BlockAIOCB *acb)
2353 {
2354 qemu_aio_ref(acb);
2355 bdrv_aio_cancel_async(acb);
2356 while (acb->refcnt > 1) {
2357 if (acb->aiocb_info->get_aio_context) {
2358 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2359 } else if (acb->bs) {
2360 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2361 * assert that we're not using an I/O thread. Thread-safe
2362 * code should use bdrv_aio_cancel_async exclusively.
2363 */
2364 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2365 aio_poll(bdrv_get_aio_context(acb->bs), true);
2366 } else {
2367 abort();
2368 }
2369 }
2370 qemu_aio_unref(acb);
2371 }
2372
2373 /* Async version of aio cancel. The caller is not blocked if the acb implements
2374 * cancel_async, otherwise we do nothing and let the request normally complete.
2375 * In either case the completion callback must be called. */
2376 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2377 {
2378 if (acb->aiocb_info->cancel_async) {
2379 acb->aiocb_info->cancel_async(acb);
2380 }
2381 }
2382
2383 /**************************************************************/
2384 /* Coroutine block device emulation */
2385
2386 typedef struct FlushCo {
2387 BlockDriverState *bs;
2388 int ret;
2389 } FlushCo;
2390
2391
2392 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2393 {
2394 FlushCo *rwco = opaque;
2395
2396 rwco->ret = bdrv_co_flush(rwco->bs);
2397 }
2398
2399 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2400 {
2401 int current_gen;
2402 int ret = 0;
2403
2404 bdrv_inc_in_flight(bs);
2405
2406 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2407 bdrv_is_sg(bs)) {
2408 goto early_exit;
2409 }
2410
2411 qemu_co_mutex_lock(&bs->reqs_lock);
2412 current_gen = atomic_read(&bs->write_gen);
2413
2414 /* Wait until any previous flushes are completed */
2415 while (bs->active_flush_req) {
2416 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2417 }
2418
2419 /* Flushes reach this point in nondecreasing current_gen order. */
2420 bs->active_flush_req = true;
2421 qemu_co_mutex_unlock(&bs->reqs_lock);
2422
2423 /* Write back all layers by calling one driver function */
2424 if (bs->drv->bdrv_co_flush) {
2425 ret = bs->drv->bdrv_co_flush(bs);
2426 goto out;
2427 }
2428
2429 /* Write back cached data to the OS even with cache=unsafe */
2430 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2431 if (bs->drv->bdrv_co_flush_to_os) {
2432 ret = bs->drv->bdrv_co_flush_to_os(bs);
2433 if (ret < 0) {
2434 goto out;
2435 }
2436 }
2437
2438 /* But don't actually force it to the disk with cache=unsafe */
2439 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2440 goto flush_parent;
2441 }
2442
2443 /* Check if we really need to flush anything */
2444 if (bs->flushed_gen == current_gen) {
2445 goto flush_parent;
2446 }
2447
2448 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2449 if (!bs->drv) {
2450 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2451 * (even in case of apparent success) */
2452 ret = -ENOMEDIUM;
2453 goto out;
2454 }
2455 if (bs->drv->bdrv_co_flush_to_disk) {
2456 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2457 } else if (bs->drv->bdrv_aio_flush) {
2458 BlockAIOCB *acb;
2459 CoroutineIOCompletion co = {
2460 .coroutine = qemu_coroutine_self(),
2461 };
2462
2463 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2464 if (acb == NULL) {
2465 ret = -EIO;
2466 } else {
2467 qemu_coroutine_yield();
2468 ret = co.ret;
2469 }
2470 } else {
2471 /*
2472 * Some block drivers always operate in either writethrough or unsafe
2473 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2474 * know how the server works (because the behaviour is hardcoded or
2475 * depends on server-side configuration), so we can't ensure that
2476 * everything is safe on disk. Returning an error doesn't work because
2477 * that would break guests even if the server operates in writethrough
2478 * mode.
2479 *
2480 * Let's hope the user knows what he's doing.
2481 */
2482 ret = 0;
2483 }
2484
2485 if (ret < 0) {
2486 goto out;
2487 }
2488
2489 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2490 * in the case of cache=unsafe, so there are no useless flushes.
2491 */
2492 flush_parent:
2493 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2494 out:
2495 /* Notify any pending flushes that we have completed */
2496 if (ret == 0) {
2497 bs->flushed_gen = current_gen;
2498 }
2499
2500 qemu_co_mutex_lock(&bs->reqs_lock);
2501 bs->active_flush_req = false;
2502 /* Return value is ignored - it's ok if wait queue is empty */
2503 qemu_co_queue_next(&bs->flush_queue);
2504 qemu_co_mutex_unlock(&bs->reqs_lock);
2505
2506 early_exit:
2507 bdrv_dec_in_flight(bs);
2508 return ret;
2509 }
2510
2511 int bdrv_flush(BlockDriverState *bs)
2512 {
2513 Coroutine *co;
2514 FlushCo flush_co = {
2515 .bs = bs,
2516 .ret = NOT_DONE,
2517 };
2518
2519 if (qemu_in_coroutine()) {
2520 /* Fast-path if already in coroutine context */
2521 bdrv_flush_co_entry(&flush_co);
2522 } else {
2523 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2524 bdrv_coroutine_enter(bs, co);
2525 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2526 }
2527
2528 return flush_co.ret;
2529 }
2530
2531 typedef struct DiscardCo {
2532 BlockDriverState *bs;
2533 int64_t offset;
2534 int bytes;
2535 int ret;
2536 } DiscardCo;
2537 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2538 {
2539 DiscardCo *rwco = opaque;
2540
2541 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2542 }
2543
2544 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2545 int bytes)
2546 {
2547 BdrvTrackedRequest req;
2548 int max_pdiscard, ret;
2549 int head, tail, align;
2550
2551 if (!bs->drv) {
2552 return -ENOMEDIUM;
2553 }
2554
2555 if (bdrv_has_readonly_bitmaps(bs)) {
2556 return -EPERM;
2557 }
2558
2559 ret = bdrv_check_byte_request(bs, offset, bytes);
2560 if (ret < 0) {
2561 return ret;
2562 } else if (bs->read_only) {
2563 return -EPERM;
2564 }
2565 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2566
2567 /* Do nothing if disabled. */
2568 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2569 return 0;
2570 }
2571
2572 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2573 return 0;
2574 }
2575
2576 /* Discard is advisory, but some devices track and coalesce
2577 * unaligned requests, so we must pass everything down rather than
2578 * round here. Still, most devices will just silently ignore
2579 * unaligned requests (by returning -ENOTSUP), so we must fragment
2580 * the request accordingly. */
2581 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2582 assert(align % bs->bl.request_alignment == 0);
2583 head = offset % align;
2584 tail = (offset + bytes) % align;
2585
2586 bdrv_inc_in_flight(bs);
2587 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2588
2589 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2590 if (ret < 0) {
2591 goto out;
2592 }
2593
2594 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2595 align);
2596 assert(max_pdiscard >= bs->bl.request_alignment);
2597
2598 while (bytes > 0) {
2599 int num = bytes;
2600
2601 if (head) {
2602 /* Make small requests to get to alignment boundaries. */
2603 num = MIN(bytes, align - head);
2604 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2605 num %= bs->bl.request_alignment;
2606 }
2607 head = (head + num) % align;
2608 assert(num < max_pdiscard);
2609 } else if (tail) {
2610 if (num > align) {
2611 /* Shorten the request to the last aligned cluster. */
2612 num -= tail;
2613 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2614 tail > bs->bl.request_alignment) {
2615 tail %= bs->bl.request_alignment;
2616 num -= tail;
2617 }
2618 }
2619 /* limit request size */
2620 if (num > max_pdiscard) {
2621 num = max_pdiscard;
2622 }
2623
2624 if (!bs->drv) {
2625 ret = -ENOMEDIUM;
2626 goto out;
2627 }
2628 if (bs->drv->bdrv_co_pdiscard) {
2629 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2630 } else {
2631 BlockAIOCB *acb;
2632 CoroutineIOCompletion co = {
2633 .coroutine = qemu_coroutine_self(),
2634 };
2635
2636 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2637 bdrv_co_io_em_complete, &co);
2638 if (acb == NULL) {
2639 ret = -EIO;
2640 goto out;
2641 } else {
2642 qemu_coroutine_yield();
2643 ret = co.ret;
2644 }
2645 }
2646 if (ret && ret != -ENOTSUP) {
2647 goto out;
2648 }
2649
2650 offset += num;
2651 bytes -= num;
2652 }
2653 ret = 0;
2654 out:
2655 atomic_inc(&bs->write_gen);
2656 bdrv_set_dirty(bs, req.offset, req.bytes);
2657 tracked_request_end(&req);
2658 bdrv_dec_in_flight(bs);
2659 return ret;
2660 }
2661
2662 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2663 {
2664 Coroutine *co;
2665 DiscardCo rwco = {
2666 .bs = bs,
2667 .offset = offset,
2668 .bytes = bytes,
2669 .ret = NOT_DONE,
2670 };
2671
2672 if (qemu_in_coroutine()) {
2673 /* Fast-path if already in coroutine context */
2674 bdrv_pdiscard_co_entry(&rwco);
2675 } else {
2676 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2677 bdrv_coroutine_enter(bs, co);
2678 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2679 }
2680
2681 return rwco.ret;
2682 }
2683
2684 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2685 {
2686 BlockDriver *drv = bs->drv;
2687 CoroutineIOCompletion co = {
2688 .coroutine = qemu_coroutine_self(),
2689 };
2690 BlockAIOCB *acb;
2691
2692 bdrv_inc_in_flight(bs);
2693 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2694 co.ret = -ENOTSUP;
2695 goto out;
2696 }
2697
2698 if (drv->bdrv_co_ioctl) {
2699 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2700 } else {
2701 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2702 if (!acb) {
2703 co.ret = -ENOTSUP;
2704 goto out;
2705 }
2706 qemu_coroutine_yield();
2707 }
2708 out:
2709 bdrv_dec_in_flight(bs);
2710 return co.ret;
2711 }
2712
2713 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2714 {
2715 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2716 }
2717
2718 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2719 {
2720 return memset(qemu_blockalign(bs, size), 0, size);
2721 }
2722
2723 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2724 {
2725 size_t align = bdrv_opt_mem_align(bs);
2726
2727 /* Ensure that NULL is never returned on success */
2728 assert(align > 0);
2729 if (size == 0) {
2730 size = align;
2731 }
2732
2733 return qemu_try_memalign(align, size);
2734 }
2735
2736 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2737 {
2738 void *mem = qemu_try_blockalign(bs, size);
2739
2740 if (mem) {
2741 memset(mem, 0, size);
2742 }
2743
2744 return mem;
2745 }
2746
2747 /*
2748 * Check if all memory in this vector is sector aligned.
2749 */
2750 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2751 {
2752 int i;
2753 size_t alignment = bdrv_min_mem_align(bs);
2754
2755 for (i = 0; i < qiov->niov; i++) {
2756 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2757 return false;
2758 }
2759 if (qiov->iov[i].iov_len % alignment) {
2760 return false;
2761 }
2762 }
2763
2764 return true;
2765 }
2766
2767 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2768 NotifierWithReturn *notifier)
2769 {
2770 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2771 }
2772
2773 void bdrv_io_plug(BlockDriverState *bs)
2774 {
2775 BdrvChild *child;
2776
2777 QLIST_FOREACH(child, &bs->children, next) {
2778 bdrv_io_plug(child->bs);
2779 }
2780
2781 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2782 BlockDriver *drv = bs->drv;
2783 if (drv && drv->bdrv_io_plug) {
2784 drv->bdrv_io_plug(bs);
2785 }
2786 }
2787 }
2788
2789 void bdrv_io_unplug(BlockDriverState *bs)
2790 {
2791 BdrvChild *child;
2792
2793 assert(bs->io_plugged);
2794 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2795 BlockDriver *drv = bs->drv;
2796 if (drv && drv->bdrv_io_unplug) {
2797 drv->bdrv_io_unplug(bs);
2798 }
2799 }
2800
2801 QLIST_FOREACH(child, &bs->children, next) {
2802 bdrv_io_unplug(child->bs);
2803 }
2804 }
2805
2806 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2807 {
2808 BdrvChild *child;
2809
2810 if (bs->drv && bs->drv->bdrv_register_buf) {
2811 bs->drv->bdrv_register_buf(bs, host, size);
2812 }
2813 QLIST_FOREACH(child, &bs->children, next) {
2814 bdrv_register_buf(child->bs, host, size);
2815 }
2816 }
2817
2818 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2819 {
2820 BdrvChild *child;
2821
2822 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2823 bs->drv->bdrv_unregister_buf(bs, host);
2824 }
2825 QLIST_FOREACH(child, &bs->children, next) {
2826 bdrv_unregister_buf(child->bs, host);
2827 }
2828 }