]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block/quorum: Support BDRV_REQ_WRITE_UNCHANGED
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40
41 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
42 int64_t offset, int bytes, BdrvRequestFlags flags);
43
44 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 {
46 BdrvChild *c, *next;
47
48 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
49 if (c == ignore) {
50 continue;
51 }
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
54 }
55 }
56 }
57
58 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 {
60 BdrvChild *c, *next;
61
62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63 if (c == ignore) {
64 continue;
65 }
66 if (c->role->drained_end) {
67 c->role->drained_end(c);
68 }
69 }
70 }
71
72 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 {
74 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
75 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
76 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
77 src->opt_mem_alignment);
78 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
79 src->min_mem_alignment);
80 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
81 }
82
83 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 {
85 BlockDriver *drv = bs->drv;
86 Error *local_err = NULL;
87
88 memset(&bs->bl, 0, sizeof(bs->bl));
89
90 if (!drv) {
91 return;
92 }
93
94 /* Default alignment based on whether driver has byte interface */
95 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
96 drv->bdrv_aio_preadv) ? 1 : 512;
97
98 /* Take some limits from the children as a default */
99 if (bs->file) {
100 bdrv_refresh_limits(bs->file->bs, &local_err);
101 if (local_err) {
102 error_propagate(errp, local_err);
103 return;
104 }
105 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
106 } else {
107 bs->bl.min_mem_alignment = 512;
108 bs->bl.opt_mem_alignment = getpagesize();
109
110 /* Safe default since most protocols use readv()/writev()/etc */
111 bs->bl.max_iov = IOV_MAX;
112 }
113
114 if (bs->backing) {
115 bdrv_refresh_limits(bs->backing->bs, &local_err);
116 if (local_err) {
117 error_propagate(errp, local_err);
118 return;
119 }
120 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
121 }
122
123 /* Then let the driver override it */
124 if (drv->bdrv_refresh_limits) {
125 drv->bdrv_refresh_limits(bs, errp);
126 }
127 }
128
129 /**
130 * The copy-on-read flag is actually a reference count so multiple users may
131 * use the feature without worrying about clobbering its previous state.
132 * Copy-on-read stays enabled until all users have called to disable it.
133 */
134 void bdrv_enable_copy_on_read(BlockDriverState *bs)
135 {
136 atomic_inc(&bs->copy_on_read);
137 }
138
139 void bdrv_disable_copy_on_read(BlockDriverState *bs)
140 {
141 int old = atomic_fetch_dec(&bs->copy_on_read);
142 assert(old >= 1);
143 }
144
145 typedef struct {
146 Coroutine *co;
147 BlockDriverState *bs;
148 bool done;
149 bool begin;
150 bool recursive;
151 BdrvChild *parent;
152 } BdrvCoDrainData;
153
154 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
155 {
156 BdrvCoDrainData *data = opaque;
157 BlockDriverState *bs = data->bs;
158
159 if (data->begin) {
160 bs->drv->bdrv_co_drain_begin(bs);
161 } else {
162 bs->drv->bdrv_co_drain_end(bs);
163 }
164
165 /* Set data->done before reading bs->wakeup. */
166 atomic_mb_set(&data->done, true);
167 bdrv_wakeup(bs);
168 }
169
170 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
171 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
172 {
173 BdrvChild *child, *tmp;
174 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
175
176 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
177 (!begin && !bs->drv->bdrv_co_drain_end)) {
178 return;
179 }
180
181 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
182 bdrv_coroutine_enter(bs, data.co);
183 BDRV_POLL_WHILE(bs, !data.done);
184
185 if (recursive) {
186 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
187 bdrv_drain_invoke(child->bs, begin, true);
188 }
189 }
190 }
191
192 static bool bdrv_drain_recurse(BlockDriverState *bs)
193 {
194 BdrvChild *child, *tmp;
195 bool waited;
196
197 /* Wait for drained requests to finish */
198 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
199
200 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
201 BlockDriverState *bs = child->bs;
202 bool in_main_loop =
203 qemu_get_current_aio_context() == qemu_get_aio_context();
204 assert(bs->refcnt > 0);
205 if (in_main_loop) {
206 /* In case the recursive bdrv_drain_recurse processes a
207 * block_job_defer_to_main_loop BH and modifies the graph,
208 * let's hold a reference to bs until we are done.
209 *
210 * IOThread doesn't have such a BH, and it is not safe to call
211 * bdrv_unref without BQL, so skip doing it there.
212 */
213 bdrv_ref(bs);
214 }
215 waited |= bdrv_drain_recurse(bs);
216 if (in_main_loop) {
217 bdrv_unref(bs);
218 }
219 }
220
221 return waited;
222 }
223
224 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
225 BdrvChild *parent);
226 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
227 BdrvChild *parent);
228
229 static void bdrv_co_drain_bh_cb(void *opaque)
230 {
231 BdrvCoDrainData *data = opaque;
232 Coroutine *co = data->co;
233 BlockDriverState *bs = data->bs;
234
235 bdrv_dec_in_flight(bs);
236 if (data->begin) {
237 bdrv_do_drained_begin(bs, data->recursive, data->parent);
238 } else {
239 bdrv_do_drained_end(bs, data->recursive, data->parent);
240 }
241
242 data->done = true;
243 aio_co_wake(co);
244 }
245
246 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
247 bool begin, bool recursive,
248 BdrvChild *parent)
249 {
250 BdrvCoDrainData data;
251
252 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
253 * other coroutines run if they were queued by aio_co_enter(). */
254
255 assert(qemu_in_coroutine());
256 data = (BdrvCoDrainData) {
257 .co = qemu_coroutine_self(),
258 .bs = bs,
259 .done = false,
260 .begin = begin,
261 .recursive = recursive,
262 .parent = parent,
263 };
264 bdrv_inc_in_flight(bs);
265 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
266 bdrv_co_drain_bh_cb, &data);
267
268 qemu_coroutine_yield();
269 /* If we are resumed from some other event (such as an aio completion or a
270 * timer callback), it is a bug in the caller that should be fixed. */
271 assert(data.done);
272 }
273
274 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
275 BdrvChild *parent)
276 {
277 BdrvChild *child, *next;
278
279 if (qemu_in_coroutine()) {
280 bdrv_co_yield_to_drain(bs, true, recursive, parent);
281 return;
282 }
283
284 /* Stop things in parent-to-child order */
285 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
286 aio_disable_external(bdrv_get_aio_context(bs));
287 }
288
289 bdrv_parent_drained_begin(bs, parent);
290 bdrv_drain_invoke(bs, true, false);
291 bdrv_drain_recurse(bs);
292
293 if (recursive) {
294 bs->recursive_quiesce_counter++;
295 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
296 bdrv_do_drained_begin(child->bs, true, child);
297 }
298 }
299 }
300
301 void bdrv_drained_begin(BlockDriverState *bs)
302 {
303 bdrv_do_drained_begin(bs, false, NULL);
304 }
305
306 void bdrv_subtree_drained_begin(BlockDriverState *bs)
307 {
308 bdrv_do_drained_begin(bs, true, NULL);
309 }
310
311 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
312 BdrvChild *parent)
313 {
314 BdrvChild *child, *next;
315 int old_quiesce_counter;
316
317 if (qemu_in_coroutine()) {
318 bdrv_co_yield_to_drain(bs, false, recursive, parent);
319 return;
320 }
321 assert(bs->quiesce_counter > 0);
322 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
323
324 /* Re-enable things in child-to-parent order */
325 bdrv_drain_invoke(bs, false, false);
326 bdrv_parent_drained_end(bs, parent);
327 if (old_quiesce_counter == 1) {
328 aio_enable_external(bdrv_get_aio_context(bs));
329 }
330
331 if (recursive) {
332 bs->recursive_quiesce_counter--;
333 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
334 bdrv_do_drained_end(child->bs, true, child);
335 }
336 }
337 }
338
339 void bdrv_drained_end(BlockDriverState *bs)
340 {
341 bdrv_do_drained_end(bs, false, NULL);
342 }
343
344 void bdrv_subtree_drained_end(BlockDriverState *bs)
345 {
346 bdrv_do_drained_end(bs, true, NULL);
347 }
348
349 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
350 {
351 int i;
352
353 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
354 bdrv_do_drained_begin(child->bs, true, child);
355 }
356 }
357
358 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
359 {
360 int i;
361
362 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
363 bdrv_do_drained_end(child->bs, true, child);
364 }
365 }
366
367 /*
368 * Wait for pending requests to complete on a single BlockDriverState subtree,
369 * and suspend block driver's internal I/O until next request arrives.
370 *
371 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
372 * AioContext.
373 *
374 * Only this BlockDriverState's AioContext is run, so in-flight requests must
375 * not depend on events in other AioContexts. In that case, use
376 * bdrv_drain_all() instead.
377 */
378 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
379 {
380 assert(qemu_in_coroutine());
381 bdrv_drained_begin(bs);
382 bdrv_drained_end(bs);
383 }
384
385 void bdrv_drain(BlockDriverState *bs)
386 {
387 bdrv_drained_begin(bs);
388 bdrv_drained_end(bs);
389 }
390
391 /*
392 * Wait for pending requests to complete across all BlockDriverStates
393 *
394 * This function does not flush data to disk, use bdrv_flush_all() for that
395 * after calling this function.
396 *
397 * This pauses all block jobs and disables external clients. It must
398 * be paired with bdrv_drain_all_end().
399 *
400 * NOTE: no new block jobs or BlockDriverStates can be created between
401 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
402 */
403 void bdrv_drain_all_begin(void)
404 {
405 /* Always run first iteration so any pending completion BHs run */
406 bool waited = true;
407 BlockDriverState *bs;
408 BdrvNextIterator it;
409 GSList *aio_ctxs = NULL, *ctx;
410
411 /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
412 * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
413 * nodes in several different AioContexts, so make sure we're in the main
414 * context. */
415 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
416
417 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
418 AioContext *aio_context = bdrv_get_aio_context(bs);
419
420 /* Stop things in parent-to-child order */
421 aio_context_acquire(aio_context);
422 aio_disable_external(aio_context);
423 bdrv_parent_drained_begin(bs, NULL);
424 bdrv_drain_invoke(bs, true, true);
425 aio_context_release(aio_context);
426
427 if (!g_slist_find(aio_ctxs, aio_context)) {
428 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
429 }
430 }
431
432 /* Note that completion of an asynchronous I/O operation can trigger any
433 * number of other I/O operations on other devices---for example a
434 * coroutine can submit an I/O request to another device in response to
435 * request completion. Therefore we must keep looping until there was no
436 * more activity rather than simply draining each device independently.
437 */
438 while (waited) {
439 waited = false;
440
441 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
442 AioContext *aio_context = ctx->data;
443
444 aio_context_acquire(aio_context);
445 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
446 if (aio_context == bdrv_get_aio_context(bs)) {
447 waited |= bdrv_drain_recurse(bs);
448 }
449 }
450 aio_context_release(aio_context);
451 }
452 }
453
454 g_slist_free(aio_ctxs);
455 }
456
457 void bdrv_drain_all_end(void)
458 {
459 BlockDriverState *bs;
460 BdrvNextIterator it;
461
462 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
463 AioContext *aio_context = bdrv_get_aio_context(bs);
464
465 /* Re-enable things in child-to-parent order */
466 aio_context_acquire(aio_context);
467 bdrv_drain_invoke(bs, false, true);
468 bdrv_parent_drained_end(bs, NULL);
469 aio_enable_external(aio_context);
470 aio_context_release(aio_context);
471 }
472 }
473
474 void bdrv_drain_all(void)
475 {
476 bdrv_drain_all_begin();
477 bdrv_drain_all_end();
478 }
479
480 /**
481 * Remove an active request from the tracked requests list
482 *
483 * This function should be called when a tracked request is completing.
484 */
485 static void tracked_request_end(BdrvTrackedRequest *req)
486 {
487 if (req->serialising) {
488 atomic_dec(&req->bs->serialising_in_flight);
489 }
490
491 qemu_co_mutex_lock(&req->bs->reqs_lock);
492 QLIST_REMOVE(req, list);
493 qemu_co_queue_restart_all(&req->wait_queue);
494 qemu_co_mutex_unlock(&req->bs->reqs_lock);
495 }
496
497 /**
498 * Add an active request to the tracked requests list
499 */
500 static void tracked_request_begin(BdrvTrackedRequest *req,
501 BlockDriverState *bs,
502 int64_t offset,
503 unsigned int bytes,
504 enum BdrvTrackedRequestType type)
505 {
506 *req = (BdrvTrackedRequest){
507 .bs = bs,
508 .offset = offset,
509 .bytes = bytes,
510 .type = type,
511 .co = qemu_coroutine_self(),
512 .serialising = false,
513 .overlap_offset = offset,
514 .overlap_bytes = bytes,
515 };
516
517 qemu_co_queue_init(&req->wait_queue);
518
519 qemu_co_mutex_lock(&bs->reqs_lock);
520 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
521 qemu_co_mutex_unlock(&bs->reqs_lock);
522 }
523
524 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
525 {
526 int64_t overlap_offset = req->offset & ~(align - 1);
527 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
528 - overlap_offset;
529
530 if (!req->serialising) {
531 atomic_inc(&req->bs->serialising_in_flight);
532 req->serialising = true;
533 }
534
535 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
536 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
537 }
538
539 /**
540 * Round a region to cluster boundaries
541 */
542 void bdrv_round_to_clusters(BlockDriverState *bs,
543 int64_t offset, int64_t bytes,
544 int64_t *cluster_offset,
545 int64_t *cluster_bytes)
546 {
547 BlockDriverInfo bdi;
548
549 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
550 *cluster_offset = offset;
551 *cluster_bytes = bytes;
552 } else {
553 int64_t c = bdi.cluster_size;
554 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
555 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
556 }
557 }
558
559 static int bdrv_get_cluster_size(BlockDriverState *bs)
560 {
561 BlockDriverInfo bdi;
562 int ret;
563
564 ret = bdrv_get_info(bs, &bdi);
565 if (ret < 0 || bdi.cluster_size == 0) {
566 return bs->bl.request_alignment;
567 } else {
568 return bdi.cluster_size;
569 }
570 }
571
572 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
573 int64_t offset, unsigned int bytes)
574 {
575 /* aaaa bbbb */
576 if (offset >= req->overlap_offset + req->overlap_bytes) {
577 return false;
578 }
579 /* bbbb aaaa */
580 if (req->overlap_offset >= offset + bytes) {
581 return false;
582 }
583 return true;
584 }
585
586 void bdrv_inc_in_flight(BlockDriverState *bs)
587 {
588 atomic_inc(&bs->in_flight);
589 }
590
591 void bdrv_wakeup(BlockDriverState *bs)
592 {
593 aio_wait_kick(bdrv_get_aio_wait(bs));
594 }
595
596 void bdrv_dec_in_flight(BlockDriverState *bs)
597 {
598 atomic_dec(&bs->in_flight);
599 bdrv_wakeup(bs);
600 }
601
602 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
603 {
604 BlockDriverState *bs = self->bs;
605 BdrvTrackedRequest *req;
606 bool retry;
607 bool waited = false;
608
609 if (!atomic_read(&bs->serialising_in_flight)) {
610 return false;
611 }
612
613 do {
614 retry = false;
615 qemu_co_mutex_lock(&bs->reqs_lock);
616 QLIST_FOREACH(req, &bs->tracked_requests, list) {
617 if (req == self || (!req->serialising && !self->serialising)) {
618 continue;
619 }
620 if (tracked_request_overlaps(req, self->overlap_offset,
621 self->overlap_bytes))
622 {
623 /* Hitting this means there was a reentrant request, for
624 * example, a block driver issuing nested requests. This must
625 * never happen since it means deadlock.
626 */
627 assert(qemu_coroutine_self() != req->co);
628
629 /* If the request is already (indirectly) waiting for us, or
630 * will wait for us as soon as it wakes up, then just go on
631 * (instead of producing a deadlock in the former case). */
632 if (!req->waiting_for) {
633 self->waiting_for = req;
634 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
635 self->waiting_for = NULL;
636 retry = true;
637 waited = true;
638 break;
639 }
640 }
641 }
642 qemu_co_mutex_unlock(&bs->reqs_lock);
643 } while (retry);
644
645 return waited;
646 }
647
648 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
649 size_t size)
650 {
651 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
652 return -EIO;
653 }
654
655 if (!bdrv_is_inserted(bs)) {
656 return -ENOMEDIUM;
657 }
658
659 if (offset < 0) {
660 return -EIO;
661 }
662
663 return 0;
664 }
665
666 typedef struct RwCo {
667 BdrvChild *child;
668 int64_t offset;
669 QEMUIOVector *qiov;
670 bool is_write;
671 int ret;
672 BdrvRequestFlags flags;
673 } RwCo;
674
675 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
676 {
677 RwCo *rwco = opaque;
678
679 if (!rwco->is_write) {
680 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
681 rwco->qiov->size, rwco->qiov,
682 rwco->flags);
683 } else {
684 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
685 rwco->qiov->size, rwco->qiov,
686 rwco->flags);
687 }
688 }
689
690 /*
691 * Process a vectored synchronous request using coroutines
692 */
693 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
694 QEMUIOVector *qiov, bool is_write,
695 BdrvRequestFlags flags)
696 {
697 Coroutine *co;
698 RwCo rwco = {
699 .child = child,
700 .offset = offset,
701 .qiov = qiov,
702 .is_write = is_write,
703 .ret = NOT_DONE,
704 .flags = flags,
705 };
706
707 if (qemu_in_coroutine()) {
708 /* Fast-path if already in coroutine context */
709 bdrv_rw_co_entry(&rwco);
710 } else {
711 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
712 bdrv_coroutine_enter(child->bs, co);
713 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
714 }
715 return rwco.ret;
716 }
717
718 /*
719 * Process a synchronous request using coroutines
720 */
721 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
722 int nb_sectors, bool is_write, BdrvRequestFlags flags)
723 {
724 QEMUIOVector qiov;
725 struct iovec iov = {
726 .iov_base = (void *)buf,
727 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
728 };
729
730 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
731 return -EINVAL;
732 }
733
734 qemu_iovec_init_external(&qiov, &iov, 1);
735 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
736 &qiov, is_write, flags);
737 }
738
739 /* return < 0 if error. See bdrv_write() for the return codes */
740 int bdrv_read(BdrvChild *child, int64_t sector_num,
741 uint8_t *buf, int nb_sectors)
742 {
743 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
744 }
745
746 /* Return < 0 if error. Important errors are:
747 -EIO generic I/O error (may happen for all errors)
748 -ENOMEDIUM No media inserted.
749 -EINVAL Invalid sector number or nb_sectors
750 -EACCES Trying to write a read-only device
751 */
752 int bdrv_write(BdrvChild *child, int64_t sector_num,
753 const uint8_t *buf, int nb_sectors)
754 {
755 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
756 }
757
758 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
759 int bytes, BdrvRequestFlags flags)
760 {
761 QEMUIOVector qiov;
762 struct iovec iov = {
763 .iov_base = NULL,
764 .iov_len = bytes,
765 };
766
767 qemu_iovec_init_external(&qiov, &iov, 1);
768 return bdrv_prwv_co(child, offset, &qiov, true,
769 BDRV_REQ_ZERO_WRITE | flags);
770 }
771
772 /*
773 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
774 * The operation is sped up by checking the block status and only writing
775 * zeroes to the device if they currently do not return zeroes. Optional
776 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
777 * BDRV_REQ_FUA).
778 *
779 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
780 */
781 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
782 {
783 int ret;
784 int64_t target_size, bytes, offset = 0;
785 BlockDriverState *bs = child->bs;
786
787 target_size = bdrv_getlength(bs);
788 if (target_size < 0) {
789 return target_size;
790 }
791
792 for (;;) {
793 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
794 if (bytes <= 0) {
795 return 0;
796 }
797 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
798 if (ret < 0) {
799 error_report("error getting block status at offset %" PRId64 ": %s",
800 offset, strerror(-ret));
801 return ret;
802 }
803 if (ret & BDRV_BLOCK_ZERO) {
804 offset += bytes;
805 continue;
806 }
807 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
808 if (ret < 0) {
809 error_report("error writing zeroes at offset %" PRId64 ": %s",
810 offset, strerror(-ret));
811 return ret;
812 }
813 offset += bytes;
814 }
815 }
816
817 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
818 {
819 int ret;
820
821 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
822 if (ret < 0) {
823 return ret;
824 }
825
826 return qiov->size;
827 }
828
829 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
830 {
831 QEMUIOVector qiov;
832 struct iovec iov = {
833 .iov_base = (void *)buf,
834 .iov_len = bytes,
835 };
836
837 if (bytes < 0) {
838 return -EINVAL;
839 }
840
841 qemu_iovec_init_external(&qiov, &iov, 1);
842 return bdrv_preadv(child, offset, &qiov);
843 }
844
845 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
846 {
847 int ret;
848
849 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
850 if (ret < 0) {
851 return ret;
852 }
853
854 return qiov->size;
855 }
856
857 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
858 {
859 QEMUIOVector qiov;
860 struct iovec iov = {
861 .iov_base = (void *) buf,
862 .iov_len = bytes,
863 };
864
865 if (bytes < 0) {
866 return -EINVAL;
867 }
868
869 qemu_iovec_init_external(&qiov, &iov, 1);
870 return bdrv_pwritev(child, offset, &qiov);
871 }
872
873 /*
874 * Writes to the file and ensures that no writes are reordered across this
875 * request (acts as a barrier)
876 *
877 * Returns 0 on success, -errno in error cases.
878 */
879 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
880 const void *buf, int count)
881 {
882 int ret;
883
884 ret = bdrv_pwrite(child, offset, buf, count);
885 if (ret < 0) {
886 return ret;
887 }
888
889 ret = bdrv_flush(child->bs);
890 if (ret < 0) {
891 return ret;
892 }
893
894 return 0;
895 }
896
897 typedef struct CoroutineIOCompletion {
898 Coroutine *coroutine;
899 int ret;
900 } CoroutineIOCompletion;
901
902 static void bdrv_co_io_em_complete(void *opaque, int ret)
903 {
904 CoroutineIOCompletion *co = opaque;
905
906 co->ret = ret;
907 aio_co_wake(co->coroutine);
908 }
909
910 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
911 uint64_t offset, uint64_t bytes,
912 QEMUIOVector *qiov, int flags)
913 {
914 BlockDriver *drv = bs->drv;
915 int64_t sector_num;
916 unsigned int nb_sectors;
917
918 assert(!(flags & ~BDRV_REQ_MASK));
919
920 if (!drv) {
921 return -ENOMEDIUM;
922 }
923
924 if (drv->bdrv_co_preadv) {
925 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
926 }
927
928 if (drv->bdrv_aio_preadv) {
929 BlockAIOCB *acb;
930 CoroutineIOCompletion co = {
931 .coroutine = qemu_coroutine_self(),
932 };
933
934 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
935 bdrv_co_io_em_complete, &co);
936 if (acb == NULL) {
937 return -EIO;
938 } else {
939 qemu_coroutine_yield();
940 return co.ret;
941 }
942 }
943
944 sector_num = offset >> BDRV_SECTOR_BITS;
945 nb_sectors = bytes >> BDRV_SECTOR_BITS;
946
947 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
948 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
949 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
950 assert(drv->bdrv_co_readv);
951
952 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
953 }
954
955 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
956 uint64_t offset, uint64_t bytes,
957 QEMUIOVector *qiov, int flags)
958 {
959 BlockDriver *drv = bs->drv;
960 int64_t sector_num;
961 unsigned int nb_sectors;
962 int ret;
963
964 assert(!(flags & ~BDRV_REQ_MASK));
965
966 if (!drv) {
967 return -ENOMEDIUM;
968 }
969
970 if (drv->bdrv_co_pwritev) {
971 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
972 flags & bs->supported_write_flags);
973 flags &= ~bs->supported_write_flags;
974 goto emulate_flags;
975 }
976
977 if (drv->bdrv_aio_pwritev) {
978 BlockAIOCB *acb;
979 CoroutineIOCompletion co = {
980 .coroutine = qemu_coroutine_self(),
981 };
982
983 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
984 flags & bs->supported_write_flags,
985 bdrv_co_io_em_complete, &co);
986 flags &= ~bs->supported_write_flags;
987 if (acb == NULL) {
988 ret = -EIO;
989 } else {
990 qemu_coroutine_yield();
991 ret = co.ret;
992 }
993 goto emulate_flags;
994 }
995
996 sector_num = offset >> BDRV_SECTOR_BITS;
997 nb_sectors = bytes >> BDRV_SECTOR_BITS;
998
999 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1000 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1001 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1002
1003 assert(drv->bdrv_co_writev);
1004 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1005 flags & bs->supported_write_flags);
1006 flags &= ~bs->supported_write_flags;
1007
1008 emulate_flags:
1009 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1010 ret = bdrv_co_flush(bs);
1011 }
1012
1013 return ret;
1014 }
1015
1016 static int coroutine_fn
1017 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1018 uint64_t bytes, QEMUIOVector *qiov)
1019 {
1020 BlockDriver *drv = bs->drv;
1021
1022 if (!drv) {
1023 return -ENOMEDIUM;
1024 }
1025
1026 if (!drv->bdrv_co_pwritev_compressed) {
1027 return -ENOTSUP;
1028 }
1029
1030 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1031 }
1032
1033 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1034 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1035 {
1036 BlockDriverState *bs = child->bs;
1037
1038 /* Perform I/O through a temporary buffer so that users who scribble over
1039 * their read buffer while the operation is in progress do not end up
1040 * modifying the image file. This is critical for zero-copy guest I/O
1041 * where anything might happen inside guest memory.
1042 */
1043 void *bounce_buffer;
1044
1045 BlockDriver *drv = bs->drv;
1046 struct iovec iov;
1047 QEMUIOVector local_qiov;
1048 int64_t cluster_offset;
1049 int64_t cluster_bytes;
1050 size_t skip_bytes;
1051 int ret;
1052 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1053 BDRV_REQUEST_MAX_BYTES);
1054 unsigned int progress = 0;
1055
1056 if (!drv) {
1057 return -ENOMEDIUM;
1058 }
1059
1060 /* FIXME We cannot require callers to have write permissions when all they
1061 * are doing is a read request. If we did things right, write permissions
1062 * would be obtained anyway, but internally by the copy-on-read code. As
1063 * long as it is implemented here rather than in a separate filter driver,
1064 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1065 * it could request permissions. Therefore we have to bypass the permission
1066 * system for the moment. */
1067 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1068
1069 /* Cover entire cluster so no additional backing file I/O is required when
1070 * allocating cluster in the image file. Note that this value may exceed
1071 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1072 * is one reason we loop rather than doing it all at once.
1073 */
1074 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1075 skip_bytes = offset - cluster_offset;
1076
1077 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1078 cluster_offset, cluster_bytes);
1079
1080 bounce_buffer = qemu_try_blockalign(bs,
1081 MIN(MIN(max_transfer, cluster_bytes),
1082 MAX_BOUNCE_BUFFER));
1083 if (bounce_buffer == NULL) {
1084 ret = -ENOMEM;
1085 goto err;
1086 }
1087
1088 while (cluster_bytes) {
1089 int64_t pnum;
1090
1091 ret = bdrv_is_allocated(bs, cluster_offset,
1092 MIN(cluster_bytes, max_transfer), &pnum);
1093 if (ret < 0) {
1094 /* Safe to treat errors in querying allocation as if
1095 * unallocated; we'll probably fail again soon on the
1096 * read, but at least that will set a decent errno.
1097 */
1098 pnum = MIN(cluster_bytes, max_transfer);
1099 }
1100
1101 assert(skip_bytes < pnum);
1102
1103 if (ret <= 0) {
1104 /* Must copy-on-read; use the bounce buffer */
1105 iov.iov_base = bounce_buffer;
1106 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1107 qemu_iovec_init_external(&local_qiov, &iov, 1);
1108
1109 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1110 &local_qiov, 0);
1111 if (ret < 0) {
1112 goto err;
1113 }
1114
1115 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1116 if (drv->bdrv_co_pwrite_zeroes &&
1117 buffer_is_zero(bounce_buffer, pnum)) {
1118 /* FIXME: Should we (perhaps conditionally) be setting
1119 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1120 * that still correctly reads as zero? */
1121 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1122 BDRV_REQ_WRITE_UNCHANGED);
1123 } else {
1124 /* This does not change the data on the disk, it is not
1125 * necessary to flush even in cache=writethrough mode.
1126 */
1127 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1128 &local_qiov,
1129 BDRV_REQ_WRITE_UNCHANGED);
1130 }
1131
1132 if (ret < 0) {
1133 /* It might be okay to ignore write errors for guest
1134 * requests. If this is a deliberate copy-on-read
1135 * then we don't want to ignore the error. Simply
1136 * report it in all cases.
1137 */
1138 goto err;
1139 }
1140
1141 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1142 pnum - skip_bytes);
1143 } else {
1144 /* Read directly into the destination */
1145 qemu_iovec_init(&local_qiov, qiov->niov);
1146 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1147 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1148 &local_qiov, 0);
1149 qemu_iovec_destroy(&local_qiov);
1150 if (ret < 0) {
1151 goto err;
1152 }
1153 }
1154
1155 cluster_offset += pnum;
1156 cluster_bytes -= pnum;
1157 progress += pnum - skip_bytes;
1158 skip_bytes = 0;
1159 }
1160 ret = 0;
1161
1162 err:
1163 qemu_vfree(bounce_buffer);
1164 return ret;
1165 }
1166
1167 /*
1168 * Forwards an already correctly aligned request to the BlockDriver. This
1169 * handles copy on read, zeroing after EOF, and fragmentation of large
1170 * reads; any other features must be implemented by the caller.
1171 */
1172 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1173 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1174 int64_t align, QEMUIOVector *qiov, int flags)
1175 {
1176 BlockDriverState *bs = child->bs;
1177 int64_t total_bytes, max_bytes;
1178 int ret = 0;
1179 uint64_t bytes_remaining = bytes;
1180 int max_transfer;
1181
1182 assert(is_power_of_2(align));
1183 assert((offset & (align - 1)) == 0);
1184 assert((bytes & (align - 1)) == 0);
1185 assert(!qiov || bytes == qiov->size);
1186 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1187 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1188 align);
1189
1190 /* TODO: We would need a per-BDS .supported_read_flags and
1191 * potential fallback support, if we ever implement any read flags
1192 * to pass through to drivers. For now, there aren't any
1193 * passthrough flags. */
1194 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1195
1196 /* Handle Copy on Read and associated serialisation */
1197 if (flags & BDRV_REQ_COPY_ON_READ) {
1198 /* If we touch the same cluster it counts as an overlap. This
1199 * guarantees that allocating writes will be serialized and not race
1200 * with each other for the same cluster. For example, in copy-on-read
1201 * it ensures that the CoR read and write operations are atomic and
1202 * guest writes cannot interleave between them. */
1203 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1204 }
1205
1206 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1207 wait_serialising_requests(req);
1208 }
1209
1210 if (flags & BDRV_REQ_COPY_ON_READ) {
1211 int64_t pnum;
1212
1213 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1214 if (ret < 0) {
1215 goto out;
1216 }
1217
1218 if (!ret || pnum != bytes) {
1219 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1220 goto out;
1221 }
1222 }
1223
1224 /* Forward the request to the BlockDriver, possibly fragmenting it */
1225 total_bytes = bdrv_getlength(bs);
1226 if (total_bytes < 0) {
1227 ret = total_bytes;
1228 goto out;
1229 }
1230
1231 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1232 if (bytes <= max_bytes && bytes <= max_transfer) {
1233 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1234 goto out;
1235 }
1236
1237 while (bytes_remaining) {
1238 int num;
1239
1240 if (max_bytes) {
1241 QEMUIOVector local_qiov;
1242
1243 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1244 assert(num);
1245 qemu_iovec_init(&local_qiov, qiov->niov);
1246 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1247
1248 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1249 num, &local_qiov, 0);
1250 max_bytes -= num;
1251 qemu_iovec_destroy(&local_qiov);
1252 } else {
1253 num = bytes_remaining;
1254 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1255 bytes_remaining);
1256 }
1257 if (ret < 0) {
1258 goto out;
1259 }
1260 bytes_remaining -= num;
1261 }
1262
1263 out:
1264 return ret < 0 ? ret : 0;
1265 }
1266
1267 /*
1268 * Handle a read request in coroutine context
1269 */
1270 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1271 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1272 BdrvRequestFlags flags)
1273 {
1274 BlockDriverState *bs = child->bs;
1275 BlockDriver *drv = bs->drv;
1276 BdrvTrackedRequest req;
1277
1278 uint64_t align = bs->bl.request_alignment;
1279 uint8_t *head_buf = NULL;
1280 uint8_t *tail_buf = NULL;
1281 QEMUIOVector local_qiov;
1282 bool use_local_qiov = false;
1283 int ret;
1284
1285 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1286
1287 if (!drv) {
1288 return -ENOMEDIUM;
1289 }
1290
1291 ret = bdrv_check_byte_request(bs, offset, bytes);
1292 if (ret < 0) {
1293 return ret;
1294 }
1295
1296 bdrv_inc_in_flight(bs);
1297
1298 /* Don't do copy-on-read if we read data before write operation */
1299 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1300 flags |= BDRV_REQ_COPY_ON_READ;
1301 }
1302
1303 /* Align read if necessary by padding qiov */
1304 if (offset & (align - 1)) {
1305 head_buf = qemu_blockalign(bs, align);
1306 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1307 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1308 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1309 use_local_qiov = true;
1310
1311 bytes += offset & (align - 1);
1312 offset = offset & ~(align - 1);
1313 }
1314
1315 if ((offset + bytes) & (align - 1)) {
1316 if (!use_local_qiov) {
1317 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1318 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1319 use_local_qiov = true;
1320 }
1321 tail_buf = qemu_blockalign(bs, align);
1322 qemu_iovec_add(&local_qiov, tail_buf,
1323 align - ((offset + bytes) & (align - 1)));
1324
1325 bytes = ROUND_UP(bytes, align);
1326 }
1327
1328 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1329 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1330 use_local_qiov ? &local_qiov : qiov,
1331 flags);
1332 tracked_request_end(&req);
1333 bdrv_dec_in_flight(bs);
1334
1335 if (use_local_qiov) {
1336 qemu_iovec_destroy(&local_qiov);
1337 qemu_vfree(head_buf);
1338 qemu_vfree(tail_buf);
1339 }
1340
1341 return ret;
1342 }
1343
1344 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1345 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1346 BdrvRequestFlags flags)
1347 {
1348 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1349 return -EINVAL;
1350 }
1351
1352 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1353 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1354 }
1355
1356 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1357 int nb_sectors, QEMUIOVector *qiov)
1358 {
1359 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1360 }
1361
1362 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1363 int64_t offset, int bytes, BdrvRequestFlags flags)
1364 {
1365 BlockDriver *drv = bs->drv;
1366 QEMUIOVector qiov;
1367 struct iovec iov = {0};
1368 int ret = 0;
1369 bool need_flush = false;
1370 int head = 0;
1371 int tail = 0;
1372
1373 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1374 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1375 bs->bl.request_alignment);
1376 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1377
1378 if (!drv) {
1379 return -ENOMEDIUM;
1380 }
1381
1382 assert(alignment % bs->bl.request_alignment == 0);
1383 head = offset % alignment;
1384 tail = (offset + bytes) % alignment;
1385 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1386 assert(max_write_zeroes >= bs->bl.request_alignment);
1387
1388 while (bytes > 0 && !ret) {
1389 int num = bytes;
1390
1391 /* Align request. Block drivers can expect the "bulk" of the request
1392 * to be aligned, and that unaligned requests do not cross cluster
1393 * boundaries.
1394 */
1395 if (head) {
1396 /* Make a small request up to the first aligned sector. For
1397 * convenience, limit this request to max_transfer even if
1398 * we don't need to fall back to writes. */
1399 num = MIN(MIN(bytes, max_transfer), alignment - head);
1400 head = (head + num) % alignment;
1401 assert(num < max_write_zeroes);
1402 } else if (tail && num > alignment) {
1403 /* Shorten the request to the last aligned sector. */
1404 num -= tail;
1405 }
1406
1407 /* limit request size */
1408 if (num > max_write_zeroes) {
1409 num = max_write_zeroes;
1410 }
1411
1412 ret = -ENOTSUP;
1413 /* First try the efficient write zeroes operation */
1414 if (drv->bdrv_co_pwrite_zeroes) {
1415 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1416 flags & bs->supported_zero_flags);
1417 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1418 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1419 need_flush = true;
1420 }
1421 } else {
1422 assert(!bs->supported_zero_flags);
1423 }
1424
1425 if (ret == -ENOTSUP) {
1426 /* Fall back to bounce buffer if write zeroes is unsupported */
1427 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1428
1429 if ((flags & BDRV_REQ_FUA) &&
1430 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1431 /* No need for bdrv_driver_pwrite() to do a fallback
1432 * flush on each chunk; use just one at the end */
1433 write_flags &= ~BDRV_REQ_FUA;
1434 need_flush = true;
1435 }
1436 num = MIN(num, max_transfer);
1437 iov.iov_len = num;
1438 if (iov.iov_base == NULL) {
1439 iov.iov_base = qemu_try_blockalign(bs, num);
1440 if (iov.iov_base == NULL) {
1441 ret = -ENOMEM;
1442 goto fail;
1443 }
1444 memset(iov.iov_base, 0, num);
1445 }
1446 qemu_iovec_init_external(&qiov, &iov, 1);
1447
1448 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1449
1450 /* Keep bounce buffer around if it is big enough for all
1451 * all future requests.
1452 */
1453 if (num < max_transfer) {
1454 qemu_vfree(iov.iov_base);
1455 iov.iov_base = NULL;
1456 }
1457 }
1458
1459 offset += num;
1460 bytes -= num;
1461 }
1462
1463 fail:
1464 if (ret == 0 && need_flush) {
1465 ret = bdrv_co_flush(bs);
1466 }
1467 qemu_vfree(iov.iov_base);
1468 return ret;
1469 }
1470
1471 /*
1472 * Forwards an already correctly aligned write request to the BlockDriver,
1473 * after possibly fragmenting it.
1474 */
1475 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1476 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1477 int64_t align, QEMUIOVector *qiov, int flags)
1478 {
1479 BlockDriverState *bs = child->bs;
1480 BlockDriver *drv = bs->drv;
1481 bool waited;
1482 int ret;
1483
1484 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1485 uint64_t bytes_remaining = bytes;
1486 int max_transfer;
1487
1488 if (!drv) {
1489 return -ENOMEDIUM;
1490 }
1491
1492 if (bdrv_has_readonly_bitmaps(bs)) {
1493 return -EPERM;
1494 }
1495
1496 assert(is_power_of_2(align));
1497 assert((offset & (align - 1)) == 0);
1498 assert((bytes & (align - 1)) == 0);
1499 assert(!qiov || bytes == qiov->size);
1500 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1501 assert(!(flags & ~BDRV_REQ_MASK));
1502 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1503 align);
1504
1505 waited = wait_serialising_requests(req);
1506 assert(!waited || !req->serialising);
1507 assert(req->overlap_offset <= offset);
1508 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1509 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1510 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1511 } else {
1512 assert(child->perm & BLK_PERM_WRITE);
1513 }
1514 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1515
1516 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1517
1518 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1519 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1520 qemu_iovec_is_zero(qiov)) {
1521 flags |= BDRV_REQ_ZERO_WRITE;
1522 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1523 flags |= BDRV_REQ_MAY_UNMAP;
1524 }
1525 }
1526
1527 if (ret < 0) {
1528 /* Do nothing, write notifier decided to fail this request */
1529 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1530 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1531 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1532 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1533 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1534 } else if (bytes <= max_transfer) {
1535 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1536 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1537 } else {
1538 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1539 while (bytes_remaining) {
1540 int num = MIN(bytes_remaining, max_transfer);
1541 QEMUIOVector local_qiov;
1542 int local_flags = flags;
1543
1544 assert(num);
1545 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1546 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1547 /* If FUA is going to be emulated by flush, we only
1548 * need to flush on the last iteration */
1549 local_flags &= ~BDRV_REQ_FUA;
1550 }
1551 qemu_iovec_init(&local_qiov, qiov->niov);
1552 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1553
1554 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1555 num, &local_qiov, local_flags);
1556 qemu_iovec_destroy(&local_qiov);
1557 if (ret < 0) {
1558 break;
1559 }
1560 bytes_remaining -= num;
1561 }
1562 }
1563 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1564
1565 atomic_inc(&bs->write_gen);
1566 bdrv_set_dirty(bs, offset, bytes);
1567
1568 stat64_max(&bs->wr_highest_offset, offset + bytes);
1569
1570 if (ret >= 0) {
1571 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1572 ret = 0;
1573 }
1574
1575 return ret;
1576 }
1577
1578 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1579 int64_t offset,
1580 unsigned int bytes,
1581 BdrvRequestFlags flags,
1582 BdrvTrackedRequest *req)
1583 {
1584 BlockDriverState *bs = child->bs;
1585 uint8_t *buf = NULL;
1586 QEMUIOVector local_qiov;
1587 struct iovec iov;
1588 uint64_t align = bs->bl.request_alignment;
1589 unsigned int head_padding_bytes, tail_padding_bytes;
1590 int ret = 0;
1591
1592 head_padding_bytes = offset & (align - 1);
1593 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1594
1595
1596 assert(flags & BDRV_REQ_ZERO_WRITE);
1597 if (head_padding_bytes || tail_padding_bytes) {
1598 buf = qemu_blockalign(bs, align);
1599 iov = (struct iovec) {
1600 .iov_base = buf,
1601 .iov_len = align,
1602 };
1603 qemu_iovec_init_external(&local_qiov, &iov, 1);
1604 }
1605 if (head_padding_bytes) {
1606 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1607
1608 /* RMW the unaligned part before head. */
1609 mark_request_serialising(req, align);
1610 wait_serialising_requests(req);
1611 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1612 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1613 align, &local_qiov, 0);
1614 if (ret < 0) {
1615 goto fail;
1616 }
1617 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1618
1619 memset(buf + head_padding_bytes, 0, zero_bytes);
1620 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1621 align, &local_qiov,
1622 flags & ~BDRV_REQ_ZERO_WRITE);
1623 if (ret < 0) {
1624 goto fail;
1625 }
1626 offset += zero_bytes;
1627 bytes -= zero_bytes;
1628 }
1629
1630 assert(!bytes || (offset & (align - 1)) == 0);
1631 if (bytes >= align) {
1632 /* Write the aligned part in the middle. */
1633 uint64_t aligned_bytes = bytes & ~(align - 1);
1634 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1635 NULL, flags);
1636 if (ret < 0) {
1637 goto fail;
1638 }
1639 bytes -= aligned_bytes;
1640 offset += aligned_bytes;
1641 }
1642
1643 assert(!bytes || (offset & (align - 1)) == 0);
1644 if (bytes) {
1645 assert(align == tail_padding_bytes + bytes);
1646 /* RMW the unaligned part after tail. */
1647 mark_request_serialising(req, align);
1648 wait_serialising_requests(req);
1649 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1650 ret = bdrv_aligned_preadv(child, req, offset, align,
1651 align, &local_qiov, 0);
1652 if (ret < 0) {
1653 goto fail;
1654 }
1655 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1656
1657 memset(buf, 0, bytes);
1658 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1659 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1660 }
1661 fail:
1662 qemu_vfree(buf);
1663 return ret;
1664
1665 }
1666
1667 /*
1668 * Handle a write request in coroutine context
1669 */
1670 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1671 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1672 BdrvRequestFlags flags)
1673 {
1674 BlockDriverState *bs = child->bs;
1675 BdrvTrackedRequest req;
1676 uint64_t align = bs->bl.request_alignment;
1677 uint8_t *head_buf = NULL;
1678 uint8_t *tail_buf = NULL;
1679 QEMUIOVector local_qiov;
1680 bool use_local_qiov = false;
1681 int ret;
1682
1683 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1684
1685 if (!bs->drv) {
1686 return -ENOMEDIUM;
1687 }
1688 if (bs->read_only) {
1689 return -EPERM;
1690 }
1691 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1692
1693 ret = bdrv_check_byte_request(bs, offset, bytes);
1694 if (ret < 0) {
1695 return ret;
1696 }
1697
1698 bdrv_inc_in_flight(bs);
1699 /*
1700 * Align write if necessary by performing a read-modify-write cycle.
1701 * Pad qiov with the read parts and be sure to have a tracked request not
1702 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1703 */
1704 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1705
1706 if (flags & BDRV_REQ_ZERO_WRITE) {
1707 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1708 goto out;
1709 }
1710
1711 if (offset & (align - 1)) {
1712 QEMUIOVector head_qiov;
1713 struct iovec head_iov;
1714
1715 mark_request_serialising(&req, align);
1716 wait_serialising_requests(&req);
1717
1718 head_buf = qemu_blockalign(bs, align);
1719 head_iov = (struct iovec) {
1720 .iov_base = head_buf,
1721 .iov_len = align,
1722 };
1723 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1724
1725 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1726 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1727 align, &head_qiov, 0);
1728 if (ret < 0) {
1729 goto fail;
1730 }
1731 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1732
1733 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1734 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1735 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1736 use_local_qiov = true;
1737
1738 bytes += offset & (align - 1);
1739 offset = offset & ~(align - 1);
1740
1741 /* We have read the tail already if the request is smaller
1742 * than one aligned block.
1743 */
1744 if (bytes < align) {
1745 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1746 bytes = align;
1747 }
1748 }
1749
1750 if ((offset + bytes) & (align - 1)) {
1751 QEMUIOVector tail_qiov;
1752 struct iovec tail_iov;
1753 size_t tail_bytes;
1754 bool waited;
1755
1756 mark_request_serialising(&req, align);
1757 waited = wait_serialising_requests(&req);
1758 assert(!waited || !use_local_qiov);
1759
1760 tail_buf = qemu_blockalign(bs, align);
1761 tail_iov = (struct iovec) {
1762 .iov_base = tail_buf,
1763 .iov_len = align,
1764 };
1765 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1766
1767 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1768 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1769 align, align, &tail_qiov, 0);
1770 if (ret < 0) {
1771 goto fail;
1772 }
1773 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1774
1775 if (!use_local_qiov) {
1776 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1777 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1778 use_local_qiov = true;
1779 }
1780
1781 tail_bytes = (offset + bytes) & (align - 1);
1782 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1783
1784 bytes = ROUND_UP(bytes, align);
1785 }
1786
1787 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1788 use_local_qiov ? &local_qiov : qiov,
1789 flags);
1790
1791 fail:
1792
1793 if (use_local_qiov) {
1794 qemu_iovec_destroy(&local_qiov);
1795 }
1796 qemu_vfree(head_buf);
1797 qemu_vfree(tail_buf);
1798 out:
1799 tracked_request_end(&req);
1800 bdrv_dec_in_flight(bs);
1801 return ret;
1802 }
1803
1804 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1805 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1806 BdrvRequestFlags flags)
1807 {
1808 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1809 return -EINVAL;
1810 }
1811
1812 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1813 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1814 }
1815
1816 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1817 int nb_sectors, QEMUIOVector *qiov)
1818 {
1819 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1820 }
1821
1822 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1823 int bytes, BdrvRequestFlags flags)
1824 {
1825 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1826
1827 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1828 flags &= ~BDRV_REQ_MAY_UNMAP;
1829 }
1830
1831 return bdrv_co_pwritev(child, offset, bytes, NULL,
1832 BDRV_REQ_ZERO_WRITE | flags);
1833 }
1834
1835 /*
1836 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1837 */
1838 int bdrv_flush_all(void)
1839 {
1840 BdrvNextIterator it;
1841 BlockDriverState *bs = NULL;
1842 int result = 0;
1843
1844 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1845 AioContext *aio_context = bdrv_get_aio_context(bs);
1846 int ret;
1847
1848 aio_context_acquire(aio_context);
1849 ret = bdrv_flush(bs);
1850 if (ret < 0 && !result) {
1851 result = ret;
1852 }
1853 aio_context_release(aio_context);
1854 }
1855
1856 return result;
1857 }
1858
1859
1860 typedef struct BdrvCoBlockStatusData {
1861 BlockDriverState *bs;
1862 BlockDriverState *base;
1863 bool want_zero;
1864 int64_t offset;
1865 int64_t bytes;
1866 int64_t *pnum;
1867 int64_t *map;
1868 BlockDriverState **file;
1869 int ret;
1870 bool done;
1871 } BdrvCoBlockStatusData;
1872
1873 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
1874 bool want_zero,
1875 int64_t offset,
1876 int64_t bytes,
1877 int64_t *pnum,
1878 int64_t *map,
1879 BlockDriverState **file)
1880 {
1881 assert(bs->file && bs->file->bs);
1882 *pnum = bytes;
1883 *map = offset;
1884 *file = bs->file->bs;
1885 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1886 }
1887
1888 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
1889 bool want_zero,
1890 int64_t offset,
1891 int64_t bytes,
1892 int64_t *pnum,
1893 int64_t *map,
1894 BlockDriverState **file)
1895 {
1896 assert(bs->backing && bs->backing->bs);
1897 *pnum = bytes;
1898 *map = offset;
1899 *file = bs->backing->bs;
1900 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
1901 }
1902
1903 /*
1904 * Returns the allocation status of the specified sectors.
1905 * Drivers not implementing the functionality are assumed to not support
1906 * backing files, hence all their sectors are reported as allocated.
1907 *
1908 * If 'want_zero' is true, the caller is querying for mapping
1909 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
1910 * _ZERO where possible; otherwise, the result favors larger 'pnum',
1911 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
1912 *
1913 * If 'offset' is beyond the end of the disk image the return value is
1914 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1915 *
1916 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
1917 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1918 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1919 *
1920 * 'pnum' is set to the number of bytes (including and immediately
1921 * following the specified offset) that are easily known to be in the
1922 * same allocated/unallocated state. Note that a second call starting
1923 * at the original offset plus returned pnum may have the same status.
1924 * The returned value is non-zero on success except at end-of-file.
1925 *
1926 * Returns negative errno on failure. Otherwise, if the
1927 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1928 * set to the host mapping and BDS corresponding to the guest offset.
1929 */
1930 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1931 bool want_zero,
1932 int64_t offset, int64_t bytes,
1933 int64_t *pnum, int64_t *map,
1934 BlockDriverState **file)
1935 {
1936 int64_t total_size;
1937 int64_t n; /* bytes */
1938 int ret;
1939 int64_t local_map = 0;
1940 BlockDriverState *local_file = NULL;
1941 int64_t aligned_offset, aligned_bytes;
1942 uint32_t align;
1943
1944 assert(pnum);
1945 *pnum = 0;
1946 total_size = bdrv_getlength(bs);
1947 if (total_size < 0) {
1948 ret = total_size;
1949 goto early_out;
1950 }
1951
1952 if (offset >= total_size) {
1953 ret = BDRV_BLOCK_EOF;
1954 goto early_out;
1955 }
1956 if (!bytes) {
1957 ret = 0;
1958 goto early_out;
1959 }
1960
1961 n = total_size - offset;
1962 if (n < bytes) {
1963 bytes = n;
1964 }
1965
1966 /* Must be non-NULL or bdrv_getlength() would have failed */
1967 assert(bs->drv);
1968 if (!bs->drv->bdrv_co_block_status) {
1969 *pnum = bytes;
1970 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1971 if (offset + bytes == total_size) {
1972 ret |= BDRV_BLOCK_EOF;
1973 }
1974 if (bs->drv->protocol_name) {
1975 ret |= BDRV_BLOCK_OFFSET_VALID;
1976 local_map = offset;
1977 local_file = bs;
1978 }
1979 goto early_out;
1980 }
1981
1982 bdrv_inc_in_flight(bs);
1983
1984 /* Round out to request_alignment boundaries */
1985 align = bs->bl.request_alignment;
1986 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1987 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1988
1989 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
1990 aligned_bytes, pnum, &local_map,
1991 &local_file);
1992 if (ret < 0) {
1993 *pnum = 0;
1994 goto out;
1995 }
1996
1997 /*
1998 * The driver's result must be a non-zero multiple of request_alignment.
1999 * Clamp pnum and adjust map to original request.
2000 */
2001 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2002 align > offset - aligned_offset);
2003 *pnum -= offset - aligned_offset;
2004 if (*pnum > bytes) {
2005 *pnum = bytes;
2006 }
2007 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2008 local_map += offset - aligned_offset;
2009 }
2010
2011 if (ret & BDRV_BLOCK_RAW) {
2012 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2013 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2014 *pnum, pnum, &local_map, &local_file);
2015 goto out;
2016 }
2017
2018 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2019 ret |= BDRV_BLOCK_ALLOCATED;
2020 } else if (want_zero) {
2021 if (bdrv_unallocated_blocks_are_zero(bs)) {
2022 ret |= BDRV_BLOCK_ZERO;
2023 } else if (bs->backing) {
2024 BlockDriverState *bs2 = bs->backing->bs;
2025 int64_t size2 = bdrv_getlength(bs2);
2026
2027 if (size2 >= 0 && offset >= size2) {
2028 ret |= BDRV_BLOCK_ZERO;
2029 }
2030 }
2031 }
2032
2033 if (want_zero && local_file && local_file != bs &&
2034 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2035 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2036 int64_t file_pnum;
2037 int ret2;
2038
2039 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2040 *pnum, &file_pnum, NULL, NULL);
2041 if (ret2 >= 0) {
2042 /* Ignore errors. This is just providing extra information, it
2043 * is useful but not necessary.
2044 */
2045 if (ret2 & BDRV_BLOCK_EOF &&
2046 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2047 /*
2048 * It is valid for the format block driver to read
2049 * beyond the end of the underlying file's current
2050 * size; such areas read as zero.
2051 */
2052 ret |= BDRV_BLOCK_ZERO;
2053 } else {
2054 /* Limit request to the range reported by the protocol driver */
2055 *pnum = file_pnum;
2056 ret |= (ret2 & BDRV_BLOCK_ZERO);
2057 }
2058 }
2059 }
2060
2061 out:
2062 bdrv_dec_in_flight(bs);
2063 if (ret >= 0 && offset + *pnum == total_size) {
2064 ret |= BDRV_BLOCK_EOF;
2065 }
2066 early_out:
2067 if (file) {
2068 *file = local_file;
2069 }
2070 if (map) {
2071 *map = local_map;
2072 }
2073 return ret;
2074 }
2075
2076 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2077 BlockDriverState *base,
2078 bool want_zero,
2079 int64_t offset,
2080 int64_t bytes,
2081 int64_t *pnum,
2082 int64_t *map,
2083 BlockDriverState **file)
2084 {
2085 BlockDriverState *p;
2086 int ret = 0;
2087 bool first = true;
2088
2089 assert(bs != base);
2090 for (p = bs; p != base; p = backing_bs(p)) {
2091 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2092 file);
2093 if (ret < 0) {
2094 break;
2095 }
2096 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2097 /*
2098 * Reading beyond the end of the file continues to read
2099 * zeroes, but we can only widen the result to the
2100 * unallocated length we learned from an earlier
2101 * iteration.
2102 */
2103 *pnum = bytes;
2104 }
2105 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2106 break;
2107 }
2108 /* [offset, pnum] unallocated on this layer, which could be only
2109 * the first part of [offset, bytes]. */
2110 bytes = MIN(bytes, *pnum);
2111 first = false;
2112 }
2113 return ret;
2114 }
2115
2116 /* Coroutine wrapper for bdrv_block_status_above() */
2117 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2118 {
2119 BdrvCoBlockStatusData *data = opaque;
2120
2121 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2122 data->want_zero,
2123 data->offset, data->bytes,
2124 data->pnum, data->map, data->file);
2125 data->done = true;
2126 }
2127
2128 /*
2129 * Synchronous wrapper around bdrv_co_block_status_above().
2130 *
2131 * See bdrv_co_block_status_above() for details.
2132 */
2133 static int bdrv_common_block_status_above(BlockDriverState *bs,
2134 BlockDriverState *base,
2135 bool want_zero, int64_t offset,
2136 int64_t bytes, int64_t *pnum,
2137 int64_t *map,
2138 BlockDriverState **file)
2139 {
2140 Coroutine *co;
2141 BdrvCoBlockStatusData data = {
2142 .bs = bs,
2143 .base = base,
2144 .want_zero = want_zero,
2145 .offset = offset,
2146 .bytes = bytes,
2147 .pnum = pnum,
2148 .map = map,
2149 .file = file,
2150 .done = false,
2151 };
2152
2153 if (qemu_in_coroutine()) {
2154 /* Fast-path if already in coroutine context */
2155 bdrv_block_status_above_co_entry(&data);
2156 } else {
2157 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2158 bdrv_coroutine_enter(bs, co);
2159 BDRV_POLL_WHILE(bs, !data.done);
2160 }
2161 return data.ret;
2162 }
2163
2164 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2165 int64_t offset, int64_t bytes, int64_t *pnum,
2166 int64_t *map, BlockDriverState **file)
2167 {
2168 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2169 pnum, map, file);
2170 }
2171
2172 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2173 int64_t *pnum, int64_t *map, BlockDriverState **file)
2174 {
2175 return bdrv_block_status_above(bs, backing_bs(bs),
2176 offset, bytes, pnum, map, file);
2177 }
2178
2179 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2180 int64_t bytes, int64_t *pnum)
2181 {
2182 int ret;
2183 int64_t dummy;
2184
2185 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2186 bytes, pnum ? pnum : &dummy, NULL,
2187 NULL);
2188 if (ret < 0) {
2189 return ret;
2190 }
2191 return !!(ret & BDRV_BLOCK_ALLOCATED);
2192 }
2193
2194 /*
2195 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2196 *
2197 * Return true if (a prefix of) the given range is allocated in any image
2198 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2199 * offset is allocated in any image of the chain. Return false otherwise,
2200 * or negative errno on failure.
2201 *
2202 * 'pnum' is set to the number of bytes (including and immediately
2203 * following the specified offset) that are known to be in the same
2204 * allocated/unallocated state. Note that a subsequent call starting
2205 * at 'offset + *pnum' may return the same allocation status (in other
2206 * words, the result is not necessarily the maximum possible range);
2207 * but 'pnum' will only be 0 when end of file is reached.
2208 *
2209 */
2210 int bdrv_is_allocated_above(BlockDriverState *top,
2211 BlockDriverState *base,
2212 int64_t offset, int64_t bytes, int64_t *pnum)
2213 {
2214 BlockDriverState *intermediate;
2215 int ret;
2216 int64_t n = bytes;
2217
2218 intermediate = top;
2219 while (intermediate && intermediate != base) {
2220 int64_t pnum_inter;
2221 int64_t size_inter;
2222
2223 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2224 if (ret < 0) {
2225 return ret;
2226 }
2227 if (ret) {
2228 *pnum = pnum_inter;
2229 return 1;
2230 }
2231
2232 size_inter = bdrv_getlength(intermediate);
2233 if (size_inter < 0) {
2234 return size_inter;
2235 }
2236 if (n > pnum_inter &&
2237 (intermediate == top || offset + pnum_inter < size_inter)) {
2238 n = pnum_inter;
2239 }
2240
2241 intermediate = backing_bs(intermediate);
2242 }
2243
2244 *pnum = n;
2245 return 0;
2246 }
2247
2248 typedef struct BdrvVmstateCo {
2249 BlockDriverState *bs;
2250 QEMUIOVector *qiov;
2251 int64_t pos;
2252 bool is_read;
2253 int ret;
2254 } BdrvVmstateCo;
2255
2256 static int coroutine_fn
2257 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2258 bool is_read)
2259 {
2260 BlockDriver *drv = bs->drv;
2261 int ret = -ENOTSUP;
2262
2263 bdrv_inc_in_flight(bs);
2264
2265 if (!drv) {
2266 ret = -ENOMEDIUM;
2267 } else if (drv->bdrv_load_vmstate) {
2268 if (is_read) {
2269 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2270 } else {
2271 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2272 }
2273 } else if (bs->file) {
2274 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2275 }
2276
2277 bdrv_dec_in_flight(bs);
2278 return ret;
2279 }
2280
2281 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2282 {
2283 BdrvVmstateCo *co = opaque;
2284 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2285 }
2286
2287 static inline int
2288 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2289 bool is_read)
2290 {
2291 if (qemu_in_coroutine()) {
2292 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2293 } else {
2294 BdrvVmstateCo data = {
2295 .bs = bs,
2296 .qiov = qiov,
2297 .pos = pos,
2298 .is_read = is_read,
2299 .ret = -EINPROGRESS,
2300 };
2301 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2302
2303 bdrv_coroutine_enter(bs, co);
2304 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2305 return data.ret;
2306 }
2307 }
2308
2309 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2310 int64_t pos, int size)
2311 {
2312 QEMUIOVector qiov;
2313 struct iovec iov = {
2314 .iov_base = (void *) buf,
2315 .iov_len = size,
2316 };
2317 int ret;
2318
2319 qemu_iovec_init_external(&qiov, &iov, 1);
2320
2321 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2322 if (ret < 0) {
2323 return ret;
2324 }
2325
2326 return size;
2327 }
2328
2329 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2330 {
2331 return bdrv_rw_vmstate(bs, qiov, pos, false);
2332 }
2333
2334 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2335 int64_t pos, int size)
2336 {
2337 QEMUIOVector qiov;
2338 struct iovec iov = {
2339 .iov_base = buf,
2340 .iov_len = size,
2341 };
2342 int ret;
2343
2344 qemu_iovec_init_external(&qiov, &iov, 1);
2345 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2346 if (ret < 0) {
2347 return ret;
2348 }
2349
2350 return size;
2351 }
2352
2353 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2354 {
2355 return bdrv_rw_vmstate(bs, qiov, pos, true);
2356 }
2357
2358 /**************************************************************/
2359 /* async I/Os */
2360
2361 void bdrv_aio_cancel(BlockAIOCB *acb)
2362 {
2363 qemu_aio_ref(acb);
2364 bdrv_aio_cancel_async(acb);
2365 while (acb->refcnt > 1) {
2366 if (acb->aiocb_info->get_aio_context) {
2367 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2368 } else if (acb->bs) {
2369 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2370 * assert that we're not using an I/O thread. Thread-safe
2371 * code should use bdrv_aio_cancel_async exclusively.
2372 */
2373 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2374 aio_poll(bdrv_get_aio_context(acb->bs), true);
2375 } else {
2376 abort();
2377 }
2378 }
2379 qemu_aio_unref(acb);
2380 }
2381
2382 /* Async version of aio cancel. The caller is not blocked if the acb implements
2383 * cancel_async, otherwise we do nothing and let the request normally complete.
2384 * In either case the completion callback must be called. */
2385 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2386 {
2387 if (acb->aiocb_info->cancel_async) {
2388 acb->aiocb_info->cancel_async(acb);
2389 }
2390 }
2391
2392 /**************************************************************/
2393 /* Coroutine block device emulation */
2394
2395 typedef struct FlushCo {
2396 BlockDriverState *bs;
2397 int ret;
2398 } FlushCo;
2399
2400
2401 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2402 {
2403 FlushCo *rwco = opaque;
2404
2405 rwco->ret = bdrv_co_flush(rwco->bs);
2406 }
2407
2408 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2409 {
2410 int current_gen;
2411 int ret = 0;
2412
2413 bdrv_inc_in_flight(bs);
2414
2415 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2416 bdrv_is_sg(bs)) {
2417 goto early_exit;
2418 }
2419
2420 qemu_co_mutex_lock(&bs->reqs_lock);
2421 current_gen = atomic_read(&bs->write_gen);
2422
2423 /* Wait until any previous flushes are completed */
2424 while (bs->active_flush_req) {
2425 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2426 }
2427
2428 /* Flushes reach this point in nondecreasing current_gen order. */
2429 bs->active_flush_req = true;
2430 qemu_co_mutex_unlock(&bs->reqs_lock);
2431
2432 /* Write back all layers by calling one driver function */
2433 if (bs->drv->bdrv_co_flush) {
2434 ret = bs->drv->bdrv_co_flush(bs);
2435 goto out;
2436 }
2437
2438 /* Write back cached data to the OS even with cache=unsafe */
2439 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2440 if (bs->drv->bdrv_co_flush_to_os) {
2441 ret = bs->drv->bdrv_co_flush_to_os(bs);
2442 if (ret < 0) {
2443 goto out;
2444 }
2445 }
2446
2447 /* But don't actually force it to the disk with cache=unsafe */
2448 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2449 goto flush_parent;
2450 }
2451
2452 /* Check if we really need to flush anything */
2453 if (bs->flushed_gen == current_gen) {
2454 goto flush_parent;
2455 }
2456
2457 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2458 if (!bs->drv) {
2459 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2460 * (even in case of apparent success) */
2461 ret = -ENOMEDIUM;
2462 goto out;
2463 }
2464 if (bs->drv->bdrv_co_flush_to_disk) {
2465 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2466 } else if (bs->drv->bdrv_aio_flush) {
2467 BlockAIOCB *acb;
2468 CoroutineIOCompletion co = {
2469 .coroutine = qemu_coroutine_self(),
2470 };
2471
2472 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2473 if (acb == NULL) {
2474 ret = -EIO;
2475 } else {
2476 qemu_coroutine_yield();
2477 ret = co.ret;
2478 }
2479 } else {
2480 /*
2481 * Some block drivers always operate in either writethrough or unsafe
2482 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2483 * know how the server works (because the behaviour is hardcoded or
2484 * depends on server-side configuration), so we can't ensure that
2485 * everything is safe on disk. Returning an error doesn't work because
2486 * that would break guests even if the server operates in writethrough
2487 * mode.
2488 *
2489 * Let's hope the user knows what he's doing.
2490 */
2491 ret = 0;
2492 }
2493
2494 if (ret < 0) {
2495 goto out;
2496 }
2497
2498 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2499 * in the case of cache=unsafe, so there are no useless flushes.
2500 */
2501 flush_parent:
2502 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2503 out:
2504 /* Notify any pending flushes that we have completed */
2505 if (ret == 0) {
2506 bs->flushed_gen = current_gen;
2507 }
2508
2509 qemu_co_mutex_lock(&bs->reqs_lock);
2510 bs->active_flush_req = false;
2511 /* Return value is ignored - it's ok if wait queue is empty */
2512 qemu_co_queue_next(&bs->flush_queue);
2513 qemu_co_mutex_unlock(&bs->reqs_lock);
2514
2515 early_exit:
2516 bdrv_dec_in_flight(bs);
2517 return ret;
2518 }
2519
2520 int bdrv_flush(BlockDriverState *bs)
2521 {
2522 Coroutine *co;
2523 FlushCo flush_co = {
2524 .bs = bs,
2525 .ret = NOT_DONE,
2526 };
2527
2528 if (qemu_in_coroutine()) {
2529 /* Fast-path if already in coroutine context */
2530 bdrv_flush_co_entry(&flush_co);
2531 } else {
2532 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2533 bdrv_coroutine_enter(bs, co);
2534 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2535 }
2536
2537 return flush_co.ret;
2538 }
2539
2540 typedef struct DiscardCo {
2541 BlockDriverState *bs;
2542 int64_t offset;
2543 int bytes;
2544 int ret;
2545 } DiscardCo;
2546 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2547 {
2548 DiscardCo *rwco = opaque;
2549
2550 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2551 }
2552
2553 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2554 int bytes)
2555 {
2556 BdrvTrackedRequest req;
2557 int max_pdiscard, ret;
2558 int head, tail, align;
2559
2560 if (!bs->drv) {
2561 return -ENOMEDIUM;
2562 }
2563
2564 if (bdrv_has_readonly_bitmaps(bs)) {
2565 return -EPERM;
2566 }
2567
2568 ret = bdrv_check_byte_request(bs, offset, bytes);
2569 if (ret < 0) {
2570 return ret;
2571 } else if (bs->read_only) {
2572 return -EPERM;
2573 }
2574 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2575
2576 /* Do nothing if disabled. */
2577 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2578 return 0;
2579 }
2580
2581 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2582 return 0;
2583 }
2584
2585 /* Discard is advisory, but some devices track and coalesce
2586 * unaligned requests, so we must pass everything down rather than
2587 * round here. Still, most devices will just silently ignore
2588 * unaligned requests (by returning -ENOTSUP), so we must fragment
2589 * the request accordingly. */
2590 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2591 assert(align % bs->bl.request_alignment == 0);
2592 head = offset % align;
2593 tail = (offset + bytes) % align;
2594
2595 bdrv_inc_in_flight(bs);
2596 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2597
2598 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2599 if (ret < 0) {
2600 goto out;
2601 }
2602
2603 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2604 align);
2605 assert(max_pdiscard >= bs->bl.request_alignment);
2606
2607 while (bytes > 0) {
2608 int num = bytes;
2609
2610 if (head) {
2611 /* Make small requests to get to alignment boundaries. */
2612 num = MIN(bytes, align - head);
2613 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2614 num %= bs->bl.request_alignment;
2615 }
2616 head = (head + num) % align;
2617 assert(num < max_pdiscard);
2618 } else if (tail) {
2619 if (num > align) {
2620 /* Shorten the request to the last aligned cluster. */
2621 num -= tail;
2622 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2623 tail > bs->bl.request_alignment) {
2624 tail %= bs->bl.request_alignment;
2625 num -= tail;
2626 }
2627 }
2628 /* limit request size */
2629 if (num > max_pdiscard) {
2630 num = max_pdiscard;
2631 }
2632
2633 if (!bs->drv) {
2634 ret = -ENOMEDIUM;
2635 goto out;
2636 }
2637 if (bs->drv->bdrv_co_pdiscard) {
2638 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2639 } else {
2640 BlockAIOCB *acb;
2641 CoroutineIOCompletion co = {
2642 .coroutine = qemu_coroutine_self(),
2643 };
2644
2645 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2646 bdrv_co_io_em_complete, &co);
2647 if (acb == NULL) {
2648 ret = -EIO;
2649 goto out;
2650 } else {
2651 qemu_coroutine_yield();
2652 ret = co.ret;
2653 }
2654 }
2655 if (ret && ret != -ENOTSUP) {
2656 goto out;
2657 }
2658
2659 offset += num;
2660 bytes -= num;
2661 }
2662 ret = 0;
2663 out:
2664 atomic_inc(&bs->write_gen);
2665 bdrv_set_dirty(bs, req.offset, req.bytes);
2666 tracked_request_end(&req);
2667 bdrv_dec_in_flight(bs);
2668 return ret;
2669 }
2670
2671 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2672 {
2673 Coroutine *co;
2674 DiscardCo rwco = {
2675 .bs = bs,
2676 .offset = offset,
2677 .bytes = bytes,
2678 .ret = NOT_DONE,
2679 };
2680
2681 if (qemu_in_coroutine()) {
2682 /* Fast-path if already in coroutine context */
2683 bdrv_pdiscard_co_entry(&rwco);
2684 } else {
2685 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2686 bdrv_coroutine_enter(bs, co);
2687 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2688 }
2689
2690 return rwco.ret;
2691 }
2692
2693 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2694 {
2695 BlockDriver *drv = bs->drv;
2696 CoroutineIOCompletion co = {
2697 .coroutine = qemu_coroutine_self(),
2698 };
2699 BlockAIOCB *acb;
2700
2701 bdrv_inc_in_flight(bs);
2702 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2703 co.ret = -ENOTSUP;
2704 goto out;
2705 }
2706
2707 if (drv->bdrv_co_ioctl) {
2708 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2709 } else {
2710 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2711 if (!acb) {
2712 co.ret = -ENOTSUP;
2713 goto out;
2714 }
2715 qemu_coroutine_yield();
2716 }
2717 out:
2718 bdrv_dec_in_flight(bs);
2719 return co.ret;
2720 }
2721
2722 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2723 {
2724 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2725 }
2726
2727 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2728 {
2729 return memset(qemu_blockalign(bs, size), 0, size);
2730 }
2731
2732 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2733 {
2734 size_t align = bdrv_opt_mem_align(bs);
2735
2736 /* Ensure that NULL is never returned on success */
2737 assert(align > 0);
2738 if (size == 0) {
2739 size = align;
2740 }
2741
2742 return qemu_try_memalign(align, size);
2743 }
2744
2745 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2746 {
2747 void *mem = qemu_try_blockalign(bs, size);
2748
2749 if (mem) {
2750 memset(mem, 0, size);
2751 }
2752
2753 return mem;
2754 }
2755
2756 /*
2757 * Check if all memory in this vector is sector aligned.
2758 */
2759 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2760 {
2761 int i;
2762 size_t alignment = bdrv_min_mem_align(bs);
2763
2764 for (i = 0; i < qiov->niov; i++) {
2765 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2766 return false;
2767 }
2768 if (qiov->iov[i].iov_len % alignment) {
2769 return false;
2770 }
2771 }
2772
2773 return true;
2774 }
2775
2776 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2777 NotifierWithReturn *notifier)
2778 {
2779 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2780 }
2781
2782 void bdrv_io_plug(BlockDriverState *bs)
2783 {
2784 BdrvChild *child;
2785
2786 QLIST_FOREACH(child, &bs->children, next) {
2787 bdrv_io_plug(child->bs);
2788 }
2789
2790 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2791 BlockDriver *drv = bs->drv;
2792 if (drv && drv->bdrv_io_plug) {
2793 drv->bdrv_io_plug(bs);
2794 }
2795 }
2796 }
2797
2798 void bdrv_io_unplug(BlockDriverState *bs)
2799 {
2800 BdrvChild *child;
2801
2802 assert(bs->io_plugged);
2803 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2804 BlockDriver *drv = bs->drv;
2805 if (drv && drv->bdrv_io_unplug) {
2806 drv->bdrv_io_unplug(bs);
2807 }
2808 }
2809
2810 QLIST_FOREACH(child, &bs->children, next) {
2811 bdrv_io_unplug(child->bs);
2812 }
2813 }
2814
2815 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2816 {
2817 BdrvChild *child;
2818
2819 if (bs->drv && bs->drv->bdrv_register_buf) {
2820 bs->drv->bdrv_register_buf(bs, host, size);
2821 }
2822 QLIST_FOREACH(child, &bs->children, next) {
2823 bdrv_register_buf(child->bs, host, size);
2824 }
2825 }
2826
2827 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2828 {
2829 BdrvChild *child;
2830
2831 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2832 bs->drv->bdrv_unregister_buf(bs, host);
2833 }
2834 QLIST_FOREACH(child, &bs->children, next) {
2835 bdrv_unregister_buf(child->bs, host);
2836 }
2837 }