]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge remote-tracking branch 'sthibault/tags/samuel-thibault' into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36
37 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
38 int64_t offset,
39 QEMUIOVector *qiov,
40 BdrvRequestFlags flags,
41 BlockCompletionFunc *cb,
42 void *opaque,
43 bool is_write);
44 static void coroutine_fn bdrv_co_do_rw(void *opaque);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int count, BdrvRequestFlags flags);
47
48 void bdrv_parent_drained_begin(BlockDriverState *bs)
49 {
50 BdrvChild *c;
51
52 QLIST_FOREACH(c, &bs->parents, next_parent) {
53 if (c->role->drained_begin) {
54 c->role->drained_begin(c);
55 }
56 }
57 }
58
59 void bdrv_parent_drained_end(BlockDriverState *bs)
60 {
61 BdrvChild *c;
62
63 QLIST_FOREACH(c, &bs->parents, next_parent) {
64 if (c->role->drained_end) {
65 c->role->drained_end(c);
66 }
67 }
68 }
69
70 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
71 {
72 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
73 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
74 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
75 src->opt_mem_alignment);
76 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
77 src->min_mem_alignment);
78 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
79 }
80
81 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
82 {
83 BlockDriver *drv = bs->drv;
84 Error *local_err = NULL;
85
86 memset(&bs->bl, 0, sizeof(bs->bl));
87
88 if (!drv) {
89 return;
90 }
91
92 /* Default alignment based on whether driver has byte interface */
93 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
94
95 /* Take some limits from the children as a default */
96 if (bs->file) {
97 bdrv_refresh_limits(bs->file->bs, &local_err);
98 if (local_err) {
99 error_propagate(errp, local_err);
100 return;
101 }
102 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
103 } else {
104 bs->bl.min_mem_alignment = 512;
105 bs->bl.opt_mem_alignment = getpagesize();
106
107 /* Safe default since most protocols use readv()/writev()/etc */
108 bs->bl.max_iov = IOV_MAX;
109 }
110
111 if (bs->backing) {
112 bdrv_refresh_limits(bs->backing->bs, &local_err);
113 if (local_err) {
114 error_propagate(errp, local_err);
115 return;
116 }
117 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
118 }
119
120 /* Then let the driver override it */
121 if (drv->bdrv_refresh_limits) {
122 drv->bdrv_refresh_limits(bs, errp);
123 }
124 }
125
126 /**
127 * The copy-on-read flag is actually a reference count so multiple users may
128 * use the feature without worrying about clobbering its previous state.
129 * Copy-on-read stays enabled until all users have called to disable it.
130 */
131 void bdrv_enable_copy_on_read(BlockDriverState *bs)
132 {
133 bs->copy_on_read++;
134 }
135
136 void bdrv_disable_copy_on_read(BlockDriverState *bs)
137 {
138 assert(bs->copy_on_read > 0);
139 bs->copy_on_read--;
140 }
141
142 /* Check if any requests are in-flight (including throttled requests) */
143 bool bdrv_requests_pending(BlockDriverState *bs)
144 {
145 BdrvChild *child;
146
147 if (atomic_read(&bs->in_flight)) {
148 return true;
149 }
150
151 QLIST_FOREACH(child, &bs->children, next) {
152 if (bdrv_requests_pending(child->bs)) {
153 return true;
154 }
155 }
156
157 return false;
158 }
159
160 static bool bdrv_drain_recurse(BlockDriverState *bs)
161 {
162 BdrvChild *child, *tmp;
163 bool waited;
164
165 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
166
167 if (bs->drv && bs->drv->bdrv_drain) {
168 bs->drv->bdrv_drain(bs);
169 }
170
171 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
172 BlockDriverState *bs = child->bs;
173 bool in_main_loop =
174 qemu_get_current_aio_context() == qemu_get_aio_context();
175 assert(bs->refcnt > 0);
176 if (in_main_loop) {
177 /* In case the recursive bdrv_drain_recurse processes a
178 * block_job_defer_to_main_loop BH and modifies the graph,
179 * let's hold a reference to bs until we are done.
180 *
181 * IOThread doesn't have such a BH, and it is not safe to call
182 * bdrv_unref without BQL, so skip doing it there.
183 */
184 bdrv_ref(bs);
185 }
186 waited |= bdrv_drain_recurse(bs);
187 if (in_main_loop) {
188 bdrv_unref(bs);
189 }
190 }
191
192 return waited;
193 }
194
195 typedef struct {
196 Coroutine *co;
197 BlockDriverState *bs;
198 bool done;
199 } BdrvCoDrainData;
200
201 static void bdrv_co_drain_bh_cb(void *opaque)
202 {
203 BdrvCoDrainData *data = opaque;
204 Coroutine *co = data->co;
205 BlockDriverState *bs = data->bs;
206
207 bdrv_dec_in_flight(bs);
208 bdrv_drained_begin(bs);
209 data->done = true;
210 aio_co_wake(co);
211 }
212
213 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
214 {
215 BdrvCoDrainData data;
216
217 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
218 * other coroutines run if they were queued from
219 * qemu_co_queue_run_restart(). */
220
221 assert(qemu_in_coroutine());
222 data = (BdrvCoDrainData) {
223 .co = qemu_coroutine_self(),
224 .bs = bs,
225 .done = false,
226 };
227 bdrv_inc_in_flight(bs);
228 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
229 bdrv_co_drain_bh_cb, &data);
230
231 qemu_coroutine_yield();
232 /* If we are resumed from some other event (such as an aio completion or a
233 * timer callback), it is a bug in the caller that should be fixed. */
234 assert(data.done);
235 }
236
237 void bdrv_drained_begin(BlockDriverState *bs)
238 {
239 if (qemu_in_coroutine()) {
240 bdrv_co_yield_to_drain(bs);
241 return;
242 }
243
244 if (!bs->quiesce_counter++) {
245 aio_disable_external(bdrv_get_aio_context(bs));
246 bdrv_parent_drained_begin(bs);
247 }
248
249 bdrv_drain_recurse(bs);
250 }
251
252 void bdrv_drained_end(BlockDriverState *bs)
253 {
254 assert(bs->quiesce_counter > 0);
255 if (--bs->quiesce_counter > 0) {
256 return;
257 }
258
259 bdrv_parent_drained_end(bs);
260 aio_enable_external(bdrv_get_aio_context(bs));
261 }
262
263 /*
264 * Wait for pending requests to complete on a single BlockDriverState subtree,
265 * and suspend block driver's internal I/O until next request arrives.
266 *
267 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
268 * AioContext.
269 *
270 * Only this BlockDriverState's AioContext is run, so in-flight requests must
271 * not depend on events in other AioContexts. In that case, use
272 * bdrv_drain_all() instead.
273 */
274 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
275 {
276 assert(qemu_in_coroutine());
277 bdrv_drained_begin(bs);
278 bdrv_drained_end(bs);
279 }
280
281 void bdrv_drain(BlockDriverState *bs)
282 {
283 bdrv_drained_begin(bs);
284 bdrv_drained_end(bs);
285 }
286
287 /*
288 * Wait for pending requests to complete across all BlockDriverStates
289 *
290 * This function does not flush data to disk, use bdrv_flush_all() for that
291 * after calling this function.
292 *
293 * This pauses all block jobs and disables external clients. It must
294 * be paired with bdrv_drain_all_end().
295 *
296 * NOTE: no new block jobs or BlockDriverStates can be created between
297 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
298 */
299 void bdrv_drain_all_begin(void)
300 {
301 /* Always run first iteration so any pending completion BHs run */
302 bool waited = true;
303 BlockDriverState *bs;
304 BdrvNextIterator it;
305 GSList *aio_ctxs = NULL, *ctx;
306
307 block_job_pause_all();
308
309 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
310 AioContext *aio_context = bdrv_get_aio_context(bs);
311
312 aio_context_acquire(aio_context);
313 bdrv_parent_drained_begin(bs);
314 aio_disable_external(aio_context);
315 aio_context_release(aio_context);
316
317 if (!g_slist_find(aio_ctxs, aio_context)) {
318 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
319 }
320 }
321
322 /* Note that completion of an asynchronous I/O operation can trigger any
323 * number of other I/O operations on other devices---for example a
324 * coroutine can submit an I/O request to another device in response to
325 * request completion. Therefore we must keep looping until there was no
326 * more activity rather than simply draining each device independently.
327 */
328 while (waited) {
329 waited = false;
330
331 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
332 AioContext *aio_context = ctx->data;
333
334 aio_context_acquire(aio_context);
335 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
336 if (aio_context == bdrv_get_aio_context(bs)) {
337 waited |= bdrv_drain_recurse(bs);
338 }
339 }
340 aio_context_release(aio_context);
341 }
342 }
343
344 g_slist_free(aio_ctxs);
345 }
346
347 void bdrv_drain_all_end(void)
348 {
349 BlockDriverState *bs;
350 BdrvNextIterator it;
351
352 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
353 AioContext *aio_context = bdrv_get_aio_context(bs);
354
355 aio_context_acquire(aio_context);
356 aio_enable_external(aio_context);
357 bdrv_parent_drained_end(bs);
358 aio_context_release(aio_context);
359 }
360
361 block_job_resume_all();
362 }
363
364 void bdrv_drain_all(void)
365 {
366 bdrv_drain_all_begin();
367 bdrv_drain_all_end();
368 }
369
370 /**
371 * Remove an active request from the tracked requests list
372 *
373 * This function should be called when a tracked request is completing.
374 */
375 static void tracked_request_end(BdrvTrackedRequest *req)
376 {
377 if (req->serialising) {
378 req->bs->serialising_in_flight--;
379 }
380
381 QLIST_REMOVE(req, list);
382 qemu_co_queue_restart_all(&req->wait_queue);
383 }
384
385 /**
386 * Add an active request to the tracked requests list
387 */
388 static void tracked_request_begin(BdrvTrackedRequest *req,
389 BlockDriverState *bs,
390 int64_t offset,
391 unsigned int bytes,
392 enum BdrvTrackedRequestType type)
393 {
394 *req = (BdrvTrackedRequest){
395 .bs = bs,
396 .offset = offset,
397 .bytes = bytes,
398 .type = type,
399 .co = qemu_coroutine_self(),
400 .serialising = false,
401 .overlap_offset = offset,
402 .overlap_bytes = bytes,
403 };
404
405 qemu_co_queue_init(&req->wait_queue);
406
407 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
408 }
409
410 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
411 {
412 int64_t overlap_offset = req->offset & ~(align - 1);
413 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
414 - overlap_offset;
415
416 if (!req->serialising) {
417 req->bs->serialising_in_flight++;
418 req->serialising = true;
419 }
420
421 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
422 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
423 }
424
425 /**
426 * Round a region to cluster boundaries (sector-based)
427 */
428 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
429 int64_t sector_num, int nb_sectors,
430 int64_t *cluster_sector_num,
431 int *cluster_nb_sectors)
432 {
433 BlockDriverInfo bdi;
434
435 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
436 *cluster_sector_num = sector_num;
437 *cluster_nb_sectors = nb_sectors;
438 } else {
439 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
440 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
441 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
442 nb_sectors, c);
443 }
444 }
445
446 /**
447 * Round a region to cluster boundaries
448 */
449 void bdrv_round_to_clusters(BlockDriverState *bs,
450 int64_t offset, unsigned int bytes,
451 int64_t *cluster_offset,
452 unsigned int *cluster_bytes)
453 {
454 BlockDriverInfo bdi;
455
456 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
457 *cluster_offset = offset;
458 *cluster_bytes = bytes;
459 } else {
460 int64_t c = bdi.cluster_size;
461 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
462 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
463 }
464 }
465
466 static int bdrv_get_cluster_size(BlockDriverState *bs)
467 {
468 BlockDriverInfo bdi;
469 int ret;
470
471 ret = bdrv_get_info(bs, &bdi);
472 if (ret < 0 || bdi.cluster_size == 0) {
473 return bs->bl.request_alignment;
474 } else {
475 return bdi.cluster_size;
476 }
477 }
478
479 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
480 int64_t offset, unsigned int bytes)
481 {
482 /* aaaa bbbb */
483 if (offset >= req->overlap_offset + req->overlap_bytes) {
484 return false;
485 }
486 /* bbbb aaaa */
487 if (req->overlap_offset >= offset + bytes) {
488 return false;
489 }
490 return true;
491 }
492
493 void bdrv_inc_in_flight(BlockDriverState *bs)
494 {
495 atomic_inc(&bs->in_flight);
496 }
497
498 static void dummy_bh_cb(void *opaque)
499 {
500 }
501
502 void bdrv_wakeup(BlockDriverState *bs)
503 {
504 if (bs->wakeup) {
505 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
506 }
507 }
508
509 void bdrv_dec_in_flight(BlockDriverState *bs)
510 {
511 atomic_dec(&bs->in_flight);
512 bdrv_wakeup(bs);
513 }
514
515 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
516 {
517 BlockDriverState *bs = self->bs;
518 BdrvTrackedRequest *req;
519 bool retry;
520 bool waited = false;
521
522 if (!bs->serialising_in_flight) {
523 return false;
524 }
525
526 do {
527 retry = false;
528 QLIST_FOREACH(req, &bs->tracked_requests, list) {
529 if (req == self || (!req->serialising && !self->serialising)) {
530 continue;
531 }
532 if (tracked_request_overlaps(req, self->overlap_offset,
533 self->overlap_bytes))
534 {
535 /* Hitting this means there was a reentrant request, for
536 * example, a block driver issuing nested requests. This must
537 * never happen since it means deadlock.
538 */
539 assert(qemu_coroutine_self() != req->co);
540
541 /* If the request is already (indirectly) waiting for us, or
542 * will wait for us as soon as it wakes up, then just go on
543 * (instead of producing a deadlock in the former case). */
544 if (!req->waiting_for) {
545 self->waiting_for = req;
546 qemu_co_queue_wait(&req->wait_queue, NULL);
547 self->waiting_for = NULL;
548 retry = true;
549 waited = true;
550 break;
551 }
552 }
553 }
554 } while (retry);
555
556 return waited;
557 }
558
559 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
560 size_t size)
561 {
562 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
563 return -EIO;
564 }
565
566 if (!bdrv_is_inserted(bs)) {
567 return -ENOMEDIUM;
568 }
569
570 if (offset < 0) {
571 return -EIO;
572 }
573
574 return 0;
575 }
576
577 typedef struct RwCo {
578 BdrvChild *child;
579 int64_t offset;
580 QEMUIOVector *qiov;
581 bool is_write;
582 int ret;
583 BdrvRequestFlags flags;
584 } RwCo;
585
586 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
587 {
588 RwCo *rwco = opaque;
589
590 if (!rwco->is_write) {
591 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
592 rwco->qiov->size, rwco->qiov,
593 rwco->flags);
594 } else {
595 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
596 rwco->qiov->size, rwco->qiov,
597 rwco->flags);
598 }
599 }
600
601 /*
602 * Process a vectored synchronous request using coroutines
603 */
604 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
605 QEMUIOVector *qiov, bool is_write,
606 BdrvRequestFlags flags)
607 {
608 Coroutine *co;
609 RwCo rwco = {
610 .child = child,
611 .offset = offset,
612 .qiov = qiov,
613 .is_write = is_write,
614 .ret = NOT_DONE,
615 .flags = flags,
616 };
617
618 if (qemu_in_coroutine()) {
619 /* Fast-path if already in coroutine context */
620 bdrv_rw_co_entry(&rwco);
621 } else {
622 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
623 bdrv_coroutine_enter(child->bs, co);
624 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
625 }
626 return rwco.ret;
627 }
628
629 /*
630 * Process a synchronous request using coroutines
631 */
632 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
633 int nb_sectors, bool is_write, BdrvRequestFlags flags)
634 {
635 QEMUIOVector qiov;
636 struct iovec iov = {
637 .iov_base = (void *)buf,
638 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
639 };
640
641 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
642 return -EINVAL;
643 }
644
645 qemu_iovec_init_external(&qiov, &iov, 1);
646 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
647 &qiov, is_write, flags);
648 }
649
650 /* return < 0 if error. See bdrv_write() for the return codes */
651 int bdrv_read(BdrvChild *child, int64_t sector_num,
652 uint8_t *buf, int nb_sectors)
653 {
654 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
655 }
656
657 /* Return < 0 if error. Important errors are:
658 -EIO generic I/O error (may happen for all errors)
659 -ENOMEDIUM No media inserted.
660 -EINVAL Invalid sector number or nb_sectors
661 -EACCES Trying to write a read-only device
662 */
663 int bdrv_write(BdrvChild *child, int64_t sector_num,
664 const uint8_t *buf, int nb_sectors)
665 {
666 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
667 }
668
669 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
670 int count, BdrvRequestFlags flags)
671 {
672 QEMUIOVector qiov;
673 struct iovec iov = {
674 .iov_base = NULL,
675 .iov_len = count,
676 };
677
678 qemu_iovec_init_external(&qiov, &iov, 1);
679 return bdrv_prwv_co(child, offset, &qiov, true,
680 BDRV_REQ_ZERO_WRITE | flags);
681 }
682
683 /*
684 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
685 * The operation is sped up by checking the block status and only writing
686 * zeroes to the device if they currently do not return zeroes. Optional
687 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
688 * BDRV_REQ_FUA).
689 *
690 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
691 */
692 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
693 {
694 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
695 BlockDriverState *bs = child->bs;
696 BlockDriverState *file;
697 int n;
698
699 target_sectors = bdrv_nb_sectors(bs);
700 if (target_sectors < 0) {
701 return target_sectors;
702 }
703
704 for (;;) {
705 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
706 if (nb_sectors <= 0) {
707 return 0;
708 }
709 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
710 if (ret < 0) {
711 error_report("error getting block status at sector %" PRId64 ": %s",
712 sector_num, strerror(-ret));
713 return ret;
714 }
715 if (ret & BDRV_BLOCK_ZERO) {
716 sector_num += n;
717 continue;
718 }
719 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
720 n << BDRV_SECTOR_BITS, flags);
721 if (ret < 0) {
722 error_report("error writing zeroes at sector %" PRId64 ": %s",
723 sector_num, strerror(-ret));
724 return ret;
725 }
726 sector_num += n;
727 }
728 }
729
730 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
731 {
732 int ret;
733
734 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
735 if (ret < 0) {
736 return ret;
737 }
738
739 return qiov->size;
740 }
741
742 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
743 {
744 QEMUIOVector qiov;
745 struct iovec iov = {
746 .iov_base = (void *)buf,
747 .iov_len = bytes,
748 };
749
750 if (bytes < 0) {
751 return -EINVAL;
752 }
753
754 qemu_iovec_init_external(&qiov, &iov, 1);
755 return bdrv_preadv(child, offset, &qiov);
756 }
757
758 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
759 {
760 int ret;
761
762 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
763 if (ret < 0) {
764 return ret;
765 }
766
767 return qiov->size;
768 }
769
770 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
771 {
772 QEMUIOVector qiov;
773 struct iovec iov = {
774 .iov_base = (void *) buf,
775 .iov_len = bytes,
776 };
777
778 if (bytes < 0) {
779 return -EINVAL;
780 }
781
782 qemu_iovec_init_external(&qiov, &iov, 1);
783 return bdrv_pwritev(child, offset, &qiov);
784 }
785
786 /*
787 * Writes to the file and ensures that no writes are reordered across this
788 * request (acts as a barrier)
789 *
790 * Returns 0 on success, -errno in error cases.
791 */
792 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
793 const void *buf, int count)
794 {
795 int ret;
796
797 ret = bdrv_pwrite(child, offset, buf, count);
798 if (ret < 0) {
799 return ret;
800 }
801
802 ret = bdrv_flush(child->bs);
803 if (ret < 0) {
804 return ret;
805 }
806
807 return 0;
808 }
809
810 typedef struct CoroutineIOCompletion {
811 Coroutine *coroutine;
812 int ret;
813 } CoroutineIOCompletion;
814
815 static void bdrv_co_io_em_complete(void *opaque, int ret)
816 {
817 CoroutineIOCompletion *co = opaque;
818
819 co->ret = ret;
820 aio_co_wake(co->coroutine);
821 }
822
823 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
824 uint64_t offset, uint64_t bytes,
825 QEMUIOVector *qiov, int flags)
826 {
827 BlockDriver *drv = bs->drv;
828 int64_t sector_num;
829 unsigned int nb_sectors;
830
831 assert(!(flags & ~BDRV_REQ_MASK));
832
833 if (drv->bdrv_co_preadv) {
834 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
835 }
836
837 sector_num = offset >> BDRV_SECTOR_BITS;
838 nb_sectors = bytes >> BDRV_SECTOR_BITS;
839
840 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
841 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
842 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
843
844 if (drv->bdrv_co_readv) {
845 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
846 } else {
847 BlockAIOCB *acb;
848 CoroutineIOCompletion co = {
849 .coroutine = qemu_coroutine_self(),
850 };
851
852 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
853 bdrv_co_io_em_complete, &co);
854 if (acb == NULL) {
855 return -EIO;
856 } else {
857 qemu_coroutine_yield();
858 return co.ret;
859 }
860 }
861 }
862
863 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
864 uint64_t offset, uint64_t bytes,
865 QEMUIOVector *qiov, int flags)
866 {
867 BlockDriver *drv = bs->drv;
868 int64_t sector_num;
869 unsigned int nb_sectors;
870 int ret;
871
872 assert(!(flags & ~BDRV_REQ_MASK));
873
874 if (drv->bdrv_co_pwritev) {
875 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
876 flags & bs->supported_write_flags);
877 flags &= ~bs->supported_write_flags;
878 goto emulate_flags;
879 }
880
881 sector_num = offset >> BDRV_SECTOR_BITS;
882 nb_sectors = bytes >> BDRV_SECTOR_BITS;
883
884 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
885 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
886 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
887
888 if (drv->bdrv_co_writev_flags) {
889 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
890 flags & bs->supported_write_flags);
891 flags &= ~bs->supported_write_flags;
892 } else if (drv->bdrv_co_writev) {
893 assert(!bs->supported_write_flags);
894 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
895 } else {
896 BlockAIOCB *acb;
897 CoroutineIOCompletion co = {
898 .coroutine = qemu_coroutine_self(),
899 };
900
901 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
902 bdrv_co_io_em_complete, &co);
903 if (acb == NULL) {
904 ret = -EIO;
905 } else {
906 qemu_coroutine_yield();
907 ret = co.ret;
908 }
909 }
910
911 emulate_flags:
912 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
913 ret = bdrv_co_flush(bs);
914 }
915
916 return ret;
917 }
918
919 static int coroutine_fn
920 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
921 uint64_t bytes, QEMUIOVector *qiov)
922 {
923 BlockDriver *drv = bs->drv;
924
925 if (!drv->bdrv_co_pwritev_compressed) {
926 return -ENOTSUP;
927 }
928
929 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
930 }
931
932 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
933 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
934 {
935 BlockDriverState *bs = child->bs;
936
937 /* Perform I/O through a temporary buffer so that users who scribble over
938 * their read buffer while the operation is in progress do not end up
939 * modifying the image file. This is critical for zero-copy guest I/O
940 * where anything might happen inside guest memory.
941 */
942 void *bounce_buffer;
943
944 BlockDriver *drv = bs->drv;
945 struct iovec iov;
946 QEMUIOVector bounce_qiov;
947 int64_t cluster_offset;
948 unsigned int cluster_bytes;
949 size_t skip_bytes;
950 int ret;
951
952 /* FIXME We cannot require callers to have write permissions when all they
953 * are doing is a read request. If we did things right, write permissions
954 * would be obtained anyway, but internally by the copy-on-read code. As
955 * long as it is implemented here rather than in a separat filter driver,
956 * the copy-on-read code doesn't have its own BdrvChild, however, for which
957 * it could request permissions. Therefore we have to bypass the permission
958 * system for the moment. */
959 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
960
961 /* Cover entire cluster so no additional backing file I/O is required when
962 * allocating cluster in the image file.
963 */
964 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
965
966 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
967 cluster_offset, cluster_bytes);
968
969 iov.iov_len = cluster_bytes;
970 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
971 if (bounce_buffer == NULL) {
972 ret = -ENOMEM;
973 goto err;
974 }
975
976 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
977
978 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
979 &bounce_qiov, 0);
980 if (ret < 0) {
981 goto err;
982 }
983
984 if (drv->bdrv_co_pwrite_zeroes &&
985 buffer_is_zero(bounce_buffer, iov.iov_len)) {
986 /* FIXME: Should we (perhaps conditionally) be setting
987 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
988 * that still correctly reads as zero? */
989 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
990 } else {
991 /* This does not change the data on the disk, it is not necessary
992 * to flush even in cache=writethrough mode.
993 */
994 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
995 &bounce_qiov, 0);
996 }
997
998 if (ret < 0) {
999 /* It might be okay to ignore write errors for guest requests. If this
1000 * is a deliberate copy-on-read then we don't want to ignore the error.
1001 * Simply report it in all cases.
1002 */
1003 goto err;
1004 }
1005
1006 skip_bytes = offset - cluster_offset;
1007 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1008
1009 err:
1010 qemu_vfree(bounce_buffer);
1011 return ret;
1012 }
1013
1014 /*
1015 * Forwards an already correctly aligned request to the BlockDriver. This
1016 * handles copy on read, zeroing after EOF, and fragmentation of large
1017 * reads; any other features must be implemented by the caller.
1018 */
1019 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1020 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1021 int64_t align, QEMUIOVector *qiov, int flags)
1022 {
1023 BlockDriverState *bs = child->bs;
1024 int64_t total_bytes, max_bytes;
1025 int ret = 0;
1026 uint64_t bytes_remaining = bytes;
1027 int max_transfer;
1028
1029 assert(is_power_of_2(align));
1030 assert((offset & (align - 1)) == 0);
1031 assert((bytes & (align - 1)) == 0);
1032 assert(!qiov || bytes == qiov->size);
1033 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1034 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1035 align);
1036
1037 /* TODO: We would need a per-BDS .supported_read_flags and
1038 * potential fallback support, if we ever implement any read flags
1039 * to pass through to drivers. For now, there aren't any
1040 * passthrough flags. */
1041 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1042
1043 /* Handle Copy on Read and associated serialisation */
1044 if (flags & BDRV_REQ_COPY_ON_READ) {
1045 /* If we touch the same cluster it counts as an overlap. This
1046 * guarantees that allocating writes will be serialized and not race
1047 * with each other for the same cluster. For example, in copy-on-read
1048 * it ensures that the CoR read and write operations are atomic and
1049 * guest writes cannot interleave between them. */
1050 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1051 }
1052
1053 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1054 wait_serialising_requests(req);
1055 }
1056
1057 if (flags & BDRV_REQ_COPY_ON_READ) {
1058 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1059 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1060 unsigned int nb_sectors = end_sector - start_sector;
1061 int pnum;
1062
1063 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1064 if (ret < 0) {
1065 goto out;
1066 }
1067
1068 if (!ret || pnum != nb_sectors) {
1069 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1070 goto out;
1071 }
1072 }
1073
1074 /* Forward the request to the BlockDriver, possibly fragmenting it */
1075 total_bytes = bdrv_getlength(bs);
1076 if (total_bytes < 0) {
1077 ret = total_bytes;
1078 goto out;
1079 }
1080
1081 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1082 if (bytes <= max_bytes && bytes <= max_transfer) {
1083 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1084 goto out;
1085 }
1086
1087 while (bytes_remaining) {
1088 int num;
1089
1090 if (max_bytes) {
1091 QEMUIOVector local_qiov;
1092
1093 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1094 assert(num);
1095 qemu_iovec_init(&local_qiov, qiov->niov);
1096 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1097
1098 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1099 num, &local_qiov, 0);
1100 max_bytes -= num;
1101 qemu_iovec_destroy(&local_qiov);
1102 } else {
1103 num = bytes_remaining;
1104 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1105 bytes_remaining);
1106 }
1107 if (ret < 0) {
1108 goto out;
1109 }
1110 bytes_remaining -= num;
1111 }
1112
1113 out:
1114 return ret < 0 ? ret : 0;
1115 }
1116
1117 /*
1118 * Handle a read request in coroutine context
1119 */
1120 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1121 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1122 BdrvRequestFlags flags)
1123 {
1124 BlockDriverState *bs = child->bs;
1125 BlockDriver *drv = bs->drv;
1126 BdrvTrackedRequest req;
1127
1128 uint64_t align = bs->bl.request_alignment;
1129 uint8_t *head_buf = NULL;
1130 uint8_t *tail_buf = NULL;
1131 QEMUIOVector local_qiov;
1132 bool use_local_qiov = false;
1133 int ret;
1134
1135 if (!drv) {
1136 return -ENOMEDIUM;
1137 }
1138
1139 ret = bdrv_check_byte_request(bs, offset, bytes);
1140 if (ret < 0) {
1141 return ret;
1142 }
1143
1144 bdrv_inc_in_flight(bs);
1145
1146 /* Don't do copy-on-read if we read data before write operation */
1147 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1148 flags |= BDRV_REQ_COPY_ON_READ;
1149 }
1150
1151 /* Align read if necessary by padding qiov */
1152 if (offset & (align - 1)) {
1153 head_buf = qemu_blockalign(bs, align);
1154 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1155 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1156 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1157 use_local_qiov = true;
1158
1159 bytes += offset & (align - 1);
1160 offset = offset & ~(align - 1);
1161 }
1162
1163 if ((offset + bytes) & (align - 1)) {
1164 if (!use_local_qiov) {
1165 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1166 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1167 use_local_qiov = true;
1168 }
1169 tail_buf = qemu_blockalign(bs, align);
1170 qemu_iovec_add(&local_qiov, tail_buf,
1171 align - ((offset + bytes) & (align - 1)));
1172
1173 bytes = ROUND_UP(bytes, align);
1174 }
1175
1176 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1177 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1178 use_local_qiov ? &local_qiov : qiov,
1179 flags);
1180 tracked_request_end(&req);
1181 bdrv_dec_in_flight(bs);
1182
1183 if (use_local_qiov) {
1184 qemu_iovec_destroy(&local_qiov);
1185 qemu_vfree(head_buf);
1186 qemu_vfree(tail_buf);
1187 }
1188
1189 return ret;
1190 }
1191
1192 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1193 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1194 BdrvRequestFlags flags)
1195 {
1196 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1197 return -EINVAL;
1198 }
1199
1200 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1201 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1202 }
1203
1204 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1205 int nb_sectors, QEMUIOVector *qiov)
1206 {
1207 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1208
1209 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1210 }
1211
1212 /* Maximum buffer for write zeroes fallback, in bytes */
1213 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1214
1215 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1216 int64_t offset, int count, BdrvRequestFlags flags)
1217 {
1218 BlockDriver *drv = bs->drv;
1219 QEMUIOVector qiov;
1220 struct iovec iov = {0};
1221 int ret = 0;
1222 bool need_flush = false;
1223 int head = 0;
1224 int tail = 0;
1225
1226 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1227 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1228 bs->bl.request_alignment);
1229 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1230 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1231
1232 assert(alignment % bs->bl.request_alignment == 0);
1233 head = offset % alignment;
1234 tail = (offset + count) % alignment;
1235 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1236 assert(max_write_zeroes >= bs->bl.request_alignment);
1237
1238 while (count > 0 && !ret) {
1239 int num = count;
1240
1241 /* Align request. Block drivers can expect the "bulk" of the request
1242 * to be aligned, and that unaligned requests do not cross cluster
1243 * boundaries.
1244 */
1245 if (head) {
1246 /* Make a small request up to the first aligned sector. For
1247 * convenience, limit this request to max_transfer even if
1248 * we don't need to fall back to writes. */
1249 num = MIN(MIN(count, max_transfer), alignment - head);
1250 head = (head + num) % alignment;
1251 assert(num < max_write_zeroes);
1252 } else if (tail && num > alignment) {
1253 /* Shorten the request to the last aligned sector. */
1254 num -= tail;
1255 }
1256
1257 /* limit request size */
1258 if (num > max_write_zeroes) {
1259 num = max_write_zeroes;
1260 }
1261
1262 ret = -ENOTSUP;
1263 /* First try the efficient write zeroes operation */
1264 if (drv->bdrv_co_pwrite_zeroes) {
1265 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1266 flags & bs->supported_zero_flags);
1267 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1268 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1269 need_flush = true;
1270 }
1271 } else {
1272 assert(!bs->supported_zero_flags);
1273 }
1274
1275 if (ret == -ENOTSUP) {
1276 /* Fall back to bounce buffer if write zeroes is unsupported */
1277 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1278
1279 if ((flags & BDRV_REQ_FUA) &&
1280 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1281 /* No need for bdrv_driver_pwrite() to do a fallback
1282 * flush on each chunk; use just one at the end */
1283 write_flags &= ~BDRV_REQ_FUA;
1284 need_flush = true;
1285 }
1286 num = MIN(num, max_transfer);
1287 iov.iov_len = num;
1288 if (iov.iov_base == NULL) {
1289 iov.iov_base = qemu_try_blockalign(bs, num);
1290 if (iov.iov_base == NULL) {
1291 ret = -ENOMEM;
1292 goto fail;
1293 }
1294 memset(iov.iov_base, 0, num);
1295 }
1296 qemu_iovec_init_external(&qiov, &iov, 1);
1297
1298 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1299
1300 /* Keep bounce buffer around if it is big enough for all
1301 * all future requests.
1302 */
1303 if (num < max_transfer) {
1304 qemu_vfree(iov.iov_base);
1305 iov.iov_base = NULL;
1306 }
1307 }
1308
1309 offset += num;
1310 count -= num;
1311 }
1312
1313 fail:
1314 if (ret == 0 && need_flush) {
1315 ret = bdrv_co_flush(bs);
1316 }
1317 qemu_vfree(iov.iov_base);
1318 return ret;
1319 }
1320
1321 /*
1322 * Forwards an already correctly aligned write request to the BlockDriver,
1323 * after possibly fragmenting it.
1324 */
1325 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1326 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1327 int64_t align, QEMUIOVector *qiov, int flags)
1328 {
1329 BlockDriverState *bs = child->bs;
1330 BlockDriver *drv = bs->drv;
1331 bool waited;
1332 int ret;
1333
1334 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1335 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1336 uint64_t bytes_remaining = bytes;
1337 int max_transfer;
1338
1339 assert(is_power_of_2(align));
1340 assert((offset & (align - 1)) == 0);
1341 assert((bytes & (align - 1)) == 0);
1342 assert(!qiov || bytes == qiov->size);
1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1344 assert(!(flags & ~BDRV_REQ_MASK));
1345 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1346 align);
1347
1348 waited = wait_serialising_requests(req);
1349 assert(!waited || !req->serialising);
1350 assert(req->overlap_offset <= offset);
1351 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1352 assert(child->perm & BLK_PERM_WRITE);
1353 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1354
1355 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1356
1357 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1358 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1359 qemu_iovec_is_zero(qiov)) {
1360 flags |= BDRV_REQ_ZERO_WRITE;
1361 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1362 flags |= BDRV_REQ_MAY_UNMAP;
1363 }
1364 }
1365
1366 if (ret < 0) {
1367 /* Do nothing, write notifier decided to fail this request */
1368 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1369 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1370 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1371 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1372 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1373 } else if (bytes <= max_transfer) {
1374 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1375 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1376 } else {
1377 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1378 while (bytes_remaining) {
1379 int num = MIN(bytes_remaining, max_transfer);
1380 QEMUIOVector local_qiov;
1381 int local_flags = flags;
1382
1383 assert(num);
1384 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1385 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1386 /* If FUA is going to be emulated by flush, we only
1387 * need to flush on the last iteration */
1388 local_flags &= ~BDRV_REQ_FUA;
1389 }
1390 qemu_iovec_init(&local_qiov, qiov->niov);
1391 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1392
1393 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1394 num, &local_qiov, local_flags);
1395 qemu_iovec_destroy(&local_qiov);
1396 if (ret < 0) {
1397 break;
1398 }
1399 bytes_remaining -= num;
1400 }
1401 }
1402 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1403
1404 ++bs->write_gen;
1405 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1406
1407 if (bs->wr_highest_offset < offset + bytes) {
1408 bs->wr_highest_offset = offset + bytes;
1409 }
1410
1411 if (ret >= 0) {
1412 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1413 ret = 0;
1414 }
1415
1416 return ret;
1417 }
1418
1419 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1420 int64_t offset,
1421 unsigned int bytes,
1422 BdrvRequestFlags flags,
1423 BdrvTrackedRequest *req)
1424 {
1425 BlockDriverState *bs = child->bs;
1426 uint8_t *buf = NULL;
1427 QEMUIOVector local_qiov;
1428 struct iovec iov;
1429 uint64_t align = bs->bl.request_alignment;
1430 unsigned int head_padding_bytes, tail_padding_bytes;
1431 int ret = 0;
1432
1433 head_padding_bytes = offset & (align - 1);
1434 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1435
1436
1437 assert(flags & BDRV_REQ_ZERO_WRITE);
1438 if (head_padding_bytes || tail_padding_bytes) {
1439 buf = qemu_blockalign(bs, align);
1440 iov = (struct iovec) {
1441 .iov_base = buf,
1442 .iov_len = align,
1443 };
1444 qemu_iovec_init_external(&local_qiov, &iov, 1);
1445 }
1446 if (head_padding_bytes) {
1447 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1448
1449 /* RMW the unaligned part before head. */
1450 mark_request_serialising(req, align);
1451 wait_serialising_requests(req);
1452 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1453 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1454 align, &local_qiov, 0);
1455 if (ret < 0) {
1456 goto fail;
1457 }
1458 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1459
1460 memset(buf + head_padding_bytes, 0, zero_bytes);
1461 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1462 align, &local_qiov,
1463 flags & ~BDRV_REQ_ZERO_WRITE);
1464 if (ret < 0) {
1465 goto fail;
1466 }
1467 offset += zero_bytes;
1468 bytes -= zero_bytes;
1469 }
1470
1471 assert(!bytes || (offset & (align - 1)) == 0);
1472 if (bytes >= align) {
1473 /* Write the aligned part in the middle. */
1474 uint64_t aligned_bytes = bytes & ~(align - 1);
1475 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1476 NULL, flags);
1477 if (ret < 0) {
1478 goto fail;
1479 }
1480 bytes -= aligned_bytes;
1481 offset += aligned_bytes;
1482 }
1483
1484 assert(!bytes || (offset & (align - 1)) == 0);
1485 if (bytes) {
1486 assert(align == tail_padding_bytes + bytes);
1487 /* RMW the unaligned part after tail. */
1488 mark_request_serialising(req, align);
1489 wait_serialising_requests(req);
1490 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1491 ret = bdrv_aligned_preadv(child, req, offset, align,
1492 align, &local_qiov, 0);
1493 if (ret < 0) {
1494 goto fail;
1495 }
1496 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1497
1498 memset(buf, 0, bytes);
1499 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1500 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1501 }
1502 fail:
1503 qemu_vfree(buf);
1504 return ret;
1505
1506 }
1507
1508 /*
1509 * Handle a write request in coroutine context
1510 */
1511 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1512 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1513 BdrvRequestFlags flags)
1514 {
1515 BlockDriverState *bs = child->bs;
1516 BdrvTrackedRequest req;
1517 uint64_t align = bs->bl.request_alignment;
1518 uint8_t *head_buf = NULL;
1519 uint8_t *tail_buf = NULL;
1520 QEMUIOVector local_qiov;
1521 bool use_local_qiov = false;
1522 int ret;
1523
1524 if (!bs->drv) {
1525 return -ENOMEDIUM;
1526 }
1527 if (bs->read_only) {
1528 return -EPERM;
1529 }
1530 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1531
1532 ret = bdrv_check_byte_request(bs, offset, bytes);
1533 if (ret < 0) {
1534 return ret;
1535 }
1536
1537 bdrv_inc_in_flight(bs);
1538 /*
1539 * Align write if necessary by performing a read-modify-write cycle.
1540 * Pad qiov with the read parts and be sure to have a tracked request not
1541 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1542 */
1543 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1544
1545 if (!qiov) {
1546 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1547 goto out;
1548 }
1549
1550 if (offset & (align - 1)) {
1551 QEMUIOVector head_qiov;
1552 struct iovec head_iov;
1553
1554 mark_request_serialising(&req, align);
1555 wait_serialising_requests(&req);
1556
1557 head_buf = qemu_blockalign(bs, align);
1558 head_iov = (struct iovec) {
1559 .iov_base = head_buf,
1560 .iov_len = align,
1561 };
1562 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1563
1564 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1565 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1566 align, &head_qiov, 0);
1567 if (ret < 0) {
1568 goto fail;
1569 }
1570 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1571
1572 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1573 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1574 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1575 use_local_qiov = true;
1576
1577 bytes += offset & (align - 1);
1578 offset = offset & ~(align - 1);
1579
1580 /* We have read the tail already if the request is smaller
1581 * than one aligned block.
1582 */
1583 if (bytes < align) {
1584 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1585 bytes = align;
1586 }
1587 }
1588
1589 if ((offset + bytes) & (align - 1)) {
1590 QEMUIOVector tail_qiov;
1591 struct iovec tail_iov;
1592 size_t tail_bytes;
1593 bool waited;
1594
1595 mark_request_serialising(&req, align);
1596 waited = wait_serialising_requests(&req);
1597 assert(!waited || !use_local_qiov);
1598
1599 tail_buf = qemu_blockalign(bs, align);
1600 tail_iov = (struct iovec) {
1601 .iov_base = tail_buf,
1602 .iov_len = align,
1603 };
1604 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1605
1606 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1607 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1608 align, align, &tail_qiov, 0);
1609 if (ret < 0) {
1610 goto fail;
1611 }
1612 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1613
1614 if (!use_local_qiov) {
1615 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1616 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1617 use_local_qiov = true;
1618 }
1619
1620 tail_bytes = (offset + bytes) & (align - 1);
1621 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1622
1623 bytes = ROUND_UP(bytes, align);
1624 }
1625
1626 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1627 use_local_qiov ? &local_qiov : qiov,
1628 flags);
1629
1630 fail:
1631
1632 if (use_local_qiov) {
1633 qemu_iovec_destroy(&local_qiov);
1634 }
1635 qemu_vfree(head_buf);
1636 qemu_vfree(tail_buf);
1637 out:
1638 tracked_request_end(&req);
1639 bdrv_dec_in_flight(bs);
1640 return ret;
1641 }
1642
1643 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1644 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1645 BdrvRequestFlags flags)
1646 {
1647 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1648 return -EINVAL;
1649 }
1650
1651 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1652 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1653 }
1654
1655 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1656 int nb_sectors, QEMUIOVector *qiov)
1657 {
1658 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1659
1660 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1661 }
1662
1663 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1664 int count, BdrvRequestFlags flags)
1665 {
1666 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1667
1668 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1669 flags &= ~BDRV_REQ_MAY_UNMAP;
1670 }
1671
1672 return bdrv_co_pwritev(child, offset, count, NULL,
1673 BDRV_REQ_ZERO_WRITE | flags);
1674 }
1675
1676 /*
1677 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1678 */
1679 int bdrv_flush_all(void)
1680 {
1681 BdrvNextIterator it;
1682 BlockDriverState *bs = NULL;
1683 int result = 0;
1684
1685 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1686 AioContext *aio_context = bdrv_get_aio_context(bs);
1687 int ret;
1688
1689 aio_context_acquire(aio_context);
1690 ret = bdrv_flush(bs);
1691 if (ret < 0 && !result) {
1692 result = ret;
1693 }
1694 aio_context_release(aio_context);
1695 }
1696
1697 return result;
1698 }
1699
1700
1701 typedef struct BdrvCoGetBlockStatusData {
1702 BlockDriverState *bs;
1703 BlockDriverState *base;
1704 BlockDriverState **file;
1705 int64_t sector_num;
1706 int nb_sectors;
1707 int *pnum;
1708 int64_t ret;
1709 bool done;
1710 } BdrvCoGetBlockStatusData;
1711
1712 /*
1713 * Returns the allocation status of the specified sectors.
1714 * Drivers not implementing the functionality are assumed to not support
1715 * backing files, hence all their sectors are reported as allocated.
1716 *
1717 * If 'sector_num' is beyond the end of the disk image the return value is 0
1718 * and 'pnum' is set to 0.
1719 *
1720 * 'pnum' is set to the number of sectors (including and immediately following
1721 * the specified sector) that are known to be in the same
1722 * allocated/unallocated state.
1723 *
1724 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1725 * beyond the end of the disk image it will be clamped.
1726 *
1727 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1728 * points to the BDS which the sector range is allocated in.
1729 */
1730 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1731 int64_t sector_num,
1732 int nb_sectors, int *pnum,
1733 BlockDriverState **file)
1734 {
1735 int64_t total_sectors;
1736 int64_t n;
1737 int64_t ret, ret2;
1738
1739 total_sectors = bdrv_nb_sectors(bs);
1740 if (total_sectors < 0) {
1741 return total_sectors;
1742 }
1743
1744 if (sector_num >= total_sectors) {
1745 *pnum = 0;
1746 return 0;
1747 }
1748
1749 n = total_sectors - sector_num;
1750 if (n < nb_sectors) {
1751 nb_sectors = n;
1752 }
1753
1754 if (!bs->drv->bdrv_co_get_block_status) {
1755 *pnum = nb_sectors;
1756 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1757 if (bs->drv->protocol_name) {
1758 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1759 }
1760 return ret;
1761 }
1762
1763 *file = NULL;
1764 bdrv_inc_in_flight(bs);
1765 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1766 file);
1767 if (ret < 0) {
1768 *pnum = 0;
1769 goto out;
1770 }
1771
1772 if (ret & BDRV_BLOCK_RAW) {
1773 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1774 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1775 *pnum, pnum, file);
1776 goto out;
1777 }
1778
1779 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1780 ret |= BDRV_BLOCK_ALLOCATED;
1781 } else {
1782 if (bdrv_unallocated_blocks_are_zero(bs)) {
1783 ret |= BDRV_BLOCK_ZERO;
1784 } else if (bs->backing) {
1785 BlockDriverState *bs2 = bs->backing->bs;
1786 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1787 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1788 ret |= BDRV_BLOCK_ZERO;
1789 }
1790 }
1791 }
1792
1793 if (*file && *file != bs &&
1794 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1795 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1796 BlockDriverState *file2;
1797 int file_pnum;
1798
1799 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1800 *pnum, &file_pnum, &file2);
1801 if (ret2 >= 0) {
1802 /* Ignore errors. This is just providing extra information, it
1803 * is useful but not necessary.
1804 */
1805 if (!file_pnum) {
1806 /* !file_pnum indicates an offset at or beyond the EOF; it is
1807 * perfectly valid for the format block driver to point to such
1808 * offsets, so catch it and mark everything as zero */
1809 ret |= BDRV_BLOCK_ZERO;
1810 } else {
1811 /* Limit request to the range reported by the protocol driver */
1812 *pnum = file_pnum;
1813 ret |= (ret2 & BDRV_BLOCK_ZERO);
1814 }
1815 }
1816 }
1817
1818 out:
1819 bdrv_dec_in_flight(bs);
1820 return ret;
1821 }
1822
1823 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1824 BlockDriverState *base,
1825 int64_t sector_num,
1826 int nb_sectors,
1827 int *pnum,
1828 BlockDriverState **file)
1829 {
1830 BlockDriverState *p;
1831 int64_t ret = 0;
1832
1833 assert(bs != base);
1834 for (p = bs; p != base; p = backing_bs(p)) {
1835 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1836 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1837 break;
1838 }
1839 /* [sector_num, pnum] unallocated on this layer, which could be only
1840 * the first part of [sector_num, nb_sectors]. */
1841 nb_sectors = MIN(nb_sectors, *pnum);
1842 }
1843 return ret;
1844 }
1845
1846 /* Coroutine wrapper for bdrv_get_block_status_above() */
1847 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1848 {
1849 BdrvCoGetBlockStatusData *data = opaque;
1850
1851 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1852 data->sector_num,
1853 data->nb_sectors,
1854 data->pnum,
1855 data->file);
1856 data->done = true;
1857 }
1858
1859 /*
1860 * Synchronous wrapper around bdrv_co_get_block_status_above().
1861 *
1862 * See bdrv_co_get_block_status_above() for details.
1863 */
1864 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1865 BlockDriverState *base,
1866 int64_t sector_num,
1867 int nb_sectors, int *pnum,
1868 BlockDriverState **file)
1869 {
1870 Coroutine *co;
1871 BdrvCoGetBlockStatusData data = {
1872 .bs = bs,
1873 .base = base,
1874 .file = file,
1875 .sector_num = sector_num,
1876 .nb_sectors = nb_sectors,
1877 .pnum = pnum,
1878 .done = false,
1879 };
1880
1881 if (qemu_in_coroutine()) {
1882 /* Fast-path if already in coroutine context */
1883 bdrv_get_block_status_above_co_entry(&data);
1884 } else {
1885 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1886 &data);
1887 bdrv_coroutine_enter(bs, co);
1888 BDRV_POLL_WHILE(bs, !data.done);
1889 }
1890 return data.ret;
1891 }
1892
1893 int64_t bdrv_get_block_status(BlockDriverState *bs,
1894 int64_t sector_num,
1895 int nb_sectors, int *pnum,
1896 BlockDriverState **file)
1897 {
1898 return bdrv_get_block_status_above(bs, backing_bs(bs),
1899 sector_num, nb_sectors, pnum, file);
1900 }
1901
1902 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1903 int nb_sectors, int *pnum)
1904 {
1905 BlockDriverState *file;
1906 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1907 &file);
1908 if (ret < 0) {
1909 return ret;
1910 }
1911 return !!(ret & BDRV_BLOCK_ALLOCATED);
1912 }
1913
1914 /*
1915 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1916 *
1917 * Return true if the given sector is allocated in any image between
1918 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1919 * sector is allocated in any image of the chain. Return false otherwise.
1920 *
1921 * 'pnum' is set to the number of sectors (including and immediately following
1922 * the specified sector) that are known to be in the same
1923 * allocated/unallocated state.
1924 *
1925 */
1926 int bdrv_is_allocated_above(BlockDriverState *top,
1927 BlockDriverState *base,
1928 int64_t sector_num,
1929 int nb_sectors, int *pnum)
1930 {
1931 BlockDriverState *intermediate;
1932 int ret, n = nb_sectors;
1933
1934 intermediate = top;
1935 while (intermediate && intermediate != base) {
1936 int pnum_inter;
1937 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1938 &pnum_inter);
1939 if (ret < 0) {
1940 return ret;
1941 } else if (ret) {
1942 *pnum = pnum_inter;
1943 return 1;
1944 }
1945
1946 /*
1947 * [sector_num, nb_sectors] is unallocated on top but intermediate
1948 * might have
1949 *
1950 * [sector_num+x, nr_sectors] allocated.
1951 */
1952 if (n > pnum_inter &&
1953 (intermediate == top ||
1954 sector_num + pnum_inter < intermediate->total_sectors)) {
1955 n = pnum_inter;
1956 }
1957
1958 intermediate = backing_bs(intermediate);
1959 }
1960
1961 *pnum = n;
1962 return 0;
1963 }
1964
1965 typedef struct BdrvVmstateCo {
1966 BlockDriverState *bs;
1967 QEMUIOVector *qiov;
1968 int64_t pos;
1969 bool is_read;
1970 int ret;
1971 } BdrvVmstateCo;
1972
1973 static int coroutine_fn
1974 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1975 bool is_read)
1976 {
1977 BlockDriver *drv = bs->drv;
1978
1979 if (!drv) {
1980 return -ENOMEDIUM;
1981 } else if (drv->bdrv_load_vmstate) {
1982 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1983 : drv->bdrv_save_vmstate(bs, qiov, pos);
1984 } else if (bs->file) {
1985 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1986 }
1987
1988 return -ENOTSUP;
1989 }
1990
1991 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1992 {
1993 BdrvVmstateCo *co = opaque;
1994 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1995 }
1996
1997 static inline int
1998 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1999 bool is_read)
2000 {
2001 if (qemu_in_coroutine()) {
2002 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2003 } else {
2004 BdrvVmstateCo data = {
2005 .bs = bs,
2006 .qiov = qiov,
2007 .pos = pos,
2008 .is_read = is_read,
2009 .ret = -EINPROGRESS,
2010 };
2011 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2012
2013 bdrv_coroutine_enter(bs, co);
2014 while (data.ret == -EINPROGRESS) {
2015 aio_poll(bdrv_get_aio_context(bs), true);
2016 }
2017 return data.ret;
2018 }
2019 }
2020
2021 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2022 int64_t pos, int size)
2023 {
2024 QEMUIOVector qiov;
2025 struct iovec iov = {
2026 .iov_base = (void *) buf,
2027 .iov_len = size,
2028 };
2029 int ret;
2030
2031 qemu_iovec_init_external(&qiov, &iov, 1);
2032
2033 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2034 if (ret < 0) {
2035 return ret;
2036 }
2037
2038 return size;
2039 }
2040
2041 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2042 {
2043 return bdrv_rw_vmstate(bs, qiov, pos, false);
2044 }
2045
2046 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2047 int64_t pos, int size)
2048 {
2049 QEMUIOVector qiov;
2050 struct iovec iov = {
2051 .iov_base = buf,
2052 .iov_len = size,
2053 };
2054 int ret;
2055
2056 qemu_iovec_init_external(&qiov, &iov, 1);
2057 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2058 if (ret < 0) {
2059 return ret;
2060 }
2061
2062 return size;
2063 }
2064
2065 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2066 {
2067 return bdrv_rw_vmstate(bs, qiov, pos, true);
2068 }
2069
2070 /**************************************************************/
2071 /* async I/Os */
2072
2073 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2074 QEMUIOVector *qiov, int nb_sectors,
2075 BlockCompletionFunc *cb, void *opaque)
2076 {
2077 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2078
2079 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2080 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2081 0, cb, opaque, false);
2082 }
2083
2084 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2085 QEMUIOVector *qiov, int nb_sectors,
2086 BlockCompletionFunc *cb, void *opaque)
2087 {
2088 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2089
2090 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2091 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2092 0, cb, opaque, true);
2093 }
2094
2095 void bdrv_aio_cancel(BlockAIOCB *acb)
2096 {
2097 qemu_aio_ref(acb);
2098 bdrv_aio_cancel_async(acb);
2099 while (acb->refcnt > 1) {
2100 if (acb->aiocb_info->get_aio_context) {
2101 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2102 } else if (acb->bs) {
2103 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2104 * assert that we're not using an I/O thread. Thread-safe
2105 * code should use bdrv_aio_cancel_async exclusively.
2106 */
2107 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2108 aio_poll(bdrv_get_aio_context(acb->bs), true);
2109 } else {
2110 abort();
2111 }
2112 }
2113 qemu_aio_unref(acb);
2114 }
2115
2116 /* Async version of aio cancel. The caller is not blocked if the acb implements
2117 * cancel_async, otherwise we do nothing and let the request normally complete.
2118 * In either case the completion callback must be called. */
2119 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2120 {
2121 if (acb->aiocb_info->cancel_async) {
2122 acb->aiocb_info->cancel_async(acb);
2123 }
2124 }
2125
2126 /**************************************************************/
2127 /* async block device emulation */
2128
2129 typedef struct BlockRequest {
2130 union {
2131 /* Used during read, write, trim */
2132 struct {
2133 int64_t offset;
2134 int bytes;
2135 int flags;
2136 QEMUIOVector *qiov;
2137 };
2138 /* Used during ioctl */
2139 struct {
2140 int req;
2141 void *buf;
2142 };
2143 };
2144 BlockCompletionFunc *cb;
2145 void *opaque;
2146
2147 int error;
2148 } BlockRequest;
2149
2150 typedef struct BlockAIOCBCoroutine {
2151 BlockAIOCB common;
2152 BdrvChild *child;
2153 BlockRequest req;
2154 bool is_write;
2155 bool need_bh;
2156 bool *done;
2157 } BlockAIOCBCoroutine;
2158
2159 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2160 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2161 };
2162
2163 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2164 {
2165 if (!acb->need_bh) {
2166 bdrv_dec_in_flight(acb->common.bs);
2167 acb->common.cb(acb->common.opaque, acb->req.error);
2168 qemu_aio_unref(acb);
2169 }
2170 }
2171
2172 static void bdrv_co_em_bh(void *opaque)
2173 {
2174 BlockAIOCBCoroutine *acb = opaque;
2175
2176 assert(!acb->need_bh);
2177 bdrv_co_complete(acb);
2178 }
2179
2180 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2181 {
2182 acb->need_bh = false;
2183 if (acb->req.error != -EINPROGRESS) {
2184 BlockDriverState *bs = acb->common.bs;
2185
2186 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2187 }
2188 }
2189
2190 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2191 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2192 {
2193 BlockAIOCBCoroutine *acb = opaque;
2194
2195 if (!acb->is_write) {
2196 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2197 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2198 } else {
2199 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2200 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2201 }
2202
2203 bdrv_co_complete(acb);
2204 }
2205
2206 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2207 int64_t offset,
2208 QEMUIOVector *qiov,
2209 BdrvRequestFlags flags,
2210 BlockCompletionFunc *cb,
2211 void *opaque,
2212 bool is_write)
2213 {
2214 Coroutine *co;
2215 BlockAIOCBCoroutine *acb;
2216
2217 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2218 bdrv_inc_in_flight(child->bs);
2219
2220 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2221 acb->child = child;
2222 acb->need_bh = true;
2223 acb->req.error = -EINPROGRESS;
2224 acb->req.offset = offset;
2225 acb->req.qiov = qiov;
2226 acb->req.flags = flags;
2227 acb->is_write = is_write;
2228
2229 co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2230 bdrv_coroutine_enter(child->bs, co);
2231
2232 bdrv_co_maybe_schedule_bh(acb);
2233 return &acb->common;
2234 }
2235
2236 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2237 {
2238 BlockAIOCBCoroutine *acb = opaque;
2239 BlockDriverState *bs = acb->common.bs;
2240
2241 acb->req.error = bdrv_co_flush(bs);
2242 bdrv_co_complete(acb);
2243 }
2244
2245 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2246 BlockCompletionFunc *cb, void *opaque)
2247 {
2248 trace_bdrv_aio_flush(bs, opaque);
2249
2250 Coroutine *co;
2251 BlockAIOCBCoroutine *acb;
2252
2253 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2254 bdrv_inc_in_flight(bs);
2255
2256 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2257 acb->need_bh = true;
2258 acb->req.error = -EINPROGRESS;
2259
2260 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2261 bdrv_coroutine_enter(bs, co);
2262
2263 bdrv_co_maybe_schedule_bh(acb);
2264 return &acb->common;
2265 }
2266
2267 /**************************************************************/
2268 /* Coroutine block device emulation */
2269
2270 typedef struct FlushCo {
2271 BlockDriverState *bs;
2272 int ret;
2273 } FlushCo;
2274
2275
2276 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2277 {
2278 FlushCo *rwco = opaque;
2279
2280 rwco->ret = bdrv_co_flush(rwco->bs);
2281 }
2282
2283 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2284 {
2285 int current_gen;
2286 int ret = 0;
2287
2288 bdrv_inc_in_flight(bs);
2289
2290 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2291 bdrv_is_sg(bs)) {
2292 goto early_exit;
2293 }
2294
2295 current_gen = bs->write_gen;
2296
2297 /* Wait until any previous flushes are completed */
2298 while (bs->active_flush_req) {
2299 qemu_co_queue_wait(&bs->flush_queue, NULL);
2300 }
2301
2302 bs->active_flush_req = true;
2303
2304 /* Write back all layers by calling one driver function */
2305 if (bs->drv->bdrv_co_flush) {
2306 ret = bs->drv->bdrv_co_flush(bs);
2307 goto out;
2308 }
2309
2310 /* Write back cached data to the OS even with cache=unsafe */
2311 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2312 if (bs->drv->bdrv_co_flush_to_os) {
2313 ret = bs->drv->bdrv_co_flush_to_os(bs);
2314 if (ret < 0) {
2315 goto out;
2316 }
2317 }
2318
2319 /* But don't actually force it to the disk with cache=unsafe */
2320 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2321 goto flush_parent;
2322 }
2323
2324 /* Check if we really need to flush anything */
2325 if (bs->flushed_gen == current_gen) {
2326 goto flush_parent;
2327 }
2328
2329 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2330 if (bs->drv->bdrv_co_flush_to_disk) {
2331 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2332 } else if (bs->drv->bdrv_aio_flush) {
2333 BlockAIOCB *acb;
2334 CoroutineIOCompletion co = {
2335 .coroutine = qemu_coroutine_self(),
2336 };
2337
2338 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2339 if (acb == NULL) {
2340 ret = -EIO;
2341 } else {
2342 qemu_coroutine_yield();
2343 ret = co.ret;
2344 }
2345 } else {
2346 /*
2347 * Some block drivers always operate in either writethrough or unsafe
2348 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2349 * know how the server works (because the behaviour is hardcoded or
2350 * depends on server-side configuration), so we can't ensure that
2351 * everything is safe on disk. Returning an error doesn't work because
2352 * that would break guests even if the server operates in writethrough
2353 * mode.
2354 *
2355 * Let's hope the user knows what he's doing.
2356 */
2357 ret = 0;
2358 }
2359
2360 if (ret < 0) {
2361 goto out;
2362 }
2363
2364 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2365 * in the case of cache=unsafe, so there are no useless flushes.
2366 */
2367 flush_parent:
2368 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2369 out:
2370 /* Notify any pending flushes that we have completed */
2371 if (ret == 0) {
2372 bs->flushed_gen = current_gen;
2373 }
2374 bs->active_flush_req = false;
2375 /* Return value is ignored - it's ok if wait queue is empty */
2376 qemu_co_queue_next(&bs->flush_queue);
2377
2378 early_exit:
2379 bdrv_dec_in_flight(bs);
2380 return ret;
2381 }
2382
2383 int bdrv_flush(BlockDriverState *bs)
2384 {
2385 Coroutine *co;
2386 FlushCo flush_co = {
2387 .bs = bs,
2388 .ret = NOT_DONE,
2389 };
2390
2391 if (qemu_in_coroutine()) {
2392 /* Fast-path if already in coroutine context */
2393 bdrv_flush_co_entry(&flush_co);
2394 } else {
2395 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2396 bdrv_coroutine_enter(bs, co);
2397 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2398 }
2399
2400 return flush_co.ret;
2401 }
2402
2403 typedef struct DiscardCo {
2404 BlockDriverState *bs;
2405 int64_t offset;
2406 int count;
2407 int ret;
2408 } DiscardCo;
2409 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2410 {
2411 DiscardCo *rwco = opaque;
2412
2413 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2414 }
2415
2416 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2417 int count)
2418 {
2419 BdrvTrackedRequest req;
2420 int max_pdiscard, ret;
2421 int head, tail, align;
2422
2423 if (!bs->drv) {
2424 return -ENOMEDIUM;
2425 }
2426
2427 ret = bdrv_check_byte_request(bs, offset, count);
2428 if (ret < 0) {
2429 return ret;
2430 } else if (bs->read_only) {
2431 return -EPERM;
2432 }
2433 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2434
2435 /* Do nothing if disabled. */
2436 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2437 return 0;
2438 }
2439
2440 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2441 return 0;
2442 }
2443
2444 /* Discard is advisory, but some devices track and coalesce
2445 * unaligned requests, so we must pass everything down rather than
2446 * round here. Still, most devices will just silently ignore
2447 * unaligned requests (by returning -ENOTSUP), so we must fragment
2448 * the request accordingly. */
2449 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2450 assert(align % bs->bl.request_alignment == 0);
2451 head = offset % align;
2452 tail = (offset + count) % align;
2453
2454 bdrv_inc_in_flight(bs);
2455 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2456
2457 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2458 if (ret < 0) {
2459 goto out;
2460 }
2461
2462 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2463 align);
2464 assert(max_pdiscard >= bs->bl.request_alignment);
2465
2466 while (count > 0) {
2467 int ret;
2468 int num = count;
2469
2470 if (head) {
2471 /* Make small requests to get to alignment boundaries. */
2472 num = MIN(count, align - head);
2473 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2474 num %= bs->bl.request_alignment;
2475 }
2476 head = (head + num) % align;
2477 assert(num < max_pdiscard);
2478 } else if (tail) {
2479 if (num > align) {
2480 /* Shorten the request to the last aligned cluster. */
2481 num -= tail;
2482 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2483 tail > bs->bl.request_alignment) {
2484 tail %= bs->bl.request_alignment;
2485 num -= tail;
2486 }
2487 }
2488 /* limit request size */
2489 if (num > max_pdiscard) {
2490 num = max_pdiscard;
2491 }
2492
2493 if (bs->drv->bdrv_co_pdiscard) {
2494 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2495 } else {
2496 BlockAIOCB *acb;
2497 CoroutineIOCompletion co = {
2498 .coroutine = qemu_coroutine_self(),
2499 };
2500
2501 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2502 bdrv_co_io_em_complete, &co);
2503 if (acb == NULL) {
2504 ret = -EIO;
2505 goto out;
2506 } else {
2507 qemu_coroutine_yield();
2508 ret = co.ret;
2509 }
2510 }
2511 if (ret && ret != -ENOTSUP) {
2512 goto out;
2513 }
2514
2515 offset += num;
2516 count -= num;
2517 }
2518 ret = 0;
2519 out:
2520 ++bs->write_gen;
2521 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2522 req.bytes >> BDRV_SECTOR_BITS);
2523 tracked_request_end(&req);
2524 bdrv_dec_in_flight(bs);
2525 return ret;
2526 }
2527
2528 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2529 {
2530 Coroutine *co;
2531 DiscardCo rwco = {
2532 .bs = bs,
2533 .offset = offset,
2534 .count = count,
2535 .ret = NOT_DONE,
2536 };
2537
2538 if (qemu_in_coroutine()) {
2539 /* Fast-path if already in coroutine context */
2540 bdrv_pdiscard_co_entry(&rwco);
2541 } else {
2542 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2543 bdrv_coroutine_enter(bs, co);
2544 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2545 }
2546
2547 return rwco.ret;
2548 }
2549
2550 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2551 {
2552 BlockDriver *drv = bs->drv;
2553 CoroutineIOCompletion co = {
2554 .coroutine = qemu_coroutine_self(),
2555 };
2556 BlockAIOCB *acb;
2557
2558 bdrv_inc_in_flight(bs);
2559 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2560 co.ret = -ENOTSUP;
2561 goto out;
2562 }
2563
2564 if (drv->bdrv_co_ioctl) {
2565 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2566 } else {
2567 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2568 if (!acb) {
2569 co.ret = -ENOTSUP;
2570 goto out;
2571 }
2572 qemu_coroutine_yield();
2573 }
2574 out:
2575 bdrv_dec_in_flight(bs);
2576 return co.ret;
2577 }
2578
2579 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2580 {
2581 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2582 }
2583
2584 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2585 {
2586 return memset(qemu_blockalign(bs, size), 0, size);
2587 }
2588
2589 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2590 {
2591 size_t align = bdrv_opt_mem_align(bs);
2592
2593 /* Ensure that NULL is never returned on success */
2594 assert(align > 0);
2595 if (size == 0) {
2596 size = align;
2597 }
2598
2599 return qemu_try_memalign(align, size);
2600 }
2601
2602 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2603 {
2604 void *mem = qemu_try_blockalign(bs, size);
2605
2606 if (mem) {
2607 memset(mem, 0, size);
2608 }
2609
2610 return mem;
2611 }
2612
2613 /*
2614 * Check if all memory in this vector is sector aligned.
2615 */
2616 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2617 {
2618 int i;
2619 size_t alignment = bdrv_min_mem_align(bs);
2620
2621 for (i = 0; i < qiov->niov; i++) {
2622 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2623 return false;
2624 }
2625 if (qiov->iov[i].iov_len % alignment) {
2626 return false;
2627 }
2628 }
2629
2630 return true;
2631 }
2632
2633 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2634 NotifierWithReturn *notifier)
2635 {
2636 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2637 }
2638
2639 void bdrv_io_plug(BlockDriverState *bs)
2640 {
2641 BdrvChild *child;
2642
2643 QLIST_FOREACH(child, &bs->children, next) {
2644 bdrv_io_plug(child->bs);
2645 }
2646
2647 if (bs->io_plugged++ == 0) {
2648 BlockDriver *drv = bs->drv;
2649 if (drv && drv->bdrv_io_plug) {
2650 drv->bdrv_io_plug(bs);
2651 }
2652 }
2653 }
2654
2655 void bdrv_io_unplug(BlockDriverState *bs)
2656 {
2657 BdrvChild *child;
2658
2659 assert(bs->io_plugged);
2660 if (--bs->io_plugged == 0) {
2661 BlockDriver *drv = bs->drv;
2662 if (drv && drv->bdrv_io_unplug) {
2663 drv->bdrv_io_unplug(bs);
2664 }
2665 }
2666
2667 QLIST_FOREACH(child, &bs->children, next) {
2668 bdrv_io_unplug(child->bs);
2669 }
2670 }