]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
40
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
49 {
50 BdrvChild *c, *next;
51
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore) {
54 continue;
55 }
56 bdrv_parent_drained_begin_single(c);
57 }
58 }
59
60 void bdrv_parent_drained_end_single(BdrvChild *c)
61 {
62 IO_OR_GS_CODE();
63
64 assert(c->quiesced_parent);
65 c->quiesced_parent = false;
66
67 if (c->klass->drained_end) {
68 c->klass->drained_end(c);
69 }
70 }
71
72 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
73 {
74 BdrvChild *c;
75
76 QLIST_FOREACH(c, &bs->parents, next_parent) {
77 if (c == ignore) {
78 continue;
79 }
80 bdrv_parent_drained_end_single(c);
81 }
82 }
83
84 bool bdrv_parent_drained_poll_single(BdrvChild *c)
85 {
86 if (c->klass->drained_poll) {
87 return c->klass->drained_poll(c);
88 }
89 return false;
90 }
91
92 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
93 bool ignore_bds_parents)
94 {
95 BdrvChild *c, *next;
96 bool busy = false;
97
98 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
99 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
100 continue;
101 }
102 busy |= bdrv_parent_drained_poll_single(c);
103 }
104
105 return busy;
106 }
107
108 void bdrv_parent_drained_begin_single(BdrvChild *c)
109 {
110 IO_OR_GS_CODE();
111
112 assert(!c->quiesced_parent);
113 c->quiesced_parent = true;
114
115 if (c->klass->drained_begin) {
116 c->klass->drained_begin(c);
117 }
118 }
119
120 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
121 {
122 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
123 src->pdiscard_alignment);
124 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
125 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
126 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
127 src->max_hw_transfer);
128 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
129 src->opt_mem_alignment);
130 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
131 src->min_mem_alignment);
132 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
133 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
134 }
135
136 typedef struct BdrvRefreshLimitsState {
137 BlockDriverState *bs;
138 BlockLimits old_bl;
139 } BdrvRefreshLimitsState;
140
141 static void bdrv_refresh_limits_abort(void *opaque)
142 {
143 BdrvRefreshLimitsState *s = opaque;
144
145 s->bs->bl = s->old_bl;
146 }
147
148 static TransactionActionDrv bdrv_refresh_limits_drv = {
149 .abort = bdrv_refresh_limits_abort,
150 .clean = g_free,
151 };
152
153 /* @tran is allowed to be NULL, in this case no rollback is possible. */
154 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
155 {
156 ERRP_GUARD();
157 BlockDriver *drv = bs->drv;
158 BdrvChild *c;
159 bool have_limits;
160
161 GLOBAL_STATE_CODE();
162
163 if (tran) {
164 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
165 *s = (BdrvRefreshLimitsState) {
166 .bs = bs,
167 .old_bl = bs->bl,
168 };
169 tran_add(tran, &bdrv_refresh_limits_drv, s);
170 }
171
172 memset(&bs->bl, 0, sizeof(bs->bl));
173
174 if (!drv) {
175 return;
176 }
177
178 /* Default alignment based on whether driver has byte interface */
179 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
180 drv->bdrv_aio_preadv ||
181 drv->bdrv_co_preadv_part) ? 1 : 512;
182
183 /* Take some limits from the children as a default */
184 have_limits = false;
185 QLIST_FOREACH(c, &bs->children, next) {
186 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
187 {
188 bdrv_merge_limits(&bs->bl, &c->bs->bl);
189 have_limits = true;
190 }
191 }
192
193 if (!have_limits) {
194 bs->bl.min_mem_alignment = 512;
195 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
196
197 /* Safe default since most protocols use readv()/writev()/etc */
198 bs->bl.max_iov = IOV_MAX;
199 }
200
201 /* Then let the driver override it */
202 if (drv->bdrv_refresh_limits) {
203 drv->bdrv_refresh_limits(bs, errp);
204 if (*errp) {
205 return;
206 }
207 }
208
209 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
210 error_setg(errp, "Driver requires too large request alignment");
211 }
212 }
213
214 /**
215 * The copy-on-read flag is actually a reference count so multiple users may
216 * use the feature without worrying about clobbering its previous state.
217 * Copy-on-read stays enabled until all users have called to disable it.
218 */
219 void bdrv_enable_copy_on_read(BlockDriverState *bs)
220 {
221 IO_CODE();
222 qatomic_inc(&bs->copy_on_read);
223 }
224
225 void bdrv_disable_copy_on_read(BlockDriverState *bs)
226 {
227 int old = qatomic_fetch_dec(&bs->copy_on_read);
228 IO_CODE();
229 assert(old >= 1);
230 }
231
232 typedef struct {
233 Coroutine *co;
234 BlockDriverState *bs;
235 bool done;
236 bool begin;
237 bool poll;
238 BdrvChild *parent;
239 } BdrvCoDrainData;
240
241 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
242 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
243 bool ignore_bds_parents)
244 {
245 IO_OR_GS_CODE();
246
247 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
248 return true;
249 }
250
251 if (qatomic_read(&bs->in_flight)) {
252 return true;
253 }
254
255 return false;
256 }
257
258 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
259 BdrvChild *ignore_parent)
260 {
261 return bdrv_drain_poll(bs, ignore_parent, false);
262 }
263
264 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
265 bool poll);
266 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
267
268 static void bdrv_co_drain_bh_cb(void *opaque)
269 {
270 BdrvCoDrainData *data = opaque;
271 Coroutine *co = data->co;
272 BlockDriverState *bs = data->bs;
273
274 if (bs) {
275 AioContext *ctx = bdrv_get_aio_context(bs);
276 aio_context_acquire(ctx);
277 bdrv_dec_in_flight(bs);
278 if (data->begin) {
279 bdrv_do_drained_begin(bs, data->parent, data->poll);
280 } else {
281 assert(!data->poll);
282 bdrv_do_drained_end(bs, data->parent);
283 }
284 aio_context_release(ctx);
285 } else {
286 assert(data->begin);
287 bdrv_drain_all_begin();
288 }
289
290 data->done = true;
291 aio_co_wake(co);
292 }
293
294 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
295 bool begin,
296 BdrvChild *parent,
297 bool poll)
298 {
299 BdrvCoDrainData data;
300 Coroutine *self = qemu_coroutine_self();
301 AioContext *ctx = bdrv_get_aio_context(bs);
302 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
303
304 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
305 * other coroutines run if they were queued by aio_co_enter(). */
306
307 assert(qemu_in_coroutine());
308 data = (BdrvCoDrainData) {
309 .co = self,
310 .bs = bs,
311 .done = false,
312 .begin = begin,
313 .parent = parent,
314 .poll = poll,
315 };
316
317 if (bs) {
318 bdrv_inc_in_flight(bs);
319 }
320
321 /*
322 * Temporarily drop the lock across yield or we would get deadlocks.
323 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
324 *
325 * When we yield below, the lock for the current context will be
326 * released, so if this is actually the lock that protects bs, don't drop
327 * it a second time.
328 */
329 if (ctx != co_ctx) {
330 aio_context_release(ctx);
331 }
332 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
333
334 qemu_coroutine_yield();
335 /* If we are resumed from some other event (such as an aio completion or a
336 * timer callback), it is a bug in the caller that should be fixed. */
337 assert(data.done);
338
339 /* Reaquire the AioContext of bs if we dropped it */
340 if (ctx != co_ctx) {
341 aio_context_acquire(ctx);
342 }
343 }
344
345 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
346 bool poll)
347 {
348 IO_OR_GS_CODE();
349
350 if (qemu_in_coroutine()) {
351 bdrv_co_yield_to_drain(bs, true, parent, poll);
352 return;
353 }
354
355 /* Stop things in parent-to-child order */
356 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
357 aio_disable_external(bdrv_get_aio_context(bs));
358 bdrv_parent_drained_begin(bs, parent);
359 if (bs->drv && bs->drv->bdrv_drain_begin) {
360 bs->drv->bdrv_drain_begin(bs);
361 }
362 }
363
364 /*
365 * Wait for drained requests to finish.
366 *
367 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
368 * call is needed so things in this AioContext can make progress even
369 * though we don't return to the main AioContext loop - this automatically
370 * includes other nodes in the same AioContext and therefore all child
371 * nodes.
372 */
373 if (poll) {
374 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
375 }
376 }
377
378 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
379 {
380 bdrv_do_drained_begin(bs, parent, false);
381 }
382
383 void bdrv_drained_begin(BlockDriverState *bs)
384 {
385 IO_OR_GS_CODE();
386 bdrv_do_drained_begin(bs, NULL, true);
387 }
388
389 /**
390 * This function does not poll, nor must any of its recursively called
391 * functions.
392 */
393 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
394 {
395 int old_quiesce_counter;
396
397 if (qemu_in_coroutine()) {
398 bdrv_co_yield_to_drain(bs, false, parent, false);
399 return;
400 }
401 assert(bs->quiesce_counter > 0);
402
403 /* Re-enable things in child-to-parent order */
404 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
405 if (old_quiesce_counter == 1) {
406 if (bs->drv && bs->drv->bdrv_drain_end) {
407 bs->drv->bdrv_drain_end(bs);
408 }
409 bdrv_parent_drained_end(bs, parent);
410 aio_enable_external(bdrv_get_aio_context(bs));
411 }
412 }
413
414 void bdrv_drained_end(BlockDriverState *bs)
415 {
416 IO_OR_GS_CODE();
417 bdrv_do_drained_end(bs, NULL);
418 }
419
420 void bdrv_drain(BlockDriverState *bs)
421 {
422 IO_OR_GS_CODE();
423 bdrv_drained_begin(bs);
424 bdrv_drained_end(bs);
425 }
426
427 static void bdrv_drain_assert_idle(BlockDriverState *bs)
428 {
429 BdrvChild *child, *next;
430
431 assert(qatomic_read(&bs->in_flight) == 0);
432 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
433 bdrv_drain_assert_idle(child->bs);
434 }
435 }
436
437 unsigned int bdrv_drain_all_count = 0;
438
439 static bool bdrv_drain_all_poll(void)
440 {
441 BlockDriverState *bs = NULL;
442 bool result = false;
443 GLOBAL_STATE_CODE();
444
445 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
446 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
447 while ((bs = bdrv_next_all_states(bs))) {
448 AioContext *aio_context = bdrv_get_aio_context(bs);
449 aio_context_acquire(aio_context);
450 result |= bdrv_drain_poll(bs, NULL, true);
451 aio_context_release(aio_context);
452 }
453
454 return result;
455 }
456
457 /*
458 * Wait for pending requests to complete across all BlockDriverStates
459 *
460 * This function does not flush data to disk, use bdrv_flush_all() for that
461 * after calling this function.
462 *
463 * This pauses all block jobs and disables external clients. It must
464 * be paired with bdrv_drain_all_end().
465 *
466 * NOTE: no new block jobs or BlockDriverStates can be created between
467 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
468 */
469 void bdrv_drain_all_begin_nopoll(void)
470 {
471 BlockDriverState *bs = NULL;
472 GLOBAL_STATE_CODE();
473
474 /*
475 * bdrv queue is managed by record/replay,
476 * waiting for finishing the I/O requests may
477 * be infinite
478 */
479 if (replay_events_enabled()) {
480 return;
481 }
482
483 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
484 * loop AioContext, so make sure we're in the main context. */
485 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
486 assert(bdrv_drain_all_count < INT_MAX);
487 bdrv_drain_all_count++;
488
489 /* Quiesce all nodes, without polling in-flight requests yet. The graph
490 * cannot change during this loop. */
491 while ((bs = bdrv_next_all_states(bs))) {
492 AioContext *aio_context = bdrv_get_aio_context(bs);
493
494 aio_context_acquire(aio_context);
495 bdrv_do_drained_begin(bs, NULL, false);
496 aio_context_release(aio_context);
497 }
498 }
499
500 void bdrv_drain_all_begin(void)
501 {
502 BlockDriverState *bs = NULL;
503
504 if (qemu_in_coroutine()) {
505 bdrv_co_yield_to_drain(NULL, true, NULL, true);
506 return;
507 }
508
509 /*
510 * bdrv queue is managed by record/replay,
511 * waiting for finishing the I/O requests may
512 * be infinite
513 */
514 if (replay_events_enabled()) {
515 return;
516 }
517
518 bdrv_drain_all_begin_nopoll();
519
520 /* Now poll the in-flight requests */
521 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
522
523 while ((bs = bdrv_next_all_states(bs))) {
524 bdrv_drain_assert_idle(bs);
525 }
526 }
527
528 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
529 {
530 GLOBAL_STATE_CODE();
531
532 g_assert(bs->quiesce_counter > 0);
533 g_assert(!bs->refcnt);
534
535 while (bs->quiesce_counter) {
536 bdrv_do_drained_end(bs, NULL);
537 }
538 }
539
540 void bdrv_drain_all_end(void)
541 {
542 BlockDriverState *bs = NULL;
543 GLOBAL_STATE_CODE();
544
545 /*
546 * bdrv queue is managed by record/replay,
547 * waiting for finishing the I/O requests may
548 * be endless
549 */
550 if (replay_events_enabled()) {
551 return;
552 }
553
554 while ((bs = bdrv_next_all_states(bs))) {
555 AioContext *aio_context = bdrv_get_aio_context(bs);
556
557 aio_context_acquire(aio_context);
558 bdrv_do_drained_end(bs, NULL);
559 aio_context_release(aio_context);
560 }
561
562 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
563 assert(bdrv_drain_all_count > 0);
564 bdrv_drain_all_count--;
565 }
566
567 void bdrv_drain_all(void)
568 {
569 GLOBAL_STATE_CODE();
570 bdrv_drain_all_begin();
571 bdrv_drain_all_end();
572 }
573
574 /**
575 * Remove an active request from the tracked requests list
576 *
577 * This function should be called when a tracked request is completing.
578 */
579 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
580 {
581 if (req->serialising) {
582 qatomic_dec(&req->bs->serialising_in_flight);
583 }
584
585 qemu_co_mutex_lock(&req->bs->reqs_lock);
586 QLIST_REMOVE(req, list);
587 qemu_co_queue_restart_all(&req->wait_queue);
588 qemu_co_mutex_unlock(&req->bs->reqs_lock);
589 }
590
591 /**
592 * Add an active request to the tracked requests list
593 */
594 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
595 BlockDriverState *bs,
596 int64_t offset,
597 int64_t bytes,
598 enum BdrvTrackedRequestType type)
599 {
600 bdrv_check_request(offset, bytes, &error_abort);
601
602 *req = (BdrvTrackedRequest){
603 .bs = bs,
604 .offset = offset,
605 .bytes = bytes,
606 .type = type,
607 .co = qemu_coroutine_self(),
608 .serialising = false,
609 .overlap_offset = offset,
610 .overlap_bytes = bytes,
611 };
612
613 qemu_co_queue_init(&req->wait_queue);
614
615 qemu_co_mutex_lock(&bs->reqs_lock);
616 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
617 qemu_co_mutex_unlock(&bs->reqs_lock);
618 }
619
620 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
621 int64_t offset, int64_t bytes)
622 {
623 bdrv_check_request(offset, bytes, &error_abort);
624
625 /* aaaa bbbb */
626 if (offset >= req->overlap_offset + req->overlap_bytes) {
627 return false;
628 }
629 /* bbbb aaaa */
630 if (req->overlap_offset >= offset + bytes) {
631 return false;
632 }
633 return true;
634 }
635
636 /* Called with self->bs->reqs_lock held */
637 static coroutine_fn BdrvTrackedRequest *
638 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
639 {
640 BdrvTrackedRequest *req;
641
642 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
643 if (req == self || (!req->serialising && !self->serialising)) {
644 continue;
645 }
646 if (tracked_request_overlaps(req, self->overlap_offset,
647 self->overlap_bytes))
648 {
649 /*
650 * Hitting this means there was a reentrant request, for
651 * example, a block driver issuing nested requests. This must
652 * never happen since it means deadlock.
653 */
654 assert(qemu_coroutine_self() != req->co);
655
656 /*
657 * If the request is already (indirectly) waiting for us, or
658 * will wait for us as soon as it wakes up, then just go on
659 * (instead of producing a deadlock in the former case).
660 */
661 if (!req->waiting_for) {
662 return req;
663 }
664 }
665 }
666
667 return NULL;
668 }
669
670 /* Called with self->bs->reqs_lock held */
671 static void coroutine_fn
672 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
673 {
674 BdrvTrackedRequest *req;
675
676 while ((req = bdrv_find_conflicting_request(self))) {
677 self->waiting_for = req;
678 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
679 self->waiting_for = NULL;
680 }
681 }
682
683 /* Called with req->bs->reqs_lock held */
684 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
685 uint64_t align)
686 {
687 int64_t overlap_offset = req->offset & ~(align - 1);
688 int64_t overlap_bytes =
689 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
690
691 bdrv_check_request(req->offset, req->bytes, &error_abort);
692
693 if (!req->serialising) {
694 qatomic_inc(&req->bs->serialising_in_flight);
695 req->serialising = true;
696 }
697
698 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
699 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
700 }
701
702 /**
703 * Return the tracked request on @bs for the current coroutine, or
704 * NULL if there is none.
705 */
706 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
707 {
708 BdrvTrackedRequest *req;
709 Coroutine *self = qemu_coroutine_self();
710 IO_CODE();
711
712 QLIST_FOREACH(req, &bs->tracked_requests, list) {
713 if (req->co == self) {
714 return req;
715 }
716 }
717
718 return NULL;
719 }
720
721 /**
722 * Round a region to cluster boundaries
723 */
724 void bdrv_round_to_clusters(BlockDriverState *bs,
725 int64_t offset, int64_t bytes,
726 int64_t *cluster_offset,
727 int64_t *cluster_bytes)
728 {
729 BlockDriverInfo bdi;
730 IO_CODE();
731 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
732 *cluster_offset = offset;
733 *cluster_bytes = bytes;
734 } else {
735 int64_t c = bdi.cluster_size;
736 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
737 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
738 }
739 }
740
741 static int bdrv_get_cluster_size(BlockDriverState *bs)
742 {
743 BlockDriverInfo bdi;
744 int ret;
745
746 ret = bdrv_get_info(bs, &bdi);
747 if (ret < 0 || bdi.cluster_size == 0) {
748 return bs->bl.request_alignment;
749 } else {
750 return bdi.cluster_size;
751 }
752 }
753
754 void bdrv_inc_in_flight(BlockDriverState *bs)
755 {
756 IO_CODE();
757 qatomic_inc(&bs->in_flight);
758 }
759
760 void bdrv_wakeup(BlockDriverState *bs)
761 {
762 IO_CODE();
763 aio_wait_kick();
764 }
765
766 void bdrv_dec_in_flight(BlockDriverState *bs)
767 {
768 IO_CODE();
769 qatomic_dec(&bs->in_flight);
770 bdrv_wakeup(bs);
771 }
772
773 static void coroutine_fn
774 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
775 {
776 BlockDriverState *bs = self->bs;
777
778 if (!qatomic_read(&bs->serialising_in_flight)) {
779 return;
780 }
781
782 qemu_co_mutex_lock(&bs->reqs_lock);
783 bdrv_wait_serialising_requests_locked(self);
784 qemu_co_mutex_unlock(&bs->reqs_lock);
785 }
786
787 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
788 uint64_t align)
789 {
790 IO_CODE();
791
792 qemu_co_mutex_lock(&req->bs->reqs_lock);
793
794 tracked_request_set_serialising(req, align);
795 bdrv_wait_serialising_requests_locked(req);
796
797 qemu_co_mutex_unlock(&req->bs->reqs_lock);
798 }
799
800 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
801 QEMUIOVector *qiov, size_t qiov_offset,
802 Error **errp)
803 {
804 /*
805 * Check generic offset/bytes correctness
806 */
807
808 if (offset < 0) {
809 error_setg(errp, "offset is negative: %" PRIi64, offset);
810 return -EIO;
811 }
812
813 if (bytes < 0) {
814 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
815 return -EIO;
816 }
817
818 if (bytes > BDRV_MAX_LENGTH) {
819 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
820 bytes, BDRV_MAX_LENGTH);
821 return -EIO;
822 }
823
824 if (offset > BDRV_MAX_LENGTH) {
825 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
826 offset, BDRV_MAX_LENGTH);
827 return -EIO;
828 }
829
830 if (offset > BDRV_MAX_LENGTH - bytes) {
831 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
832 "exceeds maximum(%" PRIi64 ")", offset, bytes,
833 BDRV_MAX_LENGTH);
834 return -EIO;
835 }
836
837 if (!qiov) {
838 return 0;
839 }
840
841 /*
842 * Check qiov and qiov_offset
843 */
844
845 if (qiov_offset > qiov->size) {
846 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
847 qiov_offset, qiov->size);
848 return -EIO;
849 }
850
851 if (bytes > qiov->size - qiov_offset) {
852 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
853 "vector size(%zu)", bytes, qiov_offset, qiov->size);
854 return -EIO;
855 }
856
857 return 0;
858 }
859
860 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
861 {
862 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
863 }
864
865 static int bdrv_check_request32(int64_t offset, int64_t bytes,
866 QEMUIOVector *qiov, size_t qiov_offset)
867 {
868 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
869 if (ret < 0) {
870 return ret;
871 }
872
873 if (bytes > BDRV_REQUEST_MAX_BYTES) {
874 return -EIO;
875 }
876
877 return 0;
878 }
879
880 /*
881 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
882 * The operation is sped up by checking the block status and only writing
883 * zeroes to the device if they currently do not return zeroes. Optional
884 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
885 * BDRV_REQ_FUA).
886 *
887 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
888 */
889 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
890 {
891 int ret;
892 int64_t target_size, bytes, offset = 0;
893 BlockDriverState *bs = child->bs;
894 IO_CODE();
895
896 target_size = bdrv_getlength(bs);
897 if (target_size < 0) {
898 return target_size;
899 }
900
901 for (;;) {
902 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
903 if (bytes <= 0) {
904 return 0;
905 }
906 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
907 if (ret < 0) {
908 return ret;
909 }
910 if (ret & BDRV_BLOCK_ZERO) {
911 offset += bytes;
912 continue;
913 }
914 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
915 if (ret < 0) {
916 return ret;
917 }
918 offset += bytes;
919 }
920 }
921
922 /*
923 * Writes to the file and ensures that no writes are reordered across this
924 * request (acts as a barrier)
925 *
926 * Returns 0 on success, -errno in error cases.
927 */
928 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
929 int64_t bytes, const void *buf,
930 BdrvRequestFlags flags)
931 {
932 int ret;
933 IO_CODE();
934
935 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
936 if (ret < 0) {
937 return ret;
938 }
939
940 ret = bdrv_co_flush(child->bs);
941 if (ret < 0) {
942 return ret;
943 }
944
945 return 0;
946 }
947
948 typedef struct CoroutineIOCompletion {
949 Coroutine *coroutine;
950 int ret;
951 } CoroutineIOCompletion;
952
953 static void bdrv_co_io_em_complete(void *opaque, int ret)
954 {
955 CoroutineIOCompletion *co = opaque;
956
957 co->ret = ret;
958 aio_co_wake(co->coroutine);
959 }
960
961 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
962 int64_t offset, int64_t bytes,
963 QEMUIOVector *qiov,
964 size_t qiov_offset, int flags)
965 {
966 BlockDriver *drv = bs->drv;
967 int64_t sector_num;
968 unsigned int nb_sectors;
969 QEMUIOVector local_qiov;
970 int ret;
971
972 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
973 assert(!(flags & ~bs->supported_read_flags));
974
975 if (!drv) {
976 return -ENOMEDIUM;
977 }
978
979 if (drv->bdrv_co_preadv_part) {
980 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
981 flags);
982 }
983
984 if (qiov_offset > 0 || bytes != qiov->size) {
985 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
986 qiov = &local_qiov;
987 }
988
989 if (drv->bdrv_co_preadv) {
990 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
991 goto out;
992 }
993
994 if (drv->bdrv_aio_preadv) {
995 BlockAIOCB *acb;
996 CoroutineIOCompletion co = {
997 .coroutine = qemu_coroutine_self(),
998 };
999
1000 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1001 bdrv_co_io_em_complete, &co);
1002 if (acb == NULL) {
1003 ret = -EIO;
1004 goto out;
1005 } else {
1006 qemu_coroutine_yield();
1007 ret = co.ret;
1008 goto out;
1009 }
1010 }
1011
1012 sector_num = offset >> BDRV_SECTOR_BITS;
1013 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1014
1015 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1016 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1017 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1018 assert(drv->bdrv_co_readv);
1019
1020 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1021
1022 out:
1023 if (qiov == &local_qiov) {
1024 qemu_iovec_destroy(&local_qiov);
1025 }
1026
1027 return ret;
1028 }
1029
1030 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1031 int64_t offset, int64_t bytes,
1032 QEMUIOVector *qiov,
1033 size_t qiov_offset,
1034 BdrvRequestFlags flags)
1035 {
1036 BlockDriver *drv = bs->drv;
1037 bool emulate_fua = false;
1038 int64_t sector_num;
1039 unsigned int nb_sectors;
1040 QEMUIOVector local_qiov;
1041 int ret;
1042
1043 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1044
1045 if (!drv) {
1046 return -ENOMEDIUM;
1047 }
1048
1049 if ((flags & BDRV_REQ_FUA) &&
1050 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1051 flags &= ~BDRV_REQ_FUA;
1052 emulate_fua = true;
1053 }
1054
1055 flags &= bs->supported_write_flags;
1056
1057 if (drv->bdrv_co_pwritev_part) {
1058 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1059 flags);
1060 goto emulate_flags;
1061 }
1062
1063 if (qiov_offset > 0 || bytes != qiov->size) {
1064 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1065 qiov = &local_qiov;
1066 }
1067
1068 if (drv->bdrv_co_pwritev) {
1069 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1070 goto emulate_flags;
1071 }
1072
1073 if (drv->bdrv_aio_pwritev) {
1074 BlockAIOCB *acb;
1075 CoroutineIOCompletion co = {
1076 .coroutine = qemu_coroutine_self(),
1077 };
1078
1079 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1080 bdrv_co_io_em_complete, &co);
1081 if (acb == NULL) {
1082 ret = -EIO;
1083 } else {
1084 qemu_coroutine_yield();
1085 ret = co.ret;
1086 }
1087 goto emulate_flags;
1088 }
1089
1090 sector_num = offset >> BDRV_SECTOR_BITS;
1091 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1092
1093 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1094 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1095 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1096
1097 assert(drv->bdrv_co_writev);
1098 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1099
1100 emulate_flags:
1101 if (ret == 0 && emulate_fua) {
1102 ret = bdrv_co_flush(bs);
1103 }
1104
1105 if (qiov == &local_qiov) {
1106 qemu_iovec_destroy(&local_qiov);
1107 }
1108
1109 return ret;
1110 }
1111
1112 static int coroutine_fn
1113 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1114 int64_t bytes, QEMUIOVector *qiov,
1115 size_t qiov_offset)
1116 {
1117 BlockDriver *drv = bs->drv;
1118 QEMUIOVector local_qiov;
1119 int ret;
1120
1121 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1122
1123 if (!drv) {
1124 return -ENOMEDIUM;
1125 }
1126
1127 if (!block_driver_can_compress(drv)) {
1128 return -ENOTSUP;
1129 }
1130
1131 if (drv->bdrv_co_pwritev_compressed_part) {
1132 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1133 qiov, qiov_offset);
1134 }
1135
1136 if (qiov_offset == 0) {
1137 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1138 }
1139
1140 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1141 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1142 qemu_iovec_destroy(&local_qiov);
1143
1144 return ret;
1145 }
1146
1147 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1148 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1149 size_t qiov_offset, int flags)
1150 {
1151 BlockDriverState *bs = child->bs;
1152
1153 /* Perform I/O through a temporary buffer so that users who scribble over
1154 * their read buffer while the operation is in progress do not end up
1155 * modifying the image file. This is critical for zero-copy guest I/O
1156 * where anything might happen inside guest memory.
1157 */
1158 void *bounce_buffer = NULL;
1159
1160 BlockDriver *drv = bs->drv;
1161 int64_t cluster_offset;
1162 int64_t cluster_bytes;
1163 int64_t skip_bytes;
1164 int ret;
1165 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1166 BDRV_REQUEST_MAX_BYTES);
1167 int64_t progress = 0;
1168 bool skip_write;
1169
1170 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1171
1172 if (!drv) {
1173 return -ENOMEDIUM;
1174 }
1175
1176 /*
1177 * Do not write anything when the BDS is inactive. That is not
1178 * allowed, and it would not help.
1179 */
1180 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1181
1182 /* FIXME We cannot require callers to have write permissions when all they
1183 * are doing is a read request. If we did things right, write permissions
1184 * would be obtained anyway, but internally by the copy-on-read code. As
1185 * long as it is implemented here rather than in a separate filter driver,
1186 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1187 * it could request permissions. Therefore we have to bypass the permission
1188 * system for the moment. */
1189 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1190
1191 /* Cover entire cluster so no additional backing file I/O is required when
1192 * allocating cluster in the image file. Note that this value may exceed
1193 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1194 * is one reason we loop rather than doing it all at once.
1195 */
1196 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1197 skip_bytes = offset - cluster_offset;
1198
1199 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1200 cluster_offset, cluster_bytes);
1201
1202 while (cluster_bytes) {
1203 int64_t pnum;
1204
1205 if (skip_write) {
1206 ret = 1; /* "already allocated", so nothing will be copied */
1207 pnum = MIN(cluster_bytes, max_transfer);
1208 } else {
1209 ret = bdrv_is_allocated(bs, cluster_offset,
1210 MIN(cluster_bytes, max_transfer), &pnum);
1211 if (ret < 0) {
1212 /*
1213 * Safe to treat errors in querying allocation as if
1214 * unallocated; we'll probably fail again soon on the
1215 * read, but at least that will set a decent errno.
1216 */
1217 pnum = MIN(cluster_bytes, max_transfer);
1218 }
1219
1220 /* Stop at EOF if the image ends in the middle of the cluster */
1221 if (ret == 0 && pnum == 0) {
1222 assert(progress >= bytes);
1223 break;
1224 }
1225
1226 assert(skip_bytes < pnum);
1227 }
1228
1229 if (ret <= 0) {
1230 QEMUIOVector local_qiov;
1231
1232 /* Must copy-on-read; use the bounce buffer */
1233 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1234 if (!bounce_buffer) {
1235 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1236 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1237 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1238
1239 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1240 if (!bounce_buffer) {
1241 ret = -ENOMEM;
1242 goto err;
1243 }
1244 }
1245 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1246
1247 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1248 &local_qiov, 0, 0);
1249 if (ret < 0) {
1250 goto err;
1251 }
1252
1253 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1254 if (drv->bdrv_co_pwrite_zeroes &&
1255 buffer_is_zero(bounce_buffer, pnum)) {
1256 /* FIXME: Should we (perhaps conditionally) be setting
1257 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1258 * that still correctly reads as zero? */
1259 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1260 BDRV_REQ_WRITE_UNCHANGED);
1261 } else {
1262 /* This does not change the data on the disk, it is not
1263 * necessary to flush even in cache=writethrough mode.
1264 */
1265 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1266 &local_qiov, 0,
1267 BDRV_REQ_WRITE_UNCHANGED);
1268 }
1269
1270 if (ret < 0) {
1271 /* It might be okay to ignore write errors for guest
1272 * requests. If this is a deliberate copy-on-read
1273 * then we don't want to ignore the error. Simply
1274 * report it in all cases.
1275 */
1276 goto err;
1277 }
1278
1279 if (!(flags & BDRV_REQ_PREFETCH)) {
1280 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1281 bounce_buffer + skip_bytes,
1282 MIN(pnum - skip_bytes, bytes - progress));
1283 }
1284 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1285 /* Read directly into the destination */
1286 ret = bdrv_driver_preadv(bs, offset + progress,
1287 MIN(pnum - skip_bytes, bytes - progress),
1288 qiov, qiov_offset + progress, 0);
1289 if (ret < 0) {
1290 goto err;
1291 }
1292 }
1293
1294 cluster_offset += pnum;
1295 cluster_bytes -= pnum;
1296 progress += pnum - skip_bytes;
1297 skip_bytes = 0;
1298 }
1299 ret = 0;
1300
1301 err:
1302 qemu_vfree(bounce_buffer);
1303 return ret;
1304 }
1305
1306 /*
1307 * Forwards an already correctly aligned request to the BlockDriver. This
1308 * handles copy on read, zeroing after EOF, and fragmentation of large
1309 * reads; any other features must be implemented by the caller.
1310 */
1311 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1312 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1313 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1314 {
1315 BlockDriverState *bs = child->bs;
1316 int64_t total_bytes, max_bytes;
1317 int ret = 0;
1318 int64_t bytes_remaining = bytes;
1319 int max_transfer;
1320
1321 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1322 assert(is_power_of_2(align));
1323 assert((offset & (align - 1)) == 0);
1324 assert((bytes & (align - 1)) == 0);
1325 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1326 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1327 align);
1328
1329 /*
1330 * TODO: We would need a per-BDS .supported_read_flags and
1331 * potential fallback support, if we ever implement any read flags
1332 * to pass through to drivers. For now, there aren't any
1333 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1334 */
1335 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1336 BDRV_REQ_REGISTERED_BUF)));
1337
1338 /* Handle Copy on Read and associated serialisation */
1339 if (flags & BDRV_REQ_COPY_ON_READ) {
1340 /* If we touch the same cluster it counts as an overlap. This
1341 * guarantees that allocating writes will be serialized and not race
1342 * with each other for the same cluster. For example, in copy-on-read
1343 * it ensures that the CoR read and write operations are atomic and
1344 * guest writes cannot interleave between them. */
1345 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1346 } else {
1347 bdrv_wait_serialising_requests(req);
1348 }
1349
1350 if (flags & BDRV_REQ_COPY_ON_READ) {
1351 int64_t pnum;
1352
1353 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1354 flags &= ~BDRV_REQ_COPY_ON_READ;
1355
1356 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1357 if (ret < 0) {
1358 goto out;
1359 }
1360
1361 if (!ret || pnum != bytes) {
1362 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1363 qiov, qiov_offset, flags);
1364 goto out;
1365 } else if (flags & BDRV_REQ_PREFETCH) {
1366 goto out;
1367 }
1368 }
1369
1370 /* Forward the request to the BlockDriver, possibly fragmenting it */
1371 total_bytes = bdrv_getlength(bs);
1372 if (total_bytes < 0) {
1373 ret = total_bytes;
1374 goto out;
1375 }
1376
1377 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1378
1379 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1380 if (bytes <= max_bytes && bytes <= max_transfer) {
1381 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1382 goto out;
1383 }
1384
1385 while (bytes_remaining) {
1386 int64_t num;
1387
1388 if (max_bytes) {
1389 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1390 assert(num);
1391
1392 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1393 num, qiov,
1394 qiov_offset + bytes - bytes_remaining,
1395 flags);
1396 max_bytes -= num;
1397 } else {
1398 num = bytes_remaining;
1399 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1400 0, bytes_remaining);
1401 }
1402 if (ret < 0) {
1403 goto out;
1404 }
1405 bytes_remaining -= num;
1406 }
1407
1408 out:
1409 return ret < 0 ? ret : 0;
1410 }
1411
1412 /*
1413 * Request padding
1414 *
1415 * |<---- align ----->| |<----- align ---->|
1416 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1417 * | | | | | |
1418 * -*----------$-------*-------- ... --------*-----$------------*---
1419 * | | | | | |
1420 * | offset | | end |
1421 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1422 * [buf ... ) [tail_buf )
1423 *
1424 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1425 * is placed at the beginning of @buf and @tail at the @end.
1426 *
1427 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1428 * around tail, if tail exists.
1429 *
1430 * @merge_reads is true for small requests,
1431 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1432 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1433 */
1434 typedef struct BdrvRequestPadding {
1435 uint8_t *buf;
1436 size_t buf_len;
1437 uint8_t *tail_buf;
1438 size_t head;
1439 size_t tail;
1440 bool merge_reads;
1441 QEMUIOVector local_qiov;
1442 } BdrvRequestPadding;
1443
1444 static bool bdrv_init_padding(BlockDriverState *bs,
1445 int64_t offset, int64_t bytes,
1446 BdrvRequestPadding *pad)
1447 {
1448 int64_t align = bs->bl.request_alignment;
1449 int64_t sum;
1450
1451 bdrv_check_request(offset, bytes, &error_abort);
1452 assert(align <= INT_MAX); /* documented in block/block_int.h */
1453 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1454
1455 memset(pad, 0, sizeof(*pad));
1456
1457 pad->head = offset & (align - 1);
1458 pad->tail = ((offset + bytes) & (align - 1));
1459 if (pad->tail) {
1460 pad->tail = align - pad->tail;
1461 }
1462
1463 if (!pad->head && !pad->tail) {
1464 return false;
1465 }
1466
1467 assert(bytes); /* Nothing good in aligning zero-length requests */
1468
1469 sum = pad->head + bytes + pad->tail;
1470 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1471 pad->buf = qemu_blockalign(bs, pad->buf_len);
1472 pad->merge_reads = sum == pad->buf_len;
1473 if (pad->tail) {
1474 pad->tail_buf = pad->buf + pad->buf_len - align;
1475 }
1476
1477 return true;
1478 }
1479
1480 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child,
1481 BdrvTrackedRequest *req,
1482 BdrvRequestPadding *pad,
1483 bool zero_middle)
1484 {
1485 QEMUIOVector local_qiov;
1486 BlockDriverState *bs = child->bs;
1487 uint64_t align = bs->bl.request_alignment;
1488 int ret;
1489
1490 assert(req->serialising && pad->buf);
1491
1492 if (pad->head || pad->merge_reads) {
1493 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1494
1495 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1496
1497 if (pad->head) {
1498 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1499 }
1500 if (pad->merge_reads && pad->tail) {
1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1502 }
1503 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1504 align, &local_qiov, 0, 0);
1505 if (ret < 0) {
1506 return ret;
1507 }
1508 if (pad->head) {
1509 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1510 }
1511 if (pad->merge_reads && pad->tail) {
1512 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1513 }
1514
1515 if (pad->merge_reads) {
1516 goto zero_mem;
1517 }
1518 }
1519
1520 if (pad->tail) {
1521 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1522
1523 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1524 ret = bdrv_aligned_preadv(
1525 child, req,
1526 req->overlap_offset + req->overlap_bytes - align,
1527 align, align, &local_qiov, 0, 0);
1528 if (ret < 0) {
1529 return ret;
1530 }
1531 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1532 }
1533
1534 zero_mem:
1535 if (zero_middle) {
1536 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1537 }
1538
1539 return 0;
1540 }
1541
1542 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1543 {
1544 if (pad->buf) {
1545 qemu_vfree(pad->buf);
1546 qemu_iovec_destroy(&pad->local_qiov);
1547 }
1548 memset(pad, 0, sizeof(*pad));
1549 }
1550
1551 /*
1552 * bdrv_pad_request
1553 *
1554 * Exchange request parameters with padded request if needed. Don't include RMW
1555 * read of padding, bdrv_padding_rmw_read() should be called separately if
1556 * needed.
1557 *
1558 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1559 * - on function start they represent original request
1560 * - on failure or when padding is not needed they are unchanged
1561 * - on success when padding is needed they represent padded request
1562 */
1563 static int bdrv_pad_request(BlockDriverState *bs,
1564 QEMUIOVector **qiov, size_t *qiov_offset,
1565 int64_t *offset, int64_t *bytes,
1566 BdrvRequestPadding *pad, bool *padded,
1567 BdrvRequestFlags *flags)
1568 {
1569 int ret;
1570
1571 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1572
1573 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1574 if (padded) {
1575 *padded = false;
1576 }
1577 return 0;
1578 }
1579
1580 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1581 *qiov, *qiov_offset, *bytes,
1582 pad->buf + pad->buf_len - pad->tail,
1583 pad->tail);
1584 if (ret < 0) {
1585 bdrv_padding_destroy(pad);
1586 return ret;
1587 }
1588 *bytes += pad->head + pad->tail;
1589 *offset -= pad->head;
1590 *qiov = &pad->local_qiov;
1591 *qiov_offset = 0;
1592 if (padded) {
1593 *padded = true;
1594 }
1595 if (flags) {
1596 /* Can't use optimization hint with bounce buffer */
1597 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1598 }
1599
1600 return 0;
1601 }
1602
1603 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1604 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1605 BdrvRequestFlags flags)
1606 {
1607 IO_CODE();
1608 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1609 }
1610
1611 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1612 int64_t offset, int64_t bytes,
1613 QEMUIOVector *qiov, size_t qiov_offset,
1614 BdrvRequestFlags flags)
1615 {
1616 BlockDriverState *bs = child->bs;
1617 BdrvTrackedRequest req;
1618 BdrvRequestPadding pad;
1619 int ret;
1620 IO_CODE();
1621
1622 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1623
1624 if (!bdrv_is_inserted(bs)) {
1625 return -ENOMEDIUM;
1626 }
1627
1628 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1629 if (ret < 0) {
1630 return ret;
1631 }
1632
1633 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1634 /*
1635 * Aligning zero request is nonsense. Even if driver has special meaning
1636 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1637 * it to driver due to request_alignment.
1638 *
1639 * Still, no reason to return an error if someone do unaligned
1640 * zero-length read occasionally.
1641 */
1642 return 0;
1643 }
1644
1645 bdrv_inc_in_flight(bs);
1646
1647 /* Don't do copy-on-read if we read data before write operation */
1648 if (qatomic_read(&bs->copy_on_read)) {
1649 flags |= BDRV_REQ_COPY_ON_READ;
1650 }
1651
1652 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1653 NULL, &flags);
1654 if (ret < 0) {
1655 goto fail;
1656 }
1657
1658 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1659 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1660 bs->bl.request_alignment,
1661 qiov, qiov_offset, flags);
1662 tracked_request_end(&req);
1663 bdrv_padding_destroy(&pad);
1664
1665 fail:
1666 bdrv_dec_in_flight(bs);
1667
1668 return ret;
1669 }
1670
1671 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1672 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1673 {
1674 BlockDriver *drv = bs->drv;
1675 QEMUIOVector qiov;
1676 void *buf = NULL;
1677 int ret = 0;
1678 bool need_flush = false;
1679 int head = 0;
1680 int tail = 0;
1681
1682 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1683 INT64_MAX);
1684 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1685 bs->bl.request_alignment);
1686 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1687
1688 bdrv_check_request(offset, bytes, &error_abort);
1689
1690 if (!drv) {
1691 return -ENOMEDIUM;
1692 }
1693
1694 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1695 return -ENOTSUP;
1696 }
1697
1698 /* By definition there is no user buffer so this flag doesn't make sense */
1699 if (flags & BDRV_REQ_REGISTERED_BUF) {
1700 return -EINVAL;
1701 }
1702
1703 /* Invalidate the cached block-status data range if this write overlaps */
1704 bdrv_bsc_invalidate_range(bs, offset, bytes);
1705
1706 assert(alignment % bs->bl.request_alignment == 0);
1707 head = offset % alignment;
1708 tail = (offset + bytes) % alignment;
1709 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1710 assert(max_write_zeroes >= bs->bl.request_alignment);
1711
1712 while (bytes > 0 && !ret) {
1713 int64_t num = bytes;
1714
1715 /* Align request. Block drivers can expect the "bulk" of the request
1716 * to be aligned, and that unaligned requests do not cross cluster
1717 * boundaries.
1718 */
1719 if (head) {
1720 /* Make a small request up to the first aligned sector. For
1721 * convenience, limit this request to max_transfer even if
1722 * we don't need to fall back to writes. */
1723 num = MIN(MIN(bytes, max_transfer), alignment - head);
1724 head = (head + num) % alignment;
1725 assert(num < max_write_zeroes);
1726 } else if (tail && num > alignment) {
1727 /* Shorten the request to the last aligned sector. */
1728 num -= tail;
1729 }
1730
1731 /* limit request size */
1732 if (num > max_write_zeroes) {
1733 num = max_write_zeroes;
1734 }
1735
1736 ret = -ENOTSUP;
1737 /* First try the efficient write zeroes operation */
1738 if (drv->bdrv_co_pwrite_zeroes) {
1739 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1740 flags & bs->supported_zero_flags);
1741 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1742 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1743 need_flush = true;
1744 }
1745 } else {
1746 assert(!bs->supported_zero_flags);
1747 }
1748
1749 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1750 /* Fall back to bounce buffer if write zeroes is unsupported */
1751 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1752
1753 if ((flags & BDRV_REQ_FUA) &&
1754 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1755 /* No need for bdrv_driver_pwrite() to do a fallback
1756 * flush on each chunk; use just one at the end */
1757 write_flags &= ~BDRV_REQ_FUA;
1758 need_flush = true;
1759 }
1760 num = MIN(num, max_transfer);
1761 if (buf == NULL) {
1762 buf = qemu_try_blockalign0(bs, num);
1763 if (buf == NULL) {
1764 ret = -ENOMEM;
1765 goto fail;
1766 }
1767 }
1768 qemu_iovec_init_buf(&qiov, buf, num);
1769
1770 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1771
1772 /* Keep bounce buffer around if it is big enough for all
1773 * all future requests.
1774 */
1775 if (num < max_transfer) {
1776 qemu_vfree(buf);
1777 buf = NULL;
1778 }
1779 }
1780
1781 offset += num;
1782 bytes -= num;
1783 }
1784
1785 fail:
1786 if (ret == 0 && need_flush) {
1787 ret = bdrv_co_flush(bs);
1788 }
1789 qemu_vfree(buf);
1790 return ret;
1791 }
1792
1793 static inline int coroutine_fn
1794 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1795 BdrvTrackedRequest *req, int flags)
1796 {
1797 BlockDriverState *bs = child->bs;
1798
1799 bdrv_check_request(offset, bytes, &error_abort);
1800
1801 if (bdrv_is_read_only(bs)) {
1802 return -EPERM;
1803 }
1804
1805 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1806 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1807 assert(!(flags & ~BDRV_REQ_MASK));
1808 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1809
1810 if (flags & BDRV_REQ_SERIALISING) {
1811 QEMU_LOCK_GUARD(&bs->reqs_lock);
1812
1813 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1814
1815 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1816 return -EBUSY;
1817 }
1818
1819 bdrv_wait_serialising_requests_locked(req);
1820 } else {
1821 bdrv_wait_serialising_requests(req);
1822 }
1823
1824 assert(req->overlap_offset <= offset);
1825 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1826 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1827 child->perm & BLK_PERM_RESIZE);
1828
1829 switch (req->type) {
1830 case BDRV_TRACKED_WRITE:
1831 case BDRV_TRACKED_DISCARD:
1832 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1833 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1834 } else {
1835 assert(child->perm & BLK_PERM_WRITE);
1836 }
1837 bdrv_write_threshold_check_write(bs, offset, bytes);
1838 return 0;
1839 case BDRV_TRACKED_TRUNCATE:
1840 assert(child->perm & BLK_PERM_RESIZE);
1841 return 0;
1842 default:
1843 abort();
1844 }
1845 }
1846
1847 static inline void coroutine_fn
1848 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1849 BdrvTrackedRequest *req, int ret)
1850 {
1851 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1852 BlockDriverState *bs = child->bs;
1853
1854 bdrv_check_request(offset, bytes, &error_abort);
1855
1856 qatomic_inc(&bs->write_gen);
1857
1858 /*
1859 * Discard cannot extend the image, but in error handling cases, such as
1860 * when reverting a qcow2 cluster allocation, the discarded range can pass
1861 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1862 * here. Instead, just skip it, since semantically a discard request
1863 * beyond EOF cannot expand the image anyway.
1864 */
1865 if (ret == 0 &&
1866 (req->type == BDRV_TRACKED_TRUNCATE ||
1867 end_sector > bs->total_sectors) &&
1868 req->type != BDRV_TRACKED_DISCARD) {
1869 bs->total_sectors = end_sector;
1870 bdrv_parent_cb_resize(bs);
1871 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1872 }
1873 if (req->bytes) {
1874 switch (req->type) {
1875 case BDRV_TRACKED_WRITE:
1876 stat64_max(&bs->wr_highest_offset, offset + bytes);
1877 /* fall through, to set dirty bits */
1878 case BDRV_TRACKED_DISCARD:
1879 bdrv_set_dirty(bs, offset, bytes);
1880 break;
1881 default:
1882 break;
1883 }
1884 }
1885 }
1886
1887 /*
1888 * Forwards an already correctly aligned write request to the BlockDriver,
1889 * after possibly fragmenting it.
1890 */
1891 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1892 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1893 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
1894 BdrvRequestFlags flags)
1895 {
1896 BlockDriverState *bs = child->bs;
1897 BlockDriver *drv = bs->drv;
1898 int ret;
1899
1900 int64_t bytes_remaining = bytes;
1901 int max_transfer;
1902
1903 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1904
1905 if (!drv) {
1906 return -ENOMEDIUM;
1907 }
1908
1909 if (bdrv_has_readonly_bitmaps(bs)) {
1910 return -EPERM;
1911 }
1912
1913 assert(is_power_of_2(align));
1914 assert((offset & (align - 1)) == 0);
1915 assert((bytes & (align - 1)) == 0);
1916 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1917 align);
1918
1919 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1920
1921 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1922 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1923 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1924 flags |= BDRV_REQ_ZERO_WRITE;
1925 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1926 flags |= BDRV_REQ_MAY_UNMAP;
1927 }
1928 }
1929
1930 if (ret < 0) {
1931 /* Do nothing, write notifier decided to fail this request */
1932 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1933 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1934 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1935 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1936 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1937 qiov, qiov_offset);
1938 } else if (bytes <= max_transfer) {
1939 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1940 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1941 } else {
1942 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1943 while (bytes_remaining) {
1944 int num = MIN(bytes_remaining, max_transfer);
1945 int local_flags = flags;
1946
1947 assert(num);
1948 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1949 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1950 /* If FUA is going to be emulated by flush, we only
1951 * need to flush on the last iteration */
1952 local_flags &= ~BDRV_REQ_FUA;
1953 }
1954
1955 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1956 num, qiov,
1957 qiov_offset + bytes - bytes_remaining,
1958 local_flags);
1959 if (ret < 0) {
1960 break;
1961 }
1962 bytes_remaining -= num;
1963 }
1964 }
1965 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1966
1967 if (ret >= 0) {
1968 ret = 0;
1969 }
1970 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1971
1972 return ret;
1973 }
1974
1975 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1976 int64_t offset,
1977 int64_t bytes,
1978 BdrvRequestFlags flags,
1979 BdrvTrackedRequest *req)
1980 {
1981 BlockDriverState *bs = child->bs;
1982 QEMUIOVector local_qiov;
1983 uint64_t align = bs->bl.request_alignment;
1984 int ret = 0;
1985 bool padding;
1986 BdrvRequestPadding pad;
1987
1988 /* This flag doesn't make sense for padding or zero writes */
1989 flags &= ~BDRV_REQ_REGISTERED_BUF;
1990
1991 padding = bdrv_init_padding(bs, offset, bytes, &pad);
1992 if (padding) {
1993 assert(!(flags & BDRV_REQ_NO_WAIT));
1994 bdrv_make_request_serialising(req, align);
1995
1996 bdrv_padding_rmw_read(child, req, &pad, true);
1997
1998 if (pad.head || pad.merge_reads) {
1999 int64_t aligned_offset = offset & ~(align - 1);
2000 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2001
2002 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2003 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2004 align, &local_qiov, 0,
2005 flags & ~BDRV_REQ_ZERO_WRITE);
2006 if (ret < 0 || pad.merge_reads) {
2007 /* Error or all work is done */
2008 goto out;
2009 }
2010 offset += write_bytes - pad.head;
2011 bytes -= write_bytes - pad.head;
2012 }
2013 }
2014
2015 assert(!bytes || (offset & (align - 1)) == 0);
2016 if (bytes >= align) {
2017 /* Write the aligned part in the middle. */
2018 int64_t aligned_bytes = bytes & ~(align - 1);
2019 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2020 NULL, 0, flags);
2021 if (ret < 0) {
2022 goto out;
2023 }
2024 bytes -= aligned_bytes;
2025 offset += aligned_bytes;
2026 }
2027
2028 assert(!bytes || (offset & (align - 1)) == 0);
2029 if (bytes) {
2030 assert(align == pad.tail + bytes);
2031
2032 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2033 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2034 &local_qiov, 0,
2035 flags & ~BDRV_REQ_ZERO_WRITE);
2036 }
2037
2038 out:
2039 bdrv_padding_destroy(&pad);
2040
2041 return ret;
2042 }
2043
2044 /*
2045 * Handle a write request in coroutine context
2046 */
2047 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2048 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2049 BdrvRequestFlags flags)
2050 {
2051 IO_CODE();
2052 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2053 }
2054
2055 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2056 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2057 BdrvRequestFlags flags)
2058 {
2059 BlockDriverState *bs = child->bs;
2060 BdrvTrackedRequest req;
2061 uint64_t align = bs->bl.request_alignment;
2062 BdrvRequestPadding pad;
2063 int ret;
2064 bool padded = false;
2065 IO_CODE();
2066
2067 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2068
2069 if (!bdrv_is_inserted(bs)) {
2070 return -ENOMEDIUM;
2071 }
2072
2073 if (flags & BDRV_REQ_ZERO_WRITE) {
2074 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2075 } else {
2076 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2077 }
2078 if (ret < 0) {
2079 return ret;
2080 }
2081
2082 /* If the request is misaligned then we can't make it efficient */
2083 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2084 !QEMU_IS_ALIGNED(offset | bytes, align))
2085 {
2086 return -ENOTSUP;
2087 }
2088
2089 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2090 /*
2091 * Aligning zero request is nonsense. Even if driver has special meaning
2092 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2093 * it to driver due to request_alignment.
2094 *
2095 * Still, no reason to return an error if someone do unaligned
2096 * zero-length write occasionally.
2097 */
2098 return 0;
2099 }
2100
2101 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2102 /*
2103 * Pad request for following read-modify-write cycle.
2104 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2105 * alignment only if there is no ZERO flag.
2106 */
2107 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2108 &padded, &flags);
2109 if (ret < 0) {
2110 return ret;
2111 }
2112 }
2113
2114 bdrv_inc_in_flight(bs);
2115 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2116
2117 if (flags & BDRV_REQ_ZERO_WRITE) {
2118 assert(!padded);
2119 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2120 goto out;
2121 }
2122
2123 if (padded) {
2124 /*
2125 * Request was unaligned to request_alignment and therefore
2126 * padded. We are going to do read-modify-write, and must
2127 * serialize the request to prevent interactions of the
2128 * widened region with other transactions.
2129 */
2130 assert(!(flags & BDRV_REQ_NO_WAIT));
2131 bdrv_make_request_serialising(&req, align);
2132 bdrv_padding_rmw_read(child, &req, &pad, false);
2133 }
2134
2135 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2136 qiov, qiov_offset, flags);
2137
2138 bdrv_padding_destroy(&pad);
2139
2140 out:
2141 tracked_request_end(&req);
2142 bdrv_dec_in_flight(bs);
2143
2144 return ret;
2145 }
2146
2147 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2148 int64_t bytes, BdrvRequestFlags flags)
2149 {
2150 IO_CODE();
2151 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2152
2153 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2154 flags &= ~BDRV_REQ_MAY_UNMAP;
2155 }
2156
2157 return bdrv_co_pwritev(child, offset, bytes, NULL,
2158 BDRV_REQ_ZERO_WRITE | flags);
2159 }
2160
2161 /*
2162 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2163 */
2164 int bdrv_flush_all(void)
2165 {
2166 BdrvNextIterator it;
2167 BlockDriverState *bs = NULL;
2168 int result = 0;
2169
2170 GLOBAL_STATE_CODE();
2171
2172 /*
2173 * bdrv queue is managed by record/replay,
2174 * creating new flush request for stopping
2175 * the VM may break the determinism
2176 */
2177 if (replay_events_enabled()) {
2178 return result;
2179 }
2180
2181 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2182 AioContext *aio_context = bdrv_get_aio_context(bs);
2183 int ret;
2184
2185 aio_context_acquire(aio_context);
2186 ret = bdrv_flush(bs);
2187 if (ret < 0 && !result) {
2188 result = ret;
2189 }
2190 aio_context_release(aio_context);
2191 }
2192
2193 return result;
2194 }
2195
2196 /*
2197 * Returns the allocation status of the specified sectors.
2198 * Drivers not implementing the functionality are assumed to not support
2199 * backing files, hence all their sectors are reported as allocated.
2200 *
2201 * If 'want_zero' is true, the caller is querying for mapping
2202 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2203 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2204 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2205 *
2206 * If 'offset' is beyond the end of the disk image the return value is
2207 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2208 *
2209 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2210 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2211 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2212 *
2213 * 'pnum' is set to the number of bytes (including and immediately
2214 * following the specified offset) that are easily known to be in the
2215 * same allocated/unallocated state. Note that a second call starting
2216 * at the original offset plus returned pnum may have the same status.
2217 * The returned value is non-zero on success except at end-of-file.
2218 *
2219 * Returns negative errno on failure. Otherwise, if the
2220 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2221 * set to the host mapping and BDS corresponding to the guest offset.
2222 */
2223 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2224 bool want_zero,
2225 int64_t offset, int64_t bytes,
2226 int64_t *pnum, int64_t *map,
2227 BlockDriverState **file)
2228 {
2229 int64_t total_size;
2230 int64_t n; /* bytes */
2231 int ret;
2232 int64_t local_map = 0;
2233 BlockDriverState *local_file = NULL;
2234 int64_t aligned_offset, aligned_bytes;
2235 uint32_t align;
2236 bool has_filtered_child;
2237
2238 assert(pnum);
2239 *pnum = 0;
2240 total_size = bdrv_getlength(bs);
2241 if (total_size < 0) {
2242 ret = total_size;
2243 goto early_out;
2244 }
2245
2246 if (offset >= total_size) {
2247 ret = BDRV_BLOCK_EOF;
2248 goto early_out;
2249 }
2250 if (!bytes) {
2251 ret = 0;
2252 goto early_out;
2253 }
2254
2255 n = total_size - offset;
2256 if (n < bytes) {
2257 bytes = n;
2258 }
2259
2260 /* Must be non-NULL or bdrv_getlength() would have failed */
2261 assert(bs->drv);
2262 has_filtered_child = bdrv_filter_child(bs);
2263 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2264 *pnum = bytes;
2265 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2266 if (offset + bytes == total_size) {
2267 ret |= BDRV_BLOCK_EOF;
2268 }
2269 if (bs->drv->protocol_name) {
2270 ret |= BDRV_BLOCK_OFFSET_VALID;
2271 local_map = offset;
2272 local_file = bs;
2273 }
2274 goto early_out;
2275 }
2276
2277 bdrv_inc_in_flight(bs);
2278
2279 /* Round out to request_alignment boundaries */
2280 align = bs->bl.request_alignment;
2281 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2282 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2283
2284 if (bs->drv->bdrv_co_block_status) {
2285 /*
2286 * Use the block-status cache only for protocol nodes: Format
2287 * drivers are generally quick to inquire the status, but protocol
2288 * drivers often need to get information from outside of qemu, so
2289 * we do not have control over the actual implementation. There
2290 * have been cases where inquiring the status took an unreasonably
2291 * long time, and we can do nothing in qemu to fix it.
2292 * This is especially problematic for images with large data areas,
2293 * because finding the few holes in them and giving them special
2294 * treatment does not gain much performance. Therefore, we try to
2295 * cache the last-identified data region.
2296 *
2297 * Second, limiting ourselves to protocol nodes allows us to assume
2298 * the block status for data regions to be DATA | OFFSET_VALID, and
2299 * that the host offset is the same as the guest offset.
2300 *
2301 * Note that it is possible that external writers zero parts of
2302 * the cached regions without the cache being invalidated, and so
2303 * we may report zeroes as data. This is not catastrophic,
2304 * however, because reporting zeroes as data is fine.
2305 */
2306 if (QLIST_EMPTY(&bs->children) &&
2307 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2308 {
2309 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2310 local_file = bs;
2311 local_map = aligned_offset;
2312 } else {
2313 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2314 aligned_bytes, pnum, &local_map,
2315 &local_file);
2316
2317 /*
2318 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2319 * the cache is queried above. Technically, we do not need to check
2320 * it here; the worst that can happen is that we fill the cache for
2321 * non-protocol nodes, and then it is never used. However, filling
2322 * the cache requires an RCU update, so double check here to avoid
2323 * such an update if possible.
2324 *
2325 * Check want_zero, because we only want to update the cache when we
2326 * have accurate information about what is zero and what is data.
2327 */
2328 if (want_zero &&
2329 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2330 QLIST_EMPTY(&bs->children))
2331 {
2332 /*
2333 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2334 * returned local_map value must be the same as the offset we
2335 * have passed (aligned_offset), and local_bs must be the node
2336 * itself.
2337 * Assert this, because we follow this rule when reading from
2338 * the cache (see the `local_file = bs` and
2339 * `local_map = aligned_offset` assignments above), and the
2340 * result the cache delivers must be the same as the driver
2341 * would deliver.
2342 */
2343 assert(local_file == bs);
2344 assert(local_map == aligned_offset);
2345 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2346 }
2347 }
2348 } else {
2349 /* Default code for filters */
2350
2351 local_file = bdrv_filter_bs(bs);
2352 assert(local_file);
2353
2354 *pnum = aligned_bytes;
2355 local_map = aligned_offset;
2356 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2357 }
2358 if (ret < 0) {
2359 *pnum = 0;
2360 goto out;
2361 }
2362
2363 /*
2364 * The driver's result must be a non-zero multiple of request_alignment.
2365 * Clamp pnum and adjust map to original request.
2366 */
2367 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2368 align > offset - aligned_offset);
2369 if (ret & BDRV_BLOCK_RECURSE) {
2370 assert(ret & BDRV_BLOCK_DATA);
2371 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2372 assert(!(ret & BDRV_BLOCK_ZERO));
2373 }
2374
2375 *pnum -= offset - aligned_offset;
2376 if (*pnum > bytes) {
2377 *pnum = bytes;
2378 }
2379 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2380 local_map += offset - aligned_offset;
2381 }
2382
2383 if (ret & BDRV_BLOCK_RAW) {
2384 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2385 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2386 *pnum, pnum, &local_map, &local_file);
2387 goto out;
2388 }
2389
2390 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2391 ret |= BDRV_BLOCK_ALLOCATED;
2392 } else if (bs->drv->supports_backing) {
2393 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2394
2395 if (!cow_bs) {
2396 ret |= BDRV_BLOCK_ZERO;
2397 } else if (want_zero) {
2398 int64_t size2 = bdrv_getlength(cow_bs);
2399
2400 if (size2 >= 0 && offset >= size2) {
2401 ret |= BDRV_BLOCK_ZERO;
2402 }
2403 }
2404 }
2405
2406 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2407 local_file && local_file != bs &&
2408 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2409 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2410 int64_t file_pnum;
2411 int ret2;
2412
2413 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2414 *pnum, &file_pnum, NULL, NULL);
2415 if (ret2 >= 0) {
2416 /* Ignore errors. This is just providing extra information, it
2417 * is useful but not necessary.
2418 */
2419 if (ret2 & BDRV_BLOCK_EOF &&
2420 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2421 /*
2422 * It is valid for the format block driver to read
2423 * beyond the end of the underlying file's current
2424 * size; such areas read as zero.
2425 */
2426 ret |= BDRV_BLOCK_ZERO;
2427 } else {
2428 /* Limit request to the range reported by the protocol driver */
2429 *pnum = file_pnum;
2430 ret |= (ret2 & BDRV_BLOCK_ZERO);
2431 }
2432 }
2433 }
2434
2435 out:
2436 bdrv_dec_in_flight(bs);
2437 if (ret >= 0 && offset + *pnum == total_size) {
2438 ret |= BDRV_BLOCK_EOF;
2439 }
2440 early_out:
2441 if (file) {
2442 *file = local_file;
2443 }
2444 if (map) {
2445 *map = local_map;
2446 }
2447 return ret;
2448 }
2449
2450 int coroutine_fn
2451 bdrv_co_common_block_status_above(BlockDriverState *bs,
2452 BlockDriverState *base,
2453 bool include_base,
2454 bool want_zero,
2455 int64_t offset,
2456 int64_t bytes,
2457 int64_t *pnum,
2458 int64_t *map,
2459 BlockDriverState **file,
2460 int *depth)
2461 {
2462 int ret;
2463 BlockDriverState *p;
2464 int64_t eof = 0;
2465 int dummy;
2466 IO_CODE();
2467
2468 assert(!include_base || base); /* Can't include NULL base */
2469
2470 if (!depth) {
2471 depth = &dummy;
2472 }
2473 *depth = 0;
2474
2475 if (!include_base && bs == base) {
2476 *pnum = bytes;
2477 return 0;
2478 }
2479
2480 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2481 ++*depth;
2482 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2483 return ret;
2484 }
2485
2486 if (ret & BDRV_BLOCK_EOF) {
2487 eof = offset + *pnum;
2488 }
2489
2490 assert(*pnum <= bytes);
2491 bytes = *pnum;
2492
2493 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2494 p = bdrv_filter_or_cow_bs(p))
2495 {
2496 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2497 file);
2498 ++*depth;
2499 if (ret < 0) {
2500 return ret;
2501 }
2502 if (*pnum == 0) {
2503 /*
2504 * The top layer deferred to this layer, and because this layer is
2505 * short, any zeroes that we synthesize beyond EOF behave as if they
2506 * were allocated at this layer.
2507 *
2508 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2509 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2510 * below.
2511 */
2512 assert(ret & BDRV_BLOCK_EOF);
2513 *pnum = bytes;
2514 if (file) {
2515 *file = p;
2516 }
2517 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2518 break;
2519 }
2520 if (ret & BDRV_BLOCK_ALLOCATED) {
2521 /*
2522 * We've found the node and the status, we must break.
2523 *
2524 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2525 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2526 * below.
2527 */
2528 ret &= ~BDRV_BLOCK_EOF;
2529 break;
2530 }
2531
2532 if (p == base) {
2533 assert(include_base);
2534 break;
2535 }
2536
2537 /*
2538 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2539 * let's continue the diving.
2540 */
2541 assert(*pnum <= bytes);
2542 bytes = *pnum;
2543 }
2544
2545 if (offset + *pnum == eof) {
2546 ret |= BDRV_BLOCK_EOF;
2547 }
2548
2549 return ret;
2550 }
2551
2552 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2553 BlockDriverState *base,
2554 int64_t offset, int64_t bytes,
2555 int64_t *pnum, int64_t *map,
2556 BlockDriverState **file)
2557 {
2558 IO_CODE();
2559 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2560 bytes, pnum, map, file, NULL);
2561 }
2562
2563 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2564 int64_t offset, int64_t bytes, int64_t *pnum,
2565 int64_t *map, BlockDriverState **file)
2566 {
2567 IO_CODE();
2568 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2569 pnum, map, file, NULL);
2570 }
2571
2572 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2573 int64_t *pnum, int64_t *map, BlockDriverState **file)
2574 {
2575 IO_CODE();
2576 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2577 offset, bytes, pnum, map, file);
2578 }
2579
2580 /*
2581 * Check @bs (and its backing chain) to see if the range defined
2582 * by @offset and @bytes is known to read as zeroes.
2583 * Return 1 if that is the case, 0 otherwise and -errno on error.
2584 * This test is meant to be fast rather than accurate so returning 0
2585 * does not guarantee non-zero data.
2586 */
2587 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2588 int64_t bytes)
2589 {
2590 int ret;
2591 int64_t pnum = bytes;
2592 IO_CODE();
2593
2594 if (!bytes) {
2595 return 1;
2596 }
2597
2598 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2599 bytes, &pnum, NULL, NULL, NULL);
2600
2601 if (ret < 0) {
2602 return ret;
2603 }
2604
2605 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2606 }
2607
2608 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2609 int64_t bytes, int64_t *pnum)
2610 {
2611 int ret;
2612 int64_t dummy;
2613 IO_CODE();
2614
2615 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2616 bytes, pnum ? pnum : &dummy, NULL,
2617 NULL, NULL);
2618 if (ret < 0) {
2619 return ret;
2620 }
2621 return !!(ret & BDRV_BLOCK_ALLOCATED);
2622 }
2623
2624 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2625 int64_t *pnum)
2626 {
2627 int ret;
2628 int64_t dummy;
2629 IO_CODE();
2630
2631 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2632 bytes, pnum ? pnum : &dummy, NULL,
2633 NULL, NULL);
2634 if (ret < 0) {
2635 return ret;
2636 }
2637 return !!(ret & BDRV_BLOCK_ALLOCATED);
2638 }
2639
2640 /* See bdrv_is_allocated_above for documentation */
2641 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2642 BlockDriverState *base,
2643 bool include_base, int64_t offset,
2644 int64_t bytes, int64_t *pnum)
2645 {
2646 int depth;
2647 int ret;
2648 IO_CODE();
2649
2650 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2651 offset, bytes, pnum, NULL, NULL,
2652 &depth);
2653 if (ret < 0) {
2654 return ret;
2655 }
2656
2657 if (ret & BDRV_BLOCK_ALLOCATED) {
2658 return depth;
2659 }
2660 return 0;
2661 }
2662
2663 /*
2664 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2665 *
2666 * Return a positive depth if (a prefix of) the given range is allocated
2667 * in any image between BASE and TOP (BASE is only included if include_base
2668 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2669 * BASE can be NULL to check if the given offset is allocated in any
2670 * image of the chain. Return 0 otherwise, or negative errno on
2671 * failure.
2672 *
2673 * 'pnum' is set to the number of bytes (including and immediately
2674 * following the specified offset) that are known to be in the same
2675 * allocated/unallocated state. Note that a subsequent call starting
2676 * at 'offset + *pnum' may return the same allocation status (in other
2677 * words, the result is not necessarily the maximum possible range);
2678 * but 'pnum' will only be 0 when end of file is reached.
2679 */
2680 int bdrv_is_allocated_above(BlockDriverState *top,
2681 BlockDriverState *base,
2682 bool include_base, int64_t offset,
2683 int64_t bytes, int64_t *pnum)
2684 {
2685 int depth;
2686 int ret;
2687 IO_CODE();
2688
2689 ret = bdrv_common_block_status_above(top, base, include_base, false,
2690 offset, bytes, pnum, NULL, NULL,
2691 &depth);
2692 if (ret < 0) {
2693 return ret;
2694 }
2695
2696 if (ret & BDRV_BLOCK_ALLOCATED) {
2697 return depth;
2698 }
2699 return 0;
2700 }
2701
2702 int coroutine_fn
2703 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2704 {
2705 BlockDriver *drv = bs->drv;
2706 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2707 int ret;
2708 IO_CODE();
2709 assert_bdrv_graph_readable();
2710
2711 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2712 if (ret < 0) {
2713 return ret;
2714 }
2715
2716 if (!drv) {
2717 return -ENOMEDIUM;
2718 }
2719
2720 bdrv_inc_in_flight(bs);
2721
2722 if (drv->bdrv_load_vmstate) {
2723 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2724 } else if (child_bs) {
2725 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2726 } else {
2727 ret = -ENOTSUP;
2728 }
2729
2730 bdrv_dec_in_flight(bs);
2731
2732 return ret;
2733 }
2734
2735 int coroutine_fn
2736 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2737 {
2738 BlockDriver *drv = bs->drv;
2739 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2740 int ret;
2741 IO_CODE();
2742 assert_bdrv_graph_readable();
2743
2744 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2745 if (ret < 0) {
2746 return ret;
2747 }
2748
2749 if (!drv) {
2750 return -ENOMEDIUM;
2751 }
2752
2753 bdrv_inc_in_flight(bs);
2754
2755 if (drv->bdrv_save_vmstate) {
2756 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2757 } else if (child_bs) {
2758 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2759 } else {
2760 ret = -ENOTSUP;
2761 }
2762
2763 bdrv_dec_in_flight(bs);
2764
2765 return ret;
2766 }
2767
2768 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2769 int64_t pos, int size)
2770 {
2771 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2772 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2773 IO_CODE();
2774
2775 return ret < 0 ? ret : size;
2776 }
2777
2778 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2779 int64_t pos, int size)
2780 {
2781 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2782 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2783 IO_CODE();
2784
2785 return ret < 0 ? ret : size;
2786 }
2787
2788 /**************************************************************/
2789 /* async I/Os */
2790
2791 void bdrv_aio_cancel(BlockAIOCB *acb)
2792 {
2793 IO_CODE();
2794 qemu_aio_ref(acb);
2795 bdrv_aio_cancel_async(acb);
2796 while (acb->refcnt > 1) {
2797 if (acb->aiocb_info->get_aio_context) {
2798 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2799 } else if (acb->bs) {
2800 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2801 * assert that we're not using an I/O thread. Thread-safe
2802 * code should use bdrv_aio_cancel_async exclusively.
2803 */
2804 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2805 aio_poll(bdrv_get_aio_context(acb->bs), true);
2806 } else {
2807 abort();
2808 }
2809 }
2810 qemu_aio_unref(acb);
2811 }
2812
2813 /* Async version of aio cancel. The caller is not blocked if the acb implements
2814 * cancel_async, otherwise we do nothing and let the request normally complete.
2815 * In either case the completion callback must be called. */
2816 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2817 {
2818 IO_CODE();
2819 if (acb->aiocb_info->cancel_async) {
2820 acb->aiocb_info->cancel_async(acb);
2821 }
2822 }
2823
2824 /**************************************************************/
2825 /* Coroutine block device emulation */
2826
2827 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2828 {
2829 BdrvChild *primary_child = bdrv_primary_child(bs);
2830 BdrvChild *child;
2831 int current_gen;
2832 int ret = 0;
2833 IO_CODE();
2834
2835 bdrv_inc_in_flight(bs);
2836
2837 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2838 bdrv_is_sg(bs)) {
2839 goto early_exit;
2840 }
2841
2842 qemu_co_mutex_lock(&bs->reqs_lock);
2843 current_gen = qatomic_read(&bs->write_gen);
2844
2845 /* Wait until any previous flushes are completed */
2846 while (bs->active_flush_req) {
2847 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2848 }
2849
2850 /* Flushes reach this point in nondecreasing current_gen order. */
2851 bs->active_flush_req = true;
2852 qemu_co_mutex_unlock(&bs->reqs_lock);
2853
2854 /* Write back all layers by calling one driver function */
2855 if (bs->drv->bdrv_co_flush) {
2856 ret = bs->drv->bdrv_co_flush(bs);
2857 goto out;
2858 }
2859
2860 /* Write back cached data to the OS even with cache=unsafe */
2861 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2862 if (bs->drv->bdrv_co_flush_to_os) {
2863 ret = bs->drv->bdrv_co_flush_to_os(bs);
2864 if (ret < 0) {
2865 goto out;
2866 }
2867 }
2868
2869 /* But don't actually force it to the disk with cache=unsafe */
2870 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2871 goto flush_children;
2872 }
2873
2874 /* Check if we really need to flush anything */
2875 if (bs->flushed_gen == current_gen) {
2876 goto flush_children;
2877 }
2878
2879 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2880 if (!bs->drv) {
2881 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2882 * (even in case of apparent success) */
2883 ret = -ENOMEDIUM;
2884 goto out;
2885 }
2886 if (bs->drv->bdrv_co_flush_to_disk) {
2887 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2888 } else if (bs->drv->bdrv_aio_flush) {
2889 BlockAIOCB *acb;
2890 CoroutineIOCompletion co = {
2891 .coroutine = qemu_coroutine_self(),
2892 };
2893
2894 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2895 if (acb == NULL) {
2896 ret = -EIO;
2897 } else {
2898 qemu_coroutine_yield();
2899 ret = co.ret;
2900 }
2901 } else {
2902 /*
2903 * Some block drivers always operate in either writethrough or unsafe
2904 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2905 * know how the server works (because the behaviour is hardcoded or
2906 * depends on server-side configuration), so we can't ensure that
2907 * everything is safe on disk. Returning an error doesn't work because
2908 * that would break guests even if the server operates in writethrough
2909 * mode.
2910 *
2911 * Let's hope the user knows what he's doing.
2912 */
2913 ret = 0;
2914 }
2915
2916 if (ret < 0) {
2917 goto out;
2918 }
2919
2920 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2921 * in the case of cache=unsafe, so there are no useless flushes.
2922 */
2923 flush_children:
2924 ret = 0;
2925 QLIST_FOREACH(child, &bs->children, next) {
2926 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2927 int this_child_ret = bdrv_co_flush(child->bs);
2928 if (!ret) {
2929 ret = this_child_ret;
2930 }
2931 }
2932 }
2933
2934 out:
2935 /* Notify any pending flushes that we have completed */
2936 if (ret == 0) {
2937 bs->flushed_gen = current_gen;
2938 }
2939
2940 qemu_co_mutex_lock(&bs->reqs_lock);
2941 bs->active_flush_req = false;
2942 /* Return value is ignored - it's ok if wait queue is empty */
2943 qemu_co_queue_next(&bs->flush_queue);
2944 qemu_co_mutex_unlock(&bs->reqs_lock);
2945
2946 early_exit:
2947 bdrv_dec_in_flight(bs);
2948 return ret;
2949 }
2950
2951 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2952 int64_t bytes)
2953 {
2954 BdrvTrackedRequest req;
2955 int ret;
2956 int64_t max_pdiscard;
2957 int head, tail, align;
2958 BlockDriverState *bs = child->bs;
2959 IO_CODE();
2960
2961 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2962 return -ENOMEDIUM;
2963 }
2964
2965 if (bdrv_has_readonly_bitmaps(bs)) {
2966 return -EPERM;
2967 }
2968
2969 ret = bdrv_check_request(offset, bytes, NULL);
2970 if (ret < 0) {
2971 return ret;
2972 }
2973
2974 /* Do nothing if disabled. */
2975 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2976 return 0;
2977 }
2978
2979 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2980 return 0;
2981 }
2982
2983 /* Invalidate the cached block-status data range if this discard overlaps */
2984 bdrv_bsc_invalidate_range(bs, offset, bytes);
2985
2986 /* Discard is advisory, but some devices track and coalesce
2987 * unaligned requests, so we must pass everything down rather than
2988 * round here. Still, most devices will just silently ignore
2989 * unaligned requests (by returning -ENOTSUP), so we must fragment
2990 * the request accordingly. */
2991 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2992 assert(align % bs->bl.request_alignment == 0);
2993 head = offset % align;
2994 tail = (offset + bytes) % align;
2995
2996 bdrv_inc_in_flight(bs);
2997 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2998
2999 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3000 if (ret < 0) {
3001 goto out;
3002 }
3003
3004 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3005 align);
3006 assert(max_pdiscard >= bs->bl.request_alignment);
3007
3008 while (bytes > 0) {
3009 int64_t num = bytes;
3010
3011 if (head) {
3012 /* Make small requests to get to alignment boundaries. */
3013 num = MIN(bytes, align - head);
3014 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3015 num %= bs->bl.request_alignment;
3016 }
3017 head = (head + num) % align;
3018 assert(num < max_pdiscard);
3019 } else if (tail) {
3020 if (num > align) {
3021 /* Shorten the request to the last aligned cluster. */
3022 num -= tail;
3023 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3024 tail > bs->bl.request_alignment) {
3025 tail %= bs->bl.request_alignment;
3026 num -= tail;
3027 }
3028 }
3029 /* limit request size */
3030 if (num > max_pdiscard) {
3031 num = max_pdiscard;
3032 }
3033
3034 if (!bs->drv) {
3035 ret = -ENOMEDIUM;
3036 goto out;
3037 }
3038 if (bs->drv->bdrv_co_pdiscard) {
3039 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3040 } else {
3041 BlockAIOCB *acb;
3042 CoroutineIOCompletion co = {
3043 .coroutine = qemu_coroutine_self(),
3044 };
3045
3046 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3047 bdrv_co_io_em_complete, &co);
3048 if (acb == NULL) {
3049 ret = -EIO;
3050 goto out;
3051 } else {
3052 qemu_coroutine_yield();
3053 ret = co.ret;
3054 }
3055 }
3056 if (ret && ret != -ENOTSUP) {
3057 goto out;
3058 }
3059
3060 offset += num;
3061 bytes -= num;
3062 }
3063 ret = 0;
3064 out:
3065 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3066 tracked_request_end(&req);
3067 bdrv_dec_in_flight(bs);
3068 return ret;
3069 }
3070
3071 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3072 {
3073 BlockDriver *drv = bs->drv;
3074 CoroutineIOCompletion co = {
3075 .coroutine = qemu_coroutine_self(),
3076 };
3077 BlockAIOCB *acb;
3078 IO_CODE();
3079
3080 bdrv_inc_in_flight(bs);
3081 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3082 co.ret = -ENOTSUP;
3083 goto out;
3084 }
3085
3086 if (drv->bdrv_co_ioctl) {
3087 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3088 } else {
3089 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3090 if (!acb) {
3091 co.ret = -ENOTSUP;
3092 goto out;
3093 }
3094 qemu_coroutine_yield();
3095 }
3096 out:
3097 bdrv_dec_in_flight(bs);
3098 return co.ret;
3099 }
3100
3101 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3102 {
3103 IO_CODE();
3104 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3105 }
3106
3107 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3108 {
3109 IO_CODE();
3110 return memset(qemu_blockalign(bs, size), 0, size);
3111 }
3112
3113 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3114 {
3115 size_t align = bdrv_opt_mem_align(bs);
3116 IO_CODE();
3117
3118 /* Ensure that NULL is never returned on success */
3119 assert(align > 0);
3120 if (size == 0) {
3121 size = align;
3122 }
3123
3124 return qemu_try_memalign(align, size);
3125 }
3126
3127 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3128 {
3129 void *mem = qemu_try_blockalign(bs, size);
3130 IO_CODE();
3131
3132 if (mem) {
3133 memset(mem, 0, size);
3134 }
3135
3136 return mem;
3137 }
3138
3139 void bdrv_io_plug(BlockDriverState *bs)
3140 {
3141 BdrvChild *child;
3142 IO_CODE();
3143
3144 QLIST_FOREACH(child, &bs->children, next) {
3145 bdrv_io_plug(child->bs);
3146 }
3147
3148 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3149 BlockDriver *drv = bs->drv;
3150 if (drv && drv->bdrv_io_plug) {
3151 drv->bdrv_io_plug(bs);
3152 }
3153 }
3154 }
3155
3156 void bdrv_io_unplug(BlockDriverState *bs)
3157 {
3158 BdrvChild *child;
3159 IO_CODE();
3160
3161 assert(bs->io_plugged);
3162 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3163 BlockDriver *drv = bs->drv;
3164 if (drv && drv->bdrv_io_unplug) {
3165 drv->bdrv_io_unplug(bs);
3166 }
3167 }
3168
3169 QLIST_FOREACH(child, &bs->children, next) {
3170 bdrv_io_unplug(child->bs);
3171 }
3172 }
3173
3174 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3175 static void bdrv_register_buf_rollback(BlockDriverState *bs,
3176 void *host,
3177 size_t size,
3178 BdrvChild *final_child)
3179 {
3180 BdrvChild *child;
3181
3182 QLIST_FOREACH(child, &bs->children, next) {
3183 if (child == final_child) {
3184 break;
3185 }
3186
3187 bdrv_unregister_buf(child->bs, host, size);
3188 }
3189
3190 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3191 bs->drv->bdrv_unregister_buf(bs, host, size);
3192 }
3193 }
3194
3195 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3196 Error **errp)
3197 {
3198 BdrvChild *child;
3199
3200 GLOBAL_STATE_CODE();
3201 if (bs->drv && bs->drv->bdrv_register_buf) {
3202 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3203 return false;
3204 }
3205 }
3206 QLIST_FOREACH(child, &bs->children, next) {
3207 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3208 bdrv_register_buf_rollback(bs, host, size, child);
3209 return false;
3210 }
3211 }
3212 return true;
3213 }
3214
3215 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3216 {
3217 BdrvChild *child;
3218
3219 GLOBAL_STATE_CODE();
3220 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3221 bs->drv->bdrv_unregister_buf(bs, host, size);
3222 }
3223 QLIST_FOREACH(child, &bs->children, next) {
3224 bdrv_unregister_buf(child->bs, host, size);
3225 }
3226 }
3227
3228 static int coroutine_fn bdrv_co_copy_range_internal(
3229 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3230 int64_t dst_offset, int64_t bytes,
3231 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3232 bool recurse_src)
3233 {
3234 BdrvTrackedRequest req;
3235 int ret;
3236
3237 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3238 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3239 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3240 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3241 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3242
3243 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3244 return -ENOMEDIUM;
3245 }
3246 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3247 if (ret) {
3248 return ret;
3249 }
3250 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3251 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3252 }
3253
3254 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3255 return -ENOMEDIUM;
3256 }
3257 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3258 if (ret) {
3259 return ret;
3260 }
3261
3262 if (!src->bs->drv->bdrv_co_copy_range_from
3263 || !dst->bs->drv->bdrv_co_copy_range_to
3264 || src->bs->encrypted || dst->bs->encrypted) {
3265 return -ENOTSUP;
3266 }
3267
3268 if (recurse_src) {
3269 bdrv_inc_in_flight(src->bs);
3270 tracked_request_begin(&req, src->bs, src_offset, bytes,
3271 BDRV_TRACKED_READ);
3272
3273 /* BDRV_REQ_SERIALISING is only for write operation */
3274 assert(!(read_flags & BDRV_REQ_SERIALISING));
3275 bdrv_wait_serialising_requests(&req);
3276
3277 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3278 src, src_offset,
3279 dst, dst_offset,
3280 bytes,
3281 read_flags, write_flags);
3282
3283 tracked_request_end(&req);
3284 bdrv_dec_in_flight(src->bs);
3285 } else {
3286 bdrv_inc_in_flight(dst->bs);
3287 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3288 BDRV_TRACKED_WRITE);
3289 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3290 write_flags);
3291 if (!ret) {
3292 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3293 src, src_offset,
3294 dst, dst_offset,
3295 bytes,
3296 read_flags, write_flags);
3297 }
3298 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3299 tracked_request_end(&req);
3300 bdrv_dec_in_flight(dst->bs);
3301 }
3302
3303 return ret;
3304 }
3305
3306 /* Copy range from @src to @dst.
3307 *
3308 * See the comment of bdrv_co_copy_range for the parameter and return value
3309 * semantics. */
3310 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3311 BdrvChild *dst, int64_t dst_offset,
3312 int64_t bytes,
3313 BdrvRequestFlags read_flags,
3314 BdrvRequestFlags write_flags)
3315 {
3316 IO_CODE();
3317 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3318 read_flags, write_flags);
3319 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3320 bytes, read_flags, write_flags, true);
3321 }
3322
3323 /* Copy range from @src to @dst.
3324 *
3325 * See the comment of bdrv_co_copy_range for the parameter and return value
3326 * semantics. */
3327 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3328 BdrvChild *dst, int64_t dst_offset,
3329 int64_t bytes,
3330 BdrvRequestFlags read_flags,
3331 BdrvRequestFlags write_flags)
3332 {
3333 IO_CODE();
3334 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3335 read_flags, write_flags);
3336 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3337 bytes, read_flags, write_flags, false);
3338 }
3339
3340 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3341 BdrvChild *dst, int64_t dst_offset,
3342 int64_t bytes, BdrvRequestFlags read_flags,
3343 BdrvRequestFlags write_flags)
3344 {
3345 IO_CODE();
3346 return bdrv_co_copy_range_from(src, src_offset,
3347 dst, dst_offset,
3348 bytes, read_flags, write_flags);
3349 }
3350
3351 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3352 {
3353 BdrvChild *c;
3354 QLIST_FOREACH(c, &bs->parents, next_parent) {
3355 if (c->klass->resize) {
3356 c->klass->resize(c);
3357 }
3358 }
3359 }
3360
3361 /**
3362 * Truncate file to 'offset' bytes (needed only for file protocols)
3363 *
3364 * If 'exact' is true, the file must be resized to exactly the given
3365 * 'offset'. Otherwise, it is sufficient for the node to be at least
3366 * 'offset' bytes in length.
3367 */
3368 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3369 PreallocMode prealloc, BdrvRequestFlags flags,
3370 Error **errp)
3371 {
3372 BlockDriverState *bs = child->bs;
3373 BdrvChild *filtered, *backing;
3374 BlockDriver *drv = bs->drv;
3375 BdrvTrackedRequest req;
3376 int64_t old_size, new_bytes;
3377 int ret;
3378 IO_CODE();
3379
3380 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3381 if (!drv) {
3382 error_setg(errp, "No medium inserted");
3383 return -ENOMEDIUM;
3384 }
3385 if (offset < 0) {
3386 error_setg(errp, "Image size cannot be negative");
3387 return -EINVAL;
3388 }
3389
3390 ret = bdrv_check_request(offset, 0, errp);
3391 if (ret < 0) {
3392 return ret;
3393 }
3394
3395 old_size = bdrv_getlength(bs);
3396 if (old_size < 0) {
3397 error_setg_errno(errp, -old_size, "Failed to get old image size");
3398 return old_size;
3399 }
3400
3401 if (bdrv_is_read_only(bs)) {
3402 error_setg(errp, "Image is read-only");
3403 return -EACCES;
3404 }
3405
3406 if (offset > old_size) {
3407 new_bytes = offset - old_size;
3408 } else {
3409 new_bytes = 0;
3410 }
3411
3412 bdrv_inc_in_flight(bs);
3413 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3414 BDRV_TRACKED_TRUNCATE);
3415
3416 /* If we are growing the image and potentially using preallocation for the
3417 * new area, we need to make sure that no write requests are made to it
3418 * concurrently or they might be overwritten by preallocation. */
3419 if (new_bytes) {
3420 bdrv_make_request_serialising(&req, 1);
3421 }
3422 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3423 0);
3424 if (ret < 0) {
3425 error_setg_errno(errp, -ret,
3426 "Failed to prepare request for truncation");
3427 goto out;
3428 }
3429
3430 filtered = bdrv_filter_child(bs);
3431 backing = bdrv_cow_child(bs);
3432
3433 /*
3434 * If the image has a backing file that is large enough that it would
3435 * provide data for the new area, we cannot leave it unallocated because
3436 * then the backing file content would become visible. Instead, zero-fill
3437 * the new area.
3438 *
3439 * Note that if the image has a backing file, but was opened without the
3440 * backing file, taking care of keeping things consistent with that backing
3441 * file is the user's responsibility.
3442 */
3443 if (new_bytes && backing) {
3444 int64_t backing_len;
3445
3446 backing_len = bdrv_getlength(backing->bs);
3447 if (backing_len < 0) {
3448 ret = backing_len;
3449 error_setg_errno(errp, -ret, "Could not get backing file size");
3450 goto out;
3451 }
3452
3453 if (backing_len > old_size) {
3454 flags |= BDRV_REQ_ZERO_WRITE;
3455 }
3456 }
3457
3458 if (drv->bdrv_co_truncate) {
3459 if (flags & ~bs->supported_truncate_flags) {
3460 error_setg(errp, "Block driver does not support requested flags");
3461 ret = -ENOTSUP;
3462 goto out;
3463 }
3464 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3465 } else if (filtered) {
3466 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3467 } else {
3468 error_setg(errp, "Image format driver does not support resize");
3469 ret = -ENOTSUP;
3470 goto out;
3471 }
3472 if (ret < 0) {
3473 goto out;
3474 }
3475
3476 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3477 if (ret < 0) {
3478 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3479 } else {
3480 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3481 }
3482 /* It's possible that truncation succeeded but refresh_total_sectors
3483 * failed, but the latter doesn't affect how we should finish the request.
3484 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3485 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3486
3487 out:
3488 tracked_request_end(&req);
3489 bdrv_dec_in_flight(bs);
3490
3491 return ret;
3492 }
3493
3494 void bdrv_cancel_in_flight(BlockDriverState *bs)
3495 {
3496 GLOBAL_STATE_CODE();
3497 if (!bs || !bs->drv) {
3498 return;
3499 }
3500
3501 if (bs->drv->bdrv_cancel_in_flight) {
3502 bs->drv->bdrv_cancel_in_flight(bs);
3503 }
3504 }
3505
3506 int coroutine_fn
3507 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3508 QEMUIOVector *qiov, size_t qiov_offset)
3509 {
3510 BlockDriverState *bs = child->bs;
3511 BlockDriver *drv = bs->drv;
3512 int ret;
3513 IO_CODE();
3514
3515 if (!drv) {
3516 return -ENOMEDIUM;
3517 }
3518
3519 if (!drv->bdrv_co_preadv_snapshot) {
3520 return -ENOTSUP;
3521 }
3522
3523 bdrv_inc_in_flight(bs);
3524 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3525 bdrv_dec_in_flight(bs);
3526
3527 return ret;
3528 }
3529
3530 int coroutine_fn
3531 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3532 bool want_zero, int64_t offset, int64_t bytes,
3533 int64_t *pnum, int64_t *map,
3534 BlockDriverState **file)
3535 {
3536 BlockDriver *drv = bs->drv;
3537 int ret;
3538 IO_CODE();
3539
3540 if (!drv) {
3541 return -ENOMEDIUM;
3542 }
3543
3544 if (!drv->bdrv_co_snapshot_block_status) {
3545 return -ENOTSUP;
3546 }
3547
3548 bdrv_inc_in_flight(bs);
3549 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3550 pnum, map, file);
3551 bdrv_dec_in_flight(bs);
3552
3553 return ret;
3554 }
3555
3556 int coroutine_fn
3557 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3558 {
3559 BlockDriver *drv = bs->drv;
3560 int ret;
3561 IO_CODE();
3562
3563 if (!drv) {
3564 return -ENOMEDIUM;
3565 }
3566
3567 if (!drv->bdrv_co_pdiscard_snapshot) {
3568 return -ENOTSUP;
3569 }
3570
3571 bdrv_inc_in_flight(bs);
3572 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3573 bdrv_dec_in_flight(bs);
3574
3575 return ret;
3576 }