]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
39
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
49 {
50 BdrvChild *c, *next;
51
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54 continue;
55 }
56 bdrv_parent_drained_begin_single(c, false);
57 }
58 }
59
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
62 {
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->klass->drained_end) {
66 c->klass->drained_end(c, drained_end_counter);
67 }
68 }
69
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
75 }
76
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
80 {
81 BdrvChild *c;
82
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85 continue;
86 }
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88 }
89 }
90
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93 if (c->klass->drained_poll) {
94 return c->klass->drained_poll(c);
95 }
96 return false;
97 }
98
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
101 {
102 BdrvChild *c, *next;
103 bool busy = false;
104
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107 continue;
108 }
109 busy |= bdrv_parent_drained_poll_single(c);
110 }
111
112 return busy;
113 }
114
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117 c->parent_quiesce_counter++;
118 if (c->klass->drained_begin) {
119 c->klass->drained_begin(c);
120 }
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123 }
124 }
125
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131 src->opt_mem_alignment);
132 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133 src->min_mem_alignment);
134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
135 }
136
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144 BdrvRefreshLimitsState *s = opaque;
145
146 s->bs->bl = s->old_bl;
147 }
148
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
152 };
153
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
161
162 if (tran) {
163 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
164 *s = (BdrvRefreshLimitsState) {
165 .bs = bs,
166 .old_bl = bs->bl,
167 };
168 tran_add(tran, &bdrv_refresh_limits_drv, s);
169 }
170
171 memset(&bs->bl, 0, sizeof(bs->bl));
172
173 if (!drv) {
174 return;
175 }
176
177 /* Default alignment based on whether driver has byte interface */
178 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
179 drv->bdrv_aio_preadv ||
180 drv->bdrv_co_preadv_part) ? 1 : 512;
181
182 /* Take some limits from the children as a default */
183 have_limits = false;
184 QLIST_FOREACH(c, &bs->children, next) {
185 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
186 {
187 bdrv_refresh_limits(c->bs, tran, errp);
188 if (*errp) {
189 return;
190 }
191 bdrv_merge_limits(&bs->bl, &c->bs->bl);
192 have_limits = true;
193 }
194 }
195
196 if (!have_limits) {
197 bs->bl.min_mem_alignment = 512;
198 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
199
200 /* Safe default since most protocols use readv()/writev()/etc */
201 bs->bl.max_iov = IOV_MAX;
202 }
203
204 /* Then let the driver override it */
205 if (drv->bdrv_refresh_limits) {
206 drv->bdrv_refresh_limits(bs, errp);
207 if (*errp) {
208 return;
209 }
210 }
211
212 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
213 error_setg(errp, "Driver requires too large request alignment");
214 }
215 }
216
217 /**
218 * The copy-on-read flag is actually a reference count so multiple users may
219 * use the feature without worrying about clobbering its previous state.
220 * Copy-on-read stays enabled until all users have called to disable it.
221 */
222 void bdrv_enable_copy_on_read(BlockDriverState *bs)
223 {
224 qatomic_inc(&bs->copy_on_read);
225 }
226
227 void bdrv_disable_copy_on_read(BlockDriverState *bs)
228 {
229 int old = qatomic_fetch_dec(&bs->copy_on_read);
230 assert(old >= 1);
231 }
232
233 typedef struct {
234 Coroutine *co;
235 BlockDriverState *bs;
236 bool done;
237 bool begin;
238 bool recursive;
239 bool poll;
240 BdrvChild *parent;
241 bool ignore_bds_parents;
242 int *drained_end_counter;
243 } BdrvCoDrainData;
244
245 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
246 {
247 BdrvCoDrainData *data = opaque;
248 BlockDriverState *bs = data->bs;
249
250 if (data->begin) {
251 bs->drv->bdrv_co_drain_begin(bs);
252 } else {
253 bs->drv->bdrv_co_drain_end(bs);
254 }
255
256 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
257 qatomic_mb_set(&data->done, true);
258 if (!data->begin) {
259 qatomic_dec(data->drained_end_counter);
260 }
261 bdrv_dec_in_flight(bs);
262
263 g_free(data);
264 }
265
266 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
267 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
268 int *drained_end_counter)
269 {
270 BdrvCoDrainData *data;
271
272 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
273 (!begin && !bs->drv->bdrv_co_drain_end)) {
274 return;
275 }
276
277 data = g_new(BdrvCoDrainData, 1);
278 *data = (BdrvCoDrainData) {
279 .bs = bs,
280 .done = false,
281 .begin = begin,
282 .drained_end_counter = drained_end_counter,
283 };
284
285 if (!begin) {
286 qatomic_inc(drained_end_counter);
287 }
288
289 /* Make sure the driver callback completes during the polling phase for
290 * drain_begin. */
291 bdrv_inc_in_flight(bs);
292 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
293 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
294 }
295
296 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
297 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
298 BdrvChild *ignore_parent, bool ignore_bds_parents)
299 {
300 BdrvChild *child, *next;
301
302 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
303 return true;
304 }
305
306 if (qatomic_read(&bs->in_flight)) {
307 return true;
308 }
309
310 if (recursive) {
311 assert(!ignore_bds_parents);
312 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
313 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
314 return true;
315 }
316 }
317 }
318
319 return false;
320 }
321
322 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
323 BdrvChild *ignore_parent)
324 {
325 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
326 }
327
328 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
329 BdrvChild *parent, bool ignore_bds_parents,
330 bool poll);
331 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
332 BdrvChild *parent, bool ignore_bds_parents,
333 int *drained_end_counter);
334
335 static void bdrv_co_drain_bh_cb(void *opaque)
336 {
337 BdrvCoDrainData *data = opaque;
338 Coroutine *co = data->co;
339 BlockDriverState *bs = data->bs;
340
341 if (bs) {
342 AioContext *ctx = bdrv_get_aio_context(bs);
343 aio_context_acquire(ctx);
344 bdrv_dec_in_flight(bs);
345 if (data->begin) {
346 assert(!data->drained_end_counter);
347 bdrv_do_drained_begin(bs, data->recursive, data->parent,
348 data->ignore_bds_parents, data->poll);
349 } else {
350 assert(!data->poll);
351 bdrv_do_drained_end(bs, data->recursive, data->parent,
352 data->ignore_bds_parents,
353 data->drained_end_counter);
354 }
355 aio_context_release(ctx);
356 } else {
357 assert(data->begin);
358 bdrv_drain_all_begin();
359 }
360
361 data->done = true;
362 aio_co_wake(co);
363 }
364
365 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
366 bool begin, bool recursive,
367 BdrvChild *parent,
368 bool ignore_bds_parents,
369 bool poll,
370 int *drained_end_counter)
371 {
372 BdrvCoDrainData data;
373 Coroutine *self = qemu_coroutine_self();
374 AioContext *ctx = bdrv_get_aio_context(bs);
375 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
376
377 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
378 * other coroutines run if they were queued by aio_co_enter(). */
379
380 assert(qemu_in_coroutine());
381 data = (BdrvCoDrainData) {
382 .co = self,
383 .bs = bs,
384 .done = false,
385 .begin = begin,
386 .recursive = recursive,
387 .parent = parent,
388 .ignore_bds_parents = ignore_bds_parents,
389 .poll = poll,
390 .drained_end_counter = drained_end_counter,
391 };
392
393 if (bs) {
394 bdrv_inc_in_flight(bs);
395 }
396
397 /*
398 * Temporarily drop the lock across yield or we would get deadlocks.
399 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
400 *
401 * When we yield below, the lock for the current context will be
402 * released, so if this is actually the lock that protects bs, don't drop
403 * it a second time.
404 */
405 if (ctx != co_ctx) {
406 aio_context_release(ctx);
407 }
408 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
409
410 qemu_coroutine_yield();
411 /* If we are resumed from some other event (such as an aio completion or a
412 * timer callback), it is a bug in the caller that should be fixed. */
413 assert(data.done);
414
415 /* Reaquire the AioContext of bs if we dropped it */
416 if (ctx != co_ctx) {
417 aio_context_acquire(ctx);
418 }
419 }
420
421 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
422 BdrvChild *parent, bool ignore_bds_parents)
423 {
424 assert(!qemu_in_coroutine());
425
426 /* Stop things in parent-to-child order */
427 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
428 aio_disable_external(bdrv_get_aio_context(bs));
429 }
430
431 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
432 bdrv_drain_invoke(bs, true, NULL);
433 }
434
435 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
436 BdrvChild *parent, bool ignore_bds_parents,
437 bool poll)
438 {
439 BdrvChild *child, *next;
440
441 if (qemu_in_coroutine()) {
442 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
443 poll, NULL);
444 return;
445 }
446
447 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
448
449 if (recursive) {
450 assert(!ignore_bds_parents);
451 bs->recursive_quiesce_counter++;
452 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
453 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
454 false);
455 }
456 }
457
458 /*
459 * Wait for drained requests to finish.
460 *
461 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
462 * call is needed so things in this AioContext can make progress even
463 * though we don't return to the main AioContext loop - this automatically
464 * includes other nodes in the same AioContext and therefore all child
465 * nodes.
466 */
467 if (poll) {
468 assert(!ignore_bds_parents);
469 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
470 }
471 }
472
473 void bdrv_drained_begin(BlockDriverState *bs)
474 {
475 bdrv_do_drained_begin(bs, false, NULL, false, true);
476 }
477
478 void bdrv_subtree_drained_begin(BlockDriverState *bs)
479 {
480 bdrv_do_drained_begin(bs, true, NULL, false, true);
481 }
482
483 /**
484 * This function does not poll, nor must any of its recursively called
485 * functions. The *drained_end_counter pointee will be incremented
486 * once for every background operation scheduled, and decremented once
487 * the operation settles. Therefore, the pointer must remain valid
488 * until the pointee reaches 0. That implies that whoever sets up the
489 * pointee has to poll until it is 0.
490 *
491 * We use atomic operations to access *drained_end_counter, because
492 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
493 * @bs may contain nodes in different AioContexts,
494 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
495 * regardless of which AioContext they are in.
496 */
497 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
498 BdrvChild *parent, bool ignore_bds_parents,
499 int *drained_end_counter)
500 {
501 BdrvChild *child;
502 int old_quiesce_counter;
503
504 assert(drained_end_counter != NULL);
505
506 if (qemu_in_coroutine()) {
507 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
508 false, drained_end_counter);
509 return;
510 }
511 assert(bs->quiesce_counter > 0);
512
513 /* Re-enable things in child-to-parent order */
514 bdrv_drain_invoke(bs, false, drained_end_counter);
515 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
516 drained_end_counter);
517
518 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
519 if (old_quiesce_counter == 1) {
520 aio_enable_external(bdrv_get_aio_context(bs));
521 }
522
523 if (recursive) {
524 assert(!ignore_bds_parents);
525 bs->recursive_quiesce_counter--;
526 QLIST_FOREACH(child, &bs->children, next) {
527 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
528 drained_end_counter);
529 }
530 }
531 }
532
533 void bdrv_drained_end(BlockDriverState *bs)
534 {
535 int drained_end_counter = 0;
536 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
537 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
538 }
539
540 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
541 {
542 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
543 }
544
545 void bdrv_subtree_drained_end(BlockDriverState *bs)
546 {
547 int drained_end_counter = 0;
548 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
549 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
550 }
551
552 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
553 {
554 int i;
555
556 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
557 bdrv_do_drained_begin(child->bs, true, child, false, true);
558 }
559 }
560
561 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
562 {
563 int drained_end_counter = 0;
564 int i;
565
566 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
567 bdrv_do_drained_end(child->bs, true, child, false,
568 &drained_end_counter);
569 }
570
571 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
572 }
573
574 /*
575 * Wait for pending requests to complete on a single BlockDriverState subtree,
576 * and suspend block driver's internal I/O until next request arrives.
577 *
578 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
579 * AioContext.
580 */
581 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
582 {
583 assert(qemu_in_coroutine());
584 bdrv_drained_begin(bs);
585 bdrv_drained_end(bs);
586 }
587
588 void bdrv_drain(BlockDriverState *bs)
589 {
590 bdrv_drained_begin(bs);
591 bdrv_drained_end(bs);
592 }
593
594 static void bdrv_drain_assert_idle(BlockDriverState *bs)
595 {
596 BdrvChild *child, *next;
597
598 assert(qatomic_read(&bs->in_flight) == 0);
599 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
600 bdrv_drain_assert_idle(child->bs);
601 }
602 }
603
604 unsigned int bdrv_drain_all_count = 0;
605
606 static bool bdrv_drain_all_poll(void)
607 {
608 BlockDriverState *bs = NULL;
609 bool result = false;
610
611 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
612 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
613 while ((bs = bdrv_next_all_states(bs))) {
614 AioContext *aio_context = bdrv_get_aio_context(bs);
615 aio_context_acquire(aio_context);
616 result |= bdrv_drain_poll(bs, false, NULL, true);
617 aio_context_release(aio_context);
618 }
619
620 return result;
621 }
622
623 /*
624 * Wait for pending requests to complete across all BlockDriverStates
625 *
626 * This function does not flush data to disk, use bdrv_flush_all() for that
627 * after calling this function.
628 *
629 * This pauses all block jobs and disables external clients. It must
630 * be paired with bdrv_drain_all_end().
631 *
632 * NOTE: no new block jobs or BlockDriverStates can be created between
633 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
634 */
635 void bdrv_drain_all_begin(void)
636 {
637 BlockDriverState *bs = NULL;
638
639 if (qemu_in_coroutine()) {
640 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
641 return;
642 }
643
644 /*
645 * bdrv queue is managed by record/replay,
646 * waiting for finishing the I/O requests may
647 * be infinite
648 */
649 if (replay_events_enabled()) {
650 return;
651 }
652
653 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
654 * loop AioContext, so make sure we're in the main context. */
655 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
656 assert(bdrv_drain_all_count < INT_MAX);
657 bdrv_drain_all_count++;
658
659 /* Quiesce all nodes, without polling in-flight requests yet. The graph
660 * cannot change during this loop. */
661 while ((bs = bdrv_next_all_states(bs))) {
662 AioContext *aio_context = bdrv_get_aio_context(bs);
663
664 aio_context_acquire(aio_context);
665 bdrv_do_drained_begin(bs, false, NULL, true, false);
666 aio_context_release(aio_context);
667 }
668
669 /* Now poll the in-flight requests */
670 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
671
672 while ((bs = bdrv_next_all_states(bs))) {
673 bdrv_drain_assert_idle(bs);
674 }
675 }
676
677 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
678 {
679 int drained_end_counter = 0;
680
681 g_assert(bs->quiesce_counter > 0);
682 g_assert(!bs->refcnt);
683
684 while (bs->quiesce_counter) {
685 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
686 }
687 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
688 }
689
690 void bdrv_drain_all_end(void)
691 {
692 BlockDriverState *bs = NULL;
693 int drained_end_counter = 0;
694
695 /*
696 * bdrv queue is managed by record/replay,
697 * waiting for finishing the I/O requests may
698 * be endless
699 */
700 if (replay_events_enabled()) {
701 return;
702 }
703
704 while ((bs = bdrv_next_all_states(bs))) {
705 AioContext *aio_context = bdrv_get_aio_context(bs);
706
707 aio_context_acquire(aio_context);
708 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
709 aio_context_release(aio_context);
710 }
711
712 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
713 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
714
715 assert(bdrv_drain_all_count > 0);
716 bdrv_drain_all_count--;
717 }
718
719 void bdrv_drain_all(void)
720 {
721 bdrv_drain_all_begin();
722 bdrv_drain_all_end();
723 }
724
725 /**
726 * Remove an active request from the tracked requests list
727 *
728 * This function should be called when a tracked request is completing.
729 */
730 static void tracked_request_end(BdrvTrackedRequest *req)
731 {
732 if (req->serialising) {
733 qatomic_dec(&req->bs->serialising_in_flight);
734 }
735
736 qemu_co_mutex_lock(&req->bs->reqs_lock);
737 QLIST_REMOVE(req, list);
738 qemu_co_queue_restart_all(&req->wait_queue);
739 qemu_co_mutex_unlock(&req->bs->reqs_lock);
740 }
741
742 /**
743 * Add an active request to the tracked requests list
744 */
745 static void tracked_request_begin(BdrvTrackedRequest *req,
746 BlockDriverState *bs,
747 int64_t offset,
748 int64_t bytes,
749 enum BdrvTrackedRequestType type)
750 {
751 bdrv_check_request(offset, bytes, &error_abort);
752
753 *req = (BdrvTrackedRequest){
754 .bs = bs,
755 .offset = offset,
756 .bytes = bytes,
757 .type = type,
758 .co = qemu_coroutine_self(),
759 .serialising = false,
760 .overlap_offset = offset,
761 .overlap_bytes = bytes,
762 };
763
764 qemu_co_queue_init(&req->wait_queue);
765
766 qemu_co_mutex_lock(&bs->reqs_lock);
767 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
768 qemu_co_mutex_unlock(&bs->reqs_lock);
769 }
770
771 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
772 int64_t offset, int64_t bytes)
773 {
774 bdrv_check_request(offset, bytes, &error_abort);
775
776 /* aaaa bbbb */
777 if (offset >= req->overlap_offset + req->overlap_bytes) {
778 return false;
779 }
780 /* bbbb aaaa */
781 if (req->overlap_offset >= offset + bytes) {
782 return false;
783 }
784 return true;
785 }
786
787 /* Called with self->bs->reqs_lock held */
788 static BdrvTrackedRequest *
789 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
790 {
791 BdrvTrackedRequest *req;
792
793 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
794 if (req == self || (!req->serialising && !self->serialising)) {
795 continue;
796 }
797 if (tracked_request_overlaps(req, self->overlap_offset,
798 self->overlap_bytes))
799 {
800 /*
801 * Hitting this means there was a reentrant request, for
802 * example, a block driver issuing nested requests. This must
803 * never happen since it means deadlock.
804 */
805 assert(qemu_coroutine_self() != req->co);
806
807 /*
808 * If the request is already (indirectly) waiting for us, or
809 * will wait for us as soon as it wakes up, then just go on
810 * (instead of producing a deadlock in the former case).
811 */
812 if (!req->waiting_for) {
813 return req;
814 }
815 }
816 }
817
818 return NULL;
819 }
820
821 /* Called with self->bs->reqs_lock held */
822 static bool coroutine_fn
823 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
824 {
825 BdrvTrackedRequest *req;
826 bool waited = false;
827
828 while ((req = bdrv_find_conflicting_request(self))) {
829 self->waiting_for = req;
830 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
831 self->waiting_for = NULL;
832 waited = true;
833 }
834
835 return waited;
836 }
837
838 /* Called with req->bs->reqs_lock held */
839 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
840 uint64_t align)
841 {
842 int64_t overlap_offset = req->offset & ~(align - 1);
843 int64_t overlap_bytes =
844 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
845
846 bdrv_check_request(req->offset, req->bytes, &error_abort);
847
848 if (!req->serialising) {
849 qatomic_inc(&req->bs->serialising_in_flight);
850 req->serialising = true;
851 }
852
853 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
854 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
855 }
856
857 /**
858 * Return the tracked request on @bs for the current coroutine, or
859 * NULL if there is none.
860 */
861 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
862 {
863 BdrvTrackedRequest *req;
864 Coroutine *self = qemu_coroutine_self();
865
866 QLIST_FOREACH(req, &bs->tracked_requests, list) {
867 if (req->co == self) {
868 return req;
869 }
870 }
871
872 return NULL;
873 }
874
875 /**
876 * Round a region to cluster boundaries
877 */
878 void bdrv_round_to_clusters(BlockDriverState *bs,
879 int64_t offset, int64_t bytes,
880 int64_t *cluster_offset,
881 int64_t *cluster_bytes)
882 {
883 BlockDriverInfo bdi;
884
885 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
886 *cluster_offset = offset;
887 *cluster_bytes = bytes;
888 } else {
889 int64_t c = bdi.cluster_size;
890 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
891 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
892 }
893 }
894
895 static int bdrv_get_cluster_size(BlockDriverState *bs)
896 {
897 BlockDriverInfo bdi;
898 int ret;
899
900 ret = bdrv_get_info(bs, &bdi);
901 if (ret < 0 || bdi.cluster_size == 0) {
902 return bs->bl.request_alignment;
903 } else {
904 return bdi.cluster_size;
905 }
906 }
907
908 void bdrv_inc_in_flight(BlockDriverState *bs)
909 {
910 qatomic_inc(&bs->in_flight);
911 }
912
913 void bdrv_wakeup(BlockDriverState *bs)
914 {
915 aio_wait_kick();
916 }
917
918 void bdrv_dec_in_flight(BlockDriverState *bs)
919 {
920 qatomic_dec(&bs->in_flight);
921 bdrv_wakeup(bs);
922 }
923
924 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
925 {
926 BlockDriverState *bs = self->bs;
927 bool waited = false;
928
929 if (!qatomic_read(&bs->serialising_in_flight)) {
930 return false;
931 }
932
933 qemu_co_mutex_lock(&bs->reqs_lock);
934 waited = bdrv_wait_serialising_requests_locked(self);
935 qemu_co_mutex_unlock(&bs->reqs_lock);
936
937 return waited;
938 }
939
940 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
941 uint64_t align)
942 {
943 bool waited;
944
945 qemu_co_mutex_lock(&req->bs->reqs_lock);
946
947 tracked_request_set_serialising(req, align);
948 waited = bdrv_wait_serialising_requests_locked(req);
949
950 qemu_co_mutex_unlock(&req->bs->reqs_lock);
951
952 return waited;
953 }
954
955 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
956 QEMUIOVector *qiov, size_t qiov_offset,
957 Error **errp)
958 {
959 /*
960 * Check generic offset/bytes correctness
961 */
962
963 if (offset < 0) {
964 error_setg(errp, "offset is negative: %" PRIi64, offset);
965 return -EIO;
966 }
967
968 if (bytes < 0) {
969 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
970 return -EIO;
971 }
972
973 if (bytes > BDRV_MAX_LENGTH) {
974 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
975 bytes, BDRV_MAX_LENGTH);
976 return -EIO;
977 }
978
979 if (offset > BDRV_MAX_LENGTH) {
980 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
981 offset, BDRV_MAX_LENGTH);
982 return -EIO;
983 }
984
985 if (offset > BDRV_MAX_LENGTH - bytes) {
986 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
987 "exceeds maximum(%" PRIi64 ")", offset, bytes,
988 BDRV_MAX_LENGTH);
989 return -EIO;
990 }
991
992 if (!qiov) {
993 return 0;
994 }
995
996 /*
997 * Check qiov and qiov_offset
998 */
999
1000 if (qiov_offset > qiov->size) {
1001 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1002 qiov_offset, qiov->size);
1003 return -EIO;
1004 }
1005
1006 if (bytes > qiov->size - qiov_offset) {
1007 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1008 "vector size(%zu)", bytes, qiov_offset, qiov->size);
1009 return -EIO;
1010 }
1011
1012 return 0;
1013 }
1014
1015 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1016 {
1017 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1018 }
1019
1020 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1021 QEMUIOVector *qiov, size_t qiov_offset)
1022 {
1023 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1024 if (ret < 0) {
1025 return ret;
1026 }
1027
1028 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1029 return -EIO;
1030 }
1031
1032 return 0;
1033 }
1034
1035 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1036 int64_t bytes, BdrvRequestFlags flags)
1037 {
1038 return bdrv_pwritev(child, offset, bytes, NULL,
1039 BDRV_REQ_ZERO_WRITE | flags);
1040 }
1041
1042 /*
1043 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1044 * The operation is sped up by checking the block status and only writing
1045 * zeroes to the device if they currently do not return zeroes. Optional
1046 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1047 * BDRV_REQ_FUA).
1048 *
1049 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1050 */
1051 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1052 {
1053 int ret;
1054 int64_t target_size, bytes, offset = 0;
1055 BlockDriverState *bs = child->bs;
1056
1057 target_size = bdrv_getlength(bs);
1058 if (target_size < 0) {
1059 return target_size;
1060 }
1061
1062 for (;;) {
1063 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1064 if (bytes <= 0) {
1065 return 0;
1066 }
1067 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1068 if (ret < 0) {
1069 return ret;
1070 }
1071 if (ret & BDRV_BLOCK_ZERO) {
1072 offset += bytes;
1073 continue;
1074 }
1075 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1076 if (ret < 0) {
1077 return ret;
1078 }
1079 offset += bytes;
1080 }
1081 }
1082
1083 /* See bdrv_pwrite() for the return codes */
1084 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1085 {
1086 int ret;
1087 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1088
1089 if (bytes < 0) {
1090 return -EINVAL;
1091 }
1092
1093 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1094
1095 return ret < 0 ? ret : bytes;
1096 }
1097
1098 /* Return no. of bytes on success or < 0 on error. Important errors are:
1099 -EIO generic I/O error (may happen for all errors)
1100 -ENOMEDIUM No media inserted.
1101 -EINVAL Invalid offset or number of bytes
1102 -EACCES Trying to write a read-only device
1103 */
1104 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1105 int64_t bytes)
1106 {
1107 int ret;
1108 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1109
1110 if (bytes < 0) {
1111 return -EINVAL;
1112 }
1113
1114 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1115
1116 return ret < 0 ? ret : bytes;
1117 }
1118
1119 /*
1120 * Writes to the file and ensures that no writes are reordered across this
1121 * request (acts as a barrier)
1122 *
1123 * Returns 0 on success, -errno in error cases.
1124 */
1125 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1126 const void *buf, int64_t count)
1127 {
1128 int ret;
1129
1130 ret = bdrv_pwrite(child, offset, buf, count);
1131 if (ret < 0) {
1132 return ret;
1133 }
1134
1135 ret = bdrv_flush(child->bs);
1136 if (ret < 0) {
1137 return ret;
1138 }
1139
1140 return 0;
1141 }
1142
1143 typedef struct CoroutineIOCompletion {
1144 Coroutine *coroutine;
1145 int ret;
1146 } CoroutineIOCompletion;
1147
1148 static void bdrv_co_io_em_complete(void *opaque, int ret)
1149 {
1150 CoroutineIOCompletion *co = opaque;
1151
1152 co->ret = ret;
1153 aio_co_wake(co->coroutine);
1154 }
1155
1156 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1157 int64_t offset, int64_t bytes,
1158 QEMUIOVector *qiov,
1159 size_t qiov_offset, int flags)
1160 {
1161 BlockDriver *drv = bs->drv;
1162 int64_t sector_num;
1163 unsigned int nb_sectors;
1164 QEMUIOVector local_qiov;
1165 int ret;
1166
1167 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1168 assert(!(flags & ~BDRV_REQ_MASK));
1169 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1170
1171 if (!drv) {
1172 return -ENOMEDIUM;
1173 }
1174
1175 if (drv->bdrv_co_preadv_part) {
1176 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1177 flags);
1178 }
1179
1180 if (qiov_offset > 0 || bytes != qiov->size) {
1181 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1182 qiov = &local_qiov;
1183 }
1184
1185 if (drv->bdrv_co_preadv) {
1186 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1187 goto out;
1188 }
1189
1190 if (drv->bdrv_aio_preadv) {
1191 BlockAIOCB *acb;
1192 CoroutineIOCompletion co = {
1193 .coroutine = qemu_coroutine_self(),
1194 };
1195
1196 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1197 bdrv_co_io_em_complete, &co);
1198 if (acb == NULL) {
1199 ret = -EIO;
1200 goto out;
1201 } else {
1202 qemu_coroutine_yield();
1203 ret = co.ret;
1204 goto out;
1205 }
1206 }
1207
1208 sector_num = offset >> BDRV_SECTOR_BITS;
1209 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1210
1211 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1212 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1213 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1214 assert(drv->bdrv_co_readv);
1215
1216 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1217
1218 out:
1219 if (qiov == &local_qiov) {
1220 qemu_iovec_destroy(&local_qiov);
1221 }
1222
1223 return ret;
1224 }
1225
1226 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1227 int64_t offset, int64_t bytes,
1228 QEMUIOVector *qiov,
1229 size_t qiov_offset, int flags)
1230 {
1231 BlockDriver *drv = bs->drv;
1232 int64_t sector_num;
1233 unsigned int nb_sectors;
1234 QEMUIOVector local_qiov;
1235 int ret;
1236
1237 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1238 assert(!(flags & ~BDRV_REQ_MASK));
1239 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1240
1241 if (!drv) {
1242 return -ENOMEDIUM;
1243 }
1244
1245 if (drv->bdrv_co_pwritev_part) {
1246 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1247 flags & bs->supported_write_flags);
1248 flags &= ~bs->supported_write_flags;
1249 goto emulate_flags;
1250 }
1251
1252 if (qiov_offset > 0 || bytes != qiov->size) {
1253 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1254 qiov = &local_qiov;
1255 }
1256
1257 if (drv->bdrv_co_pwritev) {
1258 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1259 flags & bs->supported_write_flags);
1260 flags &= ~bs->supported_write_flags;
1261 goto emulate_flags;
1262 }
1263
1264 if (drv->bdrv_aio_pwritev) {
1265 BlockAIOCB *acb;
1266 CoroutineIOCompletion co = {
1267 .coroutine = qemu_coroutine_self(),
1268 };
1269
1270 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1271 flags & bs->supported_write_flags,
1272 bdrv_co_io_em_complete, &co);
1273 flags &= ~bs->supported_write_flags;
1274 if (acb == NULL) {
1275 ret = -EIO;
1276 } else {
1277 qemu_coroutine_yield();
1278 ret = co.ret;
1279 }
1280 goto emulate_flags;
1281 }
1282
1283 sector_num = offset >> BDRV_SECTOR_BITS;
1284 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1285
1286 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1287 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1288 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1289
1290 assert(drv->bdrv_co_writev);
1291 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1292 flags & bs->supported_write_flags);
1293 flags &= ~bs->supported_write_flags;
1294
1295 emulate_flags:
1296 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1297 ret = bdrv_co_flush(bs);
1298 }
1299
1300 if (qiov == &local_qiov) {
1301 qemu_iovec_destroy(&local_qiov);
1302 }
1303
1304 return ret;
1305 }
1306
1307 static int coroutine_fn
1308 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1309 int64_t bytes, QEMUIOVector *qiov,
1310 size_t qiov_offset)
1311 {
1312 BlockDriver *drv = bs->drv;
1313 QEMUIOVector local_qiov;
1314 int ret;
1315
1316 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1317
1318 if (!drv) {
1319 return -ENOMEDIUM;
1320 }
1321
1322 if (!block_driver_can_compress(drv)) {
1323 return -ENOTSUP;
1324 }
1325
1326 if (drv->bdrv_co_pwritev_compressed_part) {
1327 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1328 qiov, qiov_offset);
1329 }
1330
1331 if (qiov_offset == 0) {
1332 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1333 }
1334
1335 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1336 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1337 qemu_iovec_destroy(&local_qiov);
1338
1339 return ret;
1340 }
1341
1342 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1343 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1344 size_t qiov_offset, int flags)
1345 {
1346 BlockDriverState *bs = child->bs;
1347
1348 /* Perform I/O through a temporary buffer so that users who scribble over
1349 * their read buffer while the operation is in progress do not end up
1350 * modifying the image file. This is critical for zero-copy guest I/O
1351 * where anything might happen inside guest memory.
1352 */
1353 void *bounce_buffer = NULL;
1354
1355 BlockDriver *drv = bs->drv;
1356 int64_t cluster_offset;
1357 int64_t cluster_bytes;
1358 int64_t skip_bytes;
1359 int ret;
1360 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1361 BDRV_REQUEST_MAX_BYTES);
1362 int64_t progress = 0;
1363 bool skip_write;
1364
1365 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1366
1367 if (!drv) {
1368 return -ENOMEDIUM;
1369 }
1370
1371 /*
1372 * Do not write anything when the BDS is inactive. That is not
1373 * allowed, and it would not help.
1374 */
1375 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1376
1377 /* FIXME We cannot require callers to have write permissions when all they
1378 * are doing is a read request. If we did things right, write permissions
1379 * would be obtained anyway, but internally by the copy-on-read code. As
1380 * long as it is implemented here rather than in a separate filter driver,
1381 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1382 * it could request permissions. Therefore we have to bypass the permission
1383 * system for the moment. */
1384 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1385
1386 /* Cover entire cluster so no additional backing file I/O is required when
1387 * allocating cluster in the image file. Note that this value may exceed
1388 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1389 * is one reason we loop rather than doing it all at once.
1390 */
1391 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1392 skip_bytes = offset - cluster_offset;
1393
1394 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1395 cluster_offset, cluster_bytes);
1396
1397 while (cluster_bytes) {
1398 int64_t pnum;
1399
1400 if (skip_write) {
1401 ret = 1; /* "already allocated", so nothing will be copied */
1402 pnum = MIN(cluster_bytes, max_transfer);
1403 } else {
1404 ret = bdrv_is_allocated(bs, cluster_offset,
1405 MIN(cluster_bytes, max_transfer), &pnum);
1406 if (ret < 0) {
1407 /*
1408 * Safe to treat errors in querying allocation as if
1409 * unallocated; we'll probably fail again soon on the
1410 * read, but at least that will set a decent errno.
1411 */
1412 pnum = MIN(cluster_bytes, max_transfer);
1413 }
1414
1415 /* Stop at EOF if the image ends in the middle of the cluster */
1416 if (ret == 0 && pnum == 0) {
1417 assert(progress >= bytes);
1418 break;
1419 }
1420
1421 assert(skip_bytes < pnum);
1422 }
1423
1424 if (ret <= 0) {
1425 QEMUIOVector local_qiov;
1426
1427 /* Must copy-on-read; use the bounce buffer */
1428 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1429 if (!bounce_buffer) {
1430 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1431 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1432 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1433
1434 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1435 if (!bounce_buffer) {
1436 ret = -ENOMEM;
1437 goto err;
1438 }
1439 }
1440 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1441
1442 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1443 &local_qiov, 0, 0);
1444 if (ret < 0) {
1445 goto err;
1446 }
1447
1448 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1449 if (drv->bdrv_co_pwrite_zeroes &&
1450 buffer_is_zero(bounce_buffer, pnum)) {
1451 /* FIXME: Should we (perhaps conditionally) be setting
1452 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1453 * that still correctly reads as zero? */
1454 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1455 BDRV_REQ_WRITE_UNCHANGED);
1456 } else {
1457 /* This does not change the data on the disk, it is not
1458 * necessary to flush even in cache=writethrough mode.
1459 */
1460 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1461 &local_qiov, 0,
1462 BDRV_REQ_WRITE_UNCHANGED);
1463 }
1464
1465 if (ret < 0) {
1466 /* It might be okay to ignore write errors for guest
1467 * requests. If this is a deliberate copy-on-read
1468 * then we don't want to ignore the error. Simply
1469 * report it in all cases.
1470 */
1471 goto err;
1472 }
1473
1474 if (!(flags & BDRV_REQ_PREFETCH)) {
1475 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1476 bounce_buffer + skip_bytes,
1477 MIN(pnum - skip_bytes, bytes - progress));
1478 }
1479 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1480 /* Read directly into the destination */
1481 ret = bdrv_driver_preadv(bs, offset + progress,
1482 MIN(pnum - skip_bytes, bytes - progress),
1483 qiov, qiov_offset + progress, 0);
1484 if (ret < 0) {
1485 goto err;
1486 }
1487 }
1488
1489 cluster_offset += pnum;
1490 cluster_bytes -= pnum;
1491 progress += pnum - skip_bytes;
1492 skip_bytes = 0;
1493 }
1494 ret = 0;
1495
1496 err:
1497 qemu_vfree(bounce_buffer);
1498 return ret;
1499 }
1500
1501 /*
1502 * Forwards an already correctly aligned request to the BlockDriver. This
1503 * handles copy on read, zeroing after EOF, and fragmentation of large
1504 * reads; any other features must be implemented by the caller.
1505 */
1506 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1507 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1508 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1509 {
1510 BlockDriverState *bs = child->bs;
1511 int64_t total_bytes, max_bytes;
1512 int ret = 0;
1513 int64_t bytes_remaining = bytes;
1514 int max_transfer;
1515
1516 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1517 assert(is_power_of_2(align));
1518 assert((offset & (align - 1)) == 0);
1519 assert((bytes & (align - 1)) == 0);
1520 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1521 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1522 align);
1523
1524 /* TODO: We would need a per-BDS .supported_read_flags and
1525 * potential fallback support, if we ever implement any read flags
1526 * to pass through to drivers. For now, there aren't any
1527 * passthrough flags. */
1528 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1529
1530 /* Handle Copy on Read and associated serialisation */
1531 if (flags & BDRV_REQ_COPY_ON_READ) {
1532 /* If we touch the same cluster it counts as an overlap. This
1533 * guarantees that allocating writes will be serialized and not race
1534 * with each other for the same cluster. For example, in copy-on-read
1535 * it ensures that the CoR read and write operations are atomic and
1536 * guest writes cannot interleave between them. */
1537 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1538 } else {
1539 bdrv_wait_serialising_requests(req);
1540 }
1541
1542 if (flags & BDRV_REQ_COPY_ON_READ) {
1543 int64_t pnum;
1544
1545 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1546 flags &= ~BDRV_REQ_COPY_ON_READ;
1547
1548 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1549 if (ret < 0) {
1550 goto out;
1551 }
1552
1553 if (!ret || pnum != bytes) {
1554 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1555 qiov, qiov_offset, flags);
1556 goto out;
1557 } else if (flags & BDRV_REQ_PREFETCH) {
1558 goto out;
1559 }
1560 }
1561
1562 /* Forward the request to the BlockDriver, possibly fragmenting it */
1563 total_bytes = bdrv_getlength(bs);
1564 if (total_bytes < 0) {
1565 ret = total_bytes;
1566 goto out;
1567 }
1568
1569 assert(!(flags & ~bs->supported_read_flags));
1570
1571 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1572 if (bytes <= max_bytes && bytes <= max_transfer) {
1573 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1574 goto out;
1575 }
1576
1577 while (bytes_remaining) {
1578 int64_t num;
1579
1580 if (max_bytes) {
1581 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1582 assert(num);
1583
1584 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1585 num, qiov,
1586 qiov_offset + bytes - bytes_remaining,
1587 flags);
1588 max_bytes -= num;
1589 } else {
1590 num = bytes_remaining;
1591 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1592 0, bytes_remaining);
1593 }
1594 if (ret < 0) {
1595 goto out;
1596 }
1597 bytes_remaining -= num;
1598 }
1599
1600 out:
1601 return ret < 0 ? ret : 0;
1602 }
1603
1604 /*
1605 * Request padding
1606 *
1607 * |<---- align ----->| |<----- align ---->|
1608 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1609 * | | | | | |
1610 * -*----------$-------*-------- ... --------*-----$------------*---
1611 * | | | | | |
1612 * | offset | | end |
1613 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1614 * [buf ... ) [tail_buf )
1615 *
1616 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1617 * is placed at the beginning of @buf and @tail at the @end.
1618 *
1619 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1620 * around tail, if tail exists.
1621 *
1622 * @merge_reads is true for small requests,
1623 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1624 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1625 */
1626 typedef struct BdrvRequestPadding {
1627 uint8_t *buf;
1628 size_t buf_len;
1629 uint8_t *tail_buf;
1630 size_t head;
1631 size_t tail;
1632 bool merge_reads;
1633 QEMUIOVector local_qiov;
1634 } BdrvRequestPadding;
1635
1636 static bool bdrv_init_padding(BlockDriverState *bs,
1637 int64_t offset, int64_t bytes,
1638 BdrvRequestPadding *pad)
1639 {
1640 int64_t align = bs->bl.request_alignment;
1641 int64_t sum;
1642
1643 bdrv_check_request(offset, bytes, &error_abort);
1644 assert(align <= INT_MAX); /* documented in block/block_int.h */
1645 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1646
1647 memset(pad, 0, sizeof(*pad));
1648
1649 pad->head = offset & (align - 1);
1650 pad->tail = ((offset + bytes) & (align - 1));
1651 if (pad->tail) {
1652 pad->tail = align - pad->tail;
1653 }
1654
1655 if (!pad->head && !pad->tail) {
1656 return false;
1657 }
1658
1659 assert(bytes); /* Nothing good in aligning zero-length requests */
1660
1661 sum = pad->head + bytes + pad->tail;
1662 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1663 pad->buf = qemu_blockalign(bs, pad->buf_len);
1664 pad->merge_reads = sum == pad->buf_len;
1665 if (pad->tail) {
1666 pad->tail_buf = pad->buf + pad->buf_len - align;
1667 }
1668
1669 return true;
1670 }
1671
1672 static int bdrv_padding_rmw_read(BdrvChild *child,
1673 BdrvTrackedRequest *req,
1674 BdrvRequestPadding *pad,
1675 bool zero_middle)
1676 {
1677 QEMUIOVector local_qiov;
1678 BlockDriverState *bs = child->bs;
1679 uint64_t align = bs->bl.request_alignment;
1680 int ret;
1681
1682 assert(req->serialising && pad->buf);
1683
1684 if (pad->head || pad->merge_reads) {
1685 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1686
1687 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1688
1689 if (pad->head) {
1690 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1691 }
1692 if (pad->merge_reads && pad->tail) {
1693 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1694 }
1695 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1696 align, &local_qiov, 0, 0);
1697 if (ret < 0) {
1698 return ret;
1699 }
1700 if (pad->head) {
1701 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1702 }
1703 if (pad->merge_reads && pad->tail) {
1704 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1705 }
1706
1707 if (pad->merge_reads) {
1708 goto zero_mem;
1709 }
1710 }
1711
1712 if (pad->tail) {
1713 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1714
1715 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1716 ret = bdrv_aligned_preadv(
1717 child, req,
1718 req->overlap_offset + req->overlap_bytes - align,
1719 align, align, &local_qiov, 0, 0);
1720 if (ret < 0) {
1721 return ret;
1722 }
1723 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1724 }
1725
1726 zero_mem:
1727 if (zero_middle) {
1728 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1729 }
1730
1731 return 0;
1732 }
1733
1734 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1735 {
1736 if (pad->buf) {
1737 qemu_vfree(pad->buf);
1738 qemu_iovec_destroy(&pad->local_qiov);
1739 }
1740 memset(pad, 0, sizeof(*pad));
1741 }
1742
1743 /*
1744 * bdrv_pad_request
1745 *
1746 * Exchange request parameters with padded request if needed. Don't include RMW
1747 * read of padding, bdrv_padding_rmw_read() should be called separately if
1748 * needed.
1749 *
1750 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1751 * - on function start they represent original request
1752 * - on failure or when padding is not needed they are unchanged
1753 * - on success when padding is needed they represent padded request
1754 */
1755 static int bdrv_pad_request(BlockDriverState *bs,
1756 QEMUIOVector **qiov, size_t *qiov_offset,
1757 int64_t *offset, int64_t *bytes,
1758 BdrvRequestPadding *pad, bool *padded)
1759 {
1760 int ret;
1761
1762 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1763
1764 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1765 if (padded) {
1766 *padded = false;
1767 }
1768 return 0;
1769 }
1770
1771 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1772 *qiov, *qiov_offset, *bytes,
1773 pad->buf + pad->buf_len - pad->tail,
1774 pad->tail);
1775 if (ret < 0) {
1776 bdrv_padding_destroy(pad);
1777 return ret;
1778 }
1779 *bytes += pad->head + pad->tail;
1780 *offset -= pad->head;
1781 *qiov = &pad->local_qiov;
1782 *qiov_offset = 0;
1783 if (padded) {
1784 *padded = true;
1785 }
1786
1787 return 0;
1788 }
1789
1790 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1791 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1792 BdrvRequestFlags flags)
1793 {
1794 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1795 }
1796
1797 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1798 int64_t offset, int64_t bytes,
1799 QEMUIOVector *qiov, size_t qiov_offset,
1800 BdrvRequestFlags flags)
1801 {
1802 BlockDriverState *bs = child->bs;
1803 BdrvTrackedRequest req;
1804 BdrvRequestPadding pad;
1805 int ret;
1806
1807 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1808
1809 if (!bdrv_is_inserted(bs)) {
1810 return -ENOMEDIUM;
1811 }
1812
1813 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1814 if (ret < 0) {
1815 return ret;
1816 }
1817
1818 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1819 /*
1820 * Aligning zero request is nonsense. Even if driver has special meaning
1821 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1822 * it to driver due to request_alignment.
1823 *
1824 * Still, no reason to return an error if someone do unaligned
1825 * zero-length read occasionally.
1826 */
1827 return 0;
1828 }
1829
1830 bdrv_inc_in_flight(bs);
1831
1832 /* Don't do copy-on-read if we read data before write operation */
1833 if (qatomic_read(&bs->copy_on_read)) {
1834 flags |= BDRV_REQ_COPY_ON_READ;
1835 }
1836
1837 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1838 NULL);
1839 if (ret < 0) {
1840 return ret;
1841 }
1842
1843 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1844 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1845 bs->bl.request_alignment,
1846 qiov, qiov_offset, flags);
1847 tracked_request_end(&req);
1848 bdrv_dec_in_flight(bs);
1849
1850 bdrv_padding_destroy(&pad);
1851
1852 return ret;
1853 }
1854
1855 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1856 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1857 {
1858 BlockDriver *drv = bs->drv;
1859 QEMUIOVector qiov;
1860 void *buf = NULL;
1861 int ret = 0;
1862 bool need_flush = false;
1863 int head = 0;
1864 int tail = 0;
1865
1866 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1867 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1868 bs->bl.request_alignment);
1869 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1870
1871 bdrv_check_request(offset, bytes, &error_abort);
1872
1873 if (!drv) {
1874 return -ENOMEDIUM;
1875 }
1876
1877 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1878 return -ENOTSUP;
1879 }
1880
1881 assert(alignment % bs->bl.request_alignment == 0);
1882 head = offset % alignment;
1883 tail = (offset + bytes) % alignment;
1884 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1885 assert(max_write_zeroes >= bs->bl.request_alignment);
1886
1887 while (bytes > 0 && !ret) {
1888 int64_t num = bytes;
1889
1890 /* Align request. Block drivers can expect the "bulk" of the request
1891 * to be aligned, and that unaligned requests do not cross cluster
1892 * boundaries.
1893 */
1894 if (head) {
1895 /* Make a small request up to the first aligned sector. For
1896 * convenience, limit this request to max_transfer even if
1897 * we don't need to fall back to writes. */
1898 num = MIN(MIN(bytes, max_transfer), alignment - head);
1899 head = (head + num) % alignment;
1900 assert(num < max_write_zeroes);
1901 } else if (tail && num > alignment) {
1902 /* Shorten the request to the last aligned sector. */
1903 num -= tail;
1904 }
1905
1906 /* limit request size */
1907 if (num > max_write_zeroes) {
1908 num = max_write_zeroes;
1909 }
1910
1911 ret = -ENOTSUP;
1912 /* First try the efficient write zeroes operation */
1913 if (drv->bdrv_co_pwrite_zeroes) {
1914 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1915 flags & bs->supported_zero_flags);
1916 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1917 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1918 need_flush = true;
1919 }
1920 } else {
1921 assert(!bs->supported_zero_flags);
1922 }
1923
1924 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1925 /* Fall back to bounce buffer if write zeroes is unsupported */
1926 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1927
1928 if ((flags & BDRV_REQ_FUA) &&
1929 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1930 /* No need for bdrv_driver_pwrite() to do a fallback
1931 * flush on each chunk; use just one at the end */
1932 write_flags &= ~BDRV_REQ_FUA;
1933 need_flush = true;
1934 }
1935 num = MIN(num, max_transfer);
1936 if (buf == NULL) {
1937 buf = qemu_try_blockalign0(bs, num);
1938 if (buf == NULL) {
1939 ret = -ENOMEM;
1940 goto fail;
1941 }
1942 }
1943 qemu_iovec_init_buf(&qiov, buf, num);
1944
1945 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1946
1947 /* Keep bounce buffer around if it is big enough for all
1948 * all future requests.
1949 */
1950 if (num < max_transfer) {
1951 qemu_vfree(buf);
1952 buf = NULL;
1953 }
1954 }
1955
1956 offset += num;
1957 bytes -= num;
1958 }
1959
1960 fail:
1961 if (ret == 0 && need_flush) {
1962 ret = bdrv_co_flush(bs);
1963 }
1964 qemu_vfree(buf);
1965 return ret;
1966 }
1967
1968 static inline int coroutine_fn
1969 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1970 BdrvTrackedRequest *req, int flags)
1971 {
1972 BlockDriverState *bs = child->bs;
1973
1974 bdrv_check_request(offset, bytes, &error_abort);
1975
1976 if (bdrv_is_read_only(bs)) {
1977 return -EPERM;
1978 }
1979
1980 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1981 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1982 assert(!(flags & ~BDRV_REQ_MASK));
1983 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1984
1985 if (flags & BDRV_REQ_SERIALISING) {
1986 QEMU_LOCK_GUARD(&bs->reqs_lock);
1987
1988 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1989
1990 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1991 return -EBUSY;
1992 }
1993
1994 bdrv_wait_serialising_requests_locked(req);
1995 } else {
1996 bdrv_wait_serialising_requests(req);
1997 }
1998
1999 assert(req->overlap_offset <= offset);
2000 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2001 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2002 child->perm & BLK_PERM_RESIZE);
2003
2004 switch (req->type) {
2005 case BDRV_TRACKED_WRITE:
2006 case BDRV_TRACKED_DISCARD:
2007 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2008 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2009 } else {
2010 assert(child->perm & BLK_PERM_WRITE);
2011 }
2012 bdrv_write_threshold_check_write(bs, offset, bytes);
2013 return 0;
2014 case BDRV_TRACKED_TRUNCATE:
2015 assert(child->perm & BLK_PERM_RESIZE);
2016 return 0;
2017 default:
2018 abort();
2019 }
2020 }
2021
2022 static inline void coroutine_fn
2023 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2024 BdrvTrackedRequest *req, int ret)
2025 {
2026 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2027 BlockDriverState *bs = child->bs;
2028
2029 bdrv_check_request(offset, bytes, &error_abort);
2030
2031 qatomic_inc(&bs->write_gen);
2032
2033 /*
2034 * Discard cannot extend the image, but in error handling cases, such as
2035 * when reverting a qcow2 cluster allocation, the discarded range can pass
2036 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2037 * here. Instead, just skip it, since semantically a discard request
2038 * beyond EOF cannot expand the image anyway.
2039 */
2040 if (ret == 0 &&
2041 (req->type == BDRV_TRACKED_TRUNCATE ||
2042 end_sector > bs->total_sectors) &&
2043 req->type != BDRV_TRACKED_DISCARD) {
2044 bs->total_sectors = end_sector;
2045 bdrv_parent_cb_resize(bs);
2046 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2047 }
2048 if (req->bytes) {
2049 switch (req->type) {
2050 case BDRV_TRACKED_WRITE:
2051 stat64_max(&bs->wr_highest_offset, offset + bytes);
2052 /* fall through, to set dirty bits */
2053 case BDRV_TRACKED_DISCARD:
2054 bdrv_set_dirty(bs, offset, bytes);
2055 break;
2056 default:
2057 break;
2058 }
2059 }
2060 }
2061
2062 /*
2063 * Forwards an already correctly aligned write request to the BlockDriver,
2064 * after possibly fragmenting it.
2065 */
2066 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2067 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2068 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2069 {
2070 BlockDriverState *bs = child->bs;
2071 BlockDriver *drv = bs->drv;
2072 int ret;
2073
2074 int64_t bytes_remaining = bytes;
2075 int max_transfer;
2076
2077 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2078
2079 if (!drv) {
2080 return -ENOMEDIUM;
2081 }
2082
2083 if (bdrv_has_readonly_bitmaps(bs)) {
2084 return -EPERM;
2085 }
2086
2087 assert(is_power_of_2(align));
2088 assert((offset & (align - 1)) == 0);
2089 assert((bytes & (align - 1)) == 0);
2090 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2091 align);
2092
2093 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2094
2095 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2096 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2097 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2098 flags |= BDRV_REQ_ZERO_WRITE;
2099 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2100 flags |= BDRV_REQ_MAY_UNMAP;
2101 }
2102 }
2103
2104 if (ret < 0) {
2105 /* Do nothing, write notifier decided to fail this request */
2106 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2107 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2108 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2109 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2110 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2111 qiov, qiov_offset);
2112 } else if (bytes <= max_transfer) {
2113 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2114 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2115 } else {
2116 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2117 while (bytes_remaining) {
2118 int num = MIN(bytes_remaining, max_transfer);
2119 int local_flags = flags;
2120
2121 assert(num);
2122 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2123 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2124 /* If FUA is going to be emulated by flush, we only
2125 * need to flush on the last iteration */
2126 local_flags &= ~BDRV_REQ_FUA;
2127 }
2128
2129 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2130 num, qiov,
2131 qiov_offset + bytes - bytes_remaining,
2132 local_flags);
2133 if (ret < 0) {
2134 break;
2135 }
2136 bytes_remaining -= num;
2137 }
2138 }
2139 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2140
2141 if (ret >= 0) {
2142 ret = 0;
2143 }
2144 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2145
2146 return ret;
2147 }
2148
2149 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2150 int64_t offset,
2151 int64_t bytes,
2152 BdrvRequestFlags flags,
2153 BdrvTrackedRequest *req)
2154 {
2155 BlockDriverState *bs = child->bs;
2156 QEMUIOVector local_qiov;
2157 uint64_t align = bs->bl.request_alignment;
2158 int ret = 0;
2159 bool padding;
2160 BdrvRequestPadding pad;
2161
2162 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2163 if (padding) {
2164 bdrv_make_request_serialising(req, align);
2165
2166 bdrv_padding_rmw_read(child, req, &pad, true);
2167
2168 if (pad.head || pad.merge_reads) {
2169 int64_t aligned_offset = offset & ~(align - 1);
2170 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2171
2172 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2173 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2174 align, &local_qiov, 0,
2175 flags & ~BDRV_REQ_ZERO_WRITE);
2176 if (ret < 0 || pad.merge_reads) {
2177 /* Error or all work is done */
2178 goto out;
2179 }
2180 offset += write_bytes - pad.head;
2181 bytes -= write_bytes - pad.head;
2182 }
2183 }
2184
2185 assert(!bytes || (offset & (align - 1)) == 0);
2186 if (bytes >= align) {
2187 /* Write the aligned part in the middle. */
2188 int64_t aligned_bytes = bytes & ~(align - 1);
2189 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2190 NULL, 0, flags);
2191 if (ret < 0) {
2192 goto out;
2193 }
2194 bytes -= aligned_bytes;
2195 offset += aligned_bytes;
2196 }
2197
2198 assert(!bytes || (offset & (align - 1)) == 0);
2199 if (bytes) {
2200 assert(align == pad.tail + bytes);
2201
2202 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2203 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2204 &local_qiov, 0,
2205 flags & ~BDRV_REQ_ZERO_WRITE);
2206 }
2207
2208 out:
2209 bdrv_padding_destroy(&pad);
2210
2211 return ret;
2212 }
2213
2214 /*
2215 * Handle a write request in coroutine context
2216 */
2217 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2218 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2219 BdrvRequestFlags flags)
2220 {
2221 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2222 }
2223
2224 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2225 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2226 BdrvRequestFlags flags)
2227 {
2228 BlockDriverState *bs = child->bs;
2229 BdrvTrackedRequest req;
2230 uint64_t align = bs->bl.request_alignment;
2231 BdrvRequestPadding pad;
2232 int ret;
2233 bool padded = false;
2234
2235 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2236
2237 if (!bdrv_is_inserted(bs)) {
2238 return -ENOMEDIUM;
2239 }
2240
2241 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2242 if (ret < 0) {
2243 return ret;
2244 }
2245
2246 /* If the request is misaligned then we can't make it efficient */
2247 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2248 !QEMU_IS_ALIGNED(offset | bytes, align))
2249 {
2250 return -ENOTSUP;
2251 }
2252
2253 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2254 /*
2255 * Aligning zero request is nonsense. Even if driver has special meaning
2256 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2257 * it to driver due to request_alignment.
2258 *
2259 * Still, no reason to return an error if someone do unaligned
2260 * zero-length write occasionally.
2261 */
2262 return 0;
2263 }
2264
2265 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2266 /*
2267 * Pad request for following read-modify-write cycle.
2268 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2269 * alignment only if there is no ZERO flag.
2270 */
2271 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2272 &padded);
2273 if (ret < 0) {
2274 return ret;
2275 }
2276 }
2277
2278 bdrv_inc_in_flight(bs);
2279 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2280
2281 if (flags & BDRV_REQ_ZERO_WRITE) {
2282 assert(!padded);
2283 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2284 goto out;
2285 }
2286
2287 if (padded) {
2288 /*
2289 * Request was unaligned to request_alignment and therefore
2290 * padded. We are going to do read-modify-write, and must
2291 * serialize the request to prevent interactions of the
2292 * widened region with other transactions.
2293 */
2294 bdrv_make_request_serialising(&req, align);
2295 bdrv_padding_rmw_read(child, &req, &pad, false);
2296 }
2297
2298 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2299 qiov, qiov_offset, flags);
2300
2301 bdrv_padding_destroy(&pad);
2302
2303 out:
2304 tracked_request_end(&req);
2305 bdrv_dec_in_flight(bs);
2306
2307 return ret;
2308 }
2309
2310 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2311 int64_t bytes, BdrvRequestFlags flags)
2312 {
2313 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2314
2315 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2316 flags &= ~BDRV_REQ_MAY_UNMAP;
2317 }
2318
2319 return bdrv_co_pwritev(child, offset, bytes, NULL,
2320 BDRV_REQ_ZERO_WRITE | flags);
2321 }
2322
2323 /*
2324 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2325 */
2326 int bdrv_flush_all(void)
2327 {
2328 BdrvNextIterator it;
2329 BlockDriverState *bs = NULL;
2330 int result = 0;
2331
2332 /*
2333 * bdrv queue is managed by record/replay,
2334 * creating new flush request for stopping
2335 * the VM may break the determinism
2336 */
2337 if (replay_events_enabled()) {
2338 return result;
2339 }
2340
2341 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2342 AioContext *aio_context = bdrv_get_aio_context(bs);
2343 int ret;
2344
2345 aio_context_acquire(aio_context);
2346 ret = bdrv_flush(bs);
2347 if (ret < 0 && !result) {
2348 result = ret;
2349 }
2350 aio_context_release(aio_context);
2351 }
2352
2353 return result;
2354 }
2355
2356 /*
2357 * Returns the allocation status of the specified sectors.
2358 * Drivers not implementing the functionality are assumed to not support
2359 * backing files, hence all their sectors are reported as allocated.
2360 *
2361 * If 'want_zero' is true, the caller is querying for mapping
2362 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2363 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2364 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2365 *
2366 * If 'offset' is beyond the end of the disk image the return value is
2367 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2368 *
2369 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2370 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2371 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2372 *
2373 * 'pnum' is set to the number of bytes (including and immediately
2374 * following the specified offset) that are easily known to be in the
2375 * same allocated/unallocated state. Note that a second call starting
2376 * at the original offset plus returned pnum may have the same status.
2377 * The returned value is non-zero on success except at end-of-file.
2378 *
2379 * Returns negative errno on failure. Otherwise, if the
2380 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2381 * set to the host mapping and BDS corresponding to the guest offset.
2382 */
2383 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2384 bool want_zero,
2385 int64_t offset, int64_t bytes,
2386 int64_t *pnum, int64_t *map,
2387 BlockDriverState **file)
2388 {
2389 int64_t total_size;
2390 int64_t n; /* bytes */
2391 int ret;
2392 int64_t local_map = 0;
2393 BlockDriverState *local_file = NULL;
2394 int64_t aligned_offset, aligned_bytes;
2395 uint32_t align;
2396 bool has_filtered_child;
2397
2398 assert(pnum);
2399 *pnum = 0;
2400 total_size = bdrv_getlength(bs);
2401 if (total_size < 0) {
2402 ret = total_size;
2403 goto early_out;
2404 }
2405
2406 if (offset >= total_size) {
2407 ret = BDRV_BLOCK_EOF;
2408 goto early_out;
2409 }
2410 if (!bytes) {
2411 ret = 0;
2412 goto early_out;
2413 }
2414
2415 n = total_size - offset;
2416 if (n < bytes) {
2417 bytes = n;
2418 }
2419
2420 /* Must be non-NULL or bdrv_getlength() would have failed */
2421 assert(bs->drv);
2422 has_filtered_child = bdrv_filter_child(bs);
2423 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2424 *pnum = bytes;
2425 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2426 if (offset + bytes == total_size) {
2427 ret |= BDRV_BLOCK_EOF;
2428 }
2429 if (bs->drv->protocol_name) {
2430 ret |= BDRV_BLOCK_OFFSET_VALID;
2431 local_map = offset;
2432 local_file = bs;
2433 }
2434 goto early_out;
2435 }
2436
2437 bdrv_inc_in_flight(bs);
2438
2439 /* Round out to request_alignment boundaries */
2440 align = bs->bl.request_alignment;
2441 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2442 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2443
2444 if (bs->drv->bdrv_co_block_status) {
2445 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2446 aligned_bytes, pnum, &local_map,
2447 &local_file);
2448 } else {
2449 /* Default code for filters */
2450
2451 local_file = bdrv_filter_bs(bs);
2452 assert(local_file);
2453
2454 *pnum = aligned_bytes;
2455 local_map = aligned_offset;
2456 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2457 }
2458 if (ret < 0) {
2459 *pnum = 0;
2460 goto out;
2461 }
2462
2463 /*
2464 * The driver's result must be a non-zero multiple of request_alignment.
2465 * Clamp pnum and adjust map to original request.
2466 */
2467 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2468 align > offset - aligned_offset);
2469 if (ret & BDRV_BLOCK_RECURSE) {
2470 assert(ret & BDRV_BLOCK_DATA);
2471 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2472 assert(!(ret & BDRV_BLOCK_ZERO));
2473 }
2474
2475 *pnum -= offset - aligned_offset;
2476 if (*pnum > bytes) {
2477 *pnum = bytes;
2478 }
2479 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2480 local_map += offset - aligned_offset;
2481 }
2482
2483 if (ret & BDRV_BLOCK_RAW) {
2484 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2485 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2486 *pnum, pnum, &local_map, &local_file);
2487 goto out;
2488 }
2489
2490 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2491 ret |= BDRV_BLOCK_ALLOCATED;
2492 } else if (bs->drv->supports_backing) {
2493 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2494
2495 if (!cow_bs) {
2496 ret |= BDRV_BLOCK_ZERO;
2497 } else if (want_zero) {
2498 int64_t size2 = bdrv_getlength(cow_bs);
2499
2500 if (size2 >= 0 && offset >= size2) {
2501 ret |= BDRV_BLOCK_ZERO;
2502 }
2503 }
2504 }
2505
2506 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2507 local_file && local_file != bs &&
2508 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2509 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2510 int64_t file_pnum;
2511 int ret2;
2512
2513 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2514 *pnum, &file_pnum, NULL, NULL);
2515 if (ret2 >= 0) {
2516 /* Ignore errors. This is just providing extra information, it
2517 * is useful but not necessary.
2518 */
2519 if (ret2 & BDRV_BLOCK_EOF &&
2520 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2521 /*
2522 * It is valid for the format block driver to read
2523 * beyond the end of the underlying file's current
2524 * size; such areas read as zero.
2525 */
2526 ret |= BDRV_BLOCK_ZERO;
2527 } else {
2528 /* Limit request to the range reported by the protocol driver */
2529 *pnum = file_pnum;
2530 ret |= (ret2 & BDRV_BLOCK_ZERO);
2531 }
2532 }
2533 }
2534
2535 out:
2536 bdrv_dec_in_flight(bs);
2537 if (ret >= 0 && offset + *pnum == total_size) {
2538 ret |= BDRV_BLOCK_EOF;
2539 }
2540 early_out:
2541 if (file) {
2542 *file = local_file;
2543 }
2544 if (map) {
2545 *map = local_map;
2546 }
2547 return ret;
2548 }
2549
2550 int coroutine_fn
2551 bdrv_co_common_block_status_above(BlockDriverState *bs,
2552 BlockDriverState *base,
2553 bool include_base,
2554 bool want_zero,
2555 int64_t offset,
2556 int64_t bytes,
2557 int64_t *pnum,
2558 int64_t *map,
2559 BlockDriverState **file,
2560 int *depth)
2561 {
2562 int ret;
2563 BlockDriverState *p;
2564 int64_t eof = 0;
2565 int dummy;
2566
2567 assert(!include_base || base); /* Can't include NULL base */
2568
2569 if (!depth) {
2570 depth = &dummy;
2571 }
2572 *depth = 0;
2573
2574 if (!include_base && bs == base) {
2575 *pnum = bytes;
2576 return 0;
2577 }
2578
2579 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2580 ++*depth;
2581 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2582 return ret;
2583 }
2584
2585 if (ret & BDRV_BLOCK_EOF) {
2586 eof = offset + *pnum;
2587 }
2588
2589 assert(*pnum <= bytes);
2590 bytes = *pnum;
2591
2592 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2593 p = bdrv_filter_or_cow_bs(p))
2594 {
2595 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2596 file);
2597 ++*depth;
2598 if (ret < 0) {
2599 return ret;
2600 }
2601 if (*pnum == 0) {
2602 /*
2603 * The top layer deferred to this layer, and because this layer is
2604 * short, any zeroes that we synthesize beyond EOF behave as if they
2605 * were allocated at this layer.
2606 *
2607 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2608 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2609 * below.
2610 */
2611 assert(ret & BDRV_BLOCK_EOF);
2612 *pnum = bytes;
2613 if (file) {
2614 *file = p;
2615 }
2616 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2617 break;
2618 }
2619 if (ret & BDRV_BLOCK_ALLOCATED) {
2620 /*
2621 * We've found the node and the status, we must break.
2622 *
2623 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2624 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2625 * below.
2626 */
2627 ret &= ~BDRV_BLOCK_EOF;
2628 break;
2629 }
2630
2631 if (p == base) {
2632 assert(include_base);
2633 break;
2634 }
2635
2636 /*
2637 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2638 * let's continue the diving.
2639 */
2640 assert(*pnum <= bytes);
2641 bytes = *pnum;
2642 }
2643
2644 if (offset + *pnum == eof) {
2645 ret |= BDRV_BLOCK_EOF;
2646 }
2647
2648 return ret;
2649 }
2650
2651 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2652 int64_t offset, int64_t bytes, int64_t *pnum,
2653 int64_t *map, BlockDriverState **file)
2654 {
2655 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2656 pnum, map, file, NULL);
2657 }
2658
2659 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2660 int64_t *pnum, int64_t *map, BlockDriverState **file)
2661 {
2662 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2663 offset, bytes, pnum, map, file);
2664 }
2665
2666 /*
2667 * Check @bs (and its backing chain) to see if the range defined
2668 * by @offset and @bytes is known to read as zeroes.
2669 * Return 1 if that is the case, 0 otherwise and -errno on error.
2670 * This test is meant to be fast rather than accurate so returning 0
2671 * does not guarantee non-zero data.
2672 */
2673 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2674 int64_t bytes)
2675 {
2676 int ret;
2677 int64_t pnum = bytes;
2678
2679 if (!bytes) {
2680 return 1;
2681 }
2682
2683 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2684 bytes, &pnum, NULL, NULL, NULL);
2685
2686 if (ret < 0) {
2687 return ret;
2688 }
2689
2690 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2691 }
2692
2693 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2694 int64_t bytes, int64_t *pnum)
2695 {
2696 int ret;
2697 int64_t dummy;
2698
2699 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2700 bytes, pnum ? pnum : &dummy, NULL,
2701 NULL, NULL);
2702 if (ret < 0) {
2703 return ret;
2704 }
2705 return !!(ret & BDRV_BLOCK_ALLOCATED);
2706 }
2707
2708 /*
2709 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2710 *
2711 * Return a positive depth if (a prefix of) the given range is allocated
2712 * in any image between BASE and TOP (BASE is only included if include_base
2713 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2714 * BASE can be NULL to check if the given offset is allocated in any
2715 * image of the chain. Return 0 otherwise, or negative errno on
2716 * failure.
2717 *
2718 * 'pnum' is set to the number of bytes (including and immediately
2719 * following the specified offset) that are known to be in the same
2720 * allocated/unallocated state. Note that a subsequent call starting
2721 * at 'offset + *pnum' may return the same allocation status (in other
2722 * words, the result is not necessarily the maximum possible range);
2723 * but 'pnum' will only be 0 when end of file is reached.
2724 */
2725 int bdrv_is_allocated_above(BlockDriverState *top,
2726 BlockDriverState *base,
2727 bool include_base, int64_t offset,
2728 int64_t bytes, int64_t *pnum)
2729 {
2730 int depth;
2731 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2732 offset, bytes, pnum, NULL, NULL,
2733 &depth);
2734 if (ret < 0) {
2735 return ret;
2736 }
2737
2738 if (ret & BDRV_BLOCK_ALLOCATED) {
2739 return depth;
2740 }
2741 return 0;
2742 }
2743
2744 int coroutine_fn
2745 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2746 {
2747 BlockDriver *drv = bs->drv;
2748 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2749 int ret = -ENOTSUP;
2750
2751 if (!drv) {
2752 return -ENOMEDIUM;
2753 }
2754
2755 bdrv_inc_in_flight(bs);
2756
2757 if (drv->bdrv_load_vmstate) {
2758 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2759 } else if (child_bs) {
2760 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2761 }
2762
2763 bdrv_dec_in_flight(bs);
2764
2765 return ret;
2766 }
2767
2768 int coroutine_fn
2769 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2770 {
2771 BlockDriver *drv = bs->drv;
2772 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2773 int ret = -ENOTSUP;
2774
2775 if (!drv) {
2776 return -ENOMEDIUM;
2777 }
2778
2779 bdrv_inc_in_flight(bs);
2780
2781 if (drv->bdrv_save_vmstate) {
2782 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2783 } else if (child_bs) {
2784 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2785 }
2786
2787 bdrv_dec_in_flight(bs);
2788
2789 return ret;
2790 }
2791
2792 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2793 int64_t pos, int size)
2794 {
2795 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2796 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2797
2798 return ret < 0 ? ret : size;
2799 }
2800
2801 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2802 int64_t pos, int size)
2803 {
2804 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2805 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2806
2807 return ret < 0 ? ret : size;
2808 }
2809
2810 /**************************************************************/
2811 /* async I/Os */
2812
2813 void bdrv_aio_cancel(BlockAIOCB *acb)
2814 {
2815 qemu_aio_ref(acb);
2816 bdrv_aio_cancel_async(acb);
2817 while (acb->refcnt > 1) {
2818 if (acb->aiocb_info->get_aio_context) {
2819 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2820 } else if (acb->bs) {
2821 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2822 * assert that we're not using an I/O thread. Thread-safe
2823 * code should use bdrv_aio_cancel_async exclusively.
2824 */
2825 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2826 aio_poll(bdrv_get_aio_context(acb->bs), true);
2827 } else {
2828 abort();
2829 }
2830 }
2831 qemu_aio_unref(acb);
2832 }
2833
2834 /* Async version of aio cancel. The caller is not blocked if the acb implements
2835 * cancel_async, otherwise we do nothing and let the request normally complete.
2836 * In either case the completion callback must be called. */
2837 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2838 {
2839 if (acb->aiocb_info->cancel_async) {
2840 acb->aiocb_info->cancel_async(acb);
2841 }
2842 }
2843
2844 /**************************************************************/
2845 /* Coroutine block device emulation */
2846
2847 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2848 {
2849 BdrvChild *primary_child = bdrv_primary_child(bs);
2850 BdrvChild *child;
2851 int current_gen;
2852 int ret = 0;
2853
2854 bdrv_inc_in_flight(bs);
2855
2856 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2857 bdrv_is_sg(bs)) {
2858 goto early_exit;
2859 }
2860
2861 qemu_co_mutex_lock(&bs->reqs_lock);
2862 current_gen = qatomic_read(&bs->write_gen);
2863
2864 /* Wait until any previous flushes are completed */
2865 while (bs->active_flush_req) {
2866 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2867 }
2868
2869 /* Flushes reach this point in nondecreasing current_gen order. */
2870 bs->active_flush_req = true;
2871 qemu_co_mutex_unlock(&bs->reqs_lock);
2872
2873 /* Write back all layers by calling one driver function */
2874 if (bs->drv->bdrv_co_flush) {
2875 ret = bs->drv->bdrv_co_flush(bs);
2876 goto out;
2877 }
2878
2879 /* Write back cached data to the OS even with cache=unsafe */
2880 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2881 if (bs->drv->bdrv_co_flush_to_os) {
2882 ret = bs->drv->bdrv_co_flush_to_os(bs);
2883 if (ret < 0) {
2884 goto out;
2885 }
2886 }
2887
2888 /* But don't actually force it to the disk with cache=unsafe */
2889 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2890 goto flush_children;
2891 }
2892
2893 /* Check if we really need to flush anything */
2894 if (bs->flushed_gen == current_gen) {
2895 goto flush_children;
2896 }
2897
2898 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2899 if (!bs->drv) {
2900 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2901 * (even in case of apparent success) */
2902 ret = -ENOMEDIUM;
2903 goto out;
2904 }
2905 if (bs->drv->bdrv_co_flush_to_disk) {
2906 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2907 } else if (bs->drv->bdrv_aio_flush) {
2908 BlockAIOCB *acb;
2909 CoroutineIOCompletion co = {
2910 .coroutine = qemu_coroutine_self(),
2911 };
2912
2913 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2914 if (acb == NULL) {
2915 ret = -EIO;
2916 } else {
2917 qemu_coroutine_yield();
2918 ret = co.ret;
2919 }
2920 } else {
2921 /*
2922 * Some block drivers always operate in either writethrough or unsafe
2923 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2924 * know how the server works (because the behaviour is hardcoded or
2925 * depends on server-side configuration), so we can't ensure that
2926 * everything is safe on disk. Returning an error doesn't work because
2927 * that would break guests even if the server operates in writethrough
2928 * mode.
2929 *
2930 * Let's hope the user knows what he's doing.
2931 */
2932 ret = 0;
2933 }
2934
2935 if (ret < 0) {
2936 goto out;
2937 }
2938
2939 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2940 * in the case of cache=unsafe, so there are no useless flushes.
2941 */
2942 flush_children:
2943 ret = 0;
2944 QLIST_FOREACH(child, &bs->children, next) {
2945 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2946 int this_child_ret = bdrv_co_flush(child->bs);
2947 if (!ret) {
2948 ret = this_child_ret;
2949 }
2950 }
2951 }
2952
2953 out:
2954 /* Notify any pending flushes that we have completed */
2955 if (ret == 0) {
2956 bs->flushed_gen = current_gen;
2957 }
2958
2959 qemu_co_mutex_lock(&bs->reqs_lock);
2960 bs->active_flush_req = false;
2961 /* Return value is ignored - it's ok if wait queue is empty */
2962 qemu_co_queue_next(&bs->flush_queue);
2963 qemu_co_mutex_unlock(&bs->reqs_lock);
2964
2965 early_exit:
2966 bdrv_dec_in_flight(bs);
2967 return ret;
2968 }
2969
2970 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2971 int64_t bytes)
2972 {
2973 BdrvTrackedRequest req;
2974 int max_pdiscard, ret;
2975 int head, tail, align;
2976 BlockDriverState *bs = child->bs;
2977
2978 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2979 return -ENOMEDIUM;
2980 }
2981
2982 if (bdrv_has_readonly_bitmaps(bs)) {
2983 return -EPERM;
2984 }
2985
2986 ret = bdrv_check_request(offset, bytes, NULL);
2987 if (ret < 0) {
2988 return ret;
2989 }
2990
2991 /* Do nothing if disabled. */
2992 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2993 return 0;
2994 }
2995
2996 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2997 return 0;
2998 }
2999
3000 /* Discard is advisory, but some devices track and coalesce
3001 * unaligned requests, so we must pass everything down rather than
3002 * round here. Still, most devices will just silently ignore
3003 * unaligned requests (by returning -ENOTSUP), so we must fragment
3004 * the request accordingly. */
3005 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3006 assert(align % bs->bl.request_alignment == 0);
3007 head = offset % align;
3008 tail = (offset + bytes) % align;
3009
3010 bdrv_inc_in_flight(bs);
3011 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3012
3013 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3014 if (ret < 0) {
3015 goto out;
3016 }
3017
3018 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
3019 align);
3020 assert(max_pdiscard >= bs->bl.request_alignment);
3021
3022 while (bytes > 0) {
3023 int64_t num = bytes;
3024
3025 if (head) {
3026 /* Make small requests to get to alignment boundaries. */
3027 num = MIN(bytes, align - head);
3028 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3029 num %= bs->bl.request_alignment;
3030 }
3031 head = (head + num) % align;
3032 assert(num < max_pdiscard);
3033 } else if (tail) {
3034 if (num > align) {
3035 /* Shorten the request to the last aligned cluster. */
3036 num -= tail;
3037 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3038 tail > bs->bl.request_alignment) {
3039 tail %= bs->bl.request_alignment;
3040 num -= tail;
3041 }
3042 }
3043 /* limit request size */
3044 if (num > max_pdiscard) {
3045 num = max_pdiscard;
3046 }
3047
3048 if (!bs->drv) {
3049 ret = -ENOMEDIUM;
3050 goto out;
3051 }
3052 if (bs->drv->bdrv_co_pdiscard) {
3053 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3054 } else {
3055 BlockAIOCB *acb;
3056 CoroutineIOCompletion co = {
3057 .coroutine = qemu_coroutine_self(),
3058 };
3059
3060 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3061 bdrv_co_io_em_complete, &co);
3062 if (acb == NULL) {
3063 ret = -EIO;
3064 goto out;
3065 } else {
3066 qemu_coroutine_yield();
3067 ret = co.ret;
3068 }
3069 }
3070 if (ret && ret != -ENOTSUP) {
3071 goto out;
3072 }
3073
3074 offset += num;
3075 bytes -= num;
3076 }
3077 ret = 0;
3078 out:
3079 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3080 tracked_request_end(&req);
3081 bdrv_dec_in_flight(bs);
3082 return ret;
3083 }
3084
3085 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3086 {
3087 BlockDriver *drv = bs->drv;
3088 CoroutineIOCompletion co = {
3089 .coroutine = qemu_coroutine_self(),
3090 };
3091 BlockAIOCB *acb;
3092
3093 bdrv_inc_in_flight(bs);
3094 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3095 co.ret = -ENOTSUP;
3096 goto out;
3097 }
3098
3099 if (drv->bdrv_co_ioctl) {
3100 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3101 } else {
3102 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3103 if (!acb) {
3104 co.ret = -ENOTSUP;
3105 goto out;
3106 }
3107 qemu_coroutine_yield();
3108 }
3109 out:
3110 bdrv_dec_in_flight(bs);
3111 return co.ret;
3112 }
3113
3114 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3115 {
3116 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3117 }
3118
3119 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3120 {
3121 return memset(qemu_blockalign(bs, size), 0, size);
3122 }
3123
3124 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3125 {
3126 size_t align = bdrv_opt_mem_align(bs);
3127
3128 /* Ensure that NULL is never returned on success */
3129 assert(align > 0);
3130 if (size == 0) {
3131 size = align;
3132 }
3133
3134 return qemu_try_memalign(align, size);
3135 }
3136
3137 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3138 {
3139 void *mem = qemu_try_blockalign(bs, size);
3140
3141 if (mem) {
3142 memset(mem, 0, size);
3143 }
3144
3145 return mem;
3146 }
3147
3148 /*
3149 * Check if all memory in this vector is sector aligned.
3150 */
3151 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3152 {
3153 int i;
3154 size_t alignment = bdrv_min_mem_align(bs);
3155
3156 for (i = 0; i < qiov->niov; i++) {
3157 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3158 return false;
3159 }
3160 if (qiov->iov[i].iov_len % alignment) {
3161 return false;
3162 }
3163 }
3164
3165 return true;
3166 }
3167
3168 void bdrv_io_plug(BlockDriverState *bs)
3169 {
3170 BdrvChild *child;
3171
3172 QLIST_FOREACH(child, &bs->children, next) {
3173 bdrv_io_plug(child->bs);
3174 }
3175
3176 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3177 BlockDriver *drv = bs->drv;
3178 if (drv && drv->bdrv_io_plug) {
3179 drv->bdrv_io_plug(bs);
3180 }
3181 }
3182 }
3183
3184 void bdrv_io_unplug(BlockDriverState *bs)
3185 {
3186 BdrvChild *child;
3187
3188 assert(bs->io_plugged);
3189 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3190 BlockDriver *drv = bs->drv;
3191 if (drv && drv->bdrv_io_unplug) {
3192 drv->bdrv_io_unplug(bs);
3193 }
3194 }
3195
3196 QLIST_FOREACH(child, &bs->children, next) {
3197 bdrv_io_unplug(child->bs);
3198 }
3199 }
3200
3201 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3202 {
3203 BdrvChild *child;
3204
3205 if (bs->drv && bs->drv->bdrv_register_buf) {
3206 bs->drv->bdrv_register_buf(bs, host, size);
3207 }
3208 QLIST_FOREACH(child, &bs->children, next) {
3209 bdrv_register_buf(child->bs, host, size);
3210 }
3211 }
3212
3213 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3214 {
3215 BdrvChild *child;
3216
3217 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3218 bs->drv->bdrv_unregister_buf(bs, host);
3219 }
3220 QLIST_FOREACH(child, &bs->children, next) {
3221 bdrv_unregister_buf(child->bs, host);
3222 }
3223 }
3224
3225 static int coroutine_fn bdrv_co_copy_range_internal(
3226 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3227 int64_t dst_offset, int64_t bytes,
3228 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3229 bool recurse_src)
3230 {
3231 BdrvTrackedRequest req;
3232 int ret;
3233
3234 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3235 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3236 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3237
3238 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3239 return -ENOMEDIUM;
3240 }
3241 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3242 if (ret) {
3243 return ret;
3244 }
3245 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3246 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3247 }
3248
3249 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3250 return -ENOMEDIUM;
3251 }
3252 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3253 if (ret) {
3254 return ret;
3255 }
3256
3257 if (!src->bs->drv->bdrv_co_copy_range_from
3258 || !dst->bs->drv->bdrv_co_copy_range_to
3259 || src->bs->encrypted || dst->bs->encrypted) {
3260 return -ENOTSUP;
3261 }
3262
3263 if (recurse_src) {
3264 bdrv_inc_in_flight(src->bs);
3265 tracked_request_begin(&req, src->bs, src_offset, bytes,
3266 BDRV_TRACKED_READ);
3267
3268 /* BDRV_REQ_SERIALISING is only for write operation */
3269 assert(!(read_flags & BDRV_REQ_SERIALISING));
3270 bdrv_wait_serialising_requests(&req);
3271
3272 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3273 src, src_offset,
3274 dst, dst_offset,
3275 bytes,
3276 read_flags, write_flags);
3277
3278 tracked_request_end(&req);
3279 bdrv_dec_in_flight(src->bs);
3280 } else {
3281 bdrv_inc_in_flight(dst->bs);
3282 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3283 BDRV_TRACKED_WRITE);
3284 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3285 write_flags);
3286 if (!ret) {
3287 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3288 src, src_offset,
3289 dst, dst_offset,
3290 bytes,
3291 read_flags, write_flags);
3292 }
3293 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3294 tracked_request_end(&req);
3295 bdrv_dec_in_flight(dst->bs);
3296 }
3297
3298 return ret;
3299 }
3300
3301 /* Copy range from @src to @dst.
3302 *
3303 * See the comment of bdrv_co_copy_range for the parameter and return value
3304 * semantics. */
3305 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3306 BdrvChild *dst, int64_t dst_offset,
3307 int64_t bytes,
3308 BdrvRequestFlags read_flags,
3309 BdrvRequestFlags write_flags)
3310 {
3311 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3312 read_flags, write_flags);
3313 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3314 bytes, read_flags, write_flags, true);
3315 }
3316
3317 /* Copy range from @src to @dst.
3318 *
3319 * See the comment of bdrv_co_copy_range for the parameter and return value
3320 * semantics. */
3321 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3322 BdrvChild *dst, int64_t dst_offset,
3323 int64_t bytes,
3324 BdrvRequestFlags read_flags,
3325 BdrvRequestFlags write_flags)
3326 {
3327 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3328 read_flags, write_flags);
3329 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3330 bytes, read_flags, write_flags, false);
3331 }
3332
3333 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3334 BdrvChild *dst, int64_t dst_offset,
3335 int64_t bytes, BdrvRequestFlags read_flags,
3336 BdrvRequestFlags write_flags)
3337 {
3338 return bdrv_co_copy_range_from(src, src_offset,
3339 dst, dst_offset,
3340 bytes, read_flags, write_flags);
3341 }
3342
3343 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3344 {
3345 BdrvChild *c;
3346 QLIST_FOREACH(c, &bs->parents, next_parent) {
3347 if (c->klass->resize) {
3348 c->klass->resize(c);
3349 }
3350 }
3351 }
3352
3353 /**
3354 * Truncate file to 'offset' bytes (needed only for file protocols)
3355 *
3356 * If 'exact' is true, the file must be resized to exactly the given
3357 * 'offset'. Otherwise, it is sufficient for the node to be at least
3358 * 'offset' bytes in length.
3359 */
3360 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3361 PreallocMode prealloc, BdrvRequestFlags flags,
3362 Error **errp)
3363 {
3364 BlockDriverState *bs = child->bs;
3365 BdrvChild *filtered, *backing;
3366 BlockDriver *drv = bs->drv;
3367 BdrvTrackedRequest req;
3368 int64_t old_size, new_bytes;
3369 int ret;
3370
3371
3372 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3373 if (!drv) {
3374 error_setg(errp, "No medium inserted");
3375 return -ENOMEDIUM;
3376 }
3377 if (offset < 0) {
3378 error_setg(errp, "Image size cannot be negative");
3379 return -EINVAL;
3380 }
3381
3382 ret = bdrv_check_request(offset, 0, errp);
3383 if (ret < 0) {
3384 return ret;
3385 }
3386
3387 old_size = bdrv_getlength(bs);
3388 if (old_size < 0) {
3389 error_setg_errno(errp, -old_size, "Failed to get old image size");
3390 return old_size;
3391 }
3392
3393 if (offset > old_size) {
3394 new_bytes = offset - old_size;
3395 } else {
3396 new_bytes = 0;
3397 }
3398
3399 bdrv_inc_in_flight(bs);
3400 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3401 BDRV_TRACKED_TRUNCATE);
3402
3403 /* If we are growing the image and potentially using preallocation for the
3404 * new area, we need to make sure that no write requests are made to it
3405 * concurrently or they might be overwritten by preallocation. */
3406 if (new_bytes) {
3407 bdrv_make_request_serialising(&req, 1);
3408 }
3409 if (bdrv_is_read_only(bs)) {
3410 error_setg(errp, "Image is read-only");
3411 ret = -EACCES;
3412 goto out;
3413 }
3414 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3415 0);
3416 if (ret < 0) {
3417 error_setg_errno(errp, -ret,
3418 "Failed to prepare request for truncation");
3419 goto out;
3420 }
3421
3422 filtered = bdrv_filter_child(bs);
3423 backing = bdrv_cow_child(bs);
3424
3425 /*
3426 * If the image has a backing file that is large enough that it would
3427 * provide data for the new area, we cannot leave it unallocated because
3428 * then the backing file content would become visible. Instead, zero-fill
3429 * the new area.
3430 *
3431 * Note that if the image has a backing file, but was opened without the
3432 * backing file, taking care of keeping things consistent with that backing
3433 * file is the user's responsibility.
3434 */
3435 if (new_bytes && backing) {
3436 int64_t backing_len;
3437
3438 backing_len = bdrv_getlength(backing->bs);
3439 if (backing_len < 0) {
3440 ret = backing_len;
3441 error_setg_errno(errp, -ret, "Could not get backing file size");
3442 goto out;
3443 }
3444
3445 if (backing_len > old_size) {
3446 flags |= BDRV_REQ_ZERO_WRITE;
3447 }
3448 }
3449
3450 if (drv->bdrv_co_truncate) {
3451 if (flags & ~bs->supported_truncate_flags) {
3452 error_setg(errp, "Block driver does not support requested flags");
3453 ret = -ENOTSUP;
3454 goto out;
3455 }
3456 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3457 } else if (filtered) {
3458 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3459 } else {
3460 error_setg(errp, "Image format driver does not support resize");
3461 ret = -ENOTSUP;
3462 goto out;
3463 }
3464 if (ret < 0) {
3465 goto out;
3466 }
3467
3468 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3469 if (ret < 0) {
3470 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3471 } else {
3472 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3473 }
3474 /* It's possible that truncation succeeded but refresh_total_sectors
3475 * failed, but the latter doesn't affect how we should finish the request.
3476 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3477 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3478
3479 out:
3480 tracked_request_end(&req);
3481 bdrv_dec_in_flight(bs);
3482
3483 return ret;
3484 }
3485
3486 void bdrv_cancel_in_flight(BlockDriverState *bs)
3487 {
3488 if (!bs || !bs->drv) {
3489 return;
3490 }
3491
3492 if (bs->drv->bdrv_cancel_in_flight) {
3493 bs->drv->bdrv_cancel_in_flight(bs);
3494 }
3495 }