]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block: Mark bdrv_first_blk() and bdrv_is_root_node() GRAPH_RDLOCK
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51 BdrvChild *c, *next;
52
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore) {
55 continue;
56 }
57 bdrv_parent_drained_begin_single(c);
58 }
59 }
60
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63 GLOBAL_STATE_CODE();
64
65 assert(c->quiesced_parent);
66 c->quiesced_parent = false;
67
68 if (c->klass->drained_end) {
69 c->klass->drained_end(c);
70 }
71 }
72
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75 BdrvChild *c;
76
77 QLIST_FOREACH(c, &bs->parents, next_parent) {
78 if (c == ignore) {
79 continue;
80 }
81 bdrv_parent_drained_end_single(c);
82 }
83 }
84
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87 if (c->klass->drained_poll) {
88 return c->klass->drained_poll(c);
89 }
90 return false;
91 }
92
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94 bool ignore_bds_parents)
95 {
96 BdrvChild *c, *next;
97 bool busy = false;
98
99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101 continue;
102 }
103 busy |= bdrv_parent_drained_poll_single(c);
104 }
105
106 return busy;
107 }
108
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111 GLOBAL_STATE_CODE();
112
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
115
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
118 }
119 }
120
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124 src->pdiscard_alignment);
125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128 src->max_hw_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144 BdrvRefreshLimitsState *s = opaque;
145
146 s->bs->bl = s->old_bl;
147 }
148
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
152 };
153
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
161
162 GLOBAL_STATE_CODE();
163
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
169 };
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
171 }
172
173 memset(&bs->bl, 0, sizeof(bs->bl));
174
175 if (!drv) {
176 return;
177 }
178
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
183
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188 {
189 bdrv_merge_limits(&bs->bl, &c->bs->bl);
190 have_limits = true;
191 }
192
193 if (c->role & BDRV_CHILD_FILTERED) {
194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195 }
196 }
197
198 if (!have_limits) {
199 bs->bl.min_mem_alignment = 512;
200 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201
202 /* Safe default since most protocols use readv()/writev()/etc */
203 bs->bl.max_iov = IOV_MAX;
204 }
205
206 /* Then let the driver override it */
207 if (drv->bdrv_refresh_limits) {
208 drv->bdrv_refresh_limits(bs, errp);
209 if (*errp) {
210 return;
211 }
212 }
213
214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215 error_setg(errp, "Driver requires too large request alignment");
216 }
217 }
218
219 /**
220 * The copy-on-read flag is actually a reference count so multiple users may
221 * use the feature without worrying about clobbering its previous state.
222 * Copy-on-read stays enabled until all users have called to disable it.
223 */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226 IO_CODE();
227 qatomic_inc(&bs->copy_on_read);
228 }
229
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232 int old = qatomic_fetch_dec(&bs->copy_on_read);
233 IO_CODE();
234 assert(old >= 1);
235 }
236
237 typedef struct {
238 Coroutine *co;
239 BlockDriverState *bs;
240 bool done;
241 bool begin;
242 bool poll;
243 BdrvChild *parent;
244 } BdrvCoDrainData;
245
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248 bool ignore_bds_parents)
249 {
250 GLOBAL_STATE_CODE();
251
252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253 return true;
254 }
255
256 if (qatomic_read(&bs->in_flight)) {
257 return true;
258 }
259
260 return false;
261 }
262
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264 BdrvChild *ignore_parent)
265 {
266 return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270 bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275 BdrvCoDrainData *data = opaque;
276 Coroutine *co = data->co;
277 BlockDriverState *bs = data->bs;
278
279 if (bs) {
280 AioContext *ctx = bdrv_get_aio_context(bs);
281 aio_context_acquire(ctx);
282 bdrv_dec_in_flight(bs);
283 if (data->begin) {
284 bdrv_do_drained_begin(bs, data->parent, data->poll);
285 } else {
286 assert(!data->poll);
287 bdrv_do_drained_end(bs, data->parent);
288 }
289 aio_context_release(ctx);
290 } else {
291 assert(data->begin);
292 bdrv_drain_all_begin();
293 }
294
295 data->done = true;
296 aio_co_wake(co);
297 }
298
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300 bool begin,
301 BdrvChild *parent,
302 bool poll)
303 {
304 BdrvCoDrainData data;
305 Coroutine *self = qemu_coroutine_self();
306 AioContext *ctx = bdrv_get_aio_context(bs);
307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308
309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310 * other coroutines run if they were queued by aio_co_enter(). */
311
312 assert(qemu_in_coroutine());
313 data = (BdrvCoDrainData) {
314 .co = self,
315 .bs = bs,
316 .done = false,
317 .begin = begin,
318 .parent = parent,
319 .poll = poll,
320 };
321
322 if (bs) {
323 bdrv_inc_in_flight(bs);
324 }
325
326 /*
327 * Temporarily drop the lock across yield or we would get deadlocks.
328 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329 *
330 * When we yield below, the lock for the current context will be
331 * released, so if this is actually the lock that protects bs, don't drop
332 * it a second time.
333 */
334 if (ctx != co_ctx) {
335 aio_context_release(ctx);
336 }
337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
338 bdrv_co_drain_bh_cb, &data);
339
340 qemu_coroutine_yield();
341 /* If we are resumed from some other event (such as an aio completion or a
342 * timer callback), it is a bug in the caller that should be fixed. */
343 assert(data.done);
344
345 /* Reacquire the AioContext of bs if we dropped it */
346 if (ctx != co_ctx) {
347 aio_context_acquire(ctx);
348 }
349 }
350
351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352 bool poll)
353 {
354 IO_OR_GS_CODE();
355
356 if (qemu_in_coroutine()) {
357 bdrv_co_yield_to_drain(bs, true, parent, poll);
358 return;
359 }
360
361 GLOBAL_STATE_CODE();
362
363 /* Stop things in parent-to-child order */
364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365 bdrv_parent_drained_begin(bs, parent);
366 if (bs->drv && bs->drv->bdrv_drain_begin) {
367 bs->drv->bdrv_drain_begin(bs);
368 }
369 }
370
371 /*
372 * Wait for drained requests to finish.
373 *
374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
375 * call is needed so things in this AioContext can make progress even
376 * though we don't return to the main AioContext loop - this automatically
377 * includes other nodes in the same AioContext and therefore all child
378 * nodes.
379 */
380 if (poll) {
381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 }
383 }
384
385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
386 {
387 bdrv_do_drained_begin(bs, parent, false);
388 }
389
390 void coroutine_mixed_fn
391 bdrv_drained_begin(BlockDriverState *bs)
392 {
393 IO_OR_GS_CODE();
394 bdrv_do_drained_begin(bs, NULL, true);
395 }
396
397 /**
398 * This function does not poll, nor must any of its recursively called
399 * functions.
400 */
401 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
402 {
403 int old_quiesce_counter;
404
405 IO_OR_GS_CODE();
406
407 if (qemu_in_coroutine()) {
408 bdrv_co_yield_to_drain(bs, false, parent, false);
409 return;
410 }
411 assert(bs->quiesce_counter > 0);
412 GLOBAL_STATE_CODE();
413
414 /* Re-enable things in child-to-parent order */
415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416 if (old_quiesce_counter == 1) {
417 if (bs->drv && bs->drv->bdrv_drain_end) {
418 bs->drv->bdrv_drain_end(bs);
419 }
420 bdrv_parent_drained_end(bs, parent);
421 }
422 }
423
424 void bdrv_drained_end(BlockDriverState *bs)
425 {
426 IO_OR_GS_CODE();
427 bdrv_do_drained_end(bs, NULL);
428 }
429
430 void bdrv_drain(BlockDriverState *bs)
431 {
432 IO_OR_GS_CODE();
433 bdrv_drained_begin(bs);
434 bdrv_drained_end(bs);
435 }
436
437 static void bdrv_drain_assert_idle(BlockDriverState *bs)
438 {
439 BdrvChild *child, *next;
440
441 assert(qatomic_read(&bs->in_flight) == 0);
442 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
443 bdrv_drain_assert_idle(child->bs);
444 }
445 }
446
447 unsigned int bdrv_drain_all_count = 0;
448
449 static bool bdrv_drain_all_poll(void)
450 {
451 BlockDriverState *bs = NULL;
452 bool result = false;
453 GLOBAL_STATE_CODE();
454
455 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
456 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
457 while ((bs = bdrv_next_all_states(bs))) {
458 AioContext *aio_context = bdrv_get_aio_context(bs);
459 aio_context_acquire(aio_context);
460 result |= bdrv_drain_poll(bs, NULL, true);
461 aio_context_release(aio_context);
462 }
463
464 return result;
465 }
466
467 /*
468 * Wait for pending requests to complete across all BlockDriverStates
469 *
470 * This function does not flush data to disk, use bdrv_flush_all() for that
471 * after calling this function.
472 *
473 * This pauses all block jobs and disables external clients. It must
474 * be paired with bdrv_drain_all_end().
475 *
476 * NOTE: no new block jobs or BlockDriverStates can be created between
477 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
478 */
479 void bdrv_drain_all_begin_nopoll(void)
480 {
481 BlockDriverState *bs = NULL;
482 GLOBAL_STATE_CODE();
483
484 /*
485 * bdrv queue is managed by record/replay,
486 * waiting for finishing the I/O requests may
487 * be infinite
488 */
489 if (replay_events_enabled()) {
490 return;
491 }
492
493 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
494 * loop AioContext, so make sure we're in the main context. */
495 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
496 assert(bdrv_drain_all_count < INT_MAX);
497 bdrv_drain_all_count++;
498
499 /* Quiesce all nodes, without polling in-flight requests yet. The graph
500 * cannot change during this loop. */
501 while ((bs = bdrv_next_all_states(bs))) {
502 AioContext *aio_context = bdrv_get_aio_context(bs);
503
504 aio_context_acquire(aio_context);
505 bdrv_do_drained_begin(bs, NULL, false);
506 aio_context_release(aio_context);
507 }
508 }
509
510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512 BlockDriverState *bs = NULL;
513
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
517 }
518
519 /*
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
523 */
524 if (replay_events_enabled()) {
525 return;
526 }
527
528 bdrv_drain_all_begin_nopoll();
529
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
535 }
536 }
537
538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540 GLOBAL_STATE_CODE();
541
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
544
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
547 }
548 }
549
550 void bdrv_drain_all_end(void)
551 {
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
554
555 /*
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
559 */
560 if (replay_events_enabled()) {
561 return;
562 }
563
564 while ((bs = bdrv_next_all_states(bs))) {
565 AioContext *aio_context = bdrv_get_aio_context(bs);
566
567 aio_context_acquire(aio_context);
568 bdrv_do_drained_end(bs, NULL);
569 aio_context_release(aio_context);
570 }
571
572 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
573 assert(bdrv_drain_all_count > 0);
574 bdrv_drain_all_count--;
575 }
576
577 void bdrv_drain_all(void)
578 {
579 GLOBAL_STATE_CODE();
580 bdrv_drain_all_begin();
581 bdrv_drain_all_end();
582 }
583
584 /**
585 * Remove an active request from the tracked requests list
586 *
587 * This function should be called when a tracked request is completing.
588 */
589 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
590 {
591 if (req->serialising) {
592 qatomic_dec(&req->bs->serialising_in_flight);
593 }
594
595 qemu_mutex_lock(&req->bs->reqs_lock);
596 QLIST_REMOVE(req, list);
597 qemu_mutex_unlock(&req->bs->reqs_lock);
598
599 /*
600 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
601 * anymore because the request has been removed from the list, so it's safe
602 * to restart the queue outside reqs_lock to minimize the critical section.
603 */
604 qemu_co_queue_restart_all(&req->wait_queue);
605 }
606
607 /**
608 * Add an active request to the tracked requests list
609 */
610 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
611 BlockDriverState *bs,
612 int64_t offset,
613 int64_t bytes,
614 enum BdrvTrackedRequestType type)
615 {
616 bdrv_check_request(offset, bytes, &error_abort);
617
618 *req = (BdrvTrackedRequest){
619 .bs = bs,
620 .offset = offset,
621 .bytes = bytes,
622 .type = type,
623 .co = qemu_coroutine_self(),
624 .serialising = false,
625 .overlap_offset = offset,
626 .overlap_bytes = bytes,
627 };
628
629 qemu_co_queue_init(&req->wait_queue);
630
631 qemu_mutex_lock(&bs->reqs_lock);
632 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
633 qemu_mutex_unlock(&bs->reqs_lock);
634 }
635
636 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
637 int64_t offset, int64_t bytes)
638 {
639 bdrv_check_request(offset, bytes, &error_abort);
640
641 /* aaaa bbbb */
642 if (offset >= req->overlap_offset + req->overlap_bytes) {
643 return false;
644 }
645 /* bbbb aaaa */
646 if (req->overlap_offset >= offset + bytes) {
647 return false;
648 }
649 return true;
650 }
651
652 /* Called with self->bs->reqs_lock held */
653 static coroutine_fn BdrvTrackedRequest *
654 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
655 {
656 BdrvTrackedRequest *req;
657
658 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
659 if (req == self || (!req->serialising && !self->serialising)) {
660 continue;
661 }
662 if (tracked_request_overlaps(req, self->overlap_offset,
663 self->overlap_bytes))
664 {
665 /*
666 * Hitting this means there was a reentrant request, for
667 * example, a block driver issuing nested requests. This must
668 * never happen since it means deadlock.
669 */
670 assert(qemu_coroutine_self() != req->co);
671
672 /*
673 * If the request is already (indirectly) waiting for us, or
674 * will wait for us as soon as it wakes up, then just go on
675 * (instead of producing a deadlock in the former case).
676 */
677 if (!req->waiting_for) {
678 return req;
679 }
680 }
681 }
682
683 return NULL;
684 }
685
686 /* Called with self->bs->reqs_lock held */
687 static void coroutine_fn
688 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
689 {
690 BdrvTrackedRequest *req;
691
692 while ((req = bdrv_find_conflicting_request(self))) {
693 self->waiting_for = req;
694 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
695 self->waiting_for = NULL;
696 }
697 }
698
699 /* Called with req->bs->reqs_lock held */
700 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
701 uint64_t align)
702 {
703 int64_t overlap_offset = req->offset & ~(align - 1);
704 int64_t overlap_bytes =
705 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
706
707 bdrv_check_request(req->offset, req->bytes, &error_abort);
708
709 if (!req->serialising) {
710 qatomic_inc(&req->bs->serialising_in_flight);
711 req->serialising = true;
712 }
713
714 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
715 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
716 }
717
718 /**
719 * Return the tracked request on @bs for the current coroutine, or
720 * NULL if there is none.
721 */
722 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
723 {
724 BdrvTrackedRequest *req;
725 Coroutine *self = qemu_coroutine_self();
726 IO_CODE();
727
728 QLIST_FOREACH(req, &bs->tracked_requests, list) {
729 if (req->co == self) {
730 return req;
731 }
732 }
733
734 return NULL;
735 }
736
737 /**
738 * Round a region to subcluster (if supported) or cluster boundaries
739 */
740 void coroutine_fn GRAPH_RDLOCK
741 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
742 int64_t *align_offset, int64_t *align_bytes)
743 {
744 BlockDriverInfo bdi;
745 IO_CODE();
746 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
747 *align_offset = offset;
748 *align_bytes = bytes;
749 } else {
750 int64_t c = bdi.subcluster_size;
751 *align_offset = QEMU_ALIGN_DOWN(offset, c);
752 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
753 }
754 }
755
756 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
757 {
758 BlockDriverInfo bdi;
759 int ret;
760
761 ret = bdrv_co_get_info(bs, &bdi);
762 if (ret < 0 || bdi.cluster_size == 0) {
763 return bs->bl.request_alignment;
764 } else {
765 return bdi.cluster_size;
766 }
767 }
768
769 void bdrv_inc_in_flight(BlockDriverState *bs)
770 {
771 IO_CODE();
772 qatomic_inc(&bs->in_flight);
773 }
774
775 void bdrv_wakeup(BlockDriverState *bs)
776 {
777 IO_CODE();
778 aio_wait_kick();
779 }
780
781 void bdrv_dec_in_flight(BlockDriverState *bs)
782 {
783 IO_CODE();
784 qatomic_dec(&bs->in_flight);
785 bdrv_wakeup(bs);
786 }
787
788 static void coroutine_fn
789 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
790 {
791 BlockDriverState *bs = self->bs;
792
793 if (!qatomic_read(&bs->serialising_in_flight)) {
794 return;
795 }
796
797 qemu_mutex_lock(&bs->reqs_lock);
798 bdrv_wait_serialising_requests_locked(self);
799 qemu_mutex_unlock(&bs->reqs_lock);
800 }
801
802 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
803 uint64_t align)
804 {
805 IO_CODE();
806
807 qemu_mutex_lock(&req->bs->reqs_lock);
808
809 tracked_request_set_serialising(req, align);
810 bdrv_wait_serialising_requests_locked(req);
811
812 qemu_mutex_unlock(&req->bs->reqs_lock);
813 }
814
815 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
816 QEMUIOVector *qiov, size_t qiov_offset,
817 Error **errp)
818 {
819 /*
820 * Check generic offset/bytes correctness
821 */
822
823 if (offset < 0) {
824 error_setg(errp, "offset is negative: %" PRIi64, offset);
825 return -EIO;
826 }
827
828 if (bytes < 0) {
829 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
830 return -EIO;
831 }
832
833 if (bytes > BDRV_MAX_LENGTH) {
834 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
835 bytes, BDRV_MAX_LENGTH);
836 return -EIO;
837 }
838
839 if (offset > BDRV_MAX_LENGTH) {
840 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
841 offset, BDRV_MAX_LENGTH);
842 return -EIO;
843 }
844
845 if (offset > BDRV_MAX_LENGTH - bytes) {
846 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
847 "exceeds maximum(%" PRIi64 ")", offset, bytes,
848 BDRV_MAX_LENGTH);
849 return -EIO;
850 }
851
852 if (!qiov) {
853 return 0;
854 }
855
856 /*
857 * Check qiov and qiov_offset
858 */
859
860 if (qiov_offset > qiov->size) {
861 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
862 qiov_offset, qiov->size);
863 return -EIO;
864 }
865
866 if (bytes > qiov->size - qiov_offset) {
867 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
868 "vector size(%zu)", bytes, qiov_offset, qiov->size);
869 return -EIO;
870 }
871
872 return 0;
873 }
874
875 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
876 {
877 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
878 }
879
880 static int bdrv_check_request32(int64_t offset, int64_t bytes,
881 QEMUIOVector *qiov, size_t qiov_offset)
882 {
883 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
884 if (ret < 0) {
885 return ret;
886 }
887
888 if (bytes > BDRV_REQUEST_MAX_BYTES) {
889 return -EIO;
890 }
891
892 return 0;
893 }
894
895 /*
896 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
897 * The operation is sped up by checking the block status and only writing
898 * zeroes to the device if they currently do not return zeroes. Optional
899 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
900 * BDRV_REQ_FUA).
901 *
902 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
903 */
904 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
905 {
906 int ret;
907 int64_t target_size, bytes, offset = 0;
908 BlockDriverState *bs = child->bs;
909 IO_CODE();
910
911 target_size = bdrv_getlength(bs);
912 if (target_size < 0) {
913 return target_size;
914 }
915
916 for (;;) {
917 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
918 if (bytes <= 0) {
919 return 0;
920 }
921 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
922 if (ret < 0) {
923 return ret;
924 }
925 if (ret & BDRV_BLOCK_ZERO) {
926 offset += bytes;
927 continue;
928 }
929 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
930 if (ret < 0) {
931 return ret;
932 }
933 offset += bytes;
934 }
935 }
936
937 /*
938 * Writes to the file and ensures that no writes are reordered across this
939 * request (acts as a barrier)
940 *
941 * Returns 0 on success, -errno in error cases.
942 */
943 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
944 int64_t bytes, const void *buf,
945 BdrvRequestFlags flags)
946 {
947 int ret;
948 IO_CODE();
949 assert_bdrv_graph_readable();
950
951 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
952 if (ret < 0) {
953 return ret;
954 }
955
956 ret = bdrv_co_flush(child->bs);
957 if (ret < 0) {
958 return ret;
959 }
960
961 return 0;
962 }
963
964 typedef struct CoroutineIOCompletion {
965 Coroutine *coroutine;
966 int ret;
967 } CoroutineIOCompletion;
968
969 static void bdrv_co_io_em_complete(void *opaque, int ret)
970 {
971 CoroutineIOCompletion *co = opaque;
972
973 co->ret = ret;
974 aio_co_wake(co->coroutine);
975 }
976
977 static int coroutine_fn GRAPH_RDLOCK
978 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
979 QEMUIOVector *qiov, size_t qiov_offset, int flags)
980 {
981 BlockDriver *drv = bs->drv;
982 int64_t sector_num;
983 unsigned int nb_sectors;
984 QEMUIOVector local_qiov;
985 int ret;
986 assert_bdrv_graph_readable();
987
988 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
989 assert(!(flags & ~bs->supported_read_flags));
990
991 if (!drv) {
992 return -ENOMEDIUM;
993 }
994
995 if (drv->bdrv_co_preadv_part) {
996 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
997 flags);
998 }
999
1000 if (qiov_offset > 0 || bytes != qiov->size) {
1001 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1002 qiov = &local_qiov;
1003 }
1004
1005 if (drv->bdrv_co_preadv) {
1006 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1007 goto out;
1008 }
1009
1010 if (drv->bdrv_aio_preadv) {
1011 BlockAIOCB *acb;
1012 CoroutineIOCompletion co = {
1013 .coroutine = qemu_coroutine_self(),
1014 };
1015
1016 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1017 bdrv_co_io_em_complete, &co);
1018 if (acb == NULL) {
1019 ret = -EIO;
1020 goto out;
1021 } else {
1022 qemu_coroutine_yield();
1023 ret = co.ret;
1024 goto out;
1025 }
1026 }
1027
1028 sector_num = offset >> BDRV_SECTOR_BITS;
1029 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1030
1031 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1032 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1033 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1034 assert(drv->bdrv_co_readv);
1035
1036 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1037
1038 out:
1039 if (qiov == &local_qiov) {
1040 qemu_iovec_destroy(&local_qiov);
1041 }
1042
1043 return ret;
1044 }
1045
1046 static int coroutine_fn GRAPH_RDLOCK
1047 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1048 QEMUIOVector *qiov, size_t qiov_offset,
1049 BdrvRequestFlags flags)
1050 {
1051 BlockDriver *drv = bs->drv;
1052 bool emulate_fua = false;
1053 int64_t sector_num;
1054 unsigned int nb_sectors;
1055 QEMUIOVector local_qiov;
1056 int ret;
1057 assert_bdrv_graph_readable();
1058
1059 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1060
1061 if (!drv) {
1062 return -ENOMEDIUM;
1063 }
1064
1065 if ((flags & BDRV_REQ_FUA) &&
1066 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1067 flags &= ~BDRV_REQ_FUA;
1068 emulate_fua = true;
1069 }
1070
1071 flags &= bs->supported_write_flags;
1072
1073 if (drv->bdrv_co_pwritev_part) {
1074 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1075 flags);
1076 goto emulate_flags;
1077 }
1078
1079 if (qiov_offset > 0 || bytes != qiov->size) {
1080 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1081 qiov = &local_qiov;
1082 }
1083
1084 if (drv->bdrv_co_pwritev) {
1085 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1086 goto emulate_flags;
1087 }
1088
1089 if (drv->bdrv_aio_pwritev) {
1090 BlockAIOCB *acb;
1091 CoroutineIOCompletion co = {
1092 .coroutine = qemu_coroutine_self(),
1093 };
1094
1095 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1096 bdrv_co_io_em_complete, &co);
1097 if (acb == NULL) {
1098 ret = -EIO;
1099 } else {
1100 qemu_coroutine_yield();
1101 ret = co.ret;
1102 }
1103 goto emulate_flags;
1104 }
1105
1106 sector_num = offset >> BDRV_SECTOR_BITS;
1107 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1108
1109 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1110 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1111 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1112
1113 assert(drv->bdrv_co_writev);
1114 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1115
1116 emulate_flags:
1117 if (ret == 0 && emulate_fua) {
1118 ret = bdrv_co_flush(bs);
1119 }
1120
1121 if (qiov == &local_qiov) {
1122 qemu_iovec_destroy(&local_qiov);
1123 }
1124
1125 return ret;
1126 }
1127
1128 static int coroutine_fn GRAPH_RDLOCK
1129 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1130 int64_t bytes, QEMUIOVector *qiov,
1131 size_t qiov_offset)
1132 {
1133 BlockDriver *drv = bs->drv;
1134 QEMUIOVector local_qiov;
1135 int ret;
1136 assert_bdrv_graph_readable();
1137
1138 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1139
1140 if (!drv) {
1141 return -ENOMEDIUM;
1142 }
1143
1144 if (!block_driver_can_compress(drv)) {
1145 return -ENOTSUP;
1146 }
1147
1148 if (drv->bdrv_co_pwritev_compressed_part) {
1149 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1150 qiov, qiov_offset);
1151 }
1152
1153 if (qiov_offset == 0) {
1154 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1155 }
1156
1157 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1158 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1159 qemu_iovec_destroy(&local_qiov);
1160
1161 return ret;
1162 }
1163
1164 static int coroutine_fn GRAPH_RDLOCK
1165 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1166 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1167 {
1168 BlockDriverState *bs = child->bs;
1169
1170 /* Perform I/O through a temporary buffer so that users who scribble over
1171 * their read buffer while the operation is in progress do not end up
1172 * modifying the image file. This is critical for zero-copy guest I/O
1173 * where anything might happen inside guest memory.
1174 */
1175 void *bounce_buffer = NULL;
1176
1177 BlockDriver *drv = bs->drv;
1178 int64_t align_offset;
1179 int64_t align_bytes;
1180 int64_t skip_bytes;
1181 int ret;
1182 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1183 BDRV_REQUEST_MAX_BYTES);
1184 int64_t progress = 0;
1185 bool skip_write;
1186
1187 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1188
1189 if (!drv) {
1190 return -ENOMEDIUM;
1191 }
1192
1193 /*
1194 * Do not write anything when the BDS is inactive. That is not
1195 * allowed, and it would not help.
1196 */
1197 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1198
1199 /* FIXME We cannot require callers to have write permissions when all they
1200 * are doing is a read request. If we did things right, write permissions
1201 * would be obtained anyway, but internally by the copy-on-read code. As
1202 * long as it is implemented here rather than in a separate filter driver,
1203 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1204 * it could request permissions. Therefore we have to bypass the permission
1205 * system for the moment. */
1206 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1207
1208 /* Cover entire cluster so no additional backing file I/O is required when
1209 * allocating cluster in the image file. Note that this value may exceed
1210 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1211 * is one reason we loop rather than doing it all at once.
1212 */
1213 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1214 skip_bytes = offset - align_offset;
1215
1216 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1217 align_offset, align_bytes);
1218
1219 while (align_bytes) {
1220 int64_t pnum;
1221
1222 if (skip_write) {
1223 ret = 1; /* "already allocated", so nothing will be copied */
1224 pnum = MIN(align_bytes, max_transfer);
1225 } else {
1226 ret = bdrv_co_is_allocated(bs, align_offset,
1227 MIN(align_bytes, max_transfer), &pnum);
1228 if (ret < 0) {
1229 /*
1230 * Safe to treat errors in querying allocation as if
1231 * unallocated; we'll probably fail again soon on the
1232 * read, but at least that will set a decent errno.
1233 */
1234 pnum = MIN(align_bytes, max_transfer);
1235 }
1236
1237 /* Stop at EOF if the image ends in the middle of the cluster */
1238 if (ret == 0 && pnum == 0) {
1239 assert(progress >= bytes);
1240 break;
1241 }
1242
1243 assert(skip_bytes < pnum);
1244 }
1245
1246 if (ret <= 0) {
1247 QEMUIOVector local_qiov;
1248
1249 /* Must copy-on-read; use the bounce buffer */
1250 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1251 if (!bounce_buffer) {
1252 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1253 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1254 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1255
1256 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1257 if (!bounce_buffer) {
1258 ret = -ENOMEM;
1259 goto err;
1260 }
1261 }
1262 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1263
1264 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1265 &local_qiov, 0, 0);
1266 if (ret < 0) {
1267 goto err;
1268 }
1269
1270 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1271 if (drv->bdrv_co_pwrite_zeroes &&
1272 buffer_is_zero(bounce_buffer, pnum)) {
1273 /* FIXME: Should we (perhaps conditionally) be setting
1274 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1275 * that still correctly reads as zero? */
1276 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1277 BDRV_REQ_WRITE_UNCHANGED);
1278 } else {
1279 /* This does not change the data on the disk, it is not
1280 * necessary to flush even in cache=writethrough mode.
1281 */
1282 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1283 &local_qiov, 0,
1284 BDRV_REQ_WRITE_UNCHANGED);
1285 }
1286
1287 if (ret < 0) {
1288 /* It might be okay to ignore write errors for guest
1289 * requests. If this is a deliberate copy-on-read
1290 * then we don't want to ignore the error. Simply
1291 * report it in all cases.
1292 */
1293 goto err;
1294 }
1295
1296 if (!(flags & BDRV_REQ_PREFETCH)) {
1297 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1298 bounce_buffer + skip_bytes,
1299 MIN(pnum - skip_bytes, bytes - progress));
1300 }
1301 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1302 /* Read directly into the destination */
1303 ret = bdrv_driver_preadv(bs, offset + progress,
1304 MIN(pnum - skip_bytes, bytes - progress),
1305 qiov, qiov_offset + progress, 0);
1306 if (ret < 0) {
1307 goto err;
1308 }
1309 }
1310
1311 align_offset += pnum;
1312 align_bytes -= pnum;
1313 progress += pnum - skip_bytes;
1314 skip_bytes = 0;
1315 }
1316 ret = 0;
1317
1318 err:
1319 qemu_vfree(bounce_buffer);
1320 return ret;
1321 }
1322
1323 /*
1324 * Forwards an already correctly aligned request to the BlockDriver. This
1325 * handles copy on read, zeroing after EOF, and fragmentation of large
1326 * reads; any other features must be implemented by the caller.
1327 */
1328 static int coroutine_fn GRAPH_RDLOCK
1329 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1330 int64_t offset, int64_t bytes, int64_t align,
1331 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1332 {
1333 BlockDriverState *bs = child->bs;
1334 int64_t total_bytes, max_bytes;
1335 int ret = 0;
1336 int64_t bytes_remaining = bytes;
1337 int max_transfer;
1338
1339 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1340 assert(is_power_of_2(align));
1341 assert((offset & (align - 1)) == 0);
1342 assert((bytes & (align - 1)) == 0);
1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1345 align);
1346
1347 /*
1348 * TODO: We would need a per-BDS .supported_read_flags and
1349 * potential fallback support, if we ever implement any read flags
1350 * to pass through to drivers. For now, there aren't any
1351 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1352 */
1353 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1354 BDRV_REQ_REGISTERED_BUF)));
1355
1356 /* Handle Copy on Read and associated serialisation */
1357 if (flags & BDRV_REQ_COPY_ON_READ) {
1358 /* If we touch the same cluster it counts as an overlap. This
1359 * guarantees that allocating writes will be serialized and not race
1360 * with each other for the same cluster. For example, in copy-on-read
1361 * it ensures that the CoR read and write operations are atomic and
1362 * guest writes cannot interleave between them. */
1363 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1364 } else {
1365 bdrv_wait_serialising_requests(req);
1366 }
1367
1368 if (flags & BDRV_REQ_COPY_ON_READ) {
1369 int64_t pnum;
1370
1371 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1372 flags &= ~BDRV_REQ_COPY_ON_READ;
1373
1374 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1375 if (ret < 0) {
1376 goto out;
1377 }
1378
1379 if (!ret || pnum != bytes) {
1380 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1381 qiov, qiov_offset, flags);
1382 goto out;
1383 } else if (flags & BDRV_REQ_PREFETCH) {
1384 goto out;
1385 }
1386 }
1387
1388 /* Forward the request to the BlockDriver, possibly fragmenting it */
1389 total_bytes = bdrv_co_getlength(bs);
1390 if (total_bytes < 0) {
1391 ret = total_bytes;
1392 goto out;
1393 }
1394
1395 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1396
1397 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1398 if (bytes <= max_bytes && bytes <= max_transfer) {
1399 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1400 goto out;
1401 }
1402
1403 while (bytes_remaining) {
1404 int64_t num;
1405
1406 if (max_bytes) {
1407 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1408 assert(num);
1409
1410 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1411 num, qiov,
1412 qiov_offset + bytes - bytes_remaining,
1413 flags);
1414 max_bytes -= num;
1415 } else {
1416 num = bytes_remaining;
1417 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1418 0, bytes_remaining);
1419 }
1420 if (ret < 0) {
1421 goto out;
1422 }
1423 bytes_remaining -= num;
1424 }
1425
1426 out:
1427 return ret < 0 ? ret : 0;
1428 }
1429
1430 /*
1431 * Request padding
1432 *
1433 * |<---- align ----->| |<----- align ---->|
1434 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1435 * | | | | | |
1436 * -*----------$-------*-------- ... --------*-----$------------*---
1437 * | | | | | |
1438 * | offset | | end |
1439 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1440 * [buf ... ) [tail_buf )
1441 *
1442 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1443 * is placed at the beginning of @buf and @tail at the @end.
1444 *
1445 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1446 * around tail, if tail exists.
1447 *
1448 * @merge_reads is true for small requests,
1449 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1450 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1451 *
1452 * @write is true for write requests, false for read requests.
1453 *
1454 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1455 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1456 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1457 * I/O vector elements so for read requests, the data can be copied back after
1458 * the read is done.
1459 */
1460 typedef struct BdrvRequestPadding {
1461 uint8_t *buf;
1462 size_t buf_len;
1463 uint8_t *tail_buf;
1464 size_t head;
1465 size_t tail;
1466 bool merge_reads;
1467 bool write;
1468 QEMUIOVector local_qiov;
1469
1470 uint8_t *collapse_bounce_buf;
1471 size_t collapse_len;
1472 QEMUIOVector pre_collapse_qiov;
1473 } BdrvRequestPadding;
1474
1475 static bool bdrv_init_padding(BlockDriverState *bs,
1476 int64_t offset, int64_t bytes,
1477 bool write,
1478 BdrvRequestPadding *pad)
1479 {
1480 int64_t align = bs->bl.request_alignment;
1481 int64_t sum;
1482
1483 bdrv_check_request(offset, bytes, &error_abort);
1484 assert(align <= INT_MAX); /* documented in block/block_int.h */
1485 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1486
1487 memset(pad, 0, sizeof(*pad));
1488
1489 pad->head = offset & (align - 1);
1490 pad->tail = ((offset + bytes) & (align - 1));
1491 if (pad->tail) {
1492 pad->tail = align - pad->tail;
1493 }
1494
1495 if (!pad->head && !pad->tail) {
1496 return false;
1497 }
1498
1499 assert(bytes); /* Nothing good in aligning zero-length requests */
1500
1501 sum = pad->head + bytes + pad->tail;
1502 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1503 pad->buf = qemu_blockalign(bs, pad->buf_len);
1504 pad->merge_reads = sum == pad->buf_len;
1505 if (pad->tail) {
1506 pad->tail_buf = pad->buf + pad->buf_len - align;
1507 }
1508
1509 pad->write = write;
1510
1511 return true;
1512 }
1513
1514 static int coroutine_fn GRAPH_RDLOCK
1515 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1516 BdrvRequestPadding *pad, bool zero_middle)
1517 {
1518 QEMUIOVector local_qiov;
1519 BlockDriverState *bs = child->bs;
1520 uint64_t align = bs->bl.request_alignment;
1521 int ret;
1522
1523 assert(req->serialising && pad->buf);
1524
1525 if (pad->head || pad->merge_reads) {
1526 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1527
1528 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1529
1530 if (pad->head) {
1531 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1532 }
1533 if (pad->merge_reads && pad->tail) {
1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1535 }
1536 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1537 align, &local_qiov, 0, 0);
1538 if (ret < 0) {
1539 return ret;
1540 }
1541 if (pad->head) {
1542 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1543 }
1544 if (pad->merge_reads && pad->tail) {
1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1546 }
1547
1548 if (pad->merge_reads) {
1549 goto zero_mem;
1550 }
1551 }
1552
1553 if (pad->tail) {
1554 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1555
1556 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1557 ret = bdrv_aligned_preadv(
1558 child, req,
1559 req->overlap_offset + req->overlap_bytes - align,
1560 align, align, &local_qiov, 0, 0);
1561 if (ret < 0) {
1562 return ret;
1563 }
1564 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1565 }
1566
1567 zero_mem:
1568 if (zero_middle) {
1569 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1570 }
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * Free *pad's associated buffers, and perform any necessary finalization steps.
1577 */
1578 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1579 {
1580 if (pad->collapse_bounce_buf) {
1581 if (!pad->write) {
1582 /*
1583 * If padding required elements in the vector to be collapsed into a
1584 * bounce buffer, copy the bounce buffer content back
1585 */
1586 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1587 pad->collapse_bounce_buf, pad->collapse_len);
1588 }
1589 qemu_vfree(pad->collapse_bounce_buf);
1590 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1591 }
1592 if (pad->buf) {
1593 qemu_vfree(pad->buf);
1594 qemu_iovec_destroy(&pad->local_qiov);
1595 }
1596 memset(pad, 0, sizeof(*pad));
1597 }
1598
1599 /*
1600 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1601 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1602 *
1603 * To ensure this, when necessary, the first two or three elements of @iov are
1604 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1605 * bounce buffer in pad->local_qiov.
1606 *
1607 * After performing a read request, the data from the bounce buffer must be
1608 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1609 */
1610 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1611 BdrvRequestPadding *pad,
1612 struct iovec *iov, int niov,
1613 size_t iov_offset, size_t bytes)
1614 {
1615 int padded_niov, surplus_count, collapse_count;
1616
1617 /* Assert this invariant */
1618 assert(niov <= IOV_MAX);
1619
1620 /*
1621 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1622 * to the guest is not ideal, but there is little else we can do. At least
1623 * this will practically never happen on 64-bit systems.
1624 */
1625 if (SIZE_MAX - pad->head < bytes ||
1626 SIZE_MAX - pad->head - bytes < pad->tail)
1627 {
1628 return -EINVAL;
1629 }
1630
1631 /* Length of the resulting IOV if we just concatenated everything */
1632 padded_niov = !!pad->head + niov + !!pad->tail;
1633
1634 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1635
1636 if (pad->head) {
1637 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1638 }
1639
1640 /*
1641 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1642 * Instead, merge the first two or three elements of @iov to reduce the
1643 * number of vector elements as necessary.
1644 */
1645 if (padded_niov > IOV_MAX) {
1646 /*
1647 * Only head and tail can have lead to the number of entries exceeding
1648 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1649 * to reduce the number of elements by `surplus_count`, so we merge that
1650 * many elements plus one into one element.
1651 */
1652 surplus_count = padded_niov - IOV_MAX;
1653 assert(surplus_count <= !!pad->head + !!pad->tail);
1654 collapse_count = surplus_count + 1;
1655
1656 /*
1657 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1658 * advance `iov` (and associated variables) by those elements.
1659 */
1660 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1661 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1662 collapse_count, iov_offset, SIZE_MAX);
1663 iov += collapse_count;
1664 iov_offset = 0;
1665 niov -= collapse_count;
1666 bytes -= pad->pre_collapse_qiov.size;
1667
1668 /*
1669 * Construct the bounce buffer to match the length of the to-collapse
1670 * vector elements, and for write requests, initialize it with the data
1671 * from those elements. Then add it to `pad->local_qiov`.
1672 */
1673 pad->collapse_len = pad->pre_collapse_qiov.size;
1674 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1675 if (pad->write) {
1676 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1677 pad->collapse_bounce_buf, pad->collapse_len);
1678 }
1679 qemu_iovec_add(&pad->local_qiov,
1680 pad->collapse_bounce_buf, pad->collapse_len);
1681 }
1682
1683 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1684
1685 if (pad->tail) {
1686 qemu_iovec_add(&pad->local_qiov,
1687 pad->buf + pad->buf_len - pad->tail, pad->tail);
1688 }
1689
1690 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1691 return 0;
1692 }
1693
1694 /*
1695 * bdrv_pad_request
1696 *
1697 * Exchange request parameters with padded request if needed. Don't include RMW
1698 * read of padding, bdrv_padding_rmw_read() should be called separately if
1699 * needed.
1700 *
1701 * @write is true for write requests, false for read requests.
1702 *
1703 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1704 * - on function start they represent original request
1705 * - on failure or when padding is not needed they are unchanged
1706 * - on success when padding is needed they represent padded request
1707 */
1708 static int bdrv_pad_request(BlockDriverState *bs,
1709 QEMUIOVector **qiov, size_t *qiov_offset,
1710 int64_t *offset, int64_t *bytes,
1711 bool write,
1712 BdrvRequestPadding *pad, bool *padded,
1713 BdrvRequestFlags *flags)
1714 {
1715 int ret;
1716 struct iovec *sliced_iov;
1717 int sliced_niov;
1718 size_t sliced_head, sliced_tail;
1719
1720 /* Should have been checked by the caller already */
1721 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1722 if (ret < 0) {
1723 return ret;
1724 }
1725
1726 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1727 if (padded) {
1728 *padded = false;
1729 }
1730 return 0;
1731 }
1732
1733 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1734 &sliced_head, &sliced_tail,
1735 &sliced_niov);
1736
1737 /* Guaranteed by bdrv_check_request32() */
1738 assert(*bytes <= SIZE_MAX);
1739 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1740 sliced_head, *bytes);
1741 if (ret < 0) {
1742 bdrv_padding_finalize(pad);
1743 return ret;
1744 }
1745 *bytes += pad->head + pad->tail;
1746 *offset -= pad->head;
1747 *qiov = &pad->local_qiov;
1748 *qiov_offset = 0;
1749 if (padded) {
1750 *padded = true;
1751 }
1752 if (flags) {
1753 /* Can't use optimization hint with bounce buffer */
1754 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1755 }
1756
1757 return 0;
1758 }
1759
1760 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1761 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1762 BdrvRequestFlags flags)
1763 {
1764 IO_CODE();
1765 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1766 }
1767
1768 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1769 int64_t offset, int64_t bytes,
1770 QEMUIOVector *qiov, size_t qiov_offset,
1771 BdrvRequestFlags flags)
1772 {
1773 BlockDriverState *bs = child->bs;
1774 BdrvTrackedRequest req;
1775 BdrvRequestPadding pad;
1776 int ret;
1777 IO_CODE();
1778
1779 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1780
1781 if (!bdrv_co_is_inserted(bs)) {
1782 return -ENOMEDIUM;
1783 }
1784
1785 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1786 if (ret < 0) {
1787 return ret;
1788 }
1789
1790 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1791 /*
1792 * Aligning zero request is nonsense. Even if driver has special meaning
1793 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1794 * it to driver due to request_alignment.
1795 *
1796 * Still, no reason to return an error if someone do unaligned
1797 * zero-length read occasionally.
1798 */
1799 return 0;
1800 }
1801
1802 bdrv_inc_in_flight(bs);
1803
1804 /* Don't do copy-on-read if we read data before write operation */
1805 if (qatomic_read(&bs->copy_on_read)) {
1806 flags |= BDRV_REQ_COPY_ON_READ;
1807 }
1808
1809 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1810 &pad, NULL, &flags);
1811 if (ret < 0) {
1812 goto fail;
1813 }
1814
1815 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1816 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1817 bs->bl.request_alignment,
1818 qiov, qiov_offset, flags);
1819 tracked_request_end(&req);
1820 bdrv_padding_finalize(&pad);
1821
1822 fail:
1823 bdrv_dec_in_flight(bs);
1824
1825 return ret;
1826 }
1827
1828 static int coroutine_fn GRAPH_RDLOCK
1829 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1830 BdrvRequestFlags flags)
1831 {
1832 BlockDriver *drv = bs->drv;
1833 QEMUIOVector qiov;
1834 void *buf = NULL;
1835 int ret = 0;
1836 bool need_flush = false;
1837 int head = 0;
1838 int tail = 0;
1839
1840 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1841 INT64_MAX);
1842 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1843 bs->bl.request_alignment);
1844 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1845
1846 assert_bdrv_graph_readable();
1847 bdrv_check_request(offset, bytes, &error_abort);
1848
1849 if (!drv) {
1850 return -ENOMEDIUM;
1851 }
1852
1853 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1854 return -ENOTSUP;
1855 }
1856
1857 /* By definition there is no user buffer so this flag doesn't make sense */
1858 if (flags & BDRV_REQ_REGISTERED_BUF) {
1859 return -EINVAL;
1860 }
1861
1862 /* Invalidate the cached block-status data range if this write overlaps */
1863 bdrv_bsc_invalidate_range(bs, offset, bytes);
1864
1865 assert(alignment % bs->bl.request_alignment == 0);
1866 head = offset % alignment;
1867 tail = (offset + bytes) % alignment;
1868 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1869 assert(max_write_zeroes >= bs->bl.request_alignment);
1870
1871 while (bytes > 0 && !ret) {
1872 int64_t num = bytes;
1873
1874 /* Align request. Block drivers can expect the "bulk" of the request
1875 * to be aligned, and that unaligned requests do not cross cluster
1876 * boundaries.
1877 */
1878 if (head) {
1879 /* Make a small request up to the first aligned sector. For
1880 * convenience, limit this request to max_transfer even if
1881 * we don't need to fall back to writes. */
1882 num = MIN(MIN(bytes, max_transfer), alignment - head);
1883 head = (head + num) % alignment;
1884 assert(num < max_write_zeroes);
1885 } else if (tail && num > alignment) {
1886 /* Shorten the request to the last aligned sector. */
1887 num -= tail;
1888 }
1889
1890 /* limit request size */
1891 if (num > max_write_zeroes) {
1892 num = max_write_zeroes;
1893 }
1894
1895 ret = -ENOTSUP;
1896 /* First try the efficient write zeroes operation */
1897 if (drv->bdrv_co_pwrite_zeroes) {
1898 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1899 flags & bs->supported_zero_flags);
1900 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1901 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1902 need_flush = true;
1903 }
1904 } else {
1905 assert(!bs->supported_zero_flags);
1906 }
1907
1908 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1909 /* Fall back to bounce buffer if write zeroes is unsupported */
1910 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1911
1912 if ((flags & BDRV_REQ_FUA) &&
1913 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1914 /* No need for bdrv_driver_pwrite() to do a fallback
1915 * flush on each chunk; use just one at the end */
1916 write_flags &= ~BDRV_REQ_FUA;
1917 need_flush = true;
1918 }
1919 num = MIN(num, max_transfer);
1920 if (buf == NULL) {
1921 buf = qemu_try_blockalign0(bs, num);
1922 if (buf == NULL) {
1923 ret = -ENOMEM;
1924 goto fail;
1925 }
1926 }
1927 qemu_iovec_init_buf(&qiov, buf, num);
1928
1929 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1930
1931 /* Keep bounce buffer around if it is big enough for all
1932 * all future requests.
1933 */
1934 if (num < max_transfer) {
1935 qemu_vfree(buf);
1936 buf = NULL;
1937 }
1938 }
1939
1940 offset += num;
1941 bytes -= num;
1942 }
1943
1944 fail:
1945 if (ret == 0 && need_flush) {
1946 ret = bdrv_co_flush(bs);
1947 }
1948 qemu_vfree(buf);
1949 return ret;
1950 }
1951
1952 static inline int coroutine_fn GRAPH_RDLOCK
1953 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1954 BdrvTrackedRequest *req, int flags)
1955 {
1956 BlockDriverState *bs = child->bs;
1957
1958 bdrv_check_request(offset, bytes, &error_abort);
1959
1960 if (bdrv_is_read_only(bs)) {
1961 return -EPERM;
1962 }
1963
1964 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1965 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1966 assert(!(flags & ~BDRV_REQ_MASK));
1967 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1968
1969 if (flags & BDRV_REQ_SERIALISING) {
1970 QEMU_LOCK_GUARD(&bs->reqs_lock);
1971
1972 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1973
1974 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1975 return -EBUSY;
1976 }
1977
1978 bdrv_wait_serialising_requests_locked(req);
1979 } else {
1980 bdrv_wait_serialising_requests(req);
1981 }
1982
1983 assert(req->overlap_offset <= offset);
1984 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1985 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1986 child->perm & BLK_PERM_RESIZE);
1987
1988 switch (req->type) {
1989 case BDRV_TRACKED_WRITE:
1990 case BDRV_TRACKED_DISCARD:
1991 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1992 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1993 } else {
1994 assert(child->perm & BLK_PERM_WRITE);
1995 }
1996 bdrv_write_threshold_check_write(bs, offset, bytes);
1997 return 0;
1998 case BDRV_TRACKED_TRUNCATE:
1999 assert(child->perm & BLK_PERM_RESIZE);
2000 return 0;
2001 default:
2002 abort();
2003 }
2004 }
2005
2006 static inline void coroutine_fn
2007 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2008 BdrvTrackedRequest *req, int ret)
2009 {
2010 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2011 BlockDriverState *bs = child->bs;
2012
2013 bdrv_check_request(offset, bytes, &error_abort);
2014
2015 qatomic_inc(&bs->write_gen);
2016
2017 /*
2018 * Discard cannot extend the image, but in error handling cases, such as
2019 * when reverting a qcow2 cluster allocation, the discarded range can pass
2020 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2021 * here. Instead, just skip it, since semantically a discard request
2022 * beyond EOF cannot expand the image anyway.
2023 */
2024 if (ret == 0 &&
2025 (req->type == BDRV_TRACKED_TRUNCATE ||
2026 end_sector > bs->total_sectors) &&
2027 req->type != BDRV_TRACKED_DISCARD) {
2028 bs->total_sectors = end_sector;
2029 bdrv_parent_cb_resize(bs);
2030 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2031 }
2032 if (req->bytes) {
2033 switch (req->type) {
2034 case BDRV_TRACKED_WRITE:
2035 stat64_max(&bs->wr_highest_offset, offset + bytes);
2036 /* fall through, to set dirty bits */
2037 case BDRV_TRACKED_DISCARD:
2038 bdrv_set_dirty(bs, offset, bytes);
2039 break;
2040 default:
2041 break;
2042 }
2043 }
2044 }
2045
2046 /*
2047 * Forwards an already correctly aligned write request to the BlockDriver,
2048 * after possibly fragmenting it.
2049 */
2050 static int coroutine_fn GRAPH_RDLOCK
2051 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2052 int64_t offset, int64_t bytes, int64_t align,
2053 QEMUIOVector *qiov, size_t qiov_offset,
2054 BdrvRequestFlags flags)
2055 {
2056 BlockDriverState *bs = child->bs;
2057 BlockDriver *drv = bs->drv;
2058 int ret;
2059
2060 int64_t bytes_remaining = bytes;
2061 int max_transfer;
2062
2063 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2064
2065 if (!drv) {
2066 return -ENOMEDIUM;
2067 }
2068
2069 if (bdrv_has_readonly_bitmaps(bs)) {
2070 return -EPERM;
2071 }
2072
2073 assert(is_power_of_2(align));
2074 assert((offset & (align - 1)) == 0);
2075 assert((bytes & (align - 1)) == 0);
2076 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2077 align);
2078
2079 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2080
2081 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2082 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2083 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2084 flags |= BDRV_REQ_ZERO_WRITE;
2085 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2086 flags |= BDRV_REQ_MAY_UNMAP;
2087 }
2088
2089 /* Can't use optimization hint with bufferless zero write */
2090 flags &= ~BDRV_REQ_REGISTERED_BUF;
2091 }
2092
2093 if (ret < 0) {
2094 /* Do nothing, write notifier decided to fail this request */
2095 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2096 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2097 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2098 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2099 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2100 qiov, qiov_offset);
2101 } else if (bytes <= max_transfer) {
2102 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2103 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2104 } else {
2105 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2106 while (bytes_remaining) {
2107 int num = MIN(bytes_remaining, max_transfer);
2108 int local_flags = flags;
2109
2110 assert(num);
2111 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2112 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2113 /* If FUA is going to be emulated by flush, we only
2114 * need to flush on the last iteration */
2115 local_flags &= ~BDRV_REQ_FUA;
2116 }
2117
2118 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2119 num, qiov,
2120 qiov_offset + bytes - bytes_remaining,
2121 local_flags);
2122 if (ret < 0) {
2123 break;
2124 }
2125 bytes_remaining -= num;
2126 }
2127 }
2128 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2129
2130 if (ret >= 0) {
2131 ret = 0;
2132 }
2133 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2134
2135 return ret;
2136 }
2137
2138 static int coroutine_fn GRAPH_RDLOCK
2139 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2140 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2141 {
2142 BlockDriverState *bs = child->bs;
2143 QEMUIOVector local_qiov;
2144 uint64_t align = bs->bl.request_alignment;
2145 int ret = 0;
2146 bool padding;
2147 BdrvRequestPadding pad;
2148
2149 /* This flag doesn't make sense for padding or zero writes */
2150 flags &= ~BDRV_REQ_REGISTERED_BUF;
2151
2152 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2153 if (padding) {
2154 assert(!(flags & BDRV_REQ_NO_WAIT));
2155 bdrv_make_request_serialising(req, align);
2156
2157 bdrv_padding_rmw_read(child, req, &pad, true);
2158
2159 if (pad.head || pad.merge_reads) {
2160 int64_t aligned_offset = offset & ~(align - 1);
2161 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2162
2163 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2164 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2165 align, &local_qiov, 0,
2166 flags & ~BDRV_REQ_ZERO_WRITE);
2167 if (ret < 0 || pad.merge_reads) {
2168 /* Error or all work is done */
2169 goto out;
2170 }
2171 offset += write_bytes - pad.head;
2172 bytes -= write_bytes - pad.head;
2173 }
2174 }
2175
2176 assert(!bytes || (offset & (align - 1)) == 0);
2177 if (bytes >= align) {
2178 /* Write the aligned part in the middle. */
2179 int64_t aligned_bytes = bytes & ~(align - 1);
2180 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2181 NULL, 0, flags);
2182 if (ret < 0) {
2183 goto out;
2184 }
2185 bytes -= aligned_bytes;
2186 offset += aligned_bytes;
2187 }
2188
2189 assert(!bytes || (offset & (align - 1)) == 0);
2190 if (bytes) {
2191 assert(align == pad.tail + bytes);
2192
2193 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2194 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2195 &local_qiov, 0,
2196 flags & ~BDRV_REQ_ZERO_WRITE);
2197 }
2198
2199 out:
2200 bdrv_padding_finalize(&pad);
2201
2202 return ret;
2203 }
2204
2205 /*
2206 * Handle a write request in coroutine context
2207 */
2208 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2209 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2210 BdrvRequestFlags flags)
2211 {
2212 IO_CODE();
2213 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2214 }
2215
2216 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2217 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2218 BdrvRequestFlags flags)
2219 {
2220 BlockDriverState *bs = child->bs;
2221 BdrvTrackedRequest req;
2222 uint64_t align = bs->bl.request_alignment;
2223 BdrvRequestPadding pad;
2224 int ret;
2225 bool padded = false;
2226 IO_CODE();
2227
2228 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2229
2230 if (!bdrv_co_is_inserted(bs)) {
2231 return -ENOMEDIUM;
2232 }
2233
2234 if (flags & BDRV_REQ_ZERO_WRITE) {
2235 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2236 } else {
2237 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2238 }
2239 if (ret < 0) {
2240 return ret;
2241 }
2242
2243 /* If the request is misaligned then we can't make it efficient */
2244 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2245 !QEMU_IS_ALIGNED(offset | bytes, align))
2246 {
2247 return -ENOTSUP;
2248 }
2249
2250 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2251 /*
2252 * Aligning zero request is nonsense. Even if driver has special meaning
2253 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2254 * it to driver due to request_alignment.
2255 *
2256 * Still, no reason to return an error if someone do unaligned
2257 * zero-length write occasionally.
2258 */
2259 return 0;
2260 }
2261
2262 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2263 /*
2264 * Pad request for following read-modify-write cycle.
2265 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2266 * alignment only if there is no ZERO flag.
2267 */
2268 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2269 &pad, &padded, &flags);
2270 if (ret < 0) {
2271 return ret;
2272 }
2273 }
2274
2275 bdrv_inc_in_flight(bs);
2276 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2277
2278 if (flags & BDRV_REQ_ZERO_WRITE) {
2279 assert(!padded);
2280 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2281 goto out;
2282 }
2283
2284 if (padded) {
2285 /*
2286 * Request was unaligned to request_alignment and therefore
2287 * padded. We are going to do read-modify-write, and must
2288 * serialize the request to prevent interactions of the
2289 * widened region with other transactions.
2290 */
2291 assert(!(flags & BDRV_REQ_NO_WAIT));
2292 bdrv_make_request_serialising(&req, align);
2293 bdrv_padding_rmw_read(child, &req, &pad, false);
2294 }
2295
2296 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2297 qiov, qiov_offset, flags);
2298
2299 bdrv_padding_finalize(&pad);
2300
2301 out:
2302 tracked_request_end(&req);
2303 bdrv_dec_in_flight(bs);
2304
2305 return ret;
2306 }
2307
2308 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2309 int64_t bytes, BdrvRequestFlags flags)
2310 {
2311 IO_CODE();
2312 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2313 assert_bdrv_graph_readable();
2314
2315 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2316 flags &= ~BDRV_REQ_MAY_UNMAP;
2317 }
2318
2319 return bdrv_co_pwritev(child, offset, bytes, NULL,
2320 BDRV_REQ_ZERO_WRITE | flags);
2321 }
2322
2323 /*
2324 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2325 */
2326 int bdrv_flush_all(void)
2327 {
2328 BdrvNextIterator it;
2329 BlockDriverState *bs = NULL;
2330 int result = 0;
2331
2332 GLOBAL_STATE_CODE();
2333 GRAPH_RDLOCK_GUARD_MAINLOOP();
2334
2335 /*
2336 * bdrv queue is managed by record/replay,
2337 * creating new flush request for stopping
2338 * the VM may break the determinism
2339 */
2340 if (replay_events_enabled()) {
2341 return result;
2342 }
2343
2344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2345 AioContext *aio_context = bdrv_get_aio_context(bs);
2346 int ret;
2347
2348 aio_context_acquire(aio_context);
2349 ret = bdrv_flush(bs);
2350 if (ret < 0 && !result) {
2351 result = ret;
2352 }
2353 aio_context_release(aio_context);
2354 }
2355
2356 return result;
2357 }
2358
2359 /*
2360 * Returns the allocation status of the specified sectors.
2361 * Drivers not implementing the functionality are assumed to not support
2362 * backing files, hence all their sectors are reported as allocated.
2363 *
2364 * If 'want_zero' is true, the caller is querying for mapping
2365 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2366 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2367 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2368 *
2369 * If 'offset' is beyond the end of the disk image the return value is
2370 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2371 *
2372 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2373 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2374 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2375 *
2376 * 'pnum' is set to the number of bytes (including and immediately
2377 * following the specified offset) that are easily known to be in the
2378 * same allocated/unallocated state. Note that a second call starting
2379 * at the original offset plus returned pnum may have the same status.
2380 * The returned value is non-zero on success except at end-of-file.
2381 *
2382 * Returns negative errno on failure. Otherwise, if the
2383 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2384 * set to the host mapping and BDS corresponding to the guest offset.
2385 */
2386 static int coroutine_fn GRAPH_RDLOCK
2387 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2388 int64_t offset, int64_t bytes,
2389 int64_t *pnum, int64_t *map, BlockDriverState **file)
2390 {
2391 int64_t total_size;
2392 int64_t n; /* bytes */
2393 int ret;
2394 int64_t local_map = 0;
2395 BlockDriverState *local_file = NULL;
2396 int64_t aligned_offset, aligned_bytes;
2397 uint32_t align;
2398 bool has_filtered_child;
2399
2400 assert(pnum);
2401 assert_bdrv_graph_readable();
2402 *pnum = 0;
2403 total_size = bdrv_co_getlength(bs);
2404 if (total_size < 0) {
2405 ret = total_size;
2406 goto early_out;
2407 }
2408
2409 if (offset >= total_size) {
2410 ret = BDRV_BLOCK_EOF;
2411 goto early_out;
2412 }
2413 if (!bytes) {
2414 ret = 0;
2415 goto early_out;
2416 }
2417
2418 n = total_size - offset;
2419 if (n < bytes) {
2420 bytes = n;
2421 }
2422
2423 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2424 assert(bs->drv);
2425 has_filtered_child = bdrv_filter_child(bs);
2426 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2427 *pnum = bytes;
2428 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2429 if (offset + bytes == total_size) {
2430 ret |= BDRV_BLOCK_EOF;
2431 }
2432 if (bs->drv->protocol_name) {
2433 ret |= BDRV_BLOCK_OFFSET_VALID;
2434 local_map = offset;
2435 local_file = bs;
2436 }
2437 goto early_out;
2438 }
2439
2440 bdrv_inc_in_flight(bs);
2441
2442 /* Round out to request_alignment boundaries */
2443 align = bs->bl.request_alignment;
2444 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2445 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2446
2447 if (bs->drv->bdrv_co_block_status) {
2448 /*
2449 * Use the block-status cache only for protocol nodes: Format
2450 * drivers are generally quick to inquire the status, but protocol
2451 * drivers often need to get information from outside of qemu, so
2452 * we do not have control over the actual implementation. There
2453 * have been cases where inquiring the status took an unreasonably
2454 * long time, and we can do nothing in qemu to fix it.
2455 * This is especially problematic for images with large data areas,
2456 * because finding the few holes in them and giving them special
2457 * treatment does not gain much performance. Therefore, we try to
2458 * cache the last-identified data region.
2459 *
2460 * Second, limiting ourselves to protocol nodes allows us to assume
2461 * the block status for data regions to be DATA | OFFSET_VALID, and
2462 * that the host offset is the same as the guest offset.
2463 *
2464 * Note that it is possible that external writers zero parts of
2465 * the cached regions without the cache being invalidated, and so
2466 * we may report zeroes as data. This is not catastrophic,
2467 * however, because reporting zeroes as data is fine.
2468 */
2469 if (QLIST_EMPTY(&bs->children) &&
2470 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2471 {
2472 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2473 local_file = bs;
2474 local_map = aligned_offset;
2475 } else {
2476 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2477 aligned_bytes, pnum, &local_map,
2478 &local_file);
2479
2480 /*
2481 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2482 * the cache is queried above. Technically, we do not need to check
2483 * it here; the worst that can happen is that we fill the cache for
2484 * non-protocol nodes, and then it is never used. However, filling
2485 * the cache requires an RCU update, so double check here to avoid
2486 * such an update if possible.
2487 *
2488 * Check want_zero, because we only want to update the cache when we
2489 * have accurate information about what is zero and what is data.
2490 */
2491 if (want_zero &&
2492 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2493 QLIST_EMPTY(&bs->children))
2494 {
2495 /*
2496 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2497 * returned local_map value must be the same as the offset we
2498 * have passed (aligned_offset), and local_bs must be the node
2499 * itself.
2500 * Assert this, because we follow this rule when reading from
2501 * the cache (see the `local_file = bs` and
2502 * `local_map = aligned_offset` assignments above), and the
2503 * result the cache delivers must be the same as the driver
2504 * would deliver.
2505 */
2506 assert(local_file == bs);
2507 assert(local_map == aligned_offset);
2508 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2509 }
2510 }
2511 } else {
2512 /* Default code for filters */
2513
2514 local_file = bdrv_filter_bs(bs);
2515 assert(local_file);
2516
2517 *pnum = aligned_bytes;
2518 local_map = aligned_offset;
2519 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2520 }
2521 if (ret < 0) {
2522 *pnum = 0;
2523 goto out;
2524 }
2525
2526 /*
2527 * The driver's result must be a non-zero multiple of request_alignment.
2528 * Clamp pnum and adjust map to original request.
2529 */
2530 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2531 align > offset - aligned_offset);
2532 if (ret & BDRV_BLOCK_RECURSE) {
2533 assert(ret & BDRV_BLOCK_DATA);
2534 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2535 assert(!(ret & BDRV_BLOCK_ZERO));
2536 }
2537
2538 *pnum -= offset - aligned_offset;
2539 if (*pnum > bytes) {
2540 *pnum = bytes;
2541 }
2542 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2543 local_map += offset - aligned_offset;
2544 }
2545
2546 if (ret & BDRV_BLOCK_RAW) {
2547 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2548 ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2549 *pnum, pnum, &local_map, &local_file);
2550 goto out;
2551 }
2552
2553 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2554 ret |= BDRV_BLOCK_ALLOCATED;
2555 } else if (bs->drv->supports_backing) {
2556 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2557
2558 if (!cow_bs) {
2559 ret |= BDRV_BLOCK_ZERO;
2560 } else if (want_zero) {
2561 int64_t size2 = bdrv_co_getlength(cow_bs);
2562
2563 if (size2 >= 0 && offset >= size2) {
2564 ret |= BDRV_BLOCK_ZERO;
2565 }
2566 }
2567 }
2568
2569 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2570 local_file && local_file != bs &&
2571 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2572 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2573 int64_t file_pnum;
2574 int ret2;
2575
2576 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2577 *pnum, &file_pnum, NULL, NULL);
2578 if (ret2 >= 0) {
2579 /* Ignore errors. This is just providing extra information, it
2580 * is useful but not necessary.
2581 */
2582 if (ret2 & BDRV_BLOCK_EOF &&
2583 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2584 /*
2585 * It is valid for the format block driver to read
2586 * beyond the end of the underlying file's current
2587 * size; such areas read as zero.
2588 */
2589 ret |= BDRV_BLOCK_ZERO;
2590 } else {
2591 /* Limit request to the range reported by the protocol driver */
2592 *pnum = file_pnum;
2593 ret |= (ret2 & BDRV_BLOCK_ZERO);
2594 }
2595 }
2596 }
2597
2598 out:
2599 bdrv_dec_in_flight(bs);
2600 if (ret >= 0 && offset + *pnum == total_size) {
2601 ret |= BDRV_BLOCK_EOF;
2602 }
2603 early_out:
2604 if (file) {
2605 *file = local_file;
2606 }
2607 if (map) {
2608 *map = local_map;
2609 }
2610 return ret;
2611 }
2612
2613 int coroutine_fn
2614 bdrv_co_common_block_status_above(BlockDriverState *bs,
2615 BlockDriverState *base,
2616 bool include_base,
2617 bool want_zero,
2618 int64_t offset,
2619 int64_t bytes,
2620 int64_t *pnum,
2621 int64_t *map,
2622 BlockDriverState **file,
2623 int *depth)
2624 {
2625 int ret;
2626 BlockDriverState *p;
2627 int64_t eof = 0;
2628 int dummy;
2629 IO_CODE();
2630
2631 assert(!include_base || base); /* Can't include NULL base */
2632 assert_bdrv_graph_readable();
2633
2634 if (!depth) {
2635 depth = &dummy;
2636 }
2637 *depth = 0;
2638
2639 if (!include_base && bs == base) {
2640 *pnum = bytes;
2641 return 0;
2642 }
2643
2644 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2645 map, file);
2646 ++*depth;
2647 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2648 return ret;
2649 }
2650
2651 if (ret & BDRV_BLOCK_EOF) {
2652 eof = offset + *pnum;
2653 }
2654
2655 assert(*pnum <= bytes);
2656 bytes = *pnum;
2657
2658 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2659 p = bdrv_filter_or_cow_bs(p))
2660 {
2661 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2662 map, file);
2663 ++*depth;
2664 if (ret < 0) {
2665 return ret;
2666 }
2667 if (*pnum == 0) {
2668 /*
2669 * The top layer deferred to this layer, and because this layer is
2670 * short, any zeroes that we synthesize beyond EOF behave as if they
2671 * were allocated at this layer.
2672 *
2673 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2674 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2675 * below.
2676 */
2677 assert(ret & BDRV_BLOCK_EOF);
2678 *pnum = bytes;
2679 if (file) {
2680 *file = p;
2681 }
2682 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2683 break;
2684 }
2685 if (ret & BDRV_BLOCK_ALLOCATED) {
2686 /*
2687 * We've found the node and the status, we must break.
2688 *
2689 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2690 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2691 * below.
2692 */
2693 ret &= ~BDRV_BLOCK_EOF;
2694 break;
2695 }
2696
2697 if (p == base) {
2698 assert(include_base);
2699 break;
2700 }
2701
2702 /*
2703 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2704 * let's continue the diving.
2705 */
2706 assert(*pnum <= bytes);
2707 bytes = *pnum;
2708 }
2709
2710 if (offset + *pnum == eof) {
2711 ret |= BDRV_BLOCK_EOF;
2712 }
2713
2714 return ret;
2715 }
2716
2717 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2718 BlockDriverState *base,
2719 int64_t offset, int64_t bytes,
2720 int64_t *pnum, int64_t *map,
2721 BlockDriverState **file)
2722 {
2723 IO_CODE();
2724 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2725 bytes, pnum, map, file, NULL);
2726 }
2727
2728 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2729 int64_t bytes, int64_t *pnum,
2730 int64_t *map, BlockDriverState **file)
2731 {
2732 IO_CODE();
2733 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2734 offset, bytes, pnum, map, file);
2735 }
2736
2737 /*
2738 * Check @bs (and its backing chain) to see if the range defined
2739 * by @offset and @bytes is known to read as zeroes.
2740 * Return 1 if that is the case, 0 otherwise and -errno on error.
2741 * This test is meant to be fast rather than accurate so returning 0
2742 * does not guarantee non-zero data.
2743 */
2744 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2745 int64_t bytes)
2746 {
2747 int ret;
2748 int64_t pnum = bytes;
2749 IO_CODE();
2750
2751 if (!bytes) {
2752 return 1;
2753 }
2754
2755 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2756 bytes, &pnum, NULL, NULL, NULL);
2757
2758 if (ret < 0) {
2759 return ret;
2760 }
2761
2762 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2763 }
2764
2765 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2766 int64_t bytes, int64_t *pnum)
2767 {
2768 int ret;
2769 int64_t dummy;
2770 IO_CODE();
2771
2772 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2773 bytes, pnum ? pnum : &dummy, NULL,
2774 NULL, NULL);
2775 if (ret < 0) {
2776 return ret;
2777 }
2778 return !!(ret & BDRV_BLOCK_ALLOCATED);
2779 }
2780
2781 /*
2782 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2783 *
2784 * Return a positive depth if (a prefix of) the given range is allocated
2785 * in any image between BASE and TOP (BASE is only included if include_base
2786 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2787 * BASE can be NULL to check if the given offset is allocated in any
2788 * image of the chain. Return 0 otherwise, or negative errno on
2789 * failure.
2790 *
2791 * 'pnum' is set to the number of bytes (including and immediately
2792 * following the specified offset) that are known to be in the same
2793 * allocated/unallocated state. Note that a subsequent call starting
2794 * at 'offset + *pnum' may return the same allocation status (in other
2795 * words, the result is not necessarily the maximum possible range);
2796 * but 'pnum' will only be 0 when end of file is reached.
2797 */
2798 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2799 BlockDriverState *base,
2800 bool include_base, int64_t offset,
2801 int64_t bytes, int64_t *pnum)
2802 {
2803 int depth;
2804 int ret;
2805 IO_CODE();
2806
2807 ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2808 offset, bytes, pnum, NULL, NULL,
2809 &depth);
2810 if (ret < 0) {
2811 return ret;
2812 }
2813
2814 if (ret & BDRV_BLOCK_ALLOCATED) {
2815 return depth;
2816 }
2817 return 0;
2818 }
2819
2820 int coroutine_fn
2821 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2822 {
2823 BlockDriver *drv = bs->drv;
2824 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2825 int ret;
2826 IO_CODE();
2827 assert_bdrv_graph_readable();
2828
2829 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2830 if (ret < 0) {
2831 return ret;
2832 }
2833
2834 if (!drv) {
2835 return -ENOMEDIUM;
2836 }
2837
2838 bdrv_inc_in_flight(bs);
2839
2840 if (drv->bdrv_co_load_vmstate) {
2841 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2842 } else if (child_bs) {
2843 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2844 } else {
2845 ret = -ENOTSUP;
2846 }
2847
2848 bdrv_dec_in_flight(bs);
2849
2850 return ret;
2851 }
2852
2853 int coroutine_fn
2854 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2855 {
2856 BlockDriver *drv = bs->drv;
2857 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2858 int ret;
2859 IO_CODE();
2860 assert_bdrv_graph_readable();
2861
2862 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2863 if (ret < 0) {
2864 return ret;
2865 }
2866
2867 if (!drv) {
2868 return -ENOMEDIUM;
2869 }
2870
2871 bdrv_inc_in_flight(bs);
2872
2873 if (drv->bdrv_co_save_vmstate) {
2874 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2875 } else if (child_bs) {
2876 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2877 } else {
2878 ret = -ENOTSUP;
2879 }
2880
2881 bdrv_dec_in_flight(bs);
2882
2883 return ret;
2884 }
2885
2886 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2887 int64_t pos, int size)
2888 {
2889 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2890 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2891 IO_CODE();
2892
2893 return ret < 0 ? ret : size;
2894 }
2895
2896 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2897 int64_t pos, int size)
2898 {
2899 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2900 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2901 IO_CODE();
2902
2903 return ret < 0 ? ret : size;
2904 }
2905
2906 /**************************************************************/
2907 /* async I/Os */
2908
2909 /**
2910 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2911 * must be processed with the BQL held too (IOThreads are not allowed).
2912 *
2913 * Use bdrv_aio_cancel_async() instead when possible.
2914 */
2915 void bdrv_aio_cancel(BlockAIOCB *acb)
2916 {
2917 GLOBAL_STATE_CODE();
2918 qemu_aio_ref(acb);
2919 bdrv_aio_cancel_async(acb);
2920 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2921 qemu_aio_unref(acb);
2922 }
2923
2924 /* Async version of aio cancel. The caller is not blocked if the acb implements
2925 * cancel_async, otherwise we do nothing and let the request normally complete.
2926 * In either case the completion callback must be called. */
2927 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2928 {
2929 IO_CODE();
2930 if (acb->aiocb_info->cancel_async) {
2931 acb->aiocb_info->cancel_async(acb);
2932 }
2933 }
2934
2935 /**************************************************************/
2936 /* Coroutine block device emulation */
2937
2938 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2939 {
2940 BdrvChild *primary_child = bdrv_primary_child(bs);
2941 BdrvChild *child;
2942 int current_gen;
2943 int ret = 0;
2944 IO_CODE();
2945
2946 assert_bdrv_graph_readable();
2947 bdrv_inc_in_flight(bs);
2948
2949 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2950 bdrv_is_sg(bs)) {
2951 goto early_exit;
2952 }
2953
2954 qemu_mutex_lock(&bs->reqs_lock);
2955 current_gen = qatomic_read(&bs->write_gen);
2956
2957 /* Wait until any previous flushes are completed */
2958 while (bs->active_flush_req) {
2959 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2960 }
2961
2962 /* Flushes reach this point in nondecreasing current_gen order. */
2963 bs->active_flush_req = true;
2964 qemu_mutex_unlock(&bs->reqs_lock);
2965
2966 /* Write back all layers by calling one driver function */
2967 if (bs->drv->bdrv_co_flush) {
2968 ret = bs->drv->bdrv_co_flush(bs);
2969 goto out;
2970 }
2971
2972 /* Write back cached data to the OS even with cache=unsafe */
2973 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2974 if (bs->drv->bdrv_co_flush_to_os) {
2975 ret = bs->drv->bdrv_co_flush_to_os(bs);
2976 if (ret < 0) {
2977 goto out;
2978 }
2979 }
2980
2981 /* But don't actually force it to the disk with cache=unsafe */
2982 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2983 goto flush_children;
2984 }
2985
2986 /* Check if we really need to flush anything */
2987 if (bs->flushed_gen == current_gen) {
2988 goto flush_children;
2989 }
2990
2991 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2992 if (!bs->drv) {
2993 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2994 * (even in case of apparent success) */
2995 ret = -ENOMEDIUM;
2996 goto out;
2997 }
2998 if (bs->drv->bdrv_co_flush_to_disk) {
2999 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3000 } else if (bs->drv->bdrv_aio_flush) {
3001 BlockAIOCB *acb;
3002 CoroutineIOCompletion co = {
3003 .coroutine = qemu_coroutine_self(),
3004 };
3005
3006 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3007 if (acb == NULL) {
3008 ret = -EIO;
3009 } else {
3010 qemu_coroutine_yield();
3011 ret = co.ret;
3012 }
3013 } else {
3014 /*
3015 * Some block drivers always operate in either writethrough or unsafe
3016 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3017 * know how the server works (because the behaviour is hardcoded or
3018 * depends on server-side configuration), so we can't ensure that
3019 * everything is safe on disk. Returning an error doesn't work because
3020 * that would break guests even if the server operates in writethrough
3021 * mode.
3022 *
3023 * Let's hope the user knows what he's doing.
3024 */
3025 ret = 0;
3026 }
3027
3028 if (ret < 0) {
3029 goto out;
3030 }
3031
3032 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3033 * in the case of cache=unsafe, so there are no useless flushes.
3034 */
3035 flush_children:
3036 ret = 0;
3037 QLIST_FOREACH(child, &bs->children, next) {
3038 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3039 int this_child_ret = bdrv_co_flush(child->bs);
3040 if (!ret) {
3041 ret = this_child_ret;
3042 }
3043 }
3044 }
3045
3046 out:
3047 /* Notify any pending flushes that we have completed */
3048 if (ret == 0) {
3049 bs->flushed_gen = current_gen;
3050 }
3051
3052 qemu_mutex_lock(&bs->reqs_lock);
3053 bs->active_flush_req = false;
3054 /* Return value is ignored - it's ok if wait queue is empty */
3055 qemu_co_queue_next(&bs->flush_queue);
3056 qemu_mutex_unlock(&bs->reqs_lock);
3057
3058 early_exit:
3059 bdrv_dec_in_flight(bs);
3060 return ret;
3061 }
3062
3063 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3064 int64_t bytes)
3065 {
3066 BdrvTrackedRequest req;
3067 int ret;
3068 int64_t max_pdiscard;
3069 int head, tail, align;
3070 BlockDriverState *bs = child->bs;
3071 IO_CODE();
3072 assert_bdrv_graph_readable();
3073
3074 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3075 return -ENOMEDIUM;
3076 }
3077
3078 if (bdrv_has_readonly_bitmaps(bs)) {
3079 return -EPERM;
3080 }
3081
3082 ret = bdrv_check_request(offset, bytes, NULL);
3083 if (ret < 0) {
3084 return ret;
3085 }
3086
3087 /* Do nothing if disabled. */
3088 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3089 return 0;
3090 }
3091
3092 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3093 return 0;
3094 }
3095
3096 /* Invalidate the cached block-status data range if this discard overlaps */
3097 bdrv_bsc_invalidate_range(bs, offset, bytes);
3098
3099 /* Discard is advisory, but some devices track and coalesce
3100 * unaligned requests, so we must pass everything down rather than
3101 * round here. Still, most devices will just silently ignore
3102 * unaligned requests (by returning -ENOTSUP), so we must fragment
3103 * the request accordingly. */
3104 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3105 assert(align % bs->bl.request_alignment == 0);
3106 head = offset % align;
3107 tail = (offset + bytes) % align;
3108
3109 bdrv_inc_in_flight(bs);
3110 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3111
3112 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3113 if (ret < 0) {
3114 goto out;
3115 }
3116
3117 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3118 align);
3119 assert(max_pdiscard >= bs->bl.request_alignment);
3120
3121 while (bytes > 0) {
3122 int64_t num = bytes;
3123
3124 if (head) {
3125 /* Make small requests to get to alignment boundaries. */
3126 num = MIN(bytes, align - head);
3127 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3128 num %= bs->bl.request_alignment;
3129 }
3130 head = (head + num) % align;
3131 assert(num < max_pdiscard);
3132 } else if (tail) {
3133 if (num > align) {
3134 /* Shorten the request to the last aligned cluster. */
3135 num -= tail;
3136 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3137 tail > bs->bl.request_alignment) {
3138 tail %= bs->bl.request_alignment;
3139 num -= tail;
3140 }
3141 }
3142 /* limit request size */
3143 if (num > max_pdiscard) {
3144 num = max_pdiscard;
3145 }
3146
3147 if (!bs->drv) {
3148 ret = -ENOMEDIUM;
3149 goto out;
3150 }
3151 if (bs->drv->bdrv_co_pdiscard) {
3152 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3153 } else {
3154 BlockAIOCB *acb;
3155 CoroutineIOCompletion co = {
3156 .coroutine = qemu_coroutine_self(),
3157 };
3158
3159 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3160 bdrv_co_io_em_complete, &co);
3161 if (acb == NULL) {
3162 ret = -EIO;
3163 goto out;
3164 } else {
3165 qemu_coroutine_yield();
3166 ret = co.ret;
3167 }
3168 }
3169 if (ret && ret != -ENOTSUP) {
3170 goto out;
3171 }
3172
3173 offset += num;
3174 bytes -= num;
3175 }
3176 ret = 0;
3177 out:
3178 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3179 tracked_request_end(&req);
3180 bdrv_dec_in_flight(bs);
3181 return ret;
3182 }
3183
3184 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3185 {
3186 BlockDriver *drv = bs->drv;
3187 CoroutineIOCompletion co = {
3188 .coroutine = qemu_coroutine_self(),
3189 };
3190 BlockAIOCB *acb;
3191 IO_CODE();
3192 assert_bdrv_graph_readable();
3193
3194 bdrv_inc_in_flight(bs);
3195 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3196 co.ret = -ENOTSUP;
3197 goto out;
3198 }
3199
3200 if (drv->bdrv_co_ioctl) {
3201 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3202 } else {
3203 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3204 if (!acb) {
3205 co.ret = -ENOTSUP;
3206 goto out;
3207 }
3208 qemu_coroutine_yield();
3209 }
3210 out:
3211 bdrv_dec_in_flight(bs);
3212 return co.ret;
3213 }
3214
3215 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3216 unsigned int *nr_zones,
3217 BlockZoneDescriptor *zones)
3218 {
3219 BlockDriver *drv = bs->drv;
3220 CoroutineIOCompletion co = {
3221 .coroutine = qemu_coroutine_self(),
3222 };
3223 IO_CODE();
3224
3225 bdrv_inc_in_flight(bs);
3226 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3227 co.ret = -ENOTSUP;
3228 goto out;
3229 }
3230 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3231 out:
3232 bdrv_dec_in_flight(bs);
3233 return co.ret;
3234 }
3235
3236 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3237 int64_t offset, int64_t len)
3238 {
3239 BlockDriver *drv = bs->drv;
3240 CoroutineIOCompletion co = {
3241 .coroutine = qemu_coroutine_self(),
3242 };
3243 IO_CODE();
3244
3245 bdrv_inc_in_flight(bs);
3246 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3247 co.ret = -ENOTSUP;
3248 goto out;
3249 }
3250 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3251 out:
3252 bdrv_dec_in_flight(bs);
3253 return co.ret;
3254 }
3255
3256 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3257 QEMUIOVector *qiov,
3258 BdrvRequestFlags flags)
3259 {
3260 int ret;
3261 BlockDriver *drv = bs->drv;
3262 CoroutineIOCompletion co = {
3263 .coroutine = qemu_coroutine_self(),
3264 };
3265 IO_CODE();
3266
3267 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3268 if (ret < 0) {
3269 return ret;
3270 }
3271
3272 bdrv_inc_in_flight(bs);
3273 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3274 co.ret = -ENOTSUP;
3275 goto out;
3276 }
3277 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3278 out:
3279 bdrv_dec_in_flight(bs);
3280 return co.ret;
3281 }
3282
3283 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3284 {
3285 IO_CODE();
3286 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3287 }
3288
3289 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3290 {
3291 IO_CODE();
3292 return memset(qemu_blockalign(bs, size), 0, size);
3293 }
3294
3295 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3296 {
3297 size_t align = bdrv_opt_mem_align(bs);
3298 IO_CODE();
3299
3300 /* Ensure that NULL is never returned on success */
3301 assert(align > 0);
3302 if (size == 0) {
3303 size = align;
3304 }
3305
3306 return qemu_try_memalign(align, size);
3307 }
3308
3309 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3310 {
3311 void *mem = qemu_try_blockalign(bs, size);
3312 IO_CODE();
3313
3314 if (mem) {
3315 memset(mem, 0, size);
3316 }
3317
3318 return mem;
3319 }
3320
3321 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3322 static void GRAPH_RDLOCK
3323 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3324 BdrvChild *final_child)
3325 {
3326 BdrvChild *child;
3327
3328 GLOBAL_STATE_CODE();
3329 assert_bdrv_graph_readable();
3330
3331 QLIST_FOREACH(child, &bs->children, next) {
3332 if (child == final_child) {
3333 break;
3334 }
3335
3336 bdrv_unregister_buf(child->bs, host, size);
3337 }
3338
3339 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3340 bs->drv->bdrv_unregister_buf(bs, host, size);
3341 }
3342 }
3343
3344 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3345 Error **errp)
3346 {
3347 BdrvChild *child;
3348
3349 GLOBAL_STATE_CODE();
3350 GRAPH_RDLOCK_GUARD_MAINLOOP();
3351
3352 if (bs->drv && bs->drv->bdrv_register_buf) {
3353 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3354 return false;
3355 }
3356 }
3357 QLIST_FOREACH(child, &bs->children, next) {
3358 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3359 bdrv_register_buf_rollback(bs, host, size, child);
3360 return false;
3361 }
3362 }
3363 return true;
3364 }
3365
3366 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3367 {
3368 BdrvChild *child;
3369
3370 GLOBAL_STATE_CODE();
3371 GRAPH_RDLOCK_GUARD_MAINLOOP();
3372
3373 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3374 bs->drv->bdrv_unregister_buf(bs, host, size);
3375 }
3376 QLIST_FOREACH(child, &bs->children, next) {
3377 bdrv_unregister_buf(child->bs, host, size);
3378 }
3379 }
3380
3381 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3382 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3383 int64_t dst_offset, int64_t bytes,
3384 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3385 bool recurse_src)
3386 {
3387 BdrvTrackedRequest req;
3388 int ret;
3389 assert_bdrv_graph_readable();
3390
3391 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3392 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3393 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3394 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3395 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3396
3397 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3398 return -ENOMEDIUM;
3399 }
3400 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3401 if (ret) {
3402 return ret;
3403 }
3404 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3405 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3406 }
3407
3408 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3409 return -ENOMEDIUM;
3410 }
3411 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3412 if (ret) {
3413 return ret;
3414 }
3415
3416 if (!src->bs->drv->bdrv_co_copy_range_from
3417 || !dst->bs->drv->bdrv_co_copy_range_to
3418 || src->bs->encrypted || dst->bs->encrypted) {
3419 return -ENOTSUP;
3420 }
3421
3422 if (recurse_src) {
3423 bdrv_inc_in_flight(src->bs);
3424 tracked_request_begin(&req, src->bs, src_offset, bytes,
3425 BDRV_TRACKED_READ);
3426
3427 /* BDRV_REQ_SERIALISING is only for write operation */
3428 assert(!(read_flags & BDRV_REQ_SERIALISING));
3429 bdrv_wait_serialising_requests(&req);
3430
3431 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3432 src, src_offset,
3433 dst, dst_offset,
3434 bytes,
3435 read_flags, write_flags);
3436
3437 tracked_request_end(&req);
3438 bdrv_dec_in_flight(src->bs);
3439 } else {
3440 bdrv_inc_in_flight(dst->bs);
3441 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3442 BDRV_TRACKED_WRITE);
3443 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3444 write_flags);
3445 if (!ret) {
3446 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3447 src, src_offset,
3448 dst, dst_offset,
3449 bytes,
3450 read_flags, write_flags);
3451 }
3452 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3453 tracked_request_end(&req);
3454 bdrv_dec_in_flight(dst->bs);
3455 }
3456
3457 return ret;
3458 }
3459
3460 /* Copy range from @src to @dst.
3461 *
3462 * See the comment of bdrv_co_copy_range for the parameter and return value
3463 * semantics. */
3464 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3465 BdrvChild *dst, int64_t dst_offset,
3466 int64_t bytes,
3467 BdrvRequestFlags read_flags,
3468 BdrvRequestFlags write_flags)
3469 {
3470 IO_CODE();
3471 assert_bdrv_graph_readable();
3472 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3473 read_flags, write_flags);
3474 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3475 bytes, read_flags, write_flags, true);
3476 }
3477
3478 /* Copy range from @src to @dst.
3479 *
3480 * See the comment of bdrv_co_copy_range for the parameter and return value
3481 * semantics. */
3482 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3483 BdrvChild *dst, int64_t dst_offset,
3484 int64_t bytes,
3485 BdrvRequestFlags read_flags,
3486 BdrvRequestFlags write_flags)
3487 {
3488 IO_CODE();
3489 assert_bdrv_graph_readable();
3490 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3491 read_flags, write_flags);
3492 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3493 bytes, read_flags, write_flags, false);
3494 }
3495
3496 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3497 BdrvChild *dst, int64_t dst_offset,
3498 int64_t bytes, BdrvRequestFlags read_flags,
3499 BdrvRequestFlags write_flags)
3500 {
3501 IO_CODE();
3502 assert_bdrv_graph_readable();
3503
3504 return bdrv_co_copy_range_from(src, src_offset,
3505 dst, dst_offset,
3506 bytes, read_flags, write_flags);
3507 }
3508
3509 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3510 {
3511 BdrvChild *c;
3512 QLIST_FOREACH(c, &bs->parents, next_parent) {
3513 if (c->klass->resize) {
3514 c->klass->resize(c);
3515 }
3516 }
3517 }
3518
3519 /**
3520 * Truncate file to 'offset' bytes (needed only for file protocols)
3521 *
3522 * If 'exact' is true, the file must be resized to exactly the given
3523 * 'offset'. Otherwise, it is sufficient for the node to be at least
3524 * 'offset' bytes in length.
3525 */
3526 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3527 PreallocMode prealloc, BdrvRequestFlags flags,
3528 Error **errp)
3529 {
3530 BlockDriverState *bs = child->bs;
3531 BdrvChild *filtered, *backing;
3532 BlockDriver *drv = bs->drv;
3533 BdrvTrackedRequest req;
3534 int64_t old_size, new_bytes;
3535 int ret;
3536 IO_CODE();
3537 assert_bdrv_graph_readable();
3538
3539 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3540 if (!drv) {
3541 error_setg(errp, "No medium inserted");
3542 return -ENOMEDIUM;
3543 }
3544 if (offset < 0) {
3545 error_setg(errp, "Image size cannot be negative");
3546 return -EINVAL;
3547 }
3548
3549 ret = bdrv_check_request(offset, 0, errp);
3550 if (ret < 0) {
3551 return ret;
3552 }
3553
3554 old_size = bdrv_co_getlength(bs);
3555 if (old_size < 0) {
3556 error_setg_errno(errp, -old_size, "Failed to get old image size");
3557 return old_size;
3558 }
3559
3560 if (bdrv_is_read_only(bs)) {
3561 error_setg(errp, "Image is read-only");
3562 return -EACCES;
3563 }
3564
3565 if (offset > old_size) {
3566 new_bytes = offset - old_size;
3567 } else {
3568 new_bytes = 0;
3569 }
3570
3571 bdrv_inc_in_flight(bs);
3572 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3573 BDRV_TRACKED_TRUNCATE);
3574
3575 /* If we are growing the image and potentially using preallocation for the
3576 * new area, we need to make sure that no write requests are made to it
3577 * concurrently or they might be overwritten by preallocation. */
3578 if (new_bytes) {
3579 bdrv_make_request_serialising(&req, 1);
3580 }
3581 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3582 0);
3583 if (ret < 0) {
3584 error_setg_errno(errp, -ret,
3585 "Failed to prepare request for truncation");
3586 goto out;
3587 }
3588
3589 filtered = bdrv_filter_child(bs);
3590 backing = bdrv_cow_child(bs);
3591
3592 /*
3593 * If the image has a backing file that is large enough that it would
3594 * provide data for the new area, we cannot leave it unallocated because
3595 * then the backing file content would become visible. Instead, zero-fill
3596 * the new area.
3597 *
3598 * Note that if the image has a backing file, but was opened without the
3599 * backing file, taking care of keeping things consistent with that backing
3600 * file is the user's responsibility.
3601 */
3602 if (new_bytes && backing) {
3603 int64_t backing_len;
3604
3605 backing_len = bdrv_co_getlength(backing->bs);
3606 if (backing_len < 0) {
3607 ret = backing_len;
3608 error_setg_errno(errp, -ret, "Could not get backing file size");
3609 goto out;
3610 }
3611
3612 if (backing_len > old_size) {
3613 flags |= BDRV_REQ_ZERO_WRITE;
3614 }
3615 }
3616
3617 if (drv->bdrv_co_truncate) {
3618 if (flags & ~bs->supported_truncate_flags) {
3619 error_setg(errp, "Block driver does not support requested flags");
3620 ret = -ENOTSUP;
3621 goto out;
3622 }
3623 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3624 } else if (filtered) {
3625 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3626 } else {
3627 error_setg(errp, "Image format driver does not support resize");
3628 ret = -ENOTSUP;
3629 goto out;
3630 }
3631 if (ret < 0) {
3632 goto out;
3633 }
3634
3635 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3636 if (ret < 0) {
3637 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3638 } else {
3639 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3640 }
3641 /*
3642 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3643 * failed, but the latter doesn't affect how we should finish the request.
3644 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3645 */
3646 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3647
3648 out:
3649 tracked_request_end(&req);
3650 bdrv_dec_in_flight(bs);
3651
3652 return ret;
3653 }
3654
3655 void bdrv_cancel_in_flight(BlockDriverState *bs)
3656 {
3657 GLOBAL_STATE_CODE();
3658 if (!bs || !bs->drv) {
3659 return;
3660 }
3661
3662 if (bs->drv->bdrv_cancel_in_flight) {
3663 bs->drv->bdrv_cancel_in_flight(bs);
3664 }
3665 }
3666
3667 int coroutine_fn
3668 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3669 QEMUIOVector *qiov, size_t qiov_offset)
3670 {
3671 BlockDriverState *bs = child->bs;
3672 BlockDriver *drv = bs->drv;
3673 int ret;
3674 IO_CODE();
3675 assert_bdrv_graph_readable();
3676
3677 if (!drv) {
3678 return -ENOMEDIUM;
3679 }
3680
3681 if (!drv->bdrv_co_preadv_snapshot) {
3682 return -ENOTSUP;
3683 }
3684
3685 bdrv_inc_in_flight(bs);
3686 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3687 bdrv_dec_in_flight(bs);
3688
3689 return ret;
3690 }
3691
3692 int coroutine_fn
3693 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3694 bool want_zero, int64_t offset, int64_t bytes,
3695 int64_t *pnum, int64_t *map,
3696 BlockDriverState **file)
3697 {
3698 BlockDriver *drv = bs->drv;
3699 int ret;
3700 IO_CODE();
3701 assert_bdrv_graph_readable();
3702
3703 if (!drv) {
3704 return -ENOMEDIUM;
3705 }
3706
3707 if (!drv->bdrv_co_snapshot_block_status) {
3708 return -ENOTSUP;
3709 }
3710
3711 bdrv_inc_in_flight(bs);
3712 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3713 pnum, map, file);
3714 bdrv_dec_in_flight(bs);
3715
3716 return ret;
3717 }
3718
3719 int coroutine_fn
3720 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3721 {
3722 BlockDriver *drv = bs->drv;
3723 int ret;
3724 IO_CODE();
3725 assert_bdrv_graph_readable();
3726
3727 if (!drv) {
3728 return -ENOMEDIUM;
3729 }
3730
3731 if (!drv->bdrv_co_pdiscard_snapshot) {
3732 return -ENOTSUP;
3733 }
3734
3735 bdrv_inc_in_flight(bs);
3736 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3737 bdrv_dec_in_flight(bs);
3738
3739 return ret;
3740 }