]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block: introduce zone append write for zoned devices
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51 BdrvChild *c, *next;
52
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore) {
55 continue;
56 }
57 bdrv_parent_drained_begin_single(c);
58 }
59 }
60
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63 IO_OR_GS_CODE();
64
65 assert(c->quiesced_parent);
66 c->quiesced_parent = false;
67
68 if (c->klass->drained_end) {
69 c->klass->drained_end(c);
70 }
71 }
72
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75 BdrvChild *c;
76
77 QLIST_FOREACH(c, &bs->parents, next_parent) {
78 if (c == ignore) {
79 continue;
80 }
81 bdrv_parent_drained_end_single(c);
82 }
83 }
84
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87 if (c->klass->drained_poll) {
88 return c->klass->drained_poll(c);
89 }
90 return false;
91 }
92
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94 bool ignore_bds_parents)
95 {
96 BdrvChild *c, *next;
97 bool busy = false;
98
99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101 continue;
102 }
103 busy |= bdrv_parent_drained_poll_single(c);
104 }
105
106 return busy;
107 }
108
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111 IO_OR_GS_CODE();
112
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
115
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
118 }
119 }
120
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124 src->pdiscard_alignment);
125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128 src->max_hw_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144 BdrvRefreshLimitsState *s = opaque;
145
146 s->bs->bl = s->old_bl;
147 }
148
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
152 };
153
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
161
162 GLOBAL_STATE_CODE();
163
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
169 };
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
171 }
172
173 memset(&bs->bl, 0, sizeof(bs->bl));
174
175 if (!drv) {
176 return;
177 }
178
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
183
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188 {
189 bdrv_merge_limits(&bs->bl, &c->bs->bl);
190 have_limits = true;
191 }
192
193 if (c->role & BDRV_CHILD_FILTERED) {
194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195 }
196 }
197
198 if (!have_limits) {
199 bs->bl.min_mem_alignment = 512;
200 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201
202 /* Safe default since most protocols use readv()/writev()/etc */
203 bs->bl.max_iov = IOV_MAX;
204 }
205
206 /* Then let the driver override it */
207 if (drv->bdrv_refresh_limits) {
208 drv->bdrv_refresh_limits(bs, errp);
209 if (*errp) {
210 return;
211 }
212 }
213
214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215 error_setg(errp, "Driver requires too large request alignment");
216 }
217 }
218
219 /**
220 * The copy-on-read flag is actually a reference count so multiple users may
221 * use the feature without worrying about clobbering its previous state.
222 * Copy-on-read stays enabled until all users have called to disable it.
223 */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226 IO_CODE();
227 qatomic_inc(&bs->copy_on_read);
228 }
229
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232 int old = qatomic_fetch_dec(&bs->copy_on_read);
233 IO_CODE();
234 assert(old >= 1);
235 }
236
237 typedef struct {
238 Coroutine *co;
239 BlockDriverState *bs;
240 bool done;
241 bool begin;
242 bool poll;
243 BdrvChild *parent;
244 } BdrvCoDrainData;
245
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248 bool ignore_bds_parents)
249 {
250 IO_OR_GS_CODE();
251
252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253 return true;
254 }
255
256 if (qatomic_read(&bs->in_flight)) {
257 return true;
258 }
259
260 return false;
261 }
262
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264 BdrvChild *ignore_parent)
265 {
266 return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270 bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275 BdrvCoDrainData *data = opaque;
276 Coroutine *co = data->co;
277 BlockDriverState *bs = data->bs;
278
279 if (bs) {
280 AioContext *ctx = bdrv_get_aio_context(bs);
281 aio_context_acquire(ctx);
282 bdrv_dec_in_flight(bs);
283 if (data->begin) {
284 bdrv_do_drained_begin(bs, data->parent, data->poll);
285 } else {
286 assert(!data->poll);
287 bdrv_do_drained_end(bs, data->parent);
288 }
289 aio_context_release(ctx);
290 } else {
291 assert(data->begin);
292 bdrv_drain_all_begin();
293 }
294
295 data->done = true;
296 aio_co_wake(co);
297 }
298
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300 bool begin,
301 BdrvChild *parent,
302 bool poll)
303 {
304 BdrvCoDrainData data;
305 Coroutine *self = qemu_coroutine_self();
306 AioContext *ctx = bdrv_get_aio_context(bs);
307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308
309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310 * other coroutines run if they were queued by aio_co_enter(). */
311
312 assert(qemu_in_coroutine());
313 data = (BdrvCoDrainData) {
314 .co = self,
315 .bs = bs,
316 .done = false,
317 .begin = begin,
318 .parent = parent,
319 .poll = poll,
320 };
321
322 if (bs) {
323 bdrv_inc_in_flight(bs);
324 }
325
326 /*
327 * Temporarily drop the lock across yield or we would get deadlocks.
328 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329 *
330 * When we yield below, the lock for the current context will be
331 * released, so if this is actually the lock that protects bs, don't drop
332 * it a second time.
333 */
334 if (ctx != co_ctx) {
335 aio_context_release(ctx);
336 }
337 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
338
339 qemu_coroutine_yield();
340 /* If we are resumed from some other event (such as an aio completion or a
341 * timer callback), it is a bug in the caller that should be fixed. */
342 assert(data.done);
343
344 /* Reaquire the AioContext of bs if we dropped it */
345 if (ctx != co_ctx) {
346 aio_context_acquire(ctx);
347 }
348 }
349
350 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
351 bool poll)
352 {
353 IO_OR_GS_CODE();
354
355 if (qemu_in_coroutine()) {
356 bdrv_co_yield_to_drain(bs, true, parent, poll);
357 return;
358 }
359
360 /* Stop things in parent-to-child order */
361 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
362 aio_disable_external(bdrv_get_aio_context(bs));
363 bdrv_parent_drained_begin(bs, parent);
364 if (bs->drv && bs->drv->bdrv_drain_begin) {
365 bs->drv->bdrv_drain_begin(bs);
366 }
367 }
368
369 /*
370 * Wait for drained requests to finish.
371 *
372 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
373 * call is needed so things in this AioContext can make progress even
374 * though we don't return to the main AioContext loop - this automatically
375 * includes other nodes in the same AioContext and therefore all child
376 * nodes.
377 */
378 if (poll) {
379 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
380 }
381 }
382
383 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
384 {
385 bdrv_do_drained_begin(bs, parent, false);
386 }
387
388 void bdrv_drained_begin(BlockDriverState *bs)
389 {
390 IO_OR_GS_CODE();
391 bdrv_do_drained_begin(bs, NULL, true);
392 }
393
394 /**
395 * This function does not poll, nor must any of its recursively called
396 * functions.
397 */
398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 {
400 int old_quiesce_counter;
401
402 if (qemu_in_coroutine()) {
403 bdrv_co_yield_to_drain(bs, false, parent, false);
404 return;
405 }
406 assert(bs->quiesce_counter > 0);
407
408 /* Re-enable things in child-to-parent order */
409 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
410 if (old_quiesce_counter == 1) {
411 if (bs->drv && bs->drv->bdrv_drain_end) {
412 bs->drv->bdrv_drain_end(bs);
413 }
414 bdrv_parent_drained_end(bs, parent);
415 aio_enable_external(bdrv_get_aio_context(bs));
416 }
417 }
418
419 void bdrv_drained_end(BlockDriverState *bs)
420 {
421 IO_OR_GS_CODE();
422 bdrv_do_drained_end(bs, NULL);
423 }
424
425 void bdrv_drain(BlockDriverState *bs)
426 {
427 IO_OR_GS_CODE();
428 bdrv_drained_begin(bs);
429 bdrv_drained_end(bs);
430 }
431
432 static void bdrv_drain_assert_idle(BlockDriverState *bs)
433 {
434 BdrvChild *child, *next;
435
436 assert(qatomic_read(&bs->in_flight) == 0);
437 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
438 bdrv_drain_assert_idle(child->bs);
439 }
440 }
441
442 unsigned int bdrv_drain_all_count = 0;
443
444 static bool bdrv_drain_all_poll(void)
445 {
446 BlockDriverState *bs = NULL;
447 bool result = false;
448 GLOBAL_STATE_CODE();
449
450 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
451 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
452 while ((bs = bdrv_next_all_states(bs))) {
453 AioContext *aio_context = bdrv_get_aio_context(bs);
454 aio_context_acquire(aio_context);
455 result |= bdrv_drain_poll(bs, NULL, true);
456 aio_context_release(aio_context);
457 }
458
459 return result;
460 }
461
462 /*
463 * Wait for pending requests to complete across all BlockDriverStates
464 *
465 * This function does not flush data to disk, use bdrv_flush_all() for that
466 * after calling this function.
467 *
468 * This pauses all block jobs and disables external clients. It must
469 * be paired with bdrv_drain_all_end().
470 *
471 * NOTE: no new block jobs or BlockDriverStates can be created between
472 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
473 */
474 void bdrv_drain_all_begin_nopoll(void)
475 {
476 BlockDriverState *bs = NULL;
477 GLOBAL_STATE_CODE();
478
479 /*
480 * bdrv queue is managed by record/replay,
481 * waiting for finishing the I/O requests may
482 * be infinite
483 */
484 if (replay_events_enabled()) {
485 return;
486 }
487
488 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
489 * loop AioContext, so make sure we're in the main context. */
490 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
491 assert(bdrv_drain_all_count < INT_MAX);
492 bdrv_drain_all_count++;
493
494 /* Quiesce all nodes, without polling in-flight requests yet. The graph
495 * cannot change during this loop. */
496 while ((bs = bdrv_next_all_states(bs))) {
497 AioContext *aio_context = bdrv_get_aio_context(bs);
498
499 aio_context_acquire(aio_context);
500 bdrv_do_drained_begin(bs, NULL, false);
501 aio_context_release(aio_context);
502 }
503 }
504
505 void bdrv_drain_all_begin(void)
506 {
507 BlockDriverState *bs = NULL;
508
509 if (qemu_in_coroutine()) {
510 bdrv_co_yield_to_drain(NULL, true, NULL, true);
511 return;
512 }
513
514 /*
515 * bdrv queue is managed by record/replay,
516 * waiting for finishing the I/O requests may
517 * be infinite
518 */
519 if (replay_events_enabled()) {
520 return;
521 }
522
523 bdrv_drain_all_begin_nopoll();
524
525 /* Now poll the in-flight requests */
526 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
527
528 while ((bs = bdrv_next_all_states(bs))) {
529 bdrv_drain_assert_idle(bs);
530 }
531 }
532
533 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
534 {
535 GLOBAL_STATE_CODE();
536
537 g_assert(bs->quiesce_counter > 0);
538 g_assert(!bs->refcnt);
539
540 while (bs->quiesce_counter) {
541 bdrv_do_drained_end(bs, NULL);
542 }
543 }
544
545 void bdrv_drain_all_end(void)
546 {
547 BlockDriverState *bs = NULL;
548 GLOBAL_STATE_CODE();
549
550 /*
551 * bdrv queue is managed by record/replay,
552 * waiting for finishing the I/O requests may
553 * be endless
554 */
555 if (replay_events_enabled()) {
556 return;
557 }
558
559 while ((bs = bdrv_next_all_states(bs))) {
560 AioContext *aio_context = bdrv_get_aio_context(bs);
561
562 aio_context_acquire(aio_context);
563 bdrv_do_drained_end(bs, NULL);
564 aio_context_release(aio_context);
565 }
566
567 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
568 assert(bdrv_drain_all_count > 0);
569 bdrv_drain_all_count--;
570 }
571
572 void bdrv_drain_all(void)
573 {
574 GLOBAL_STATE_CODE();
575 bdrv_drain_all_begin();
576 bdrv_drain_all_end();
577 }
578
579 /**
580 * Remove an active request from the tracked requests list
581 *
582 * This function should be called when a tracked request is completing.
583 */
584 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
585 {
586 if (req->serialising) {
587 qatomic_dec(&req->bs->serialising_in_flight);
588 }
589
590 qemu_co_mutex_lock(&req->bs->reqs_lock);
591 QLIST_REMOVE(req, list);
592 qemu_co_queue_restart_all(&req->wait_queue);
593 qemu_co_mutex_unlock(&req->bs->reqs_lock);
594 }
595
596 /**
597 * Add an active request to the tracked requests list
598 */
599 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
600 BlockDriverState *bs,
601 int64_t offset,
602 int64_t bytes,
603 enum BdrvTrackedRequestType type)
604 {
605 bdrv_check_request(offset, bytes, &error_abort);
606
607 *req = (BdrvTrackedRequest){
608 .bs = bs,
609 .offset = offset,
610 .bytes = bytes,
611 .type = type,
612 .co = qemu_coroutine_self(),
613 .serialising = false,
614 .overlap_offset = offset,
615 .overlap_bytes = bytes,
616 };
617
618 qemu_co_queue_init(&req->wait_queue);
619
620 qemu_co_mutex_lock(&bs->reqs_lock);
621 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
622 qemu_co_mutex_unlock(&bs->reqs_lock);
623 }
624
625 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
626 int64_t offset, int64_t bytes)
627 {
628 bdrv_check_request(offset, bytes, &error_abort);
629
630 /* aaaa bbbb */
631 if (offset >= req->overlap_offset + req->overlap_bytes) {
632 return false;
633 }
634 /* bbbb aaaa */
635 if (req->overlap_offset >= offset + bytes) {
636 return false;
637 }
638 return true;
639 }
640
641 /* Called with self->bs->reqs_lock held */
642 static coroutine_fn BdrvTrackedRequest *
643 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
644 {
645 BdrvTrackedRequest *req;
646
647 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
648 if (req == self || (!req->serialising && !self->serialising)) {
649 continue;
650 }
651 if (tracked_request_overlaps(req, self->overlap_offset,
652 self->overlap_bytes))
653 {
654 /*
655 * Hitting this means there was a reentrant request, for
656 * example, a block driver issuing nested requests. This must
657 * never happen since it means deadlock.
658 */
659 assert(qemu_coroutine_self() != req->co);
660
661 /*
662 * If the request is already (indirectly) waiting for us, or
663 * will wait for us as soon as it wakes up, then just go on
664 * (instead of producing a deadlock in the former case).
665 */
666 if (!req->waiting_for) {
667 return req;
668 }
669 }
670 }
671
672 return NULL;
673 }
674
675 /* Called with self->bs->reqs_lock held */
676 static void coroutine_fn
677 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
678 {
679 BdrvTrackedRequest *req;
680
681 while ((req = bdrv_find_conflicting_request(self))) {
682 self->waiting_for = req;
683 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
684 self->waiting_for = NULL;
685 }
686 }
687
688 /* Called with req->bs->reqs_lock held */
689 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
690 uint64_t align)
691 {
692 int64_t overlap_offset = req->offset & ~(align - 1);
693 int64_t overlap_bytes =
694 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
695
696 bdrv_check_request(req->offset, req->bytes, &error_abort);
697
698 if (!req->serialising) {
699 qatomic_inc(&req->bs->serialising_in_flight);
700 req->serialising = true;
701 }
702
703 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
704 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
705 }
706
707 /**
708 * Return the tracked request on @bs for the current coroutine, or
709 * NULL if there is none.
710 */
711 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
712 {
713 BdrvTrackedRequest *req;
714 Coroutine *self = qemu_coroutine_self();
715 IO_CODE();
716
717 QLIST_FOREACH(req, &bs->tracked_requests, list) {
718 if (req->co == self) {
719 return req;
720 }
721 }
722
723 return NULL;
724 }
725
726 /**
727 * Round a region to cluster boundaries
728 */
729 void coroutine_fn GRAPH_RDLOCK
730 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
731 int64_t *cluster_offset, int64_t *cluster_bytes)
732 {
733 BlockDriverInfo bdi;
734 IO_CODE();
735 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
736 *cluster_offset = offset;
737 *cluster_bytes = bytes;
738 } else {
739 int64_t c = bdi.cluster_size;
740 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
741 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
742 }
743 }
744
745 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
746 {
747 BlockDriverInfo bdi;
748 int ret;
749
750 ret = bdrv_co_get_info(bs, &bdi);
751 if (ret < 0 || bdi.cluster_size == 0) {
752 return bs->bl.request_alignment;
753 } else {
754 return bdi.cluster_size;
755 }
756 }
757
758 void bdrv_inc_in_flight(BlockDriverState *bs)
759 {
760 IO_CODE();
761 qatomic_inc(&bs->in_flight);
762 }
763
764 void bdrv_wakeup(BlockDriverState *bs)
765 {
766 IO_CODE();
767 aio_wait_kick();
768 }
769
770 void bdrv_dec_in_flight(BlockDriverState *bs)
771 {
772 IO_CODE();
773 qatomic_dec(&bs->in_flight);
774 bdrv_wakeup(bs);
775 }
776
777 static void coroutine_fn
778 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
779 {
780 BlockDriverState *bs = self->bs;
781
782 if (!qatomic_read(&bs->serialising_in_flight)) {
783 return;
784 }
785
786 qemu_co_mutex_lock(&bs->reqs_lock);
787 bdrv_wait_serialising_requests_locked(self);
788 qemu_co_mutex_unlock(&bs->reqs_lock);
789 }
790
791 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
792 uint64_t align)
793 {
794 IO_CODE();
795
796 qemu_co_mutex_lock(&req->bs->reqs_lock);
797
798 tracked_request_set_serialising(req, align);
799 bdrv_wait_serialising_requests_locked(req);
800
801 qemu_co_mutex_unlock(&req->bs->reqs_lock);
802 }
803
804 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
805 QEMUIOVector *qiov, size_t qiov_offset,
806 Error **errp)
807 {
808 /*
809 * Check generic offset/bytes correctness
810 */
811
812 if (offset < 0) {
813 error_setg(errp, "offset is negative: %" PRIi64, offset);
814 return -EIO;
815 }
816
817 if (bytes < 0) {
818 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
819 return -EIO;
820 }
821
822 if (bytes > BDRV_MAX_LENGTH) {
823 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
824 bytes, BDRV_MAX_LENGTH);
825 return -EIO;
826 }
827
828 if (offset > BDRV_MAX_LENGTH) {
829 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
830 offset, BDRV_MAX_LENGTH);
831 return -EIO;
832 }
833
834 if (offset > BDRV_MAX_LENGTH - bytes) {
835 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
836 "exceeds maximum(%" PRIi64 ")", offset, bytes,
837 BDRV_MAX_LENGTH);
838 return -EIO;
839 }
840
841 if (!qiov) {
842 return 0;
843 }
844
845 /*
846 * Check qiov and qiov_offset
847 */
848
849 if (qiov_offset > qiov->size) {
850 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
851 qiov_offset, qiov->size);
852 return -EIO;
853 }
854
855 if (bytes > qiov->size - qiov_offset) {
856 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
857 "vector size(%zu)", bytes, qiov_offset, qiov->size);
858 return -EIO;
859 }
860
861 return 0;
862 }
863
864 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
865 {
866 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
867 }
868
869 static int bdrv_check_request32(int64_t offset, int64_t bytes,
870 QEMUIOVector *qiov, size_t qiov_offset)
871 {
872 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
873 if (ret < 0) {
874 return ret;
875 }
876
877 if (bytes > BDRV_REQUEST_MAX_BYTES) {
878 return -EIO;
879 }
880
881 return 0;
882 }
883
884 /*
885 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
886 * The operation is sped up by checking the block status and only writing
887 * zeroes to the device if they currently do not return zeroes. Optional
888 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
889 * BDRV_REQ_FUA).
890 *
891 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
892 */
893 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
894 {
895 int ret;
896 int64_t target_size, bytes, offset = 0;
897 BlockDriverState *bs = child->bs;
898 IO_CODE();
899
900 target_size = bdrv_getlength(bs);
901 if (target_size < 0) {
902 return target_size;
903 }
904
905 for (;;) {
906 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
907 if (bytes <= 0) {
908 return 0;
909 }
910 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
911 if (ret < 0) {
912 return ret;
913 }
914 if (ret & BDRV_BLOCK_ZERO) {
915 offset += bytes;
916 continue;
917 }
918 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
919 if (ret < 0) {
920 return ret;
921 }
922 offset += bytes;
923 }
924 }
925
926 /*
927 * Writes to the file and ensures that no writes are reordered across this
928 * request (acts as a barrier)
929 *
930 * Returns 0 on success, -errno in error cases.
931 */
932 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
933 int64_t bytes, const void *buf,
934 BdrvRequestFlags flags)
935 {
936 int ret;
937 IO_CODE();
938 assert_bdrv_graph_readable();
939
940 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
941 if (ret < 0) {
942 return ret;
943 }
944
945 ret = bdrv_co_flush(child->bs);
946 if (ret < 0) {
947 return ret;
948 }
949
950 return 0;
951 }
952
953 typedef struct CoroutineIOCompletion {
954 Coroutine *coroutine;
955 int ret;
956 } CoroutineIOCompletion;
957
958 static void bdrv_co_io_em_complete(void *opaque, int ret)
959 {
960 CoroutineIOCompletion *co = opaque;
961
962 co->ret = ret;
963 aio_co_wake(co->coroutine);
964 }
965
966 static int coroutine_fn GRAPH_RDLOCK
967 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
968 QEMUIOVector *qiov, size_t qiov_offset, int flags)
969 {
970 BlockDriver *drv = bs->drv;
971 int64_t sector_num;
972 unsigned int nb_sectors;
973 QEMUIOVector local_qiov;
974 int ret;
975 assert_bdrv_graph_readable();
976
977 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
978 assert(!(flags & ~bs->supported_read_flags));
979
980 if (!drv) {
981 return -ENOMEDIUM;
982 }
983
984 if (drv->bdrv_co_preadv_part) {
985 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
986 flags);
987 }
988
989 if (qiov_offset > 0 || bytes != qiov->size) {
990 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
991 qiov = &local_qiov;
992 }
993
994 if (drv->bdrv_co_preadv) {
995 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
996 goto out;
997 }
998
999 if (drv->bdrv_aio_preadv) {
1000 BlockAIOCB *acb;
1001 CoroutineIOCompletion co = {
1002 .coroutine = qemu_coroutine_self(),
1003 };
1004
1005 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1006 bdrv_co_io_em_complete, &co);
1007 if (acb == NULL) {
1008 ret = -EIO;
1009 goto out;
1010 } else {
1011 qemu_coroutine_yield();
1012 ret = co.ret;
1013 goto out;
1014 }
1015 }
1016
1017 sector_num = offset >> BDRV_SECTOR_BITS;
1018 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1019
1020 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1021 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1022 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1023 assert(drv->bdrv_co_readv);
1024
1025 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1026
1027 out:
1028 if (qiov == &local_qiov) {
1029 qemu_iovec_destroy(&local_qiov);
1030 }
1031
1032 return ret;
1033 }
1034
1035 static int coroutine_fn GRAPH_RDLOCK
1036 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1037 QEMUIOVector *qiov, size_t qiov_offset,
1038 BdrvRequestFlags flags)
1039 {
1040 BlockDriver *drv = bs->drv;
1041 bool emulate_fua = false;
1042 int64_t sector_num;
1043 unsigned int nb_sectors;
1044 QEMUIOVector local_qiov;
1045 int ret;
1046 assert_bdrv_graph_readable();
1047
1048 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1049
1050 if (!drv) {
1051 return -ENOMEDIUM;
1052 }
1053
1054 if ((flags & BDRV_REQ_FUA) &&
1055 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1056 flags &= ~BDRV_REQ_FUA;
1057 emulate_fua = true;
1058 }
1059
1060 flags &= bs->supported_write_flags;
1061
1062 if (drv->bdrv_co_pwritev_part) {
1063 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1064 flags);
1065 goto emulate_flags;
1066 }
1067
1068 if (qiov_offset > 0 || bytes != qiov->size) {
1069 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1070 qiov = &local_qiov;
1071 }
1072
1073 if (drv->bdrv_co_pwritev) {
1074 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1075 goto emulate_flags;
1076 }
1077
1078 if (drv->bdrv_aio_pwritev) {
1079 BlockAIOCB *acb;
1080 CoroutineIOCompletion co = {
1081 .coroutine = qemu_coroutine_self(),
1082 };
1083
1084 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1085 bdrv_co_io_em_complete, &co);
1086 if (acb == NULL) {
1087 ret = -EIO;
1088 } else {
1089 qemu_coroutine_yield();
1090 ret = co.ret;
1091 }
1092 goto emulate_flags;
1093 }
1094
1095 sector_num = offset >> BDRV_SECTOR_BITS;
1096 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1097
1098 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1099 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1100 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1101
1102 assert(drv->bdrv_co_writev);
1103 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1104
1105 emulate_flags:
1106 if (ret == 0 && emulate_fua) {
1107 ret = bdrv_co_flush(bs);
1108 }
1109
1110 if (qiov == &local_qiov) {
1111 qemu_iovec_destroy(&local_qiov);
1112 }
1113
1114 return ret;
1115 }
1116
1117 static int coroutine_fn GRAPH_RDLOCK
1118 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1119 int64_t bytes, QEMUIOVector *qiov,
1120 size_t qiov_offset)
1121 {
1122 BlockDriver *drv = bs->drv;
1123 QEMUIOVector local_qiov;
1124 int ret;
1125 assert_bdrv_graph_readable();
1126
1127 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1128
1129 if (!drv) {
1130 return -ENOMEDIUM;
1131 }
1132
1133 if (!block_driver_can_compress(drv)) {
1134 return -ENOTSUP;
1135 }
1136
1137 if (drv->bdrv_co_pwritev_compressed_part) {
1138 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1139 qiov, qiov_offset);
1140 }
1141
1142 if (qiov_offset == 0) {
1143 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1144 }
1145
1146 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1147 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1148 qemu_iovec_destroy(&local_qiov);
1149
1150 return ret;
1151 }
1152
1153 static int coroutine_fn GRAPH_RDLOCK
1154 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1155 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1156 {
1157 BlockDriverState *bs = child->bs;
1158
1159 /* Perform I/O through a temporary buffer so that users who scribble over
1160 * their read buffer while the operation is in progress do not end up
1161 * modifying the image file. This is critical for zero-copy guest I/O
1162 * where anything might happen inside guest memory.
1163 */
1164 void *bounce_buffer = NULL;
1165
1166 BlockDriver *drv = bs->drv;
1167 int64_t cluster_offset;
1168 int64_t cluster_bytes;
1169 int64_t skip_bytes;
1170 int ret;
1171 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1172 BDRV_REQUEST_MAX_BYTES);
1173 int64_t progress = 0;
1174 bool skip_write;
1175
1176 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1177
1178 if (!drv) {
1179 return -ENOMEDIUM;
1180 }
1181
1182 /*
1183 * Do not write anything when the BDS is inactive. That is not
1184 * allowed, and it would not help.
1185 */
1186 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1187
1188 /* FIXME We cannot require callers to have write permissions when all they
1189 * are doing is a read request. If we did things right, write permissions
1190 * would be obtained anyway, but internally by the copy-on-read code. As
1191 * long as it is implemented here rather than in a separate filter driver,
1192 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1193 * it could request permissions. Therefore we have to bypass the permission
1194 * system for the moment. */
1195 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1196
1197 /* Cover entire cluster so no additional backing file I/O is required when
1198 * allocating cluster in the image file. Note that this value may exceed
1199 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1200 * is one reason we loop rather than doing it all at once.
1201 */
1202 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1203 skip_bytes = offset - cluster_offset;
1204
1205 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1206 cluster_offset, cluster_bytes);
1207
1208 while (cluster_bytes) {
1209 int64_t pnum;
1210
1211 if (skip_write) {
1212 ret = 1; /* "already allocated", so nothing will be copied */
1213 pnum = MIN(cluster_bytes, max_transfer);
1214 } else {
1215 ret = bdrv_is_allocated(bs, cluster_offset,
1216 MIN(cluster_bytes, max_transfer), &pnum);
1217 if (ret < 0) {
1218 /*
1219 * Safe to treat errors in querying allocation as if
1220 * unallocated; we'll probably fail again soon on the
1221 * read, but at least that will set a decent errno.
1222 */
1223 pnum = MIN(cluster_bytes, max_transfer);
1224 }
1225
1226 /* Stop at EOF if the image ends in the middle of the cluster */
1227 if (ret == 0 && pnum == 0) {
1228 assert(progress >= bytes);
1229 break;
1230 }
1231
1232 assert(skip_bytes < pnum);
1233 }
1234
1235 if (ret <= 0) {
1236 QEMUIOVector local_qiov;
1237
1238 /* Must copy-on-read; use the bounce buffer */
1239 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1240 if (!bounce_buffer) {
1241 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1242 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1243 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1244
1245 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1246 if (!bounce_buffer) {
1247 ret = -ENOMEM;
1248 goto err;
1249 }
1250 }
1251 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1252
1253 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1254 &local_qiov, 0, 0);
1255 if (ret < 0) {
1256 goto err;
1257 }
1258
1259 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1260 if (drv->bdrv_co_pwrite_zeroes &&
1261 buffer_is_zero(bounce_buffer, pnum)) {
1262 /* FIXME: Should we (perhaps conditionally) be setting
1263 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1264 * that still correctly reads as zero? */
1265 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1266 BDRV_REQ_WRITE_UNCHANGED);
1267 } else {
1268 /* This does not change the data on the disk, it is not
1269 * necessary to flush even in cache=writethrough mode.
1270 */
1271 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1272 &local_qiov, 0,
1273 BDRV_REQ_WRITE_UNCHANGED);
1274 }
1275
1276 if (ret < 0) {
1277 /* It might be okay to ignore write errors for guest
1278 * requests. If this is a deliberate copy-on-read
1279 * then we don't want to ignore the error. Simply
1280 * report it in all cases.
1281 */
1282 goto err;
1283 }
1284
1285 if (!(flags & BDRV_REQ_PREFETCH)) {
1286 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1287 bounce_buffer + skip_bytes,
1288 MIN(pnum - skip_bytes, bytes - progress));
1289 }
1290 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1291 /* Read directly into the destination */
1292 ret = bdrv_driver_preadv(bs, offset + progress,
1293 MIN(pnum - skip_bytes, bytes - progress),
1294 qiov, qiov_offset + progress, 0);
1295 if (ret < 0) {
1296 goto err;
1297 }
1298 }
1299
1300 cluster_offset += pnum;
1301 cluster_bytes -= pnum;
1302 progress += pnum - skip_bytes;
1303 skip_bytes = 0;
1304 }
1305 ret = 0;
1306
1307 err:
1308 qemu_vfree(bounce_buffer);
1309 return ret;
1310 }
1311
1312 /*
1313 * Forwards an already correctly aligned request to the BlockDriver. This
1314 * handles copy on read, zeroing after EOF, and fragmentation of large
1315 * reads; any other features must be implemented by the caller.
1316 */
1317 static int coroutine_fn GRAPH_RDLOCK
1318 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1319 int64_t offset, int64_t bytes, int64_t align,
1320 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1321 {
1322 BlockDriverState *bs = child->bs;
1323 int64_t total_bytes, max_bytes;
1324 int ret = 0;
1325 int64_t bytes_remaining = bytes;
1326 int max_transfer;
1327
1328 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1329 assert(is_power_of_2(align));
1330 assert((offset & (align - 1)) == 0);
1331 assert((bytes & (align - 1)) == 0);
1332 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1333 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1334 align);
1335
1336 /*
1337 * TODO: We would need a per-BDS .supported_read_flags and
1338 * potential fallback support, if we ever implement any read flags
1339 * to pass through to drivers. For now, there aren't any
1340 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1341 */
1342 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1343 BDRV_REQ_REGISTERED_BUF)));
1344
1345 /* Handle Copy on Read and associated serialisation */
1346 if (flags & BDRV_REQ_COPY_ON_READ) {
1347 /* If we touch the same cluster it counts as an overlap. This
1348 * guarantees that allocating writes will be serialized and not race
1349 * with each other for the same cluster. For example, in copy-on-read
1350 * it ensures that the CoR read and write operations are atomic and
1351 * guest writes cannot interleave between them. */
1352 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1353 } else {
1354 bdrv_wait_serialising_requests(req);
1355 }
1356
1357 if (flags & BDRV_REQ_COPY_ON_READ) {
1358 int64_t pnum;
1359
1360 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1361 flags &= ~BDRV_REQ_COPY_ON_READ;
1362
1363 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1364 if (ret < 0) {
1365 goto out;
1366 }
1367
1368 if (!ret || pnum != bytes) {
1369 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1370 qiov, qiov_offset, flags);
1371 goto out;
1372 } else if (flags & BDRV_REQ_PREFETCH) {
1373 goto out;
1374 }
1375 }
1376
1377 /* Forward the request to the BlockDriver, possibly fragmenting it */
1378 total_bytes = bdrv_getlength(bs);
1379 if (total_bytes < 0) {
1380 ret = total_bytes;
1381 goto out;
1382 }
1383
1384 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1385
1386 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1387 if (bytes <= max_bytes && bytes <= max_transfer) {
1388 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1389 goto out;
1390 }
1391
1392 while (bytes_remaining) {
1393 int64_t num;
1394
1395 if (max_bytes) {
1396 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1397 assert(num);
1398
1399 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1400 num, qiov,
1401 qiov_offset + bytes - bytes_remaining,
1402 flags);
1403 max_bytes -= num;
1404 } else {
1405 num = bytes_remaining;
1406 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1407 0, bytes_remaining);
1408 }
1409 if (ret < 0) {
1410 goto out;
1411 }
1412 bytes_remaining -= num;
1413 }
1414
1415 out:
1416 return ret < 0 ? ret : 0;
1417 }
1418
1419 /*
1420 * Request padding
1421 *
1422 * |<---- align ----->| |<----- align ---->|
1423 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1424 * | | | | | |
1425 * -*----------$-------*-------- ... --------*-----$------------*---
1426 * | | | | | |
1427 * | offset | | end |
1428 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1429 * [buf ... ) [tail_buf )
1430 *
1431 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1432 * is placed at the beginning of @buf and @tail at the @end.
1433 *
1434 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1435 * around tail, if tail exists.
1436 *
1437 * @merge_reads is true for small requests,
1438 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1439 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1440 */
1441 typedef struct BdrvRequestPadding {
1442 uint8_t *buf;
1443 size_t buf_len;
1444 uint8_t *tail_buf;
1445 size_t head;
1446 size_t tail;
1447 bool merge_reads;
1448 QEMUIOVector local_qiov;
1449 } BdrvRequestPadding;
1450
1451 static bool bdrv_init_padding(BlockDriverState *bs,
1452 int64_t offset, int64_t bytes,
1453 BdrvRequestPadding *pad)
1454 {
1455 int64_t align = bs->bl.request_alignment;
1456 int64_t sum;
1457
1458 bdrv_check_request(offset, bytes, &error_abort);
1459 assert(align <= INT_MAX); /* documented in block/block_int.h */
1460 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1461
1462 memset(pad, 0, sizeof(*pad));
1463
1464 pad->head = offset & (align - 1);
1465 pad->tail = ((offset + bytes) & (align - 1));
1466 if (pad->tail) {
1467 pad->tail = align - pad->tail;
1468 }
1469
1470 if (!pad->head && !pad->tail) {
1471 return false;
1472 }
1473
1474 assert(bytes); /* Nothing good in aligning zero-length requests */
1475
1476 sum = pad->head + bytes + pad->tail;
1477 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1478 pad->buf = qemu_blockalign(bs, pad->buf_len);
1479 pad->merge_reads = sum == pad->buf_len;
1480 if (pad->tail) {
1481 pad->tail_buf = pad->buf + pad->buf_len - align;
1482 }
1483
1484 return true;
1485 }
1486
1487 static int coroutine_fn GRAPH_RDLOCK
1488 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1489 BdrvRequestPadding *pad, bool zero_middle)
1490 {
1491 QEMUIOVector local_qiov;
1492 BlockDriverState *bs = child->bs;
1493 uint64_t align = bs->bl.request_alignment;
1494 int ret;
1495
1496 assert(req->serialising && pad->buf);
1497
1498 if (pad->head || pad->merge_reads) {
1499 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1500
1501 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1502
1503 if (pad->head) {
1504 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1505 }
1506 if (pad->merge_reads && pad->tail) {
1507 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1508 }
1509 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1510 align, &local_qiov, 0, 0);
1511 if (ret < 0) {
1512 return ret;
1513 }
1514 if (pad->head) {
1515 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1516 }
1517 if (pad->merge_reads && pad->tail) {
1518 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1519 }
1520
1521 if (pad->merge_reads) {
1522 goto zero_mem;
1523 }
1524 }
1525
1526 if (pad->tail) {
1527 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1528
1529 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1530 ret = bdrv_aligned_preadv(
1531 child, req,
1532 req->overlap_offset + req->overlap_bytes - align,
1533 align, align, &local_qiov, 0, 0);
1534 if (ret < 0) {
1535 return ret;
1536 }
1537 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1538 }
1539
1540 zero_mem:
1541 if (zero_middle) {
1542 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1543 }
1544
1545 return 0;
1546 }
1547
1548 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1549 {
1550 if (pad->buf) {
1551 qemu_vfree(pad->buf);
1552 qemu_iovec_destroy(&pad->local_qiov);
1553 }
1554 memset(pad, 0, sizeof(*pad));
1555 }
1556
1557 /*
1558 * bdrv_pad_request
1559 *
1560 * Exchange request parameters with padded request if needed. Don't include RMW
1561 * read of padding, bdrv_padding_rmw_read() should be called separately if
1562 * needed.
1563 *
1564 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1565 * - on function start they represent original request
1566 * - on failure or when padding is not needed they are unchanged
1567 * - on success when padding is needed they represent padded request
1568 */
1569 static int bdrv_pad_request(BlockDriverState *bs,
1570 QEMUIOVector **qiov, size_t *qiov_offset,
1571 int64_t *offset, int64_t *bytes,
1572 BdrvRequestPadding *pad, bool *padded,
1573 BdrvRequestFlags *flags)
1574 {
1575 int ret;
1576
1577 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1578
1579 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1580 if (padded) {
1581 *padded = false;
1582 }
1583 return 0;
1584 }
1585
1586 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1587 *qiov, *qiov_offset, *bytes,
1588 pad->buf + pad->buf_len - pad->tail,
1589 pad->tail);
1590 if (ret < 0) {
1591 bdrv_padding_destroy(pad);
1592 return ret;
1593 }
1594 *bytes += pad->head + pad->tail;
1595 *offset -= pad->head;
1596 *qiov = &pad->local_qiov;
1597 *qiov_offset = 0;
1598 if (padded) {
1599 *padded = true;
1600 }
1601 if (flags) {
1602 /* Can't use optimization hint with bounce buffer */
1603 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1604 }
1605
1606 return 0;
1607 }
1608
1609 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1610 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1611 BdrvRequestFlags flags)
1612 {
1613 IO_CODE();
1614 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1615 }
1616
1617 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1618 int64_t offset, int64_t bytes,
1619 QEMUIOVector *qiov, size_t qiov_offset,
1620 BdrvRequestFlags flags)
1621 {
1622 BlockDriverState *bs = child->bs;
1623 BdrvTrackedRequest req;
1624 BdrvRequestPadding pad;
1625 int ret;
1626 IO_CODE();
1627
1628 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1629
1630 if (!bdrv_co_is_inserted(bs)) {
1631 return -ENOMEDIUM;
1632 }
1633
1634 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1635 if (ret < 0) {
1636 return ret;
1637 }
1638
1639 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1640 /*
1641 * Aligning zero request is nonsense. Even if driver has special meaning
1642 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1643 * it to driver due to request_alignment.
1644 *
1645 * Still, no reason to return an error if someone do unaligned
1646 * zero-length read occasionally.
1647 */
1648 return 0;
1649 }
1650
1651 bdrv_inc_in_flight(bs);
1652
1653 /* Don't do copy-on-read if we read data before write operation */
1654 if (qatomic_read(&bs->copy_on_read)) {
1655 flags |= BDRV_REQ_COPY_ON_READ;
1656 }
1657
1658 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1659 NULL, &flags);
1660 if (ret < 0) {
1661 goto fail;
1662 }
1663
1664 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1665 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1666 bs->bl.request_alignment,
1667 qiov, qiov_offset, flags);
1668 tracked_request_end(&req);
1669 bdrv_padding_destroy(&pad);
1670
1671 fail:
1672 bdrv_dec_in_flight(bs);
1673
1674 return ret;
1675 }
1676
1677 static int coroutine_fn GRAPH_RDLOCK
1678 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1679 BdrvRequestFlags flags)
1680 {
1681 BlockDriver *drv = bs->drv;
1682 QEMUIOVector qiov;
1683 void *buf = NULL;
1684 int ret = 0;
1685 bool need_flush = false;
1686 int head = 0;
1687 int tail = 0;
1688
1689 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1690 INT64_MAX);
1691 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1692 bs->bl.request_alignment);
1693 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1694
1695 assert_bdrv_graph_readable();
1696 bdrv_check_request(offset, bytes, &error_abort);
1697
1698 if (!drv) {
1699 return -ENOMEDIUM;
1700 }
1701
1702 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1703 return -ENOTSUP;
1704 }
1705
1706 /* By definition there is no user buffer so this flag doesn't make sense */
1707 if (flags & BDRV_REQ_REGISTERED_BUF) {
1708 return -EINVAL;
1709 }
1710
1711 /* Invalidate the cached block-status data range if this write overlaps */
1712 bdrv_bsc_invalidate_range(bs, offset, bytes);
1713
1714 assert(alignment % bs->bl.request_alignment == 0);
1715 head = offset % alignment;
1716 tail = (offset + bytes) % alignment;
1717 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1718 assert(max_write_zeroes >= bs->bl.request_alignment);
1719
1720 while (bytes > 0 && !ret) {
1721 int64_t num = bytes;
1722
1723 /* Align request. Block drivers can expect the "bulk" of the request
1724 * to be aligned, and that unaligned requests do not cross cluster
1725 * boundaries.
1726 */
1727 if (head) {
1728 /* Make a small request up to the first aligned sector. For
1729 * convenience, limit this request to max_transfer even if
1730 * we don't need to fall back to writes. */
1731 num = MIN(MIN(bytes, max_transfer), alignment - head);
1732 head = (head + num) % alignment;
1733 assert(num < max_write_zeroes);
1734 } else if (tail && num > alignment) {
1735 /* Shorten the request to the last aligned sector. */
1736 num -= tail;
1737 }
1738
1739 /* limit request size */
1740 if (num > max_write_zeroes) {
1741 num = max_write_zeroes;
1742 }
1743
1744 ret = -ENOTSUP;
1745 /* First try the efficient write zeroes operation */
1746 if (drv->bdrv_co_pwrite_zeroes) {
1747 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1748 flags & bs->supported_zero_flags);
1749 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1750 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1751 need_flush = true;
1752 }
1753 } else {
1754 assert(!bs->supported_zero_flags);
1755 }
1756
1757 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1758 /* Fall back to bounce buffer if write zeroes is unsupported */
1759 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1760
1761 if ((flags & BDRV_REQ_FUA) &&
1762 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1763 /* No need for bdrv_driver_pwrite() to do a fallback
1764 * flush on each chunk; use just one at the end */
1765 write_flags &= ~BDRV_REQ_FUA;
1766 need_flush = true;
1767 }
1768 num = MIN(num, max_transfer);
1769 if (buf == NULL) {
1770 buf = qemu_try_blockalign0(bs, num);
1771 if (buf == NULL) {
1772 ret = -ENOMEM;
1773 goto fail;
1774 }
1775 }
1776 qemu_iovec_init_buf(&qiov, buf, num);
1777
1778 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1779
1780 /* Keep bounce buffer around if it is big enough for all
1781 * all future requests.
1782 */
1783 if (num < max_transfer) {
1784 qemu_vfree(buf);
1785 buf = NULL;
1786 }
1787 }
1788
1789 offset += num;
1790 bytes -= num;
1791 }
1792
1793 fail:
1794 if (ret == 0 && need_flush) {
1795 ret = bdrv_co_flush(bs);
1796 }
1797 qemu_vfree(buf);
1798 return ret;
1799 }
1800
1801 static inline int coroutine_fn GRAPH_RDLOCK
1802 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1803 BdrvTrackedRequest *req, int flags)
1804 {
1805 BlockDriverState *bs = child->bs;
1806
1807 bdrv_check_request(offset, bytes, &error_abort);
1808
1809 if (bdrv_is_read_only(bs)) {
1810 return -EPERM;
1811 }
1812
1813 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1814 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1815 assert(!(flags & ~BDRV_REQ_MASK));
1816 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1817
1818 if (flags & BDRV_REQ_SERIALISING) {
1819 QEMU_LOCK_GUARD(&bs->reqs_lock);
1820
1821 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1822
1823 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1824 return -EBUSY;
1825 }
1826
1827 bdrv_wait_serialising_requests_locked(req);
1828 } else {
1829 bdrv_wait_serialising_requests(req);
1830 }
1831
1832 assert(req->overlap_offset <= offset);
1833 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1834 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1835 child->perm & BLK_PERM_RESIZE);
1836
1837 switch (req->type) {
1838 case BDRV_TRACKED_WRITE:
1839 case BDRV_TRACKED_DISCARD:
1840 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1841 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1842 } else {
1843 assert(child->perm & BLK_PERM_WRITE);
1844 }
1845 bdrv_write_threshold_check_write(bs, offset, bytes);
1846 return 0;
1847 case BDRV_TRACKED_TRUNCATE:
1848 assert(child->perm & BLK_PERM_RESIZE);
1849 return 0;
1850 default:
1851 abort();
1852 }
1853 }
1854
1855 static inline void coroutine_fn
1856 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1857 BdrvTrackedRequest *req, int ret)
1858 {
1859 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1860 BlockDriverState *bs = child->bs;
1861
1862 bdrv_check_request(offset, bytes, &error_abort);
1863
1864 qatomic_inc(&bs->write_gen);
1865
1866 /*
1867 * Discard cannot extend the image, but in error handling cases, such as
1868 * when reverting a qcow2 cluster allocation, the discarded range can pass
1869 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1870 * here. Instead, just skip it, since semantically a discard request
1871 * beyond EOF cannot expand the image anyway.
1872 */
1873 if (ret == 0 &&
1874 (req->type == BDRV_TRACKED_TRUNCATE ||
1875 end_sector > bs->total_sectors) &&
1876 req->type != BDRV_TRACKED_DISCARD) {
1877 bs->total_sectors = end_sector;
1878 bdrv_parent_cb_resize(bs);
1879 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1880 }
1881 if (req->bytes) {
1882 switch (req->type) {
1883 case BDRV_TRACKED_WRITE:
1884 stat64_max(&bs->wr_highest_offset, offset + bytes);
1885 /* fall through, to set dirty bits */
1886 case BDRV_TRACKED_DISCARD:
1887 bdrv_set_dirty(bs, offset, bytes);
1888 break;
1889 default:
1890 break;
1891 }
1892 }
1893 }
1894
1895 /*
1896 * Forwards an already correctly aligned write request to the BlockDriver,
1897 * after possibly fragmenting it.
1898 */
1899 static int coroutine_fn GRAPH_RDLOCK
1900 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
1901 int64_t offset, int64_t bytes, int64_t align,
1902 QEMUIOVector *qiov, size_t qiov_offset,
1903 BdrvRequestFlags flags)
1904 {
1905 BlockDriverState *bs = child->bs;
1906 BlockDriver *drv = bs->drv;
1907 int ret;
1908
1909 int64_t bytes_remaining = bytes;
1910 int max_transfer;
1911
1912 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1913
1914 if (!drv) {
1915 return -ENOMEDIUM;
1916 }
1917
1918 if (bdrv_has_readonly_bitmaps(bs)) {
1919 return -EPERM;
1920 }
1921
1922 assert(is_power_of_2(align));
1923 assert((offset & (align - 1)) == 0);
1924 assert((bytes & (align - 1)) == 0);
1925 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1926 align);
1927
1928 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1929
1930 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1931 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1932 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1933 flags |= BDRV_REQ_ZERO_WRITE;
1934 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1935 flags |= BDRV_REQ_MAY_UNMAP;
1936 }
1937
1938 /* Can't use optimization hint with bufferless zero write */
1939 flags &= ~BDRV_REQ_REGISTERED_BUF;
1940 }
1941
1942 if (ret < 0) {
1943 /* Do nothing, write notifier decided to fail this request */
1944 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1945 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1946 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1947 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1948 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1949 qiov, qiov_offset);
1950 } else if (bytes <= max_transfer) {
1951 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1952 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1953 } else {
1954 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1955 while (bytes_remaining) {
1956 int num = MIN(bytes_remaining, max_transfer);
1957 int local_flags = flags;
1958
1959 assert(num);
1960 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1961 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1962 /* If FUA is going to be emulated by flush, we only
1963 * need to flush on the last iteration */
1964 local_flags &= ~BDRV_REQ_FUA;
1965 }
1966
1967 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1968 num, qiov,
1969 qiov_offset + bytes - bytes_remaining,
1970 local_flags);
1971 if (ret < 0) {
1972 break;
1973 }
1974 bytes_remaining -= num;
1975 }
1976 }
1977 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
1978
1979 if (ret >= 0) {
1980 ret = 0;
1981 }
1982 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1983
1984 return ret;
1985 }
1986
1987 static int coroutine_fn GRAPH_RDLOCK
1988 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
1989 BdrvRequestFlags flags, BdrvTrackedRequest *req)
1990 {
1991 BlockDriverState *bs = child->bs;
1992 QEMUIOVector local_qiov;
1993 uint64_t align = bs->bl.request_alignment;
1994 int ret = 0;
1995 bool padding;
1996 BdrvRequestPadding pad;
1997
1998 /* This flag doesn't make sense for padding or zero writes */
1999 flags &= ~BDRV_REQ_REGISTERED_BUF;
2000
2001 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2002 if (padding) {
2003 assert(!(flags & BDRV_REQ_NO_WAIT));
2004 bdrv_make_request_serialising(req, align);
2005
2006 bdrv_padding_rmw_read(child, req, &pad, true);
2007
2008 if (pad.head || pad.merge_reads) {
2009 int64_t aligned_offset = offset & ~(align - 1);
2010 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2011
2012 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2013 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2014 align, &local_qiov, 0,
2015 flags & ~BDRV_REQ_ZERO_WRITE);
2016 if (ret < 0 || pad.merge_reads) {
2017 /* Error or all work is done */
2018 goto out;
2019 }
2020 offset += write_bytes - pad.head;
2021 bytes -= write_bytes - pad.head;
2022 }
2023 }
2024
2025 assert(!bytes || (offset & (align - 1)) == 0);
2026 if (bytes >= align) {
2027 /* Write the aligned part in the middle. */
2028 int64_t aligned_bytes = bytes & ~(align - 1);
2029 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2030 NULL, 0, flags);
2031 if (ret < 0) {
2032 goto out;
2033 }
2034 bytes -= aligned_bytes;
2035 offset += aligned_bytes;
2036 }
2037
2038 assert(!bytes || (offset & (align - 1)) == 0);
2039 if (bytes) {
2040 assert(align == pad.tail + bytes);
2041
2042 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2043 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2044 &local_qiov, 0,
2045 flags & ~BDRV_REQ_ZERO_WRITE);
2046 }
2047
2048 out:
2049 bdrv_padding_destroy(&pad);
2050
2051 return ret;
2052 }
2053
2054 /*
2055 * Handle a write request in coroutine context
2056 */
2057 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2058 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2059 BdrvRequestFlags flags)
2060 {
2061 IO_CODE();
2062 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2063 }
2064
2065 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2066 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2067 BdrvRequestFlags flags)
2068 {
2069 BlockDriverState *bs = child->bs;
2070 BdrvTrackedRequest req;
2071 uint64_t align = bs->bl.request_alignment;
2072 BdrvRequestPadding pad;
2073 int ret;
2074 bool padded = false;
2075 IO_CODE();
2076
2077 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2078
2079 if (!bdrv_co_is_inserted(bs)) {
2080 return -ENOMEDIUM;
2081 }
2082
2083 if (flags & BDRV_REQ_ZERO_WRITE) {
2084 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2085 } else {
2086 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2087 }
2088 if (ret < 0) {
2089 return ret;
2090 }
2091
2092 /* If the request is misaligned then we can't make it efficient */
2093 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2094 !QEMU_IS_ALIGNED(offset | bytes, align))
2095 {
2096 return -ENOTSUP;
2097 }
2098
2099 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2100 /*
2101 * Aligning zero request is nonsense. Even if driver has special meaning
2102 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2103 * it to driver due to request_alignment.
2104 *
2105 * Still, no reason to return an error if someone do unaligned
2106 * zero-length write occasionally.
2107 */
2108 return 0;
2109 }
2110
2111 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2112 /*
2113 * Pad request for following read-modify-write cycle.
2114 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2115 * alignment only if there is no ZERO flag.
2116 */
2117 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2118 &padded, &flags);
2119 if (ret < 0) {
2120 return ret;
2121 }
2122 }
2123
2124 bdrv_inc_in_flight(bs);
2125 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2126
2127 if (flags & BDRV_REQ_ZERO_WRITE) {
2128 assert(!padded);
2129 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2130 goto out;
2131 }
2132
2133 if (padded) {
2134 /*
2135 * Request was unaligned to request_alignment and therefore
2136 * padded. We are going to do read-modify-write, and must
2137 * serialize the request to prevent interactions of the
2138 * widened region with other transactions.
2139 */
2140 assert(!(flags & BDRV_REQ_NO_WAIT));
2141 bdrv_make_request_serialising(&req, align);
2142 bdrv_padding_rmw_read(child, &req, &pad, false);
2143 }
2144
2145 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2146 qiov, qiov_offset, flags);
2147
2148 bdrv_padding_destroy(&pad);
2149
2150 out:
2151 tracked_request_end(&req);
2152 bdrv_dec_in_flight(bs);
2153
2154 return ret;
2155 }
2156
2157 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2158 int64_t bytes, BdrvRequestFlags flags)
2159 {
2160 IO_CODE();
2161 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2162 assert_bdrv_graph_readable();
2163
2164 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2165 flags &= ~BDRV_REQ_MAY_UNMAP;
2166 }
2167
2168 return bdrv_co_pwritev(child, offset, bytes, NULL,
2169 BDRV_REQ_ZERO_WRITE | flags);
2170 }
2171
2172 /*
2173 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2174 */
2175 int bdrv_flush_all(void)
2176 {
2177 BdrvNextIterator it;
2178 BlockDriverState *bs = NULL;
2179 int result = 0;
2180
2181 GLOBAL_STATE_CODE();
2182
2183 /*
2184 * bdrv queue is managed by record/replay,
2185 * creating new flush request for stopping
2186 * the VM may break the determinism
2187 */
2188 if (replay_events_enabled()) {
2189 return result;
2190 }
2191
2192 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2193 AioContext *aio_context = bdrv_get_aio_context(bs);
2194 int ret;
2195
2196 aio_context_acquire(aio_context);
2197 ret = bdrv_flush(bs);
2198 if (ret < 0 && !result) {
2199 result = ret;
2200 }
2201 aio_context_release(aio_context);
2202 }
2203
2204 return result;
2205 }
2206
2207 /*
2208 * Returns the allocation status of the specified sectors.
2209 * Drivers not implementing the functionality are assumed to not support
2210 * backing files, hence all their sectors are reported as allocated.
2211 *
2212 * If 'want_zero' is true, the caller is querying for mapping
2213 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2214 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2215 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2216 *
2217 * If 'offset' is beyond the end of the disk image the return value is
2218 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2219 *
2220 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2221 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2222 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2223 *
2224 * 'pnum' is set to the number of bytes (including and immediately
2225 * following the specified offset) that are easily known to be in the
2226 * same allocated/unallocated state. Note that a second call starting
2227 * at the original offset plus returned pnum may have the same status.
2228 * The returned value is non-zero on success except at end-of-file.
2229 *
2230 * Returns negative errno on failure. Otherwise, if the
2231 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2232 * set to the host mapping and BDS corresponding to the guest offset.
2233 */
2234 static int coroutine_fn GRAPH_RDLOCK
2235 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2236 int64_t offset, int64_t bytes,
2237 int64_t *pnum, int64_t *map, BlockDriverState **file)
2238 {
2239 int64_t total_size;
2240 int64_t n; /* bytes */
2241 int ret;
2242 int64_t local_map = 0;
2243 BlockDriverState *local_file = NULL;
2244 int64_t aligned_offset, aligned_bytes;
2245 uint32_t align;
2246 bool has_filtered_child;
2247
2248 assert(pnum);
2249 assert_bdrv_graph_readable();
2250 *pnum = 0;
2251 total_size = bdrv_getlength(bs);
2252 if (total_size < 0) {
2253 ret = total_size;
2254 goto early_out;
2255 }
2256
2257 if (offset >= total_size) {
2258 ret = BDRV_BLOCK_EOF;
2259 goto early_out;
2260 }
2261 if (!bytes) {
2262 ret = 0;
2263 goto early_out;
2264 }
2265
2266 n = total_size - offset;
2267 if (n < bytes) {
2268 bytes = n;
2269 }
2270
2271 /* Must be non-NULL or bdrv_getlength() would have failed */
2272 assert(bs->drv);
2273 has_filtered_child = bdrv_filter_child(bs);
2274 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2275 *pnum = bytes;
2276 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2277 if (offset + bytes == total_size) {
2278 ret |= BDRV_BLOCK_EOF;
2279 }
2280 if (bs->drv->protocol_name) {
2281 ret |= BDRV_BLOCK_OFFSET_VALID;
2282 local_map = offset;
2283 local_file = bs;
2284 }
2285 goto early_out;
2286 }
2287
2288 bdrv_inc_in_flight(bs);
2289
2290 /* Round out to request_alignment boundaries */
2291 align = bs->bl.request_alignment;
2292 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2293 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2294
2295 if (bs->drv->bdrv_co_block_status) {
2296 /*
2297 * Use the block-status cache only for protocol nodes: Format
2298 * drivers are generally quick to inquire the status, but protocol
2299 * drivers often need to get information from outside of qemu, so
2300 * we do not have control over the actual implementation. There
2301 * have been cases where inquiring the status took an unreasonably
2302 * long time, and we can do nothing in qemu to fix it.
2303 * This is especially problematic for images with large data areas,
2304 * because finding the few holes in them and giving them special
2305 * treatment does not gain much performance. Therefore, we try to
2306 * cache the last-identified data region.
2307 *
2308 * Second, limiting ourselves to protocol nodes allows us to assume
2309 * the block status for data regions to be DATA | OFFSET_VALID, and
2310 * that the host offset is the same as the guest offset.
2311 *
2312 * Note that it is possible that external writers zero parts of
2313 * the cached regions without the cache being invalidated, and so
2314 * we may report zeroes as data. This is not catastrophic,
2315 * however, because reporting zeroes as data is fine.
2316 */
2317 if (QLIST_EMPTY(&bs->children) &&
2318 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2319 {
2320 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2321 local_file = bs;
2322 local_map = aligned_offset;
2323 } else {
2324 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2325 aligned_bytes, pnum, &local_map,
2326 &local_file);
2327
2328 /*
2329 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2330 * the cache is queried above. Technically, we do not need to check
2331 * it here; the worst that can happen is that we fill the cache for
2332 * non-protocol nodes, and then it is never used. However, filling
2333 * the cache requires an RCU update, so double check here to avoid
2334 * such an update if possible.
2335 *
2336 * Check want_zero, because we only want to update the cache when we
2337 * have accurate information about what is zero and what is data.
2338 */
2339 if (want_zero &&
2340 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2341 QLIST_EMPTY(&bs->children))
2342 {
2343 /*
2344 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2345 * returned local_map value must be the same as the offset we
2346 * have passed (aligned_offset), and local_bs must be the node
2347 * itself.
2348 * Assert this, because we follow this rule when reading from
2349 * the cache (see the `local_file = bs` and
2350 * `local_map = aligned_offset` assignments above), and the
2351 * result the cache delivers must be the same as the driver
2352 * would deliver.
2353 */
2354 assert(local_file == bs);
2355 assert(local_map == aligned_offset);
2356 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2357 }
2358 }
2359 } else {
2360 /* Default code for filters */
2361
2362 local_file = bdrv_filter_bs(bs);
2363 assert(local_file);
2364
2365 *pnum = aligned_bytes;
2366 local_map = aligned_offset;
2367 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2368 }
2369 if (ret < 0) {
2370 *pnum = 0;
2371 goto out;
2372 }
2373
2374 /*
2375 * The driver's result must be a non-zero multiple of request_alignment.
2376 * Clamp pnum and adjust map to original request.
2377 */
2378 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2379 align > offset - aligned_offset);
2380 if (ret & BDRV_BLOCK_RECURSE) {
2381 assert(ret & BDRV_BLOCK_DATA);
2382 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2383 assert(!(ret & BDRV_BLOCK_ZERO));
2384 }
2385
2386 *pnum -= offset - aligned_offset;
2387 if (*pnum > bytes) {
2388 *pnum = bytes;
2389 }
2390 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2391 local_map += offset - aligned_offset;
2392 }
2393
2394 if (ret & BDRV_BLOCK_RAW) {
2395 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2396 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2397 *pnum, pnum, &local_map, &local_file);
2398 goto out;
2399 }
2400
2401 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2402 ret |= BDRV_BLOCK_ALLOCATED;
2403 } else if (bs->drv->supports_backing) {
2404 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2405
2406 if (!cow_bs) {
2407 ret |= BDRV_BLOCK_ZERO;
2408 } else if (want_zero) {
2409 int64_t size2 = bdrv_getlength(cow_bs);
2410
2411 if (size2 >= 0 && offset >= size2) {
2412 ret |= BDRV_BLOCK_ZERO;
2413 }
2414 }
2415 }
2416
2417 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2418 local_file && local_file != bs &&
2419 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2420 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2421 int64_t file_pnum;
2422 int ret2;
2423
2424 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2425 *pnum, &file_pnum, NULL, NULL);
2426 if (ret2 >= 0) {
2427 /* Ignore errors. This is just providing extra information, it
2428 * is useful but not necessary.
2429 */
2430 if (ret2 & BDRV_BLOCK_EOF &&
2431 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2432 /*
2433 * It is valid for the format block driver to read
2434 * beyond the end of the underlying file's current
2435 * size; such areas read as zero.
2436 */
2437 ret |= BDRV_BLOCK_ZERO;
2438 } else {
2439 /* Limit request to the range reported by the protocol driver */
2440 *pnum = file_pnum;
2441 ret |= (ret2 & BDRV_BLOCK_ZERO);
2442 }
2443 }
2444 }
2445
2446 out:
2447 bdrv_dec_in_flight(bs);
2448 if (ret >= 0 && offset + *pnum == total_size) {
2449 ret |= BDRV_BLOCK_EOF;
2450 }
2451 early_out:
2452 if (file) {
2453 *file = local_file;
2454 }
2455 if (map) {
2456 *map = local_map;
2457 }
2458 return ret;
2459 }
2460
2461 int coroutine_fn
2462 bdrv_co_common_block_status_above(BlockDriverState *bs,
2463 BlockDriverState *base,
2464 bool include_base,
2465 bool want_zero,
2466 int64_t offset,
2467 int64_t bytes,
2468 int64_t *pnum,
2469 int64_t *map,
2470 BlockDriverState **file,
2471 int *depth)
2472 {
2473 int ret;
2474 BlockDriverState *p;
2475 int64_t eof = 0;
2476 int dummy;
2477 IO_CODE();
2478
2479 assert(!include_base || base); /* Can't include NULL base */
2480 assert_bdrv_graph_readable();
2481
2482 if (!depth) {
2483 depth = &dummy;
2484 }
2485 *depth = 0;
2486
2487 if (!include_base && bs == base) {
2488 *pnum = bytes;
2489 return 0;
2490 }
2491
2492 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2493 ++*depth;
2494 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2495 return ret;
2496 }
2497
2498 if (ret & BDRV_BLOCK_EOF) {
2499 eof = offset + *pnum;
2500 }
2501
2502 assert(*pnum <= bytes);
2503 bytes = *pnum;
2504
2505 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2506 p = bdrv_filter_or_cow_bs(p))
2507 {
2508 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2509 file);
2510 ++*depth;
2511 if (ret < 0) {
2512 return ret;
2513 }
2514 if (*pnum == 0) {
2515 /*
2516 * The top layer deferred to this layer, and because this layer is
2517 * short, any zeroes that we synthesize beyond EOF behave as if they
2518 * were allocated at this layer.
2519 *
2520 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2521 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2522 * below.
2523 */
2524 assert(ret & BDRV_BLOCK_EOF);
2525 *pnum = bytes;
2526 if (file) {
2527 *file = p;
2528 }
2529 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2530 break;
2531 }
2532 if (ret & BDRV_BLOCK_ALLOCATED) {
2533 /*
2534 * We've found the node and the status, we must break.
2535 *
2536 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2537 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2538 * below.
2539 */
2540 ret &= ~BDRV_BLOCK_EOF;
2541 break;
2542 }
2543
2544 if (p == base) {
2545 assert(include_base);
2546 break;
2547 }
2548
2549 /*
2550 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2551 * let's continue the diving.
2552 */
2553 assert(*pnum <= bytes);
2554 bytes = *pnum;
2555 }
2556
2557 if (offset + *pnum == eof) {
2558 ret |= BDRV_BLOCK_EOF;
2559 }
2560
2561 return ret;
2562 }
2563
2564 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2565 BlockDriverState *base,
2566 int64_t offset, int64_t bytes,
2567 int64_t *pnum, int64_t *map,
2568 BlockDriverState **file)
2569 {
2570 IO_CODE();
2571 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2572 bytes, pnum, map, file, NULL);
2573 }
2574
2575 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2576 int64_t offset, int64_t bytes, int64_t *pnum,
2577 int64_t *map, BlockDriverState **file)
2578 {
2579 IO_CODE();
2580 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2581 pnum, map, file, NULL);
2582 }
2583
2584 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2585 int64_t *pnum, int64_t *map, BlockDriverState **file)
2586 {
2587 IO_CODE();
2588 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2589 offset, bytes, pnum, map, file);
2590 }
2591
2592 /*
2593 * Check @bs (and its backing chain) to see if the range defined
2594 * by @offset and @bytes is known to read as zeroes.
2595 * Return 1 if that is the case, 0 otherwise and -errno on error.
2596 * This test is meant to be fast rather than accurate so returning 0
2597 * does not guarantee non-zero data.
2598 */
2599 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2600 int64_t bytes)
2601 {
2602 int ret;
2603 int64_t pnum = bytes;
2604 IO_CODE();
2605
2606 if (!bytes) {
2607 return 1;
2608 }
2609
2610 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2611 bytes, &pnum, NULL, NULL, NULL);
2612
2613 if (ret < 0) {
2614 return ret;
2615 }
2616
2617 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2618 }
2619
2620 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2621 int64_t bytes, int64_t *pnum)
2622 {
2623 int ret;
2624 int64_t dummy;
2625 IO_CODE();
2626
2627 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2628 bytes, pnum ? pnum : &dummy, NULL,
2629 NULL, NULL);
2630 if (ret < 0) {
2631 return ret;
2632 }
2633 return !!(ret & BDRV_BLOCK_ALLOCATED);
2634 }
2635
2636 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2637 int64_t *pnum)
2638 {
2639 int ret;
2640 int64_t dummy;
2641 IO_CODE();
2642
2643 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2644 bytes, pnum ? pnum : &dummy, NULL,
2645 NULL, NULL);
2646 if (ret < 0) {
2647 return ret;
2648 }
2649 return !!(ret & BDRV_BLOCK_ALLOCATED);
2650 }
2651
2652 /* See bdrv_is_allocated_above for documentation */
2653 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2654 BlockDriverState *base,
2655 bool include_base, int64_t offset,
2656 int64_t bytes, int64_t *pnum)
2657 {
2658 int depth;
2659 int ret;
2660 IO_CODE();
2661
2662 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2663 offset, bytes, pnum, NULL, NULL,
2664 &depth);
2665 if (ret < 0) {
2666 return ret;
2667 }
2668
2669 if (ret & BDRV_BLOCK_ALLOCATED) {
2670 return depth;
2671 }
2672 return 0;
2673 }
2674
2675 /*
2676 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2677 *
2678 * Return a positive depth if (a prefix of) the given range is allocated
2679 * in any image between BASE and TOP (BASE is only included if include_base
2680 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2681 * BASE can be NULL to check if the given offset is allocated in any
2682 * image of the chain. Return 0 otherwise, or negative errno on
2683 * failure.
2684 *
2685 * 'pnum' is set to the number of bytes (including and immediately
2686 * following the specified offset) that are known to be in the same
2687 * allocated/unallocated state. Note that a subsequent call starting
2688 * at 'offset + *pnum' may return the same allocation status (in other
2689 * words, the result is not necessarily the maximum possible range);
2690 * but 'pnum' will only be 0 when end of file is reached.
2691 */
2692 int bdrv_is_allocated_above(BlockDriverState *top,
2693 BlockDriverState *base,
2694 bool include_base, int64_t offset,
2695 int64_t bytes, int64_t *pnum)
2696 {
2697 int depth;
2698 int ret;
2699 IO_CODE();
2700
2701 ret = bdrv_common_block_status_above(top, base, include_base, false,
2702 offset, bytes, pnum, NULL, NULL,
2703 &depth);
2704 if (ret < 0) {
2705 return ret;
2706 }
2707
2708 if (ret & BDRV_BLOCK_ALLOCATED) {
2709 return depth;
2710 }
2711 return 0;
2712 }
2713
2714 int coroutine_fn
2715 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2716 {
2717 BlockDriver *drv = bs->drv;
2718 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2719 int ret;
2720 IO_CODE();
2721 assert_bdrv_graph_readable();
2722
2723 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2724 if (ret < 0) {
2725 return ret;
2726 }
2727
2728 if (!drv) {
2729 return -ENOMEDIUM;
2730 }
2731
2732 bdrv_inc_in_flight(bs);
2733
2734 if (drv->bdrv_co_load_vmstate) {
2735 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2736 } else if (child_bs) {
2737 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2738 } else {
2739 ret = -ENOTSUP;
2740 }
2741
2742 bdrv_dec_in_flight(bs);
2743
2744 return ret;
2745 }
2746
2747 int coroutine_fn
2748 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2749 {
2750 BlockDriver *drv = bs->drv;
2751 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2752 int ret;
2753 IO_CODE();
2754 assert_bdrv_graph_readable();
2755
2756 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2757 if (ret < 0) {
2758 return ret;
2759 }
2760
2761 if (!drv) {
2762 return -ENOMEDIUM;
2763 }
2764
2765 bdrv_inc_in_flight(bs);
2766
2767 if (drv->bdrv_co_save_vmstate) {
2768 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2769 } else if (child_bs) {
2770 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2771 } else {
2772 ret = -ENOTSUP;
2773 }
2774
2775 bdrv_dec_in_flight(bs);
2776
2777 return ret;
2778 }
2779
2780 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2781 int64_t pos, int size)
2782 {
2783 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2784 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2785 IO_CODE();
2786
2787 return ret < 0 ? ret : size;
2788 }
2789
2790 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2791 int64_t pos, int size)
2792 {
2793 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2794 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2795 IO_CODE();
2796
2797 return ret < 0 ? ret : size;
2798 }
2799
2800 /**************************************************************/
2801 /* async I/Os */
2802
2803 void bdrv_aio_cancel(BlockAIOCB *acb)
2804 {
2805 IO_CODE();
2806 qemu_aio_ref(acb);
2807 bdrv_aio_cancel_async(acb);
2808 while (acb->refcnt > 1) {
2809 if (acb->aiocb_info->get_aio_context) {
2810 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2811 } else if (acb->bs) {
2812 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2813 * assert that we're not using an I/O thread. Thread-safe
2814 * code should use bdrv_aio_cancel_async exclusively.
2815 */
2816 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2817 aio_poll(bdrv_get_aio_context(acb->bs), true);
2818 } else {
2819 abort();
2820 }
2821 }
2822 qemu_aio_unref(acb);
2823 }
2824
2825 /* Async version of aio cancel. The caller is not blocked if the acb implements
2826 * cancel_async, otherwise we do nothing and let the request normally complete.
2827 * In either case the completion callback must be called. */
2828 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2829 {
2830 IO_CODE();
2831 if (acb->aiocb_info->cancel_async) {
2832 acb->aiocb_info->cancel_async(acb);
2833 }
2834 }
2835
2836 /**************************************************************/
2837 /* Coroutine block device emulation */
2838
2839 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2840 {
2841 BdrvChild *primary_child = bdrv_primary_child(bs);
2842 BdrvChild *child;
2843 int current_gen;
2844 int ret = 0;
2845 IO_CODE();
2846
2847 assert_bdrv_graph_readable();
2848 bdrv_inc_in_flight(bs);
2849
2850 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2851 bdrv_is_sg(bs)) {
2852 goto early_exit;
2853 }
2854
2855 qemu_co_mutex_lock(&bs->reqs_lock);
2856 current_gen = qatomic_read(&bs->write_gen);
2857
2858 /* Wait until any previous flushes are completed */
2859 while (bs->active_flush_req) {
2860 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2861 }
2862
2863 /* Flushes reach this point in nondecreasing current_gen order. */
2864 bs->active_flush_req = true;
2865 qemu_co_mutex_unlock(&bs->reqs_lock);
2866
2867 /* Write back all layers by calling one driver function */
2868 if (bs->drv->bdrv_co_flush) {
2869 ret = bs->drv->bdrv_co_flush(bs);
2870 goto out;
2871 }
2872
2873 /* Write back cached data to the OS even with cache=unsafe */
2874 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2875 if (bs->drv->bdrv_co_flush_to_os) {
2876 ret = bs->drv->bdrv_co_flush_to_os(bs);
2877 if (ret < 0) {
2878 goto out;
2879 }
2880 }
2881
2882 /* But don't actually force it to the disk with cache=unsafe */
2883 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2884 goto flush_children;
2885 }
2886
2887 /* Check if we really need to flush anything */
2888 if (bs->flushed_gen == current_gen) {
2889 goto flush_children;
2890 }
2891
2892 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2893 if (!bs->drv) {
2894 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2895 * (even in case of apparent success) */
2896 ret = -ENOMEDIUM;
2897 goto out;
2898 }
2899 if (bs->drv->bdrv_co_flush_to_disk) {
2900 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2901 } else if (bs->drv->bdrv_aio_flush) {
2902 BlockAIOCB *acb;
2903 CoroutineIOCompletion co = {
2904 .coroutine = qemu_coroutine_self(),
2905 };
2906
2907 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2908 if (acb == NULL) {
2909 ret = -EIO;
2910 } else {
2911 qemu_coroutine_yield();
2912 ret = co.ret;
2913 }
2914 } else {
2915 /*
2916 * Some block drivers always operate in either writethrough or unsafe
2917 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2918 * know how the server works (because the behaviour is hardcoded or
2919 * depends on server-side configuration), so we can't ensure that
2920 * everything is safe on disk. Returning an error doesn't work because
2921 * that would break guests even if the server operates in writethrough
2922 * mode.
2923 *
2924 * Let's hope the user knows what he's doing.
2925 */
2926 ret = 0;
2927 }
2928
2929 if (ret < 0) {
2930 goto out;
2931 }
2932
2933 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2934 * in the case of cache=unsafe, so there are no useless flushes.
2935 */
2936 flush_children:
2937 ret = 0;
2938 QLIST_FOREACH(child, &bs->children, next) {
2939 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2940 int this_child_ret = bdrv_co_flush(child->bs);
2941 if (!ret) {
2942 ret = this_child_ret;
2943 }
2944 }
2945 }
2946
2947 out:
2948 /* Notify any pending flushes that we have completed */
2949 if (ret == 0) {
2950 bs->flushed_gen = current_gen;
2951 }
2952
2953 qemu_co_mutex_lock(&bs->reqs_lock);
2954 bs->active_flush_req = false;
2955 /* Return value is ignored - it's ok if wait queue is empty */
2956 qemu_co_queue_next(&bs->flush_queue);
2957 qemu_co_mutex_unlock(&bs->reqs_lock);
2958
2959 early_exit:
2960 bdrv_dec_in_flight(bs);
2961 return ret;
2962 }
2963
2964 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2965 int64_t bytes)
2966 {
2967 BdrvTrackedRequest req;
2968 int ret;
2969 int64_t max_pdiscard;
2970 int head, tail, align;
2971 BlockDriverState *bs = child->bs;
2972 IO_CODE();
2973 assert_bdrv_graph_readable();
2974
2975 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
2976 return -ENOMEDIUM;
2977 }
2978
2979 if (bdrv_has_readonly_bitmaps(bs)) {
2980 return -EPERM;
2981 }
2982
2983 ret = bdrv_check_request(offset, bytes, NULL);
2984 if (ret < 0) {
2985 return ret;
2986 }
2987
2988 /* Do nothing if disabled. */
2989 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2990 return 0;
2991 }
2992
2993 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2994 return 0;
2995 }
2996
2997 /* Invalidate the cached block-status data range if this discard overlaps */
2998 bdrv_bsc_invalidate_range(bs, offset, bytes);
2999
3000 /* Discard is advisory, but some devices track and coalesce
3001 * unaligned requests, so we must pass everything down rather than
3002 * round here. Still, most devices will just silently ignore
3003 * unaligned requests (by returning -ENOTSUP), so we must fragment
3004 * the request accordingly. */
3005 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3006 assert(align % bs->bl.request_alignment == 0);
3007 head = offset % align;
3008 tail = (offset + bytes) % align;
3009
3010 bdrv_inc_in_flight(bs);
3011 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3012
3013 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3014 if (ret < 0) {
3015 goto out;
3016 }
3017
3018 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3019 align);
3020 assert(max_pdiscard >= bs->bl.request_alignment);
3021
3022 while (bytes > 0) {
3023 int64_t num = bytes;
3024
3025 if (head) {
3026 /* Make small requests to get to alignment boundaries. */
3027 num = MIN(bytes, align - head);
3028 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3029 num %= bs->bl.request_alignment;
3030 }
3031 head = (head + num) % align;
3032 assert(num < max_pdiscard);
3033 } else if (tail) {
3034 if (num > align) {
3035 /* Shorten the request to the last aligned cluster. */
3036 num -= tail;
3037 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3038 tail > bs->bl.request_alignment) {
3039 tail %= bs->bl.request_alignment;
3040 num -= tail;
3041 }
3042 }
3043 /* limit request size */
3044 if (num > max_pdiscard) {
3045 num = max_pdiscard;
3046 }
3047
3048 if (!bs->drv) {
3049 ret = -ENOMEDIUM;
3050 goto out;
3051 }
3052 if (bs->drv->bdrv_co_pdiscard) {
3053 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3054 } else {
3055 BlockAIOCB *acb;
3056 CoroutineIOCompletion co = {
3057 .coroutine = qemu_coroutine_self(),
3058 };
3059
3060 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3061 bdrv_co_io_em_complete, &co);
3062 if (acb == NULL) {
3063 ret = -EIO;
3064 goto out;
3065 } else {
3066 qemu_coroutine_yield();
3067 ret = co.ret;
3068 }
3069 }
3070 if (ret && ret != -ENOTSUP) {
3071 goto out;
3072 }
3073
3074 offset += num;
3075 bytes -= num;
3076 }
3077 ret = 0;
3078 out:
3079 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3080 tracked_request_end(&req);
3081 bdrv_dec_in_flight(bs);
3082 return ret;
3083 }
3084
3085 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3086 {
3087 BlockDriver *drv = bs->drv;
3088 CoroutineIOCompletion co = {
3089 .coroutine = qemu_coroutine_self(),
3090 };
3091 BlockAIOCB *acb;
3092 IO_CODE();
3093 assert_bdrv_graph_readable();
3094
3095 bdrv_inc_in_flight(bs);
3096 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3097 co.ret = -ENOTSUP;
3098 goto out;
3099 }
3100
3101 if (drv->bdrv_co_ioctl) {
3102 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3103 } else {
3104 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3105 if (!acb) {
3106 co.ret = -ENOTSUP;
3107 goto out;
3108 }
3109 qemu_coroutine_yield();
3110 }
3111 out:
3112 bdrv_dec_in_flight(bs);
3113 return co.ret;
3114 }
3115
3116 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3117 unsigned int *nr_zones,
3118 BlockZoneDescriptor *zones)
3119 {
3120 BlockDriver *drv = bs->drv;
3121 CoroutineIOCompletion co = {
3122 .coroutine = qemu_coroutine_self(),
3123 };
3124 IO_CODE();
3125
3126 bdrv_inc_in_flight(bs);
3127 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3128 co.ret = -ENOTSUP;
3129 goto out;
3130 }
3131 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3132 out:
3133 bdrv_dec_in_flight(bs);
3134 return co.ret;
3135 }
3136
3137 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3138 int64_t offset, int64_t len)
3139 {
3140 BlockDriver *drv = bs->drv;
3141 CoroutineIOCompletion co = {
3142 .coroutine = qemu_coroutine_self(),
3143 };
3144 IO_CODE();
3145
3146 bdrv_inc_in_flight(bs);
3147 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3148 co.ret = -ENOTSUP;
3149 goto out;
3150 }
3151 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3152 out:
3153 bdrv_dec_in_flight(bs);
3154 return co.ret;
3155 }
3156
3157 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3158 QEMUIOVector *qiov,
3159 BdrvRequestFlags flags)
3160 {
3161 int ret;
3162 BlockDriver *drv = bs->drv;
3163 CoroutineIOCompletion co = {
3164 .coroutine = qemu_coroutine_self(),
3165 };
3166 IO_CODE();
3167
3168 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3169 if (ret < 0) {
3170 return ret;
3171 }
3172
3173 bdrv_inc_in_flight(bs);
3174 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3175 co.ret = -ENOTSUP;
3176 goto out;
3177 }
3178 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3179 out:
3180 bdrv_dec_in_flight(bs);
3181 return co.ret;
3182 }
3183
3184 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3185 {
3186 IO_CODE();
3187 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3188 }
3189
3190 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3191 {
3192 IO_CODE();
3193 return memset(qemu_blockalign(bs, size), 0, size);
3194 }
3195
3196 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3197 {
3198 size_t align = bdrv_opt_mem_align(bs);
3199 IO_CODE();
3200
3201 /* Ensure that NULL is never returned on success */
3202 assert(align > 0);
3203 if (size == 0) {
3204 size = align;
3205 }
3206
3207 return qemu_try_memalign(align, size);
3208 }
3209
3210 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3211 {
3212 void *mem = qemu_try_blockalign(bs, size);
3213 IO_CODE();
3214
3215 if (mem) {
3216 memset(mem, 0, size);
3217 }
3218
3219 return mem;
3220 }
3221
3222 void coroutine_fn bdrv_co_io_plug(BlockDriverState *bs)
3223 {
3224 BdrvChild *child;
3225 IO_CODE();
3226 assert_bdrv_graph_readable();
3227
3228 QLIST_FOREACH(child, &bs->children, next) {
3229 bdrv_co_io_plug(child->bs);
3230 }
3231
3232 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3233 BlockDriver *drv = bs->drv;
3234 if (drv && drv->bdrv_co_io_plug) {
3235 drv->bdrv_co_io_plug(bs);
3236 }
3237 }
3238 }
3239
3240 void coroutine_fn bdrv_co_io_unplug(BlockDriverState *bs)
3241 {
3242 BdrvChild *child;
3243 IO_CODE();
3244 assert_bdrv_graph_readable();
3245
3246 assert(bs->io_plugged);
3247 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3248 BlockDriver *drv = bs->drv;
3249 if (drv && drv->bdrv_co_io_unplug) {
3250 drv->bdrv_co_io_unplug(bs);
3251 }
3252 }
3253
3254 QLIST_FOREACH(child, &bs->children, next) {
3255 bdrv_co_io_unplug(child->bs);
3256 }
3257 }
3258
3259 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3260 static void GRAPH_RDLOCK
3261 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3262 BdrvChild *final_child)
3263 {
3264 BdrvChild *child;
3265
3266 GLOBAL_STATE_CODE();
3267 assert_bdrv_graph_readable();
3268
3269 QLIST_FOREACH(child, &bs->children, next) {
3270 if (child == final_child) {
3271 break;
3272 }
3273
3274 bdrv_unregister_buf(child->bs, host, size);
3275 }
3276
3277 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3278 bs->drv->bdrv_unregister_buf(bs, host, size);
3279 }
3280 }
3281
3282 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3283 Error **errp)
3284 {
3285 BdrvChild *child;
3286
3287 GLOBAL_STATE_CODE();
3288 GRAPH_RDLOCK_GUARD_MAINLOOP();
3289
3290 if (bs->drv && bs->drv->bdrv_register_buf) {
3291 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3292 return false;
3293 }
3294 }
3295 QLIST_FOREACH(child, &bs->children, next) {
3296 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3297 bdrv_register_buf_rollback(bs, host, size, child);
3298 return false;
3299 }
3300 }
3301 return true;
3302 }
3303
3304 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3305 {
3306 BdrvChild *child;
3307
3308 GLOBAL_STATE_CODE();
3309 GRAPH_RDLOCK_GUARD_MAINLOOP();
3310
3311 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3312 bs->drv->bdrv_unregister_buf(bs, host, size);
3313 }
3314 QLIST_FOREACH(child, &bs->children, next) {
3315 bdrv_unregister_buf(child->bs, host, size);
3316 }
3317 }
3318
3319 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3320 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3321 int64_t dst_offset, int64_t bytes,
3322 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3323 bool recurse_src)
3324 {
3325 BdrvTrackedRequest req;
3326 int ret;
3327 assert_bdrv_graph_readable();
3328
3329 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3330 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3331 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3332 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3333 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3334
3335 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3336 return -ENOMEDIUM;
3337 }
3338 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3339 if (ret) {
3340 return ret;
3341 }
3342 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3343 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3344 }
3345
3346 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3347 return -ENOMEDIUM;
3348 }
3349 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3350 if (ret) {
3351 return ret;
3352 }
3353
3354 if (!src->bs->drv->bdrv_co_copy_range_from
3355 || !dst->bs->drv->bdrv_co_copy_range_to
3356 || src->bs->encrypted || dst->bs->encrypted) {
3357 return -ENOTSUP;
3358 }
3359
3360 if (recurse_src) {
3361 bdrv_inc_in_flight(src->bs);
3362 tracked_request_begin(&req, src->bs, src_offset, bytes,
3363 BDRV_TRACKED_READ);
3364
3365 /* BDRV_REQ_SERIALISING is only for write operation */
3366 assert(!(read_flags & BDRV_REQ_SERIALISING));
3367 bdrv_wait_serialising_requests(&req);
3368
3369 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3370 src, src_offset,
3371 dst, dst_offset,
3372 bytes,
3373 read_flags, write_flags);
3374
3375 tracked_request_end(&req);
3376 bdrv_dec_in_flight(src->bs);
3377 } else {
3378 bdrv_inc_in_flight(dst->bs);
3379 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3380 BDRV_TRACKED_WRITE);
3381 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3382 write_flags);
3383 if (!ret) {
3384 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3385 src, src_offset,
3386 dst, dst_offset,
3387 bytes,
3388 read_flags, write_flags);
3389 }
3390 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3391 tracked_request_end(&req);
3392 bdrv_dec_in_flight(dst->bs);
3393 }
3394
3395 return ret;
3396 }
3397
3398 /* Copy range from @src to @dst.
3399 *
3400 * See the comment of bdrv_co_copy_range for the parameter and return value
3401 * semantics. */
3402 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3403 BdrvChild *dst, int64_t dst_offset,
3404 int64_t bytes,
3405 BdrvRequestFlags read_flags,
3406 BdrvRequestFlags write_flags)
3407 {
3408 IO_CODE();
3409 assert_bdrv_graph_readable();
3410 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3411 read_flags, write_flags);
3412 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3413 bytes, read_flags, write_flags, true);
3414 }
3415
3416 /* Copy range from @src to @dst.
3417 *
3418 * See the comment of bdrv_co_copy_range for the parameter and return value
3419 * semantics. */
3420 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3421 BdrvChild *dst, int64_t dst_offset,
3422 int64_t bytes,
3423 BdrvRequestFlags read_flags,
3424 BdrvRequestFlags write_flags)
3425 {
3426 IO_CODE();
3427 assert_bdrv_graph_readable();
3428 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3429 read_flags, write_flags);
3430 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3431 bytes, read_flags, write_flags, false);
3432 }
3433
3434 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3435 BdrvChild *dst, int64_t dst_offset,
3436 int64_t bytes, BdrvRequestFlags read_flags,
3437 BdrvRequestFlags write_flags)
3438 {
3439 IO_CODE();
3440 assert_bdrv_graph_readable();
3441
3442 return bdrv_co_copy_range_from(src, src_offset,
3443 dst, dst_offset,
3444 bytes, read_flags, write_flags);
3445 }
3446
3447 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3448 {
3449 BdrvChild *c;
3450 QLIST_FOREACH(c, &bs->parents, next_parent) {
3451 if (c->klass->resize) {
3452 c->klass->resize(c);
3453 }
3454 }
3455 }
3456
3457 /**
3458 * Truncate file to 'offset' bytes (needed only for file protocols)
3459 *
3460 * If 'exact' is true, the file must be resized to exactly the given
3461 * 'offset'. Otherwise, it is sufficient for the node to be at least
3462 * 'offset' bytes in length.
3463 */
3464 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3465 PreallocMode prealloc, BdrvRequestFlags flags,
3466 Error **errp)
3467 {
3468 BlockDriverState *bs = child->bs;
3469 BdrvChild *filtered, *backing;
3470 BlockDriver *drv = bs->drv;
3471 BdrvTrackedRequest req;
3472 int64_t old_size, new_bytes;
3473 int ret;
3474 IO_CODE();
3475 assert_bdrv_graph_readable();
3476
3477 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3478 if (!drv) {
3479 error_setg(errp, "No medium inserted");
3480 return -ENOMEDIUM;
3481 }
3482 if (offset < 0) {
3483 error_setg(errp, "Image size cannot be negative");
3484 return -EINVAL;
3485 }
3486
3487 ret = bdrv_check_request(offset, 0, errp);
3488 if (ret < 0) {
3489 return ret;
3490 }
3491
3492 old_size = bdrv_getlength(bs);
3493 if (old_size < 0) {
3494 error_setg_errno(errp, -old_size, "Failed to get old image size");
3495 return old_size;
3496 }
3497
3498 if (bdrv_is_read_only(bs)) {
3499 error_setg(errp, "Image is read-only");
3500 return -EACCES;
3501 }
3502
3503 if (offset > old_size) {
3504 new_bytes = offset - old_size;
3505 } else {
3506 new_bytes = 0;
3507 }
3508
3509 bdrv_inc_in_flight(bs);
3510 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3511 BDRV_TRACKED_TRUNCATE);
3512
3513 /* If we are growing the image and potentially using preallocation for the
3514 * new area, we need to make sure that no write requests are made to it
3515 * concurrently or they might be overwritten by preallocation. */
3516 if (new_bytes) {
3517 bdrv_make_request_serialising(&req, 1);
3518 }
3519 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3520 0);
3521 if (ret < 0) {
3522 error_setg_errno(errp, -ret,
3523 "Failed to prepare request for truncation");
3524 goto out;
3525 }
3526
3527 filtered = bdrv_filter_child(bs);
3528 backing = bdrv_cow_child(bs);
3529
3530 /*
3531 * If the image has a backing file that is large enough that it would
3532 * provide data for the new area, we cannot leave it unallocated because
3533 * then the backing file content would become visible. Instead, zero-fill
3534 * the new area.
3535 *
3536 * Note that if the image has a backing file, but was opened without the
3537 * backing file, taking care of keeping things consistent with that backing
3538 * file is the user's responsibility.
3539 */
3540 if (new_bytes && backing) {
3541 int64_t backing_len;
3542
3543 backing_len = bdrv_co_getlength(backing->bs);
3544 if (backing_len < 0) {
3545 ret = backing_len;
3546 error_setg_errno(errp, -ret, "Could not get backing file size");
3547 goto out;
3548 }
3549
3550 if (backing_len > old_size) {
3551 flags |= BDRV_REQ_ZERO_WRITE;
3552 }
3553 }
3554
3555 if (drv->bdrv_co_truncate) {
3556 if (flags & ~bs->supported_truncate_flags) {
3557 error_setg(errp, "Block driver does not support requested flags");
3558 ret = -ENOTSUP;
3559 goto out;
3560 }
3561 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3562 } else if (filtered) {
3563 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3564 } else {
3565 error_setg(errp, "Image format driver does not support resize");
3566 ret = -ENOTSUP;
3567 goto out;
3568 }
3569 if (ret < 0) {
3570 goto out;
3571 }
3572
3573 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3574 if (ret < 0) {
3575 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3576 } else {
3577 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3578 }
3579 /*
3580 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3581 * failed, but the latter doesn't affect how we should finish the request.
3582 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3583 */
3584 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3585
3586 out:
3587 tracked_request_end(&req);
3588 bdrv_dec_in_flight(bs);
3589
3590 return ret;
3591 }
3592
3593 void bdrv_cancel_in_flight(BlockDriverState *bs)
3594 {
3595 GLOBAL_STATE_CODE();
3596 if (!bs || !bs->drv) {
3597 return;
3598 }
3599
3600 if (bs->drv->bdrv_cancel_in_flight) {
3601 bs->drv->bdrv_cancel_in_flight(bs);
3602 }
3603 }
3604
3605 int coroutine_fn
3606 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3607 QEMUIOVector *qiov, size_t qiov_offset)
3608 {
3609 BlockDriverState *bs = child->bs;
3610 BlockDriver *drv = bs->drv;
3611 int ret;
3612 IO_CODE();
3613 assert_bdrv_graph_readable();
3614
3615 if (!drv) {
3616 return -ENOMEDIUM;
3617 }
3618
3619 if (!drv->bdrv_co_preadv_snapshot) {
3620 return -ENOTSUP;
3621 }
3622
3623 bdrv_inc_in_flight(bs);
3624 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3625 bdrv_dec_in_flight(bs);
3626
3627 return ret;
3628 }
3629
3630 int coroutine_fn
3631 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3632 bool want_zero, int64_t offset, int64_t bytes,
3633 int64_t *pnum, int64_t *map,
3634 BlockDriverState **file)
3635 {
3636 BlockDriver *drv = bs->drv;
3637 int ret;
3638 IO_CODE();
3639 assert_bdrv_graph_readable();
3640
3641 if (!drv) {
3642 return -ENOMEDIUM;
3643 }
3644
3645 if (!drv->bdrv_co_snapshot_block_status) {
3646 return -ENOTSUP;
3647 }
3648
3649 bdrv_inc_in_flight(bs);
3650 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3651 pnum, map, file);
3652 bdrv_dec_in_flight(bs);
3653
3654 return ret;
3655 }
3656
3657 int coroutine_fn
3658 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3659 {
3660 BlockDriver *drv = bs->drv;
3661 int ret;
3662 IO_CODE();
3663 assert_bdrv_graph_readable();
3664
3665 if (!drv) {
3666 return -ENOMEDIUM;
3667 }
3668
3669 if (!drv->bdrv_co_pdiscard_snapshot) {
3670 return -ENOTSUP;
3671 }
3672
3673 bdrv_inc_in_flight(bs);
3674 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3675 bdrv_dec_in_flight(bs);
3676
3677 return ret;
3678 }