]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge tag 'pull-hex-20221216-1' of https://github.com/quic/qemu into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qemu/memalign.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/main-loop.h"
39 #include "sysemu/replay.h"
40
41 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
42 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
43
44 static void bdrv_parent_cb_resize(BlockDriverState *bs);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
47
48 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
49 {
50 BdrvChild *c, *next;
51
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore) {
54 continue;
55 }
56 bdrv_parent_drained_begin_single(c);
57 }
58 }
59
60 void bdrv_parent_drained_end_single(BdrvChild *c)
61 {
62 IO_OR_GS_CODE();
63
64 assert(c->quiesced_parent);
65 c->quiesced_parent = false;
66
67 if (c->klass->drained_end) {
68 c->klass->drained_end(c);
69 }
70 }
71
72 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
73 {
74 BdrvChild *c;
75
76 QLIST_FOREACH(c, &bs->parents, next_parent) {
77 if (c == ignore) {
78 continue;
79 }
80 bdrv_parent_drained_end_single(c);
81 }
82 }
83
84 bool bdrv_parent_drained_poll_single(BdrvChild *c)
85 {
86 if (c->klass->drained_poll) {
87 return c->klass->drained_poll(c);
88 }
89 return false;
90 }
91
92 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
93 bool ignore_bds_parents)
94 {
95 BdrvChild *c, *next;
96 bool busy = false;
97
98 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
99 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
100 continue;
101 }
102 busy |= bdrv_parent_drained_poll_single(c);
103 }
104
105 return busy;
106 }
107
108 void bdrv_parent_drained_begin_single(BdrvChild *c)
109 {
110 IO_OR_GS_CODE();
111
112 assert(!c->quiesced_parent);
113 c->quiesced_parent = true;
114
115 if (c->klass->drained_begin) {
116 c->klass->drained_begin(c);
117 }
118 }
119
120 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
121 {
122 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
123 src->pdiscard_alignment);
124 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
125 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
126 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
127 src->max_hw_transfer);
128 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
129 src->opt_mem_alignment);
130 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
131 src->min_mem_alignment);
132 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
133 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
134 }
135
136 typedef struct BdrvRefreshLimitsState {
137 BlockDriverState *bs;
138 BlockLimits old_bl;
139 } BdrvRefreshLimitsState;
140
141 static void bdrv_refresh_limits_abort(void *opaque)
142 {
143 BdrvRefreshLimitsState *s = opaque;
144
145 s->bs->bl = s->old_bl;
146 }
147
148 static TransactionActionDrv bdrv_refresh_limits_drv = {
149 .abort = bdrv_refresh_limits_abort,
150 .clean = g_free,
151 };
152
153 /* @tran is allowed to be NULL, in this case no rollback is possible. */
154 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
155 {
156 ERRP_GUARD();
157 BlockDriver *drv = bs->drv;
158 BdrvChild *c;
159 bool have_limits;
160
161 GLOBAL_STATE_CODE();
162
163 if (tran) {
164 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
165 *s = (BdrvRefreshLimitsState) {
166 .bs = bs,
167 .old_bl = bs->bl,
168 };
169 tran_add(tran, &bdrv_refresh_limits_drv, s);
170 }
171
172 memset(&bs->bl, 0, sizeof(bs->bl));
173
174 if (!drv) {
175 return;
176 }
177
178 /* Default alignment based on whether driver has byte interface */
179 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
180 drv->bdrv_aio_preadv ||
181 drv->bdrv_co_preadv_part) ? 1 : 512;
182
183 /* Take some limits from the children as a default */
184 have_limits = false;
185 QLIST_FOREACH(c, &bs->children, next) {
186 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
187 {
188 bdrv_merge_limits(&bs->bl, &c->bs->bl);
189 have_limits = true;
190 }
191 }
192
193 if (!have_limits) {
194 bs->bl.min_mem_alignment = 512;
195 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
196
197 /* Safe default since most protocols use readv()/writev()/etc */
198 bs->bl.max_iov = IOV_MAX;
199 }
200
201 /* Then let the driver override it */
202 if (drv->bdrv_refresh_limits) {
203 drv->bdrv_refresh_limits(bs, errp);
204 if (*errp) {
205 return;
206 }
207 }
208
209 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
210 error_setg(errp, "Driver requires too large request alignment");
211 }
212 }
213
214 /**
215 * The copy-on-read flag is actually a reference count so multiple users may
216 * use the feature without worrying about clobbering its previous state.
217 * Copy-on-read stays enabled until all users have called to disable it.
218 */
219 void bdrv_enable_copy_on_read(BlockDriverState *bs)
220 {
221 IO_CODE();
222 qatomic_inc(&bs->copy_on_read);
223 }
224
225 void bdrv_disable_copy_on_read(BlockDriverState *bs)
226 {
227 int old = qatomic_fetch_dec(&bs->copy_on_read);
228 IO_CODE();
229 assert(old >= 1);
230 }
231
232 typedef struct {
233 Coroutine *co;
234 BlockDriverState *bs;
235 bool done;
236 bool begin;
237 bool poll;
238 BdrvChild *parent;
239 } BdrvCoDrainData;
240
241 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
242 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
243 bool ignore_bds_parents)
244 {
245 IO_OR_GS_CODE();
246
247 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
248 return true;
249 }
250
251 if (qatomic_read(&bs->in_flight)) {
252 return true;
253 }
254
255 return false;
256 }
257
258 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
259 BdrvChild *ignore_parent)
260 {
261 return bdrv_drain_poll(bs, ignore_parent, false);
262 }
263
264 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
265 bool poll);
266 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
267
268 static void bdrv_co_drain_bh_cb(void *opaque)
269 {
270 BdrvCoDrainData *data = opaque;
271 Coroutine *co = data->co;
272 BlockDriverState *bs = data->bs;
273
274 if (bs) {
275 AioContext *ctx = bdrv_get_aio_context(bs);
276 aio_context_acquire(ctx);
277 bdrv_dec_in_flight(bs);
278 if (data->begin) {
279 bdrv_do_drained_begin(bs, data->parent, data->poll);
280 } else {
281 assert(!data->poll);
282 bdrv_do_drained_end(bs, data->parent);
283 }
284 aio_context_release(ctx);
285 } else {
286 assert(data->begin);
287 bdrv_drain_all_begin();
288 }
289
290 data->done = true;
291 aio_co_wake(co);
292 }
293
294 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
295 bool begin,
296 BdrvChild *parent,
297 bool poll)
298 {
299 BdrvCoDrainData data;
300 Coroutine *self = qemu_coroutine_self();
301 AioContext *ctx = bdrv_get_aio_context(bs);
302 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
303
304 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
305 * other coroutines run if they were queued by aio_co_enter(). */
306
307 assert(qemu_in_coroutine());
308 data = (BdrvCoDrainData) {
309 .co = self,
310 .bs = bs,
311 .done = false,
312 .begin = begin,
313 .parent = parent,
314 .poll = poll,
315 };
316
317 if (bs) {
318 bdrv_inc_in_flight(bs);
319 }
320
321 /*
322 * Temporarily drop the lock across yield or we would get deadlocks.
323 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
324 *
325 * When we yield below, the lock for the current context will be
326 * released, so if this is actually the lock that protects bs, don't drop
327 * it a second time.
328 */
329 if (ctx != co_ctx) {
330 aio_context_release(ctx);
331 }
332 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
333
334 qemu_coroutine_yield();
335 /* If we are resumed from some other event (such as an aio completion or a
336 * timer callback), it is a bug in the caller that should be fixed. */
337 assert(data.done);
338
339 /* Reaquire the AioContext of bs if we dropped it */
340 if (ctx != co_ctx) {
341 aio_context_acquire(ctx);
342 }
343 }
344
345 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
346 bool poll)
347 {
348 IO_OR_GS_CODE();
349
350 if (qemu_in_coroutine()) {
351 bdrv_co_yield_to_drain(bs, true, parent, poll);
352 return;
353 }
354
355 /* Stop things in parent-to-child order */
356 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
357 aio_disable_external(bdrv_get_aio_context(bs));
358 bdrv_parent_drained_begin(bs, parent);
359 if (bs->drv && bs->drv->bdrv_drain_begin) {
360 bs->drv->bdrv_drain_begin(bs);
361 }
362 }
363
364 /*
365 * Wait for drained requests to finish.
366 *
367 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
368 * call is needed so things in this AioContext can make progress even
369 * though we don't return to the main AioContext loop - this automatically
370 * includes other nodes in the same AioContext and therefore all child
371 * nodes.
372 */
373 if (poll) {
374 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
375 }
376 }
377
378 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
379 {
380 bdrv_do_drained_begin(bs, parent, false);
381 }
382
383 void bdrv_drained_begin(BlockDriverState *bs)
384 {
385 IO_OR_GS_CODE();
386 bdrv_do_drained_begin(bs, NULL, true);
387 }
388
389 /**
390 * This function does not poll, nor must any of its recursively called
391 * functions.
392 */
393 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
394 {
395 int old_quiesce_counter;
396
397 if (qemu_in_coroutine()) {
398 bdrv_co_yield_to_drain(bs, false, parent, false);
399 return;
400 }
401 assert(bs->quiesce_counter > 0);
402
403 /* Re-enable things in child-to-parent order */
404 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
405 if (old_quiesce_counter == 1) {
406 if (bs->drv && bs->drv->bdrv_drain_end) {
407 bs->drv->bdrv_drain_end(bs);
408 }
409 bdrv_parent_drained_end(bs, parent);
410 aio_enable_external(bdrv_get_aio_context(bs));
411 }
412 }
413
414 void bdrv_drained_end(BlockDriverState *bs)
415 {
416 IO_OR_GS_CODE();
417 bdrv_do_drained_end(bs, NULL);
418 }
419
420 void bdrv_drain(BlockDriverState *bs)
421 {
422 IO_OR_GS_CODE();
423 bdrv_drained_begin(bs);
424 bdrv_drained_end(bs);
425 }
426
427 static void bdrv_drain_assert_idle(BlockDriverState *bs)
428 {
429 BdrvChild *child, *next;
430
431 assert(qatomic_read(&bs->in_flight) == 0);
432 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
433 bdrv_drain_assert_idle(child->bs);
434 }
435 }
436
437 unsigned int bdrv_drain_all_count = 0;
438
439 static bool bdrv_drain_all_poll(void)
440 {
441 BlockDriverState *bs = NULL;
442 bool result = false;
443 GLOBAL_STATE_CODE();
444
445 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
446 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
447 while ((bs = bdrv_next_all_states(bs))) {
448 AioContext *aio_context = bdrv_get_aio_context(bs);
449 aio_context_acquire(aio_context);
450 result |= bdrv_drain_poll(bs, NULL, true);
451 aio_context_release(aio_context);
452 }
453
454 return result;
455 }
456
457 /*
458 * Wait for pending requests to complete across all BlockDriverStates
459 *
460 * This function does not flush data to disk, use bdrv_flush_all() for that
461 * after calling this function.
462 *
463 * This pauses all block jobs and disables external clients. It must
464 * be paired with bdrv_drain_all_end().
465 *
466 * NOTE: no new block jobs or BlockDriverStates can be created between
467 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
468 */
469 void bdrv_drain_all_begin_nopoll(void)
470 {
471 BlockDriverState *bs = NULL;
472 GLOBAL_STATE_CODE();
473
474 /*
475 * bdrv queue is managed by record/replay,
476 * waiting for finishing the I/O requests may
477 * be infinite
478 */
479 if (replay_events_enabled()) {
480 return;
481 }
482
483 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
484 * loop AioContext, so make sure we're in the main context. */
485 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
486 assert(bdrv_drain_all_count < INT_MAX);
487 bdrv_drain_all_count++;
488
489 /* Quiesce all nodes, without polling in-flight requests yet. The graph
490 * cannot change during this loop. */
491 while ((bs = bdrv_next_all_states(bs))) {
492 AioContext *aio_context = bdrv_get_aio_context(bs);
493
494 aio_context_acquire(aio_context);
495 bdrv_do_drained_begin(bs, NULL, false);
496 aio_context_release(aio_context);
497 }
498 }
499
500 void bdrv_drain_all_begin(void)
501 {
502 BlockDriverState *bs = NULL;
503
504 if (qemu_in_coroutine()) {
505 bdrv_co_yield_to_drain(NULL, true, NULL, true);
506 return;
507 }
508
509 bdrv_drain_all_begin_nopoll();
510
511 /* Now poll the in-flight requests */
512 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
513
514 while ((bs = bdrv_next_all_states(bs))) {
515 bdrv_drain_assert_idle(bs);
516 }
517 }
518
519 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
520 {
521 GLOBAL_STATE_CODE();
522
523 g_assert(bs->quiesce_counter > 0);
524 g_assert(!bs->refcnt);
525
526 while (bs->quiesce_counter) {
527 bdrv_do_drained_end(bs, NULL);
528 }
529 }
530
531 void bdrv_drain_all_end(void)
532 {
533 BlockDriverState *bs = NULL;
534 GLOBAL_STATE_CODE();
535
536 /*
537 * bdrv queue is managed by record/replay,
538 * waiting for finishing the I/O requests may
539 * be endless
540 */
541 if (replay_events_enabled()) {
542 return;
543 }
544
545 while ((bs = bdrv_next_all_states(bs))) {
546 AioContext *aio_context = bdrv_get_aio_context(bs);
547
548 aio_context_acquire(aio_context);
549 bdrv_do_drained_end(bs, NULL);
550 aio_context_release(aio_context);
551 }
552
553 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
554 assert(bdrv_drain_all_count > 0);
555 bdrv_drain_all_count--;
556 }
557
558 void bdrv_drain_all(void)
559 {
560 GLOBAL_STATE_CODE();
561 bdrv_drain_all_begin();
562 bdrv_drain_all_end();
563 }
564
565 /**
566 * Remove an active request from the tracked requests list
567 *
568 * This function should be called when a tracked request is completing.
569 */
570 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
571 {
572 if (req->serialising) {
573 qatomic_dec(&req->bs->serialising_in_flight);
574 }
575
576 qemu_co_mutex_lock(&req->bs->reqs_lock);
577 QLIST_REMOVE(req, list);
578 qemu_co_queue_restart_all(&req->wait_queue);
579 qemu_co_mutex_unlock(&req->bs->reqs_lock);
580 }
581
582 /**
583 * Add an active request to the tracked requests list
584 */
585 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
586 BlockDriverState *bs,
587 int64_t offset,
588 int64_t bytes,
589 enum BdrvTrackedRequestType type)
590 {
591 bdrv_check_request(offset, bytes, &error_abort);
592
593 *req = (BdrvTrackedRequest){
594 .bs = bs,
595 .offset = offset,
596 .bytes = bytes,
597 .type = type,
598 .co = qemu_coroutine_self(),
599 .serialising = false,
600 .overlap_offset = offset,
601 .overlap_bytes = bytes,
602 };
603
604 qemu_co_queue_init(&req->wait_queue);
605
606 qemu_co_mutex_lock(&bs->reqs_lock);
607 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
608 qemu_co_mutex_unlock(&bs->reqs_lock);
609 }
610
611 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
612 int64_t offset, int64_t bytes)
613 {
614 bdrv_check_request(offset, bytes, &error_abort);
615
616 /* aaaa bbbb */
617 if (offset >= req->overlap_offset + req->overlap_bytes) {
618 return false;
619 }
620 /* bbbb aaaa */
621 if (req->overlap_offset >= offset + bytes) {
622 return false;
623 }
624 return true;
625 }
626
627 /* Called with self->bs->reqs_lock held */
628 static coroutine_fn BdrvTrackedRequest *
629 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
630 {
631 BdrvTrackedRequest *req;
632
633 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
634 if (req == self || (!req->serialising && !self->serialising)) {
635 continue;
636 }
637 if (tracked_request_overlaps(req, self->overlap_offset,
638 self->overlap_bytes))
639 {
640 /*
641 * Hitting this means there was a reentrant request, for
642 * example, a block driver issuing nested requests. This must
643 * never happen since it means deadlock.
644 */
645 assert(qemu_coroutine_self() != req->co);
646
647 /*
648 * If the request is already (indirectly) waiting for us, or
649 * will wait for us as soon as it wakes up, then just go on
650 * (instead of producing a deadlock in the former case).
651 */
652 if (!req->waiting_for) {
653 return req;
654 }
655 }
656 }
657
658 return NULL;
659 }
660
661 /* Called with self->bs->reqs_lock held */
662 static void coroutine_fn
663 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
664 {
665 BdrvTrackedRequest *req;
666
667 while ((req = bdrv_find_conflicting_request(self))) {
668 self->waiting_for = req;
669 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
670 self->waiting_for = NULL;
671 }
672 }
673
674 /* Called with req->bs->reqs_lock held */
675 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
676 uint64_t align)
677 {
678 int64_t overlap_offset = req->offset & ~(align - 1);
679 int64_t overlap_bytes =
680 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
681
682 bdrv_check_request(req->offset, req->bytes, &error_abort);
683
684 if (!req->serialising) {
685 qatomic_inc(&req->bs->serialising_in_flight);
686 req->serialising = true;
687 }
688
689 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
690 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
691 }
692
693 /**
694 * Return the tracked request on @bs for the current coroutine, or
695 * NULL if there is none.
696 */
697 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
698 {
699 BdrvTrackedRequest *req;
700 Coroutine *self = qemu_coroutine_self();
701 IO_CODE();
702
703 QLIST_FOREACH(req, &bs->tracked_requests, list) {
704 if (req->co == self) {
705 return req;
706 }
707 }
708
709 return NULL;
710 }
711
712 /**
713 * Round a region to cluster boundaries
714 */
715 void bdrv_round_to_clusters(BlockDriverState *bs,
716 int64_t offset, int64_t bytes,
717 int64_t *cluster_offset,
718 int64_t *cluster_bytes)
719 {
720 BlockDriverInfo bdi;
721 IO_CODE();
722 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
723 *cluster_offset = offset;
724 *cluster_bytes = bytes;
725 } else {
726 int64_t c = bdi.cluster_size;
727 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
728 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
729 }
730 }
731
732 static int bdrv_get_cluster_size(BlockDriverState *bs)
733 {
734 BlockDriverInfo bdi;
735 int ret;
736
737 ret = bdrv_get_info(bs, &bdi);
738 if (ret < 0 || bdi.cluster_size == 0) {
739 return bs->bl.request_alignment;
740 } else {
741 return bdi.cluster_size;
742 }
743 }
744
745 void bdrv_inc_in_flight(BlockDriverState *bs)
746 {
747 IO_CODE();
748 qatomic_inc(&bs->in_flight);
749 }
750
751 void bdrv_wakeup(BlockDriverState *bs)
752 {
753 IO_CODE();
754 aio_wait_kick();
755 }
756
757 void bdrv_dec_in_flight(BlockDriverState *bs)
758 {
759 IO_CODE();
760 qatomic_dec(&bs->in_flight);
761 bdrv_wakeup(bs);
762 }
763
764 static void coroutine_fn
765 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
766 {
767 BlockDriverState *bs = self->bs;
768
769 if (!qatomic_read(&bs->serialising_in_flight)) {
770 return;
771 }
772
773 qemu_co_mutex_lock(&bs->reqs_lock);
774 bdrv_wait_serialising_requests_locked(self);
775 qemu_co_mutex_unlock(&bs->reqs_lock);
776 }
777
778 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
779 uint64_t align)
780 {
781 IO_CODE();
782
783 qemu_co_mutex_lock(&req->bs->reqs_lock);
784
785 tracked_request_set_serialising(req, align);
786 bdrv_wait_serialising_requests_locked(req);
787
788 qemu_co_mutex_unlock(&req->bs->reqs_lock);
789 }
790
791 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
792 QEMUIOVector *qiov, size_t qiov_offset,
793 Error **errp)
794 {
795 /*
796 * Check generic offset/bytes correctness
797 */
798
799 if (offset < 0) {
800 error_setg(errp, "offset is negative: %" PRIi64, offset);
801 return -EIO;
802 }
803
804 if (bytes < 0) {
805 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
806 return -EIO;
807 }
808
809 if (bytes > BDRV_MAX_LENGTH) {
810 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
811 bytes, BDRV_MAX_LENGTH);
812 return -EIO;
813 }
814
815 if (offset > BDRV_MAX_LENGTH) {
816 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
817 offset, BDRV_MAX_LENGTH);
818 return -EIO;
819 }
820
821 if (offset > BDRV_MAX_LENGTH - bytes) {
822 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
823 "exceeds maximum(%" PRIi64 ")", offset, bytes,
824 BDRV_MAX_LENGTH);
825 return -EIO;
826 }
827
828 if (!qiov) {
829 return 0;
830 }
831
832 /*
833 * Check qiov and qiov_offset
834 */
835
836 if (qiov_offset > qiov->size) {
837 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
838 qiov_offset, qiov->size);
839 return -EIO;
840 }
841
842 if (bytes > qiov->size - qiov_offset) {
843 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
844 "vector size(%zu)", bytes, qiov_offset, qiov->size);
845 return -EIO;
846 }
847
848 return 0;
849 }
850
851 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
852 {
853 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
854 }
855
856 static int bdrv_check_request32(int64_t offset, int64_t bytes,
857 QEMUIOVector *qiov, size_t qiov_offset)
858 {
859 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
860 if (ret < 0) {
861 return ret;
862 }
863
864 if (bytes > BDRV_REQUEST_MAX_BYTES) {
865 return -EIO;
866 }
867
868 return 0;
869 }
870
871 /*
872 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
873 * The operation is sped up by checking the block status and only writing
874 * zeroes to the device if they currently do not return zeroes. Optional
875 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
876 * BDRV_REQ_FUA).
877 *
878 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
879 */
880 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
881 {
882 int ret;
883 int64_t target_size, bytes, offset = 0;
884 BlockDriverState *bs = child->bs;
885 IO_CODE();
886
887 target_size = bdrv_getlength(bs);
888 if (target_size < 0) {
889 return target_size;
890 }
891
892 for (;;) {
893 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
894 if (bytes <= 0) {
895 return 0;
896 }
897 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
898 if (ret < 0) {
899 return ret;
900 }
901 if (ret & BDRV_BLOCK_ZERO) {
902 offset += bytes;
903 continue;
904 }
905 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
906 if (ret < 0) {
907 return ret;
908 }
909 offset += bytes;
910 }
911 }
912
913 /*
914 * Writes to the file and ensures that no writes are reordered across this
915 * request (acts as a barrier)
916 *
917 * Returns 0 on success, -errno in error cases.
918 */
919 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
920 int64_t bytes, const void *buf,
921 BdrvRequestFlags flags)
922 {
923 int ret;
924 IO_CODE();
925
926 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
927 if (ret < 0) {
928 return ret;
929 }
930
931 ret = bdrv_co_flush(child->bs);
932 if (ret < 0) {
933 return ret;
934 }
935
936 return 0;
937 }
938
939 typedef struct CoroutineIOCompletion {
940 Coroutine *coroutine;
941 int ret;
942 } CoroutineIOCompletion;
943
944 static void bdrv_co_io_em_complete(void *opaque, int ret)
945 {
946 CoroutineIOCompletion *co = opaque;
947
948 co->ret = ret;
949 aio_co_wake(co->coroutine);
950 }
951
952 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
953 int64_t offset, int64_t bytes,
954 QEMUIOVector *qiov,
955 size_t qiov_offset, int flags)
956 {
957 BlockDriver *drv = bs->drv;
958 int64_t sector_num;
959 unsigned int nb_sectors;
960 QEMUIOVector local_qiov;
961 int ret;
962
963 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
964 assert(!(flags & ~bs->supported_read_flags));
965
966 if (!drv) {
967 return -ENOMEDIUM;
968 }
969
970 if (drv->bdrv_co_preadv_part) {
971 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
972 flags);
973 }
974
975 if (qiov_offset > 0 || bytes != qiov->size) {
976 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
977 qiov = &local_qiov;
978 }
979
980 if (drv->bdrv_co_preadv) {
981 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
982 goto out;
983 }
984
985 if (drv->bdrv_aio_preadv) {
986 BlockAIOCB *acb;
987 CoroutineIOCompletion co = {
988 .coroutine = qemu_coroutine_self(),
989 };
990
991 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
992 bdrv_co_io_em_complete, &co);
993 if (acb == NULL) {
994 ret = -EIO;
995 goto out;
996 } else {
997 qemu_coroutine_yield();
998 ret = co.ret;
999 goto out;
1000 }
1001 }
1002
1003 sector_num = offset >> BDRV_SECTOR_BITS;
1004 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1005
1006 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1007 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1008 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1009 assert(drv->bdrv_co_readv);
1010
1011 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1012
1013 out:
1014 if (qiov == &local_qiov) {
1015 qemu_iovec_destroy(&local_qiov);
1016 }
1017
1018 return ret;
1019 }
1020
1021 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1022 int64_t offset, int64_t bytes,
1023 QEMUIOVector *qiov,
1024 size_t qiov_offset,
1025 BdrvRequestFlags flags)
1026 {
1027 BlockDriver *drv = bs->drv;
1028 bool emulate_fua = false;
1029 int64_t sector_num;
1030 unsigned int nb_sectors;
1031 QEMUIOVector local_qiov;
1032 int ret;
1033
1034 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1035
1036 if (!drv) {
1037 return -ENOMEDIUM;
1038 }
1039
1040 if ((flags & BDRV_REQ_FUA) &&
1041 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1042 flags &= ~BDRV_REQ_FUA;
1043 emulate_fua = true;
1044 }
1045
1046 flags &= bs->supported_write_flags;
1047
1048 if (drv->bdrv_co_pwritev_part) {
1049 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1050 flags);
1051 goto emulate_flags;
1052 }
1053
1054 if (qiov_offset > 0 || bytes != qiov->size) {
1055 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1056 qiov = &local_qiov;
1057 }
1058
1059 if (drv->bdrv_co_pwritev) {
1060 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1061 goto emulate_flags;
1062 }
1063
1064 if (drv->bdrv_aio_pwritev) {
1065 BlockAIOCB *acb;
1066 CoroutineIOCompletion co = {
1067 .coroutine = qemu_coroutine_self(),
1068 };
1069
1070 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1071 bdrv_co_io_em_complete, &co);
1072 if (acb == NULL) {
1073 ret = -EIO;
1074 } else {
1075 qemu_coroutine_yield();
1076 ret = co.ret;
1077 }
1078 goto emulate_flags;
1079 }
1080
1081 sector_num = offset >> BDRV_SECTOR_BITS;
1082 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1083
1084 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1085 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1086 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1087
1088 assert(drv->bdrv_co_writev);
1089 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1090
1091 emulate_flags:
1092 if (ret == 0 && emulate_fua) {
1093 ret = bdrv_co_flush(bs);
1094 }
1095
1096 if (qiov == &local_qiov) {
1097 qemu_iovec_destroy(&local_qiov);
1098 }
1099
1100 return ret;
1101 }
1102
1103 static int coroutine_fn
1104 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1105 int64_t bytes, QEMUIOVector *qiov,
1106 size_t qiov_offset)
1107 {
1108 BlockDriver *drv = bs->drv;
1109 QEMUIOVector local_qiov;
1110 int ret;
1111
1112 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1113
1114 if (!drv) {
1115 return -ENOMEDIUM;
1116 }
1117
1118 if (!block_driver_can_compress(drv)) {
1119 return -ENOTSUP;
1120 }
1121
1122 if (drv->bdrv_co_pwritev_compressed_part) {
1123 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1124 qiov, qiov_offset);
1125 }
1126
1127 if (qiov_offset == 0) {
1128 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1129 }
1130
1131 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1132 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1133 qemu_iovec_destroy(&local_qiov);
1134
1135 return ret;
1136 }
1137
1138 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1139 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1140 size_t qiov_offset, int flags)
1141 {
1142 BlockDriverState *bs = child->bs;
1143
1144 /* Perform I/O through a temporary buffer so that users who scribble over
1145 * their read buffer while the operation is in progress do not end up
1146 * modifying the image file. This is critical for zero-copy guest I/O
1147 * where anything might happen inside guest memory.
1148 */
1149 void *bounce_buffer = NULL;
1150
1151 BlockDriver *drv = bs->drv;
1152 int64_t cluster_offset;
1153 int64_t cluster_bytes;
1154 int64_t skip_bytes;
1155 int ret;
1156 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1157 BDRV_REQUEST_MAX_BYTES);
1158 int64_t progress = 0;
1159 bool skip_write;
1160
1161 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1162
1163 if (!drv) {
1164 return -ENOMEDIUM;
1165 }
1166
1167 /*
1168 * Do not write anything when the BDS is inactive. That is not
1169 * allowed, and it would not help.
1170 */
1171 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1172
1173 /* FIXME We cannot require callers to have write permissions when all they
1174 * are doing is a read request. If we did things right, write permissions
1175 * would be obtained anyway, but internally by the copy-on-read code. As
1176 * long as it is implemented here rather than in a separate filter driver,
1177 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1178 * it could request permissions. Therefore we have to bypass the permission
1179 * system for the moment. */
1180 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1181
1182 /* Cover entire cluster so no additional backing file I/O is required when
1183 * allocating cluster in the image file. Note that this value may exceed
1184 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1185 * is one reason we loop rather than doing it all at once.
1186 */
1187 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1188 skip_bytes = offset - cluster_offset;
1189
1190 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1191 cluster_offset, cluster_bytes);
1192
1193 while (cluster_bytes) {
1194 int64_t pnum;
1195
1196 if (skip_write) {
1197 ret = 1; /* "already allocated", so nothing will be copied */
1198 pnum = MIN(cluster_bytes, max_transfer);
1199 } else {
1200 ret = bdrv_is_allocated(bs, cluster_offset,
1201 MIN(cluster_bytes, max_transfer), &pnum);
1202 if (ret < 0) {
1203 /*
1204 * Safe to treat errors in querying allocation as if
1205 * unallocated; we'll probably fail again soon on the
1206 * read, but at least that will set a decent errno.
1207 */
1208 pnum = MIN(cluster_bytes, max_transfer);
1209 }
1210
1211 /* Stop at EOF if the image ends in the middle of the cluster */
1212 if (ret == 0 && pnum == 0) {
1213 assert(progress >= bytes);
1214 break;
1215 }
1216
1217 assert(skip_bytes < pnum);
1218 }
1219
1220 if (ret <= 0) {
1221 QEMUIOVector local_qiov;
1222
1223 /* Must copy-on-read; use the bounce buffer */
1224 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1225 if (!bounce_buffer) {
1226 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1227 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1228 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1229
1230 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1231 if (!bounce_buffer) {
1232 ret = -ENOMEM;
1233 goto err;
1234 }
1235 }
1236 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1237
1238 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1239 &local_qiov, 0, 0);
1240 if (ret < 0) {
1241 goto err;
1242 }
1243
1244 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1245 if (drv->bdrv_co_pwrite_zeroes &&
1246 buffer_is_zero(bounce_buffer, pnum)) {
1247 /* FIXME: Should we (perhaps conditionally) be setting
1248 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1249 * that still correctly reads as zero? */
1250 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1251 BDRV_REQ_WRITE_UNCHANGED);
1252 } else {
1253 /* This does not change the data on the disk, it is not
1254 * necessary to flush even in cache=writethrough mode.
1255 */
1256 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1257 &local_qiov, 0,
1258 BDRV_REQ_WRITE_UNCHANGED);
1259 }
1260
1261 if (ret < 0) {
1262 /* It might be okay to ignore write errors for guest
1263 * requests. If this is a deliberate copy-on-read
1264 * then we don't want to ignore the error. Simply
1265 * report it in all cases.
1266 */
1267 goto err;
1268 }
1269
1270 if (!(flags & BDRV_REQ_PREFETCH)) {
1271 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1272 bounce_buffer + skip_bytes,
1273 MIN(pnum - skip_bytes, bytes - progress));
1274 }
1275 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1276 /* Read directly into the destination */
1277 ret = bdrv_driver_preadv(bs, offset + progress,
1278 MIN(pnum - skip_bytes, bytes - progress),
1279 qiov, qiov_offset + progress, 0);
1280 if (ret < 0) {
1281 goto err;
1282 }
1283 }
1284
1285 cluster_offset += pnum;
1286 cluster_bytes -= pnum;
1287 progress += pnum - skip_bytes;
1288 skip_bytes = 0;
1289 }
1290 ret = 0;
1291
1292 err:
1293 qemu_vfree(bounce_buffer);
1294 return ret;
1295 }
1296
1297 /*
1298 * Forwards an already correctly aligned request to the BlockDriver. This
1299 * handles copy on read, zeroing after EOF, and fragmentation of large
1300 * reads; any other features must be implemented by the caller.
1301 */
1302 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1303 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1304 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1305 {
1306 BlockDriverState *bs = child->bs;
1307 int64_t total_bytes, max_bytes;
1308 int ret = 0;
1309 int64_t bytes_remaining = bytes;
1310 int max_transfer;
1311
1312 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1313 assert(is_power_of_2(align));
1314 assert((offset & (align - 1)) == 0);
1315 assert((bytes & (align - 1)) == 0);
1316 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1317 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1318 align);
1319
1320 /*
1321 * TODO: We would need a per-BDS .supported_read_flags and
1322 * potential fallback support, if we ever implement any read flags
1323 * to pass through to drivers. For now, there aren't any
1324 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1325 */
1326 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1327 BDRV_REQ_REGISTERED_BUF)));
1328
1329 /* Handle Copy on Read and associated serialisation */
1330 if (flags & BDRV_REQ_COPY_ON_READ) {
1331 /* If we touch the same cluster it counts as an overlap. This
1332 * guarantees that allocating writes will be serialized and not race
1333 * with each other for the same cluster. For example, in copy-on-read
1334 * it ensures that the CoR read and write operations are atomic and
1335 * guest writes cannot interleave between them. */
1336 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1337 } else {
1338 bdrv_wait_serialising_requests(req);
1339 }
1340
1341 if (flags & BDRV_REQ_COPY_ON_READ) {
1342 int64_t pnum;
1343
1344 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1345 flags &= ~BDRV_REQ_COPY_ON_READ;
1346
1347 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1348 if (ret < 0) {
1349 goto out;
1350 }
1351
1352 if (!ret || pnum != bytes) {
1353 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1354 qiov, qiov_offset, flags);
1355 goto out;
1356 } else if (flags & BDRV_REQ_PREFETCH) {
1357 goto out;
1358 }
1359 }
1360
1361 /* Forward the request to the BlockDriver, possibly fragmenting it */
1362 total_bytes = bdrv_getlength(bs);
1363 if (total_bytes < 0) {
1364 ret = total_bytes;
1365 goto out;
1366 }
1367
1368 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1369
1370 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1371 if (bytes <= max_bytes && bytes <= max_transfer) {
1372 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1373 goto out;
1374 }
1375
1376 while (bytes_remaining) {
1377 int64_t num;
1378
1379 if (max_bytes) {
1380 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1381 assert(num);
1382
1383 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1384 num, qiov,
1385 qiov_offset + bytes - bytes_remaining,
1386 flags);
1387 max_bytes -= num;
1388 } else {
1389 num = bytes_remaining;
1390 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1391 0, bytes_remaining);
1392 }
1393 if (ret < 0) {
1394 goto out;
1395 }
1396 bytes_remaining -= num;
1397 }
1398
1399 out:
1400 return ret < 0 ? ret : 0;
1401 }
1402
1403 /*
1404 * Request padding
1405 *
1406 * |<---- align ----->| |<----- align ---->|
1407 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1408 * | | | | | |
1409 * -*----------$-------*-------- ... --------*-----$------------*---
1410 * | | | | | |
1411 * | offset | | end |
1412 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1413 * [buf ... ) [tail_buf )
1414 *
1415 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1416 * is placed at the beginning of @buf and @tail at the @end.
1417 *
1418 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1419 * around tail, if tail exists.
1420 *
1421 * @merge_reads is true for small requests,
1422 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1423 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1424 */
1425 typedef struct BdrvRequestPadding {
1426 uint8_t *buf;
1427 size_t buf_len;
1428 uint8_t *tail_buf;
1429 size_t head;
1430 size_t tail;
1431 bool merge_reads;
1432 QEMUIOVector local_qiov;
1433 } BdrvRequestPadding;
1434
1435 static bool bdrv_init_padding(BlockDriverState *bs,
1436 int64_t offset, int64_t bytes,
1437 BdrvRequestPadding *pad)
1438 {
1439 int64_t align = bs->bl.request_alignment;
1440 int64_t sum;
1441
1442 bdrv_check_request(offset, bytes, &error_abort);
1443 assert(align <= INT_MAX); /* documented in block/block_int.h */
1444 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1445
1446 memset(pad, 0, sizeof(*pad));
1447
1448 pad->head = offset & (align - 1);
1449 pad->tail = ((offset + bytes) & (align - 1));
1450 if (pad->tail) {
1451 pad->tail = align - pad->tail;
1452 }
1453
1454 if (!pad->head && !pad->tail) {
1455 return false;
1456 }
1457
1458 assert(bytes); /* Nothing good in aligning zero-length requests */
1459
1460 sum = pad->head + bytes + pad->tail;
1461 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1462 pad->buf = qemu_blockalign(bs, pad->buf_len);
1463 pad->merge_reads = sum == pad->buf_len;
1464 if (pad->tail) {
1465 pad->tail_buf = pad->buf + pad->buf_len - align;
1466 }
1467
1468 return true;
1469 }
1470
1471 static coroutine_fn int bdrv_padding_rmw_read(BdrvChild *child,
1472 BdrvTrackedRequest *req,
1473 BdrvRequestPadding *pad,
1474 bool zero_middle)
1475 {
1476 QEMUIOVector local_qiov;
1477 BlockDriverState *bs = child->bs;
1478 uint64_t align = bs->bl.request_alignment;
1479 int ret;
1480
1481 assert(req->serialising && pad->buf);
1482
1483 if (pad->head || pad->merge_reads) {
1484 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1485
1486 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1487
1488 if (pad->head) {
1489 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1490 }
1491 if (pad->merge_reads && pad->tail) {
1492 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1493 }
1494 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1495 align, &local_qiov, 0, 0);
1496 if (ret < 0) {
1497 return ret;
1498 }
1499 if (pad->head) {
1500 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1501 }
1502 if (pad->merge_reads && pad->tail) {
1503 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1504 }
1505
1506 if (pad->merge_reads) {
1507 goto zero_mem;
1508 }
1509 }
1510
1511 if (pad->tail) {
1512 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1513
1514 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1515 ret = bdrv_aligned_preadv(
1516 child, req,
1517 req->overlap_offset + req->overlap_bytes - align,
1518 align, align, &local_qiov, 0, 0);
1519 if (ret < 0) {
1520 return ret;
1521 }
1522 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1523 }
1524
1525 zero_mem:
1526 if (zero_middle) {
1527 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1528 }
1529
1530 return 0;
1531 }
1532
1533 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1534 {
1535 if (pad->buf) {
1536 qemu_vfree(pad->buf);
1537 qemu_iovec_destroy(&pad->local_qiov);
1538 }
1539 memset(pad, 0, sizeof(*pad));
1540 }
1541
1542 /*
1543 * bdrv_pad_request
1544 *
1545 * Exchange request parameters with padded request if needed. Don't include RMW
1546 * read of padding, bdrv_padding_rmw_read() should be called separately if
1547 * needed.
1548 *
1549 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1550 * - on function start they represent original request
1551 * - on failure or when padding is not needed they are unchanged
1552 * - on success when padding is needed they represent padded request
1553 */
1554 static int bdrv_pad_request(BlockDriverState *bs,
1555 QEMUIOVector **qiov, size_t *qiov_offset,
1556 int64_t *offset, int64_t *bytes,
1557 BdrvRequestPadding *pad, bool *padded,
1558 BdrvRequestFlags *flags)
1559 {
1560 int ret;
1561
1562 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1563
1564 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1565 if (padded) {
1566 *padded = false;
1567 }
1568 return 0;
1569 }
1570
1571 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1572 *qiov, *qiov_offset, *bytes,
1573 pad->buf + pad->buf_len - pad->tail,
1574 pad->tail);
1575 if (ret < 0) {
1576 bdrv_padding_destroy(pad);
1577 return ret;
1578 }
1579 *bytes += pad->head + pad->tail;
1580 *offset -= pad->head;
1581 *qiov = &pad->local_qiov;
1582 *qiov_offset = 0;
1583 if (padded) {
1584 *padded = true;
1585 }
1586 if (flags) {
1587 /* Can't use optimization hint with bounce buffer */
1588 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1589 }
1590
1591 return 0;
1592 }
1593
1594 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1595 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1596 BdrvRequestFlags flags)
1597 {
1598 IO_CODE();
1599 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1600 }
1601
1602 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1603 int64_t offset, int64_t bytes,
1604 QEMUIOVector *qiov, size_t qiov_offset,
1605 BdrvRequestFlags flags)
1606 {
1607 BlockDriverState *bs = child->bs;
1608 BdrvTrackedRequest req;
1609 BdrvRequestPadding pad;
1610 int ret;
1611 IO_CODE();
1612
1613 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1614
1615 if (!bdrv_is_inserted(bs)) {
1616 return -ENOMEDIUM;
1617 }
1618
1619 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1620 if (ret < 0) {
1621 return ret;
1622 }
1623
1624 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1625 /*
1626 * Aligning zero request is nonsense. Even if driver has special meaning
1627 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1628 * it to driver due to request_alignment.
1629 *
1630 * Still, no reason to return an error if someone do unaligned
1631 * zero-length read occasionally.
1632 */
1633 return 0;
1634 }
1635
1636 bdrv_inc_in_flight(bs);
1637
1638 /* Don't do copy-on-read if we read data before write operation */
1639 if (qatomic_read(&bs->copy_on_read)) {
1640 flags |= BDRV_REQ_COPY_ON_READ;
1641 }
1642
1643 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1644 NULL, &flags);
1645 if (ret < 0) {
1646 goto fail;
1647 }
1648
1649 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1650 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1651 bs->bl.request_alignment,
1652 qiov, qiov_offset, flags);
1653 tracked_request_end(&req);
1654 bdrv_padding_destroy(&pad);
1655
1656 fail:
1657 bdrv_dec_in_flight(bs);
1658
1659 return ret;
1660 }
1661
1662 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1663 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1664 {
1665 BlockDriver *drv = bs->drv;
1666 QEMUIOVector qiov;
1667 void *buf = NULL;
1668 int ret = 0;
1669 bool need_flush = false;
1670 int head = 0;
1671 int tail = 0;
1672
1673 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1674 INT64_MAX);
1675 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1676 bs->bl.request_alignment);
1677 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1678
1679 bdrv_check_request(offset, bytes, &error_abort);
1680
1681 if (!drv) {
1682 return -ENOMEDIUM;
1683 }
1684
1685 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1686 return -ENOTSUP;
1687 }
1688
1689 /* By definition there is no user buffer so this flag doesn't make sense */
1690 if (flags & BDRV_REQ_REGISTERED_BUF) {
1691 return -EINVAL;
1692 }
1693
1694 /* Invalidate the cached block-status data range if this write overlaps */
1695 bdrv_bsc_invalidate_range(bs, offset, bytes);
1696
1697 assert(alignment % bs->bl.request_alignment == 0);
1698 head = offset % alignment;
1699 tail = (offset + bytes) % alignment;
1700 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1701 assert(max_write_zeroes >= bs->bl.request_alignment);
1702
1703 while (bytes > 0 && !ret) {
1704 int64_t num = bytes;
1705
1706 /* Align request. Block drivers can expect the "bulk" of the request
1707 * to be aligned, and that unaligned requests do not cross cluster
1708 * boundaries.
1709 */
1710 if (head) {
1711 /* Make a small request up to the first aligned sector. For
1712 * convenience, limit this request to max_transfer even if
1713 * we don't need to fall back to writes. */
1714 num = MIN(MIN(bytes, max_transfer), alignment - head);
1715 head = (head + num) % alignment;
1716 assert(num < max_write_zeroes);
1717 } else if (tail && num > alignment) {
1718 /* Shorten the request to the last aligned sector. */
1719 num -= tail;
1720 }
1721
1722 /* limit request size */
1723 if (num > max_write_zeroes) {
1724 num = max_write_zeroes;
1725 }
1726
1727 ret = -ENOTSUP;
1728 /* First try the efficient write zeroes operation */
1729 if (drv->bdrv_co_pwrite_zeroes) {
1730 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1731 flags & bs->supported_zero_flags);
1732 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1733 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1734 need_flush = true;
1735 }
1736 } else {
1737 assert(!bs->supported_zero_flags);
1738 }
1739
1740 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1741 /* Fall back to bounce buffer if write zeroes is unsupported */
1742 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1743
1744 if ((flags & BDRV_REQ_FUA) &&
1745 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1746 /* No need for bdrv_driver_pwrite() to do a fallback
1747 * flush on each chunk; use just one at the end */
1748 write_flags &= ~BDRV_REQ_FUA;
1749 need_flush = true;
1750 }
1751 num = MIN(num, max_transfer);
1752 if (buf == NULL) {
1753 buf = qemu_try_blockalign0(bs, num);
1754 if (buf == NULL) {
1755 ret = -ENOMEM;
1756 goto fail;
1757 }
1758 }
1759 qemu_iovec_init_buf(&qiov, buf, num);
1760
1761 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1762
1763 /* Keep bounce buffer around if it is big enough for all
1764 * all future requests.
1765 */
1766 if (num < max_transfer) {
1767 qemu_vfree(buf);
1768 buf = NULL;
1769 }
1770 }
1771
1772 offset += num;
1773 bytes -= num;
1774 }
1775
1776 fail:
1777 if (ret == 0 && need_flush) {
1778 ret = bdrv_co_flush(bs);
1779 }
1780 qemu_vfree(buf);
1781 return ret;
1782 }
1783
1784 static inline int coroutine_fn
1785 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1786 BdrvTrackedRequest *req, int flags)
1787 {
1788 BlockDriverState *bs = child->bs;
1789
1790 bdrv_check_request(offset, bytes, &error_abort);
1791
1792 if (bdrv_is_read_only(bs)) {
1793 return -EPERM;
1794 }
1795
1796 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1797 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1798 assert(!(flags & ~BDRV_REQ_MASK));
1799 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1800
1801 if (flags & BDRV_REQ_SERIALISING) {
1802 QEMU_LOCK_GUARD(&bs->reqs_lock);
1803
1804 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1805
1806 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1807 return -EBUSY;
1808 }
1809
1810 bdrv_wait_serialising_requests_locked(req);
1811 } else {
1812 bdrv_wait_serialising_requests(req);
1813 }
1814
1815 assert(req->overlap_offset <= offset);
1816 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1817 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1818 child->perm & BLK_PERM_RESIZE);
1819
1820 switch (req->type) {
1821 case BDRV_TRACKED_WRITE:
1822 case BDRV_TRACKED_DISCARD:
1823 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1824 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1825 } else {
1826 assert(child->perm & BLK_PERM_WRITE);
1827 }
1828 bdrv_write_threshold_check_write(bs, offset, bytes);
1829 return 0;
1830 case BDRV_TRACKED_TRUNCATE:
1831 assert(child->perm & BLK_PERM_RESIZE);
1832 return 0;
1833 default:
1834 abort();
1835 }
1836 }
1837
1838 static inline void coroutine_fn
1839 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1840 BdrvTrackedRequest *req, int ret)
1841 {
1842 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1843 BlockDriverState *bs = child->bs;
1844
1845 bdrv_check_request(offset, bytes, &error_abort);
1846
1847 qatomic_inc(&bs->write_gen);
1848
1849 /*
1850 * Discard cannot extend the image, but in error handling cases, such as
1851 * when reverting a qcow2 cluster allocation, the discarded range can pass
1852 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1853 * here. Instead, just skip it, since semantically a discard request
1854 * beyond EOF cannot expand the image anyway.
1855 */
1856 if (ret == 0 &&
1857 (req->type == BDRV_TRACKED_TRUNCATE ||
1858 end_sector > bs->total_sectors) &&
1859 req->type != BDRV_TRACKED_DISCARD) {
1860 bs->total_sectors = end_sector;
1861 bdrv_parent_cb_resize(bs);
1862 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1863 }
1864 if (req->bytes) {
1865 switch (req->type) {
1866 case BDRV_TRACKED_WRITE:
1867 stat64_max(&bs->wr_highest_offset, offset + bytes);
1868 /* fall through, to set dirty bits */
1869 case BDRV_TRACKED_DISCARD:
1870 bdrv_set_dirty(bs, offset, bytes);
1871 break;
1872 default:
1873 break;
1874 }
1875 }
1876 }
1877
1878 /*
1879 * Forwards an already correctly aligned write request to the BlockDriver,
1880 * after possibly fragmenting it.
1881 */
1882 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1883 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1884 int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
1885 BdrvRequestFlags flags)
1886 {
1887 BlockDriverState *bs = child->bs;
1888 BlockDriver *drv = bs->drv;
1889 int ret;
1890
1891 int64_t bytes_remaining = bytes;
1892 int max_transfer;
1893
1894 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1895
1896 if (!drv) {
1897 return -ENOMEDIUM;
1898 }
1899
1900 if (bdrv_has_readonly_bitmaps(bs)) {
1901 return -EPERM;
1902 }
1903
1904 assert(is_power_of_2(align));
1905 assert((offset & (align - 1)) == 0);
1906 assert((bytes & (align - 1)) == 0);
1907 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1908 align);
1909
1910 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1911
1912 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1913 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1914 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1915 flags |= BDRV_REQ_ZERO_WRITE;
1916 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1917 flags |= BDRV_REQ_MAY_UNMAP;
1918 }
1919 }
1920
1921 if (ret < 0) {
1922 /* Do nothing, write notifier decided to fail this request */
1923 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1924 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1925 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1926 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1927 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1928 qiov, qiov_offset);
1929 } else if (bytes <= max_transfer) {
1930 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1931 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1932 } else {
1933 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1934 while (bytes_remaining) {
1935 int num = MIN(bytes_remaining, max_transfer);
1936 int local_flags = flags;
1937
1938 assert(num);
1939 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1940 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1941 /* If FUA is going to be emulated by flush, we only
1942 * need to flush on the last iteration */
1943 local_flags &= ~BDRV_REQ_FUA;
1944 }
1945
1946 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1947 num, qiov,
1948 qiov_offset + bytes - bytes_remaining,
1949 local_flags);
1950 if (ret < 0) {
1951 break;
1952 }
1953 bytes_remaining -= num;
1954 }
1955 }
1956 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1957
1958 if (ret >= 0) {
1959 ret = 0;
1960 }
1961 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1962
1963 return ret;
1964 }
1965
1966 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1967 int64_t offset,
1968 int64_t bytes,
1969 BdrvRequestFlags flags,
1970 BdrvTrackedRequest *req)
1971 {
1972 BlockDriverState *bs = child->bs;
1973 QEMUIOVector local_qiov;
1974 uint64_t align = bs->bl.request_alignment;
1975 int ret = 0;
1976 bool padding;
1977 BdrvRequestPadding pad;
1978
1979 /* This flag doesn't make sense for padding or zero writes */
1980 flags &= ~BDRV_REQ_REGISTERED_BUF;
1981
1982 padding = bdrv_init_padding(bs, offset, bytes, &pad);
1983 if (padding) {
1984 assert(!(flags & BDRV_REQ_NO_WAIT));
1985 bdrv_make_request_serialising(req, align);
1986
1987 bdrv_padding_rmw_read(child, req, &pad, true);
1988
1989 if (pad.head || pad.merge_reads) {
1990 int64_t aligned_offset = offset & ~(align - 1);
1991 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
1992
1993 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
1994 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
1995 align, &local_qiov, 0,
1996 flags & ~BDRV_REQ_ZERO_WRITE);
1997 if (ret < 0 || pad.merge_reads) {
1998 /* Error or all work is done */
1999 goto out;
2000 }
2001 offset += write_bytes - pad.head;
2002 bytes -= write_bytes - pad.head;
2003 }
2004 }
2005
2006 assert(!bytes || (offset & (align - 1)) == 0);
2007 if (bytes >= align) {
2008 /* Write the aligned part in the middle. */
2009 int64_t aligned_bytes = bytes & ~(align - 1);
2010 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2011 NULL, 0, flags);
2012 if (ret < 0) {
2013 goto out;
2014 }
2015 bytes -= aligned_bytes;
2016 offset += aligned_bytes;
2017 }
2018
2019 assert(!bytes || (offset & (align - 1)) == 0);
2020 if (bytes) {
2021 assert(align == pad.tail + bytes);
2022
2023 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2024 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2025 &local_qiov, 0,
2026 flags & ~BDRV_REQ_ZERO_WRITE);
2027 }
2028
2029 out:
2030 bdrv_padding_destroy(&pad);
2031
2032 return ret;
2033 }
2034
2035 /*
2036 * Handle a write request in coroutine context
2037 */
2038 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2039 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2040 BdrvRequestFlags flags)
2041 {
2042 IO_CODE();
2043 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2044 }
2045
2046 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2047 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2048 BdrvRequestFlags flags)
2049 {
2050 BlockDriverState *bs = child->bs;
2051 BdrvTrackedRequest req;
2052 uint64_t align = bs->bl.request_alignment;
2053 BdrvRequestPadding pad;
2054 int ret;
2055 bool padded = false;
2056 IO_CODE();
2057
2058 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2059
2060 if (!bdrv_is_inserted(bs)) {
2061 return -ENOMEDIUM;
2062 }
2063
2064 if (flags & BDRV_REQ_ZERO_WRITE) {
2065 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2066 } else {
2067 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2068 }
2069 if (ret < 0) {
2070 return ret;
2071 }
2072
2073 /* If the request is misaligned then we can't make it efficient */
2074 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2075 !QEMU_IS_ALIGNED(offset | bytes, align))
2076 {
2077 return -ENOTSUP;
2078 }
2079
2080 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2081 /*
2082 * Aligning zero request is nonsense. Even if driver has special meaning
2083 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2084 * it to driver due to request_alignment.
2085 *
2086 * Still, no reason to return an error if someone do unaligned
2087 * zero-length write occasionally.
2088 */
2089 return 0;
2090 }
2091
2092 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2093 /*
2094 * Pad request for following read-modify-write cycle.
2095 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2096 * alignment only if there is no ZERO flag.
2097 */
2098 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2099 &padded, &flags);
2100 if (ret < 0) {
2101 return ret;
2102 }
2103 }
2104
2105 bdrv_inc_in_flight(bs);
2106 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2107
2108 if (flags & BDRV_REQ_ZERO_WRITE) {
2109 assert(!padded);
2110 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2111 goto out;
2112 }
2113
2114 if (padded) {
2115 /*
2116 * Request was unaligned to request_alignment and therefore
2117 * padded. We are going to do read-modify-write, and must
2118 * serialize the request to prevent interactions of the
2119 * widened region with other transactions.
2120 */
2121 assert(!(flags & BDRV_REQ_NO_WAIT));
2122 bdrv_make_request_serialising(&req, align);
2123 bdrv_padding_rmw_read(child, &req, &pad, false);
2124 }
2125
2126 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2127 qiov, qiov_offset, flags);
2128
2129 bdrv_padding_destroy(&pad);
2130
2131 out:
2132 tracked_request_end(&req);
2133 bdrv_dec_in_flight(bs);
2134
2135 return ret;
2136 }
2137
2138 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2139 int64_t bytes, BdrvRequestFlags flags)
2140 {
2141 IO_CODE();
2142 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2143
2144 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2145 flags &= ~BDRV_REQ_MAY_UNMAP;
2146 }
2147
2148 return bdrv_co_pwritev(child, offset, bytes, NULL,
2149 BDRV_REQ_ZERO_WRITE | flags);
2150 }
2151
2152 /*
2153 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2154 */
2155 int bdrv_flush_all(void)
2156 {
2157 BdrvNextIterator it;
2158 BlockDriverState *bs = NULL;
2159 int result = 0;
2160
2161 GLOBAL_STATE_CODE();
2162
2163 /*
2164 * bdrv queue is managed by record/replay,
2165 * creating new flush request for stopping
2166 * the VM may break the determinism
2167 */
2168 if (replay_events_enabled()) {
2169 return result;
2170 }
2171
2172 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2173 AioContext *aio_context = bdrv_get_aio_context(bs);
2174 int ret;
2175
2176 aio_context_acquire(aio_context);
2177 ret = bdrv_flush(bs);
2178 if (ret < 0 && !result) {
2179 result = ret;
2180 }
2181 aio_context_release(aio_context);
2182 }
2183
2184 return result;
2185 }
2186
2187 /*
2188 * Returns the allocation status of the specified sectors.
2189 * Drivers not implementing the functionality are assumed to not support
2190 * backing files, hence all their sectors are reported as allocated.
2191 *
2192 * If 'want_zero' is true, the caller is querying for mapping
2193 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2194 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2195 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2196 *
2197 * If 'offset' is beyond the end of the disk image the return value is
2198 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2199 *
2200 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2201 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2202 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2203 *
2204 * 'pnum' is set to the number of bytes (including and immediately
2205 * following the specified offset) that are easily known to be in the
2206 * same allocated/unallocated state. Note that a second call starting
2207 * at the original offset plus returned pnum may have the same status.
2208 * The returned value is non-zero on success except at end-of-file.
2209 *
2210 * Returns negative errno on failure. Otherwise, if the
2211 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2212 * set to the host mapping and BDS corresponding to the guest offset.
2213 */
2214 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2215 bool want_zero,
2216 int64_t offset, int64_t bytes,
2217 int64_t *pnum, int64_t *map,
2218 BlockDriverState **file)
2219 {
2220 int64_t total_size;
2221 int64_t n; /* bytes */
2222 int ret;
2223 int64_t local_map = 0;
2224 BlockDriverState *local_file = NULL;
2225 int64_t aligned_offset, aligned_bytes;
2226 uint32_t align;
2227 bool has_filtered_child;
2228
2229 assert(pnum);
2230 *pnum = 0;
2231 total_size = bdrv_getlength(bs);
2232 if (total_size < 0) {
2233 ret = total_size;
2234 goto early_out;
2235 }
2236
2237 if (offset >= total_size) {
2238 ret = BDRV_BLOCK_EOF;
2239 goto early_out;
2240 }
2241 if (!bytes) {
2242 ret = 0;
2243 goto early_out;
2244 }
2245
2246 n = total_size - offset;
2247 if (n < bytes) {
2248 bytes = n;
2249 }
2250
2251 /* Must be non-NULL or bdrv_getlength() would have failed */
2252 assert(bs->drv);
2253 has_filtered_child = bdrv_filter_child(bs);
2254 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2255 *pnum = bytes;
2256 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2257 if (offset + bytes == total_size) {
2258 ret |= BDRV_BLOCK_EOF;
2259 }
2260 if (bs->drv->protocol_name) {
2261 ret |= BDRV_BLOCK_OFFSET_VALID;
2262 local_map = offset;
2263 local_file = bs;
2264 }
2265 goto early_out;
2266 }
2267
2268 bdrv_inc_in_flight(bs);
2269
2270 /* Round out to request_alignment boundaries */
2271 align = bs->bl.request_alignment;
2272 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2273 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2274
2275 if (bs->drv->bdrv_co_block_status) {
2276 /*
2277 * Use the block-status cache only for protocol nodes: Format
2278 * drivers are generally quick to inquire the status, but protocol
2279 * drivers often need to get information from outside of qemu, so
2280 * we do not have control over the actual implementation. There
2281 * have been cases where inquiring the status took an unreasonably
2282 * long time, and we can do nothing in qemu to fix it.
2283 * This is especially problematic for images with large data areas,
2284 * because finding the few holes in them and giving them special
2285 * treatment does not gain much performance. Therefore, we try to
2286 * cache the last-identified data region.
2287 *
2288 * Second, limiting ourselves to protocol nodes allows us to assume
2289 * the block status for data regions to be DATA | OFFSET_VALID, and
2290 * that the host offset is the same as the guest offset.
2291 *
2292 * Note that it is possible that external writers zero parts of
2293 * the cached regions without the cache being invalidated, and so
2294 * we may report zeroes as data. This is not catastrophic,
2295 * however, because reporting zeroes as data is fine.
2296 */
2297 if (QLIST_EMPTY(&bs->children) &&
2298 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2299 {
2300 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2301 local_file = bs;
2302 local_map = aligned_offset;
2303 } else {
2304 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2305 aligned_bytes, pnum, &local_map,
2306 &local_file);
2307
2308 /*
2309 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2310 * the cache is queried above. Technically, we do not need to check
2311 * it here; the worst that can happen is that we fill the cache for
2312 * non-protocol nodes, and then it is never used. However, filling
2313 * the cache requires an RCU update, so double check here to avoid
2314 * such an update if possible.
2315 *
2316 * Check want_zero, because we only want to update the cache when we
2317 * have accurate information about what is zero and what is data.
2318 */
2319 if (want_zero &&
2320 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2321 QLIST_EMPTY(&bs->children))
2322 {
2323 /*
2324 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2325 * returned local_map value must be the same as the offset we
2326 * have passed (aligned_offset), and local_bs must be the node
2327 * itself.
2328 * Assert this, because we follow this rule when reading from
2329 * the cache (see the `local_file = bs` and
2330 * `local_map = aligned_offset` assignments above), and the
2331 * result the cache delivers must be the same as the driver
2332 * would deliver.
2333 */
2334 assert(local_file == bs);
2335 assert(local_map == aligned_offset);
2336 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2337 }
2338 }
2339 } else {
2340 /* Default code for filters */
2341
2342 local_file = bdrv_filter_bs(bs);
2343 assert(local_file);
2344
2345 *pnum = aligned_bytes;
2346 local_map = aligned_offset;
2347 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2348 }
2349 if (ret < 0) {
2350 *pnum = 0;
2351 goto out;
2352 }
2353
2354 /*
2355 * The driver's result must be a non-zero multiple of request_alignment.
2356 * Clamp pnum and adjust map to original request.
2357 */
2358 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2359 align > offset - aligned_offset);
2360 if (ret & BDRV_BLOCK_RECURSE) {
2361 assert(ret & BDRV_BLOCK_DATA);
2362 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2363 assert(!(ret & BDRV_BLOCK_ZERO));
2364 }
2365
2366 *pnum -= offset - aligned_offset;
2367 if (*pnum > bytes) {
2368 *pnum = bytes;
2369 }
2370 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2371 local_map += offset - aligned_offset;
2372 }
2373
2374 if (ret & BDRV_BLOCK_RAW) {
2375 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2376 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2377 *pnum, pnum, &local_map, &local_file);
2378 goto out;
2379 }
2380
2381 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2382 ret |= BDRV_BLOCK_ALLOCATED;
2383 } else if (bs->drv->supports_backing) {
2384 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2385
2386 if (!cow_bs) {
2387 ret |= BDRV_BLOCK_ZERO;
2388 } else if (want_zero) {
2389 int64_t size2 = bdrv_getlength(cow_bs);
2390
2391 if (size2 >= 0 && offset >= size2) {
2392 ret |= BDRV_BLOCK_ZERO;
2393 }
2394 }
2395 }
2396
2397 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2398 local_file && local_file != bs &&
2399 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2400 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2401 int64_t file_pnum;
2402 int ret2;
2403
2404 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2405 *pnum, &file_pnum, NULL, NULL);
2406 if (ret2 >= 0) {
2407 /* Ignore errors. This is just providing extra information, it
2408 * is useful but not necessary.
2409 */
2410 if (ret2 & BDRV_BLOCK_EOF &&
2411 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2412 /*
2413 * It is valid for the format block driver to read
2414 * beyond the end of the underlying file's current
2415 * size; such areas read as zero.
2416 */
2417 ret |= BDRV_BLOCK_ZERO;
2418 } else {
2419 /* Limit request to the range reported by the protocol driver */
2420 *pnum = file_pnum;
2421 ret |= (ret2 & BDRV_BLOCK_ZERO);
2422 }
2423 }
2424 }
2425
2426 out:
2427 bdrv_dec_in_flight(bs);
2428 if (ret >= 0 && offset + *pnum == total_size) {
2429 ret |= BDRV_BLOCK_EOF;
2430 }
2431 early_out:
2432 if (file) {
2433 *file = local_file;
2434 }
2435 if (map) {
2436 *map = local_map;
2437 }
2438 return ret;
2439 }
2440
2441 int coroutine_fn
2442 bdrv_co_common_block_status_above(BlockDriverState *bs,
2443 BlockDriverState *base,
2444 bool include_base,
2445 bool want_zero,
2446 int64_t offset,
2447 int64_t bytes,
2448 int64_t *pnum,
2449 int64_t *map,
2450 BlockDriverState **file,
2451 int *depth)
2452 {
2453 int ret;
2454 BlockDriverState *p;
2455 int64_t eof = 0;
2456 int dummy;
2457 IO_CODE();
2458
2459 assert(!include_base || base); /* Can't include NULL base */
2460
2461 if (!depth) {
2462 depth = &dummy;
2463 }
2464 *depth = 0;
2465
2466 if (!include_base && bs == base) {
2467 *pnum = bytes;
2468 return 0;
2469 }
2470
2471 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2472 ++*depth;
2473 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2474 return ret;
2475 }
2476
2477 if (ret & BDRV_BLOCK_EOF) {
2478 eof = offset + *pnum;
2479 }
2480
2481 assert(*pnum <= bytes);
2482 bytes = *pnum;
2483
2484 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2485 p = bdrv_filter_or_cow_bs(p))
2486 {
2487 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2488 file);
2489 ++*depth;
2490 if (ret < 0) {
2491 return ret;
2492 }
2493 if (*pnum == 0) {
2494 /*
2495 * The top layer deferred to this layer, and because this layer is
2496 * short, any zeroes that we synthesize beyond EOF behave as if they
2497 * were allocated at this layer.
2498 *
2499 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2500 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2501 * below.
2502 */
2503 assert(ret & BDRV_BLOCK_EOF);
2504 *pnum = bytes;
2505 if (file) {
2506 *file = p;
2507 }
2508 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2509 break;
2510 }
2511 if (ret & BDRV_BLOCK_ALLOCATED) {
2512 /*
2513 * We've found the node and the status, we must break.
2514 *
2515 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2516 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2517 * below.
2518 */
2519 ret &= ~BDRV_BLOCK_EOF;
2520 break;
2521 }
2522
2523 if (p == base) {
2524 assert(include_base);
2525 break;
2526 }
2527
2528 /*
2529 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2530 * let's continue the diving.
2531 */
2532 assert(*pnum <= bytes);
2533 bytes = *pnum;
2534 }
2535
2536 if (offset + *pnum == eof) {
2537 ret |= BDRV_BLOCK_EOF;
2538 }
2539
2540 return ret;
2541 }
2542
2543 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2544 BlockDriverState *base,
2545 int64_t offset, int64_t bytes,
2546 int64_t *pnum, int64_t *map,
2547 BlockDriverState **file)
2548 {
2549 IO_CODE();
2550 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2551 bytes, pnum, map, file, NULL);
2552 }
2553
2554 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2555 int64_t offset, int64_t bytes, int64_t *pnum,
2556 int64_t *map, BlockDriverState **file)
2557 {
2558 IO_CODE();
2559 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2560 pnum, map, file, NULL);
2561 }
2562
2563 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2564 int64_t *pnum, int64_t *map, BlockDriverState **file)
2565 {
2566 IO_CODE();
2567 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2568 offset, bytes, pnum, map, file);
2569 }
2570
2571 /*
2572 * Check @bs (and its backing chain) to see if the range defined
2573 * by @offset and @bytes is known to read as zeroes.
2574 * Return 1 if that is the case, 0 otherwise and -errno on error.
2575 * This test is meant to be fast rather than accurate so returning 0
2576 * does not guarantee non-zero data.
2577 */
2578 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2579 int64_t bytes)
2580 {
2581 int ret;
2582 int64_t pnum = bytes;
2583 IO_CODE();
2584
2585 if (!bytes) {
2586 return 1;
2587 }
2588
2589 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2590 bytes, &pnum, NULL, NULL, NULL);
2591
2592 if (ret < 0) {
2593 return ret;
2594 }
2595
2596 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2597 }
2598
2599 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2600 int64_t bytes, int64_t *pnum)
2601 {
2602 int ret;
2603 int64_t dummy;
2604 IO_CODE();
2605
2606 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2607 bytes, pnum ? pnum : &dummy, NULL,
2608 NULL, NULL);
2609 if (ret < 0) {
2610 return ret;
2611 }
2612 return !!(ret & BDRV_BLOCK_ALLOCATED);
2613 }
2614
2615 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2616 int64_t *pnum)
2617 {
2618 int ret;
2619 int64_t dummy;
2620 IO_CODE();
2621
2622 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2623 bytes, pnum ? pnum : &dummy, NULL,
2624 NULL, NULL);
2625 if (ret < 0) {
2626 return ret;
2627 }
2628 return !!(ret & BDRV_BLOCK_ALLOCATED);
2629 }
2630
2631 /* See bdrv_is_allocated_above for documentation */
2632 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2633 BlockDriverState *base,
2634 bool include_base, int64_t offset,
2635 int64_t bytes, int64_t *pnum)
2636 {
2637 int depth;
2638 int ret;
2639 IO_CODE();
2640
2641 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2642 offset, bytes, pnum, NULL, NULL,
2643 &depth);
2644 if (ret < 0) {
2645 return ret;
2646 }
2647
2648 if (ret & BDRV_BLOCK_ALLOCATED) {
2649 return depth;
2650 }
2651 return 0;
2652 }
2653
2654 /*
2655 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2656 *
2657 * Return a positive depth if (a prefix of) the given range is allocated
2658 * in any image between BASE and TOP (BASE is only included if include_base
2659 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2660 * BASE can be NULL to check if the given offset is allocated in any
2661 * image of the chain. Return 0 otherwise, or negative errno on
2662 * failure.
2663 *
2664 * 'pnum' is set to the number of bytes (including and immediately
2665 * following the specified offset) that are known to be in the same
2666 * allocated/unallocated state. Note that a subsequent call starting
2667 * at 'offset + *pnum' may return the same allocation status (in other
2668 * words, the result is not necessarily the maximum possible range);
2669 * but 'pnum' will only be 0 when end of file is reached.
2670 */
2671 int bdrv_is_allocated_above(BlockDriverState *top,
2672 BlockDriverState *base,
2673 bool include_base, int64_t offset,
2674 int64_t bytes, int64_t *pnum)
2675 {
2676 int depth;
2677 int ret;
2678 IO_CODE();
2679
2680 ret = bdrv_common_block_status_above(top, base, include_base, false,
2681 offset, bytes, pnum, NULL, NULL,
2682 &depth);
2683 if (ret < 0) {
2684 return ret;
2685 }
2686
2687 if (ret & BDRV_BLOCK_ALLOCATED) {
2688 return depth;
2689 }
2690 return 0;
2691 }
2692
2693 int coroutine_fn
2694 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2695 {
2696 BlockDriver *drv = bs->drv;
2697 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2698 int ret;
2699 IO_CODE();
2700 assert_bdrv_graph_readable();
2701
2702 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2703 if (ret < 0) {
2704 return ret;
2705 }
2706
2707 if (!drv) {
2708 return -ENOMEDIUM;
2709 }
2710
2711 bdrv_inc_in_flight(bs);
2712
2713 if (drv->bdrv_load_vmstate) {
2714 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2715 } else if (child_bs) {
2716 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2717 } else {
2718 ret = -ENOTSUP;
2719 }
2720
2721 bdrv_dec_in_flight(bs);
2722
2723 return ret;
2724 }
2725
2726 int coroutine_fn
2727 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2728 {
2729 BlockDriver *drv = bs->drv;
2730 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2731 int ret;
2732 IO_CODE();
2733 assert_bdrv_graph_readable();
2734
2735 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2736 if (ret < 0) {
2737 return ret;
2738 }
2739
2740 if (!drv) {
2741 return -ENOMEDIUM;
2742 }
2743
2744 bdrv_inc_in_flight(bs);
2745
2746 if (drv->bdrv_save_vmstate) {
2747 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2748 } else if (child_bs) {
2749 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2750 } else {
2751 ret = -ENOTSUP;
2752 }
2753
2754 bdrv_dec_in_flight(bs);
2755
2756 return ret;
2757 }
2758
2759 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2760 int64_t pos, int size)
2761 {
2762 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2763 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2764 IO_CODE();
2765
2766 return ret < 0 ? ret : size;
2767 }
2768
2769 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2770 int64_t pos, int size)
2771 {
2772 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2773 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2774 IO_CODE();
2775
2776 return ret < 0 ? ret : size;
2777 }
2778
2779 /**************************************************************/
2780 /* async I/Os */
2781
2782 void bdrv_aio_cancel(BlockAIOCB *acb)
2783 {
2784 IO_CODE();
2785 qemu_aio_ref(acb);
2786 bdrv_aio_cancel_async(acb);
2787 while (acb->refcnt > 1) {
2788 if (acb->aiocb_info->get_aio_context) {
2789 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2790 } else if (acb->bs) {
2791 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2792 * assert that we're not using an I/O thread. Thread-safe
2793 * code should use bdrv_aio_cancel_async exclusively.
2794 */
2795 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2796 aio_poll(bdrv_get_aio_context(acb->bs), true);
2797 } else {
2798 abort();
2799 }
2800 }
2801 qemu_aio_unref(acb);
2802 }
2803
2804 /* Async version of aio cancel. The caller is not blocked if the acb implements
2805 * cancel_async, otherwise we do nothing and let the request normally complete.
2806 * In either case the completion callback must be called. */
2807 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2808 {
2809 IO_CODE();
2810 if (acb->aiocb_info->cancel_async) {
2811 acb->aiocb_info->cancel_async(acb);
2812 }
2813 }
2814
2815 /**************************************************************/
2816 /* Coroutine block device emulation */
2817
2818 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2819 {
2820 BdrvChild *primary_child = bdrv_primary_child(bs);
2821 BdrvChild *child;
2822 int current_gen;
2823 int ret = 0;
2824 IO_CODE();
2825
2826 bdrv_inc_in_flight(bs);
2827
2828 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2829 bdrv_is_sg(bs)) {
2830 goto early_exit;
2831 }
2832
2833 qemu_co_mutex_lock(&bs->reqs_lock);
2834 current_gen = qatomic_read(&bs->write_gen);
2835
2836 /* Wait until any previous flushes are completed */
2837 while (bs->active_flush_req) {
2838 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2839 }
2840
2841 /* Flushes reach this point in nondecreasing current_gen order. */
2842 bs->active_flush_req = true;
2843 qemu_co_mutex_unlock(&bs->reqs_lock);
2844
2845 /* Write back all layers by calling one driver function */
2846 if (bs->drv->bdrv_co_flush) {
2847 ret = bs->drv->bdrv_co_flush(bs);
2848 goto out;
2849 }
2850
2851 /* Write back cached data to the OS even with cache=unsafe */
2852 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2853 if (bs->drv->bdrv_co_flush_to_os) {
2854 ret = bs->drv->bdrv_co_flush_to_os(bs);
2855 if (ret < 0) {
2856 goto out;
2857 }
2858 }
2859
2860 /* But don't actually force it to the disk with cache=unsafe */
2861 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2862 goto flush_children;
2863 }
2864
2865 /* Check if we really need to flush anything */
2866 if (bs->flushed_gen == current_gen) {
2867 goto flush_children;
2868 }
2869
2870 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2871 if (!bs->drv) {
2872 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2873 * (even in case of apparent success) */
2874 ret = -ENOMEDIUM;
2875 goto out;
2876 }
2877 if (bs->drv->bdrv_co_flush_to_disk) {
2878 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2879 } else if (bs->drv->bdrv_aio_flush) {
2880 BlockAIOCB *acb;
2881 CoroutineIOCompletion co = {
2882 .coroutine = qemu_coroutine_self(),
2883 };
2884
2885 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2886 if (acb == NULL) {
2887 ret = -EIO;
2888 } else {
2889 qemu_coroutine_yield();
2890 ret = co.ret;
2891 }
2892 } else {
2893 /*
2894 * Some block drivers always operate in either writethrough or unsafe
2895 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2896 * know how the server works (because the behaviour is hardcoded or
2897 * depends on server-side configuration), so we can't ensure that
2898 * everything is safe on disk. Returning an error doesn't work because
2899 * that would break guests even if the server operates in writethrough
2900 * mode.
2901 *
2902 * Let's hope the user knows what he's doing.
2903 */
2904 ret = 0;
2905 }
2906
2907 if (ret < 0) {
2908 goto out;
2909 }
2910
2911 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2912 * in the case of cache=unsafe, so there are no useless flushes.
2913 */
2914 flush_children:
2915 ret = 0;
2916 QLIST_FOREACH(child, &bs->children, next) {
2917 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2918 int this_child_ret = bdrv_co_flush(child->bs);
2919 if (!ret) {
2920 ret = this_child_ret;
2921 }
2922 }
2923 }
2924
2925 out:
2926 /* Notify any pending flushes that we have completed */
2927 if (ret == 0) {
2928 bs->flushed_gen = current_gen;
2929 }
2930
2931 qemu_co_mutex_lock(&bs->reqs_lock);
2932 bs->active_flush_req = false;
2933 /* Return value is ignored - it's ok if wait queue is empty */
2934 qemu_co_queue_next(&bs->flush_queue);
2935 qemu_co_mutex_unlock(&bs->reqs_lock);
2936
2937 early_exit:
2938 bdrv_dec_in_flight(bs);
2939 return ret;
2940 }
2941
2942 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2943 int64_t bytes)
2944 {
2945 BdrvTrackedRequest req;
2946 int ret;
2947 int64_t max_pdiscard;
2948 int head, tail, align;
2949 BlockDriverState *bs = child->bs;
2950 IO_CODE();
2951
2952 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2953 return -ENOMEDIUM;
2954 }
2955
2956 if (bdrv_has_readonly_bitmaps(bs)) {
2957 return -EPERM;
2958 }
2959
2960 ret = bdrv_check_request(offset, bytes, NULL);
2961 if (ret < 0) {
2962 return ret;
2963 }
2964
2965 /* Do nothing if disabled. */
2966 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2967 return 0;
2968 }
2969
2970 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2971 return 0;
2972 }
2973
2974 /* Invalidate the cached block-status data range if this discard overlaps */
2975 bdrv_bsc_invalidate_range(bs, offset, bytes);
2976
2977 /* Discard is advisory, but some devices track and coalesce
2978 * unaligned requests, so we must pass everything down rather than
2979 * round here. Still, most devices will just silently ignore
2980 * unaligned requests (by returning -ENOTSUP), so we must fragment
2981 * the request accordingly. */
2982 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2983 assert(align % bs->bl.request_alignment == 0);
2984 head = offset % align;
2985 tail = (offset + bytes) % align;
2986
2987 bdrv_inc_in_flight(bs);
2988 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2989
2990 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2991 if (ret < 0) {
2992 goto out;
2993 }
2994
2995 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
2996 align);
2997 assert(max_pdiscard >= bs->bl.request_alignment);
2998
2999 while (bytes > 0) {
3000 int64_t num = bytes;
3001
3002 if (head) {
3003 /* Make small requests to get to alignment boundaries. */
3004 num = MIN(bytes, align - head);
3005 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3006 num %= bs->bl.request_alignment;
3007 }
3008 head = (head + num) % align;
3009 assert(num < max_pdiscard);
3010 } else if (tail) {
3011 if (num > align) {
3012 /* Shorten the request to the last aligned cluster. */
3013 num -= tail;
3014 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3015 tail > bs->bl.request_alignment) {
3016 tail %= bs->bl.request_alignment;
3017 num -= tail;
3018 }
3019 }
3020 /* limit request size */
3021 if (num > max_pdiscard) {
3022 num = max_pdiscard;
3023 }
3024
3025 if (!bs->drv) {
3026 ret = -ENOMEDIUM;
3027 goto out;
3028 }
3029 if (bs->drv->bdrv_co_pdiscard) {
3030 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3031 } else {
3032 BlockAIOCB *acb;
3033 CoroutineIOCompletion co = {
3034 .coroutine = qemu_coroutine_self(),
3035 };
3036
3037 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3038 bdrv_co_io_em_complete, &co);
3039 if (acb == NULL) {
3040 ret = -EIO;
3041 goto out;
3042 } else {
3043 qemu_coroutine_yield();
3044 ret = co.ret;
3045 }
3046 }
3047 if (ret && ret != -ENOTSUP) {
3048 goto out;
3049 }
3050
3051 offset += num;
3052 bytes -= num;
3053 }
3054 ret = 0;
3055 out:
3056 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3057 tracked_request_end(&req);
3058 bdrv_dec_in_flight(bs);
3059 return ret;
3060 }
3061
3062 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3063 {
3064 BlockDriver *drv = bs->drv;
3065 CoroutineIOCompletion co = {
3066 .coroutine = qemu_coroutine_self(),
3067 };
3068 BlockAIOCB *acb;
3069 IO_CODE();
3070
3071 bdrv_inc_in_flight(bs);
3072 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3073 co.ret = -ENOTSUP;
3074 goto out;
3075 }
3076
3077 if (drv->bdrv_co_ioctl) {
3078 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3079 } else {
3080 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3081 if (!acb) {
3082 co.ret = -ENOTSUP;
3083 goto out;
3084 }
3085 qemu_coroutine_yield();
3086 }
3087 out:
3088 bdrv_dec_in_flight(bs);
3089 return co.ret;
3090 }
3091
3092 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3093 {
3094 IO_CODE();
3095 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3096 }
3097
3098 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3099 {
3100 IO_CODE();
3101 return memset(qemu_blockalign(bs, size), 0, size);
3102 }
3103
3104 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3105 {
3106 size_t align = bdrv_opt_mem_align(bs);
3107 IO_CODE();
3108
3109 /* Ensure that NULL is never returned on success */
3110 assert(align > 0);
3111 if (size == 0) {
3112 size = align;
3113 }
3114
3115 return qemu_try_memalign(align, size);
3116 }
3117
3118 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3119 {
3120 void *mem = qemu_try_blockalign(bs, size);
3121 IO_CODE();
3122
3123 if (mem) {
3124 memset(mem, 0, size);
3125 }
3126
3127 return mem;
3128 }
3129
3130 void bdrv_io_plug(BlockDriverState *bs)
3131 {
3132 BdrvChild *child;
3133 IO_CODE();
3134
3135 QLIST_FOREACH(child, &bs->children, next) {
3136 bdrv_io_plug(child->bs);
3137 }
3138
3139 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3140 BlockDriver *drv = bs->drv;
3141 if (drv && drv->bdrv_io_plug) {
3142 drv->bdrv_io_plug(bs);
3143 }
3144 }
3145 }
3146
3147 void bdrv_io_unplug(BlockDriverState *bs)
3148 {
3149 BdrvChild *child;
3150 IO_CODE();
3151
3152 assert(bs->io_plugged);
3153 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3154 BlockDriver *drv = bs->drv;
3155 if (drv && drv->bdrv_io_unplug) {
3156 drv->bdrv_io_unplug(bs);
3157 }
3158 }
3159
3160 QLIST_FOREACH(child, &bs->children, next) {
3161 bdrv_io_unplug(child->bs);
3162 }
3163 }
3164
3165 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3166 static void bdrv_register_buf_rollback(BlockDriverState *bs,
3167 void *host,
3168 size_t size,
3169 BdrvChild *final_child)
3170 {
3171 BdrvChild *child;
3172
3173 QLIST_FOREACH(child, &bs->children, next) {
3174 if (child == final_child) {
3175 break;
3176 }
3177
3178 bdrv_unregister_buf(child->bs, host, size);
3179 }
3180
3181 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3182 bs->drv->bdrv_unregister_buf(bs, host, size);
3183 }
3184 }
3185
3186 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3187 Error **errp)
3188 {
3189 BdrvChild *child;
3190
3191 GLOBAL_STATE_CODE();
3192 if (bs->drv && bs->drv->bdrv_register_buf) {
3193 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3194 return false;
3195 }
3196 }
3197 QLIST_FOREACH(child, &bs->children, next) {
3198 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3199 bdrv_register_buf_rollback(bs, host, size, child);
3200 return false;
3201 }
3202 }
3203 return true;
3204 }
3205
3206 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3207 {
3208 BdrvChild *child;
3209
3210 GLOBAL_STATE_CODE();
3211 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3212 bs->drv->bdrv_unregister_buf(bs, host, size);
3213 }
3214 QLIST_FOREACH(child, &bs->children, next) {
3215 bdrv_unregister_buf(child->bs, host, size);
3216 }
3217 }
3218
3219 static int coroutine_fn bdrv_co_copy_range_internal(
3220 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3221 int64_t dst_offset, int64_t bytes,
3222 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3223 bool recurse_src)
3224 {
3225 BdrvTrackedRequest req;
3226 int ret;
3227
3228 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3229 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3230 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3231 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3232 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3233
3234 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3235 return -ENOMEDIUM;
3236 }
3237 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3238 if (ret) {
3239 return ret;
3240 }
3241 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3242 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3243 }
3244
3245 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3246 return -ENOMEDIUM;
3247 }
3248 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3249 if (ret) {
3250 return ret;
3251 }
3252
3253 if (!src->bs->drv->bdrv_co_copy_range_from
3254 || !dst->bs->drv->bdrv_co_copy_range_to
3255 || src->bs->encrypted || dst->bs->encrypted) {
3256 return -ENOTSUP;
3257 }
3258
3259 if (recurse_src) {
3260 bdrv_inc_in_flight(src->bs);
3261 tracked_request_begin(&req, src->bs, src_offset, bytes,
3262 BDRV_TRACKED_READ);
3263
3264 /* BDRV_REQ_SERIALISING is only for write operation */
3265 assert(!(read_flags & BDRV_REQ_SERIALISING));
3266 bdrv_wait_serialising_requests(&req);
3267
3268 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3269 src, src_offset,
3270 dst, dst_offset,
3271 bytes,
3272 read_flags, write_flags);
3273
3274 tracked_request_end(&req);
3275 bdrv_dec_in_flight(src->bs);
3276 } else {
3277 bdrv_inc_in_flight(dst->bs);
3278 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3279 BDRV_TRACKED_WRITE);
3280 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3281 write_flags);
3282 if (!ret) {
3283 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3284 src, src_offset,
3285 dst, dst_offset,
3286 bytes,
3287 read_flags, write_flags);
3288 }
3289 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3290 tracked_request_end(&req);
3291 bdrv_dec_in_flight(dst->bs);
3292 }
3293
3294 return ret;
3295 }
3296
3297 /* Copy range from @src to @dst.
3298 *
3299 * See the comment of bdrv_co_copy_range for the parameter and return value
3300 * semantics. */
3301 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3302 BdrvChild *dst, int64_t dst_offset,
3303 int64_t bytes,
3304 BdrvRequestFlags read_flags,
3305 BdrvRequestFlags write_flags)
3306 {
3307 IO_CODE();
3308 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3309 read_flags, write_flags);
3310 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3311 bytes, read_flags, write_flags, true);
3312 }
3313
3314 /* Copy range from @src to @dst.
3315 *
3316 * See the comment of bdrv_co_copy_range for the parameter and return value
3317 * semantics. */
3318 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3319 BdrvChild *dst, int64_t dst_offset,
3320 int64_t bytes,
3321 BdrvRequestFlags read_flags,
3322 BdrvRequestFlags write_flags)
3323 {
3324 IO_CODE();
3325 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3326 read_flags, write_flags);
3327 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3328 bytes, read_flags, write_flags, false);
3329 }
3330
3331 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3332 BdrvChild *dst, int64_t dst_offset,
3333 int64_t bytes, BdrvRequestFlags read_flags,
3334 BdrvRequestFlags write_flags)
3335 {
3336 IO_CODE();
3337 return bdrv_co_copy_range_from(src, src_offset,
3338 dst, dst_offset,
3339 bytes, read_flags, write_flags);
3340 }
3341
3342 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3343 {
3344 BdrvChild *c;
3345 QLIST_FOREACH(c, &bs->parents, next_parent) {
3346 if (c->klass->resize) {
3347 c->klass->resize(c);
3348 }
3349 }
3350 }
3351
3352 /**
3353 * Truncate file to 'offset' bytes (needed only for file protocols)
3354 *
3355 * If 'exact' is true, the file must be resized to exactly the given
3356 * 'offset'. Otherwise, it is sufficient for the node to be at least
3357 * 'offset' bytes in length.
3358 */
3359 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3360 PreallocMode prealloc, BdrvRequestFlags flags,
3361 Error **errp)
3362 {
3363 BlockDriverState *bs = child->bs;
3364 BdrvChild *filtered, *backing;
3365 BlockDriver *drv = bs->drv;
3366 BdrvTrackedRequest req;
3367 int64_t old_size, new_bytes;
3368 int ret;
3369 IO_CODE();
3370
3371 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3372 if (!drv) {
3373 error_setg(errp, "No medium inserted");
3374 return -ENOMEDIUM;
3375 }
3376 if (offset < 0) {
3377 error_setg(errp, "Image size cannot be negative");
3378 return -EINVAL;
3379 }
3380
3381 ret = bdrv_check_request(offset, 0, errp);
3382 if (ret < 0) {
3383 return ret;
3384 }
3385
3386 old_size = bdrv_getlength(bs);
3387 if (old_size < 0) {
3388 error_setg_errno(errp, -old_size, "Failed to get old image size");
3389 return old_size;
3390 }
3391
3392 if (bdrv_is_read_only(bs)) {
3393 error_setg(errp, "Image is read-only");
3394 return -EACCES;
3395 }
3396
3397 if (offset > old_size) {
3398 new_bytes = offset - old_size;
3399 } else {
3400 new_bytes = 0;
3401 }
3402
3403 bdrv_inc_in_flight(bs);
3404 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3405 BDRV_TRACKED_TRUNCATE);
3406
3407 /* If we are growing the image and potentially using preallocation for the
3408 * new area, we need to make sure that no write requests are made to it
3409 * concurrently or they might be overwritten by preallocation. */
3410 if (new_bytes) {
3411 bdrv_make_request_serialising(&req, 1);
3412 }
3413 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3414 0);
3415 if (ret < 0) {
3416 error_setg_errno(errp, -ret,
3417 "Failed to prepare request for truncation");
3418 goto out;
3419 }
3420
3421 filtered = bdrv_filter_child(bs);
3422 backing = bdrv_cow_child(bs);
3423
3424 /*
3425 * If the image has a backing file that is large enough that it would
3426 * provide data for the new area, we cannot leave it unallocated because
3427 * then the backing file content would become visible. Instead, zero-fill
3428 * the new area.
3429 *
3430 * Note that if the image has a backing file, but was opened without the
3431 * backing file, taking care of keeping things consistent with that backing
3432 * file is the user's responsibility.
3433 */
3434 if (new_bytes && backing) {
3435 int64_t backing_len;
3436
3437 backing_len = bdrv_getlength(backing->bs);
3438 if (backing_len < 0) {
3439 ret = backing_len;
3440 error_setg_errno(errp, -ret, "Could not get backing file size");
3441 goto out;
3442 }
3443
3444 if (backing_len > old_size) {
3445 flags |= BDRV_REQ_ZERO_WRITE;
3446 }
3447 }
3448
3449 if (drv->bdrv_co_truncate) {
3450 if (flags & ~bs->supported_truncate_flags) {
3451 error_setg(errp, "Block driver does not support requested flags");
3452 ret = -ENOTSUP;
3453 goto out;
3454 }
3455 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3456 } else if (filtered) {
3457 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3458 } else {
3459 error_setg(errp, "Image format driver does not support resize");
3460 ret = -ENOTSUP;
3461 goto out;
3462 }
3463 if (ret < 0) {
3464 goto out;
3465 }
3466
3467 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3468 if (ret < 0) {
3469 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3470 } else {
3471 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3472 }
3473 /* It's possible that truncation succeeded but refresh_total_sectors
3474 * failed, but the latter doesn't affect how we should finish the request.
3475 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3476 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3477
3478 out:
3479 tracked_request_end(&req);
3480 bdrv_dec_in_flight(bs);
3481
3482 return ret;
3483 }
3484
3485 void bdrv_cancel_in_flight(BlockDriverState *bs)
3486 {
3487 GLOBAL_STATE_CODE();
3488 if (!bs || !bs->drv) {
3489 return;
3490 }
3491
3492 if (bs->drv->bdrv_cancel_in_flight) {
3493 bs->drv->bdrv_cancel_in_flight(bs);
3494 }
3495 }
3496
3497 int coroutine_fn
3498 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3499 QEMUIOVector *qiov, size_t qiov_offset)
3500 {
3501 BlockDriverState *bs = child->bs;
3502 BlockDriver *drv = bs->drv;
3503 int ret;
3504 IO_CODE();
3505
3506 if (!drv) {
3507 return -ENOMEDIUM;
3508 }
3509
3510 if (!drv->bdrv_co_preadv_snapshot) {
3511 return -ENOTSUP;
3512 }
3513
3514 bdrv_inc_in_flight(bs);
3515 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3516 bdrv_dec_in_flight(bs);
3517
3518 return ret;
3519 }
3520
3521 int coroutine_fn
3522 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3523 bool want_zero, int64_t offset, int64_t bytes,
3524 int64_t *pnum, int64_t *map,
3525 BlockDriverState **file)
3526 {
3527 BlockDriver *drv = bs->drv;
3528 int ret;
3529 IO_CODE();
3530
3531 if (!drv) {
3532 return -ENOMEDIUM;
3533 }
3534
3535 if (!drv->bdrv_co_snapshot_block_status) {
3536 return -ENOTSUP;
3537 }
3538
3539 bdrv_inc_in_flight(bs);
3540 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3541 pnum, map, file);
3542 bdrv_dec_in_flight(bs);
3543
3544 return ret;
3545 }
3546
3547 int coroutine_fn
3548 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3549 {
3550 BlockDriver *drv = bs->drv;
3551 int ret;
3552 IO_CODE();
3553
3554 if (!drv) {
3555 return -ENOMEDIUM;
3556 }
3557
3558 if (!drv->bdrv_co_pdiscard_snapshot) {
3559 return -ENOTSUP;
3560 }
3561
3562 bdrv_inc_in_flight(bs);
3563 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3564 bdrv_dec_in_flight(bs);
3565
3566 return ret;
3567 }