]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge remote-tracking branch 'remotes/cohuck-gitlab/tags/s390x-20201222' into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "qemu/cutils.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/main-loop.h"
37 #include "sysemu/replay.h"
38
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44 int64_t offset, int bytes, BdrvRequestFlags flags);
45
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47 bool ignore_bds_parents)
48 {
49 BdrvChild *c, *next;
50
51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
53 continue;
54 }
55 bdrv_parent_drained_begin_single(c, false);
56 }
57 }
58
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60 int *drained_end_counter)
61 {
62 assert(c->parent_quiesce_counter > 0);
63 c->parent_quiesce_counter--;
64 if (c->klass->drained_end) {
65 c->klass->drained_end(c, drained_end_counter);
66 }
67 }
68
69 void bdrv_parent_drained_end_single(BdrvChild *c)
70 {
71 int drained_end_counter = 0;
72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
74 }
75
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77 bool ignore_bds_parents,
78 int *drained_end_counter)
79 {
80 BdrvChild *c;
81
82 QLIST_FOREACH(c, &bs->parents, next_parent) {
83 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
84 continue;
85 }
86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
87 }
88 }
89
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91 {
92 if (c->klass->drained_poll) {
93 return c->klass->drained_poll(c);
94 }
95 return false;
96 }
97
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99 bool ignore_bds_parents)
100 {
101 BdrvChild *c, *next;
102 bool busy = false;
103
104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
106 continue;
107 }
108 busy |= bdrv_parent_drained_poll_single(c);
109 }
110
111 return busy;
112 }
113
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115 {
116 c->parent_quiesce_counter++;
117 if (c->klass->drained_begin) {
118 c->klass->drained_begin(c);
119 }
120 if (poll) {
121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
122 }
123 }
124
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 {
127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 }
135
136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
137 {
138 ERRP_GUARD();
139 BlockDriver *drv = bs->drv;
140 BdrvChild *c;
141 bool have_limits;
142
143 memset(&bs->bl, 0, sizeof(bs->bl));
144
145 if (!drv) {
146 return;
147 }
148
149 /* Default alignment based on whether driver has byte interface */
150 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
151 drv->bdrv_aio_preadv ||
152 drv->bdrv_co_preadv_part) ? 1 : 512;
153
154 /* Take some limits from the children as a default */
155 have_limits = false;
156 QLIST_FOREACH(c, &bs->children, next) {
157 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
158 {
159 bdrv_refresh_limits(c->bs, errp);
160 if (*errp) {
161 return;
162 }
163 bdrv_merge_limits(&bs->bl, &c->bs->bl);
164 have_limits = true;
165 }
166 }
167
168 if (!have_limits) {
169 bs->bl.min_mem_alignment = 512;
170 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
171
172 /* Safe default since most protocols use readv()/writev()/etc */
173 bs->bl.max_iov = IOV_MAX;
174 }
175
176 /* Then let the driver override it */
177 if (drv->bdrv_refresh_limits) {
178 drv->bdrv_refresh_limits(bs, errp);
179 if (*errp) {
180 return;
181 }
182 }
183
184 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
185 error_setg(errp, "Driver requires too large request alignment");
186 }
187 }
188
189 /**
190 * The copy-on-read flag is actually a reference count so multiple users may
191 * use the feature without worrying about clobbering its previous state.
192 * Copy-on-read stays enabled until all users have called to disable it.
193 */
194 void bdrv_enable_copy_on_read(BlockDriverState *bs)
195 {
196 qatomic_inc(&bs->copy_on_read);
197 }
198
199 void bdrv_disable_copy_on_read(BlockDriverState *bs)
200 {
201 int old = qatomic_fetch_dec(&bs->copy_on_read);
202 assert(old >= 1);
203 }
204
205 typedef struct {
206 Coroutine *co;
207 BlockDriverState *bs;
208 bool done;
209 bool begin;
210 bool recursive;
211 bool poll;
212 BdrvChild *parent;
213 bool ignore_bds_parents;
214 int *drained_end_counter;
215 } BdrvCoDrainData;
216
217 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
218 {
219 BdrvCoDrainData *data = opaque;
220 BlockDriverState *bs = data->bs;
221
222 if (data->begin) {
223 bs->drv->bdrv_co_drain_begin(bs);
224 } else {
225 bs->drv->bdrv_co_drain_end(bs);
226 }
227
228 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
229 qatomic_mb_set(&data->done, true);
230 if (!data->begin) {
231 qatomic_dec(data->drained_end_counter);
232 }
233 bdrv_dec_in_flight(bs);
234
235 g_free(data);
236 }
237
238 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
239 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
240 int *drained_end_counter)
241 {
242 BdrvCoDrainData *data;
243
244 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
245 (!begin && !bs->drv->bdrv_co_drain_end)) {
246 return;
247 }
248
249 data = g_new(BdrvCoDrainData, 1);
250 *data = (BdrvCoDrainData) {
251 .bs = bs,
252 .done = false,
253 .begin = begin,
254 .drained_end_counter = drained_end_counter,
255 };
256
257 if (!begin) {
258 qatomic_inc(drained_end_counter);
259 }
260
261 /* Make sure the driver callback completes during the polling phase for
262 * drain_begin. */
263 bdrv_inc_in_flight(bs);
264 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
265 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
266 }
267
268 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
269 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
270 BdrvChild *ignore_parent, bool ignore_bds_parents)
271 {
272 BdrvChild *child, *next;
273
274 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
275 return true;
276 }
277
278 if (qatomic_read(&bs->in_flight)) {
279 return true;
280 }
281
282 if (recursive) {
283 assert(!ignore_bds_parents);
284 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
285 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
286 return true;
287 }
288 }
289 }
290
291 return false;
292 }
293
294 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
295 BdrvChild *ignore_parent)
296 {
297 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
298 }
299
300 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
301 BdrvChild *parent, bool ignore_bds_parents,
302 bool poll);
303 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
304 BdrvChild *parent, bool ignore_bds_parents,
305 int *drained_end_counter);
306
307 static void bdrv_co_drain_bh_cb(void *opaque)
308 {
309 BdrvCoDrainData *data = opaque;
310 Coroutine *co = data->co;
311 BlockDriverState *bs = data->bs;
312
313 if (bs) {
314 AioContext *ctx = bdrv_get_aio_context(bs);
315 aio_context_acquire(ctx);
316 bdrv_dec_in_flight(bs);
317 if (data->begin) {
318 assert(!data->drained_end_counter);
319 bdrv_do_drained_begin(bs, data->recursive, data->parent,
320 data->ignore_bds_parents, data->poll);
321 } else {
322 assert(!data->poll);
323 bdrv_do_drained_end(bs, data->recursive, data->parent,
324 data->ignore_bds_parents,
325 data->drained_end_counter);
326 }
327 aio_context_release(ctx);
328 } else {
329 assert(data->begin);
330 bdrv_drain_all_begin();
331 }
332
333 data->done = true;
334 aio_co_wake(co);
335 }
336
337 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
338 bool begin, bool recursive,
339 BdrvChild *parent,
340 bool ignore_bds_parents,
341 bool poll,
342 int *drained_end_counter)
343 {
344 BdrvCoDrainData data;
345 Coroutine *self = qemu_coroutine_self();
346 AioContext *ctx = bdrv_get_aio_context(bs);
347 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
348
349 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
350 * other coroutines run if they were queued by aio_co_enter(). */
351
352 assert(qemu_in_coroutine());
353 data = (BdrvCoDrainData) {
354 .co = self,
355 .bs = bs,
356 .done = false,
357 .begin = begin,
358 .recursive = recursive,
359 .parent = parent,
360 .ignore_bds_parents = ignore_bds_parents,
361 .poll = poll,
362 .drained_end_counter = drained_end_counter,
363 };
364
365 if (bs) {
366 bdrv_inc_in_flight(bs);
367 }
368
369 /*
370 * Temporarily drop the lock across yield or we would get deadlocks.
371 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
372 *
373 * When we yield below, the lock for the current context will be
374 * released, so if this is actually the lock that protects bs, don't drop
375 * it a second time.
376 */
377 if (ctx != co_ctx) {
378 aio_context_release(ctx);
379 }
380 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
381
382 qemu_coroutine_yield();
383 /* If we are resumed from some other event (such as an aio completion or a
384 * timer callback), it is a bug in the caller that should be fixed. */
385 assert(data.done);
386
387 /* Reaquire the AioContext of bs if we dropped it */
388 if (ctx != co_ctx) {
389 aio_context_acquire(ctx);
390 }
391 }
392
393 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
394 BdrvChild *parent, bool ignore_bds_parents)
395 {
396 assert(!qemu_in_coroutine());
397
398 /* Stop things in parent-to-child order */
399 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
400 aio_disable_external(bdrv_get_aio_context(bs));
401 }
402
403 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
404 bdrv_drain_invoke(bs, true, NULL);
405 }
406
407 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
408 BdrvChild *parent, bool ignore_bds_parents,
409 bool poll)
410 {
411 BdrvChild *child, *next;
412
413 if (qemu_in_coroutine()) {
414 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
415 poll, NULL);
416 return;
417 }
418
419 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
420
421 if (recursive) {
422 assert(!ignore_bds_parents);
423 bs->recursive_quiesce_counter++;
424 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
425 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
426 false);
427 }
428 }
429
430 /*
431 * Wait for drained requests to finish.
432 *
433 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
434 * call is needed so things in this AioContext can make progress even
435 * though we don't return to the main AioContext loop - this automatically
436 * includes other nodes in the same AioContext and therefore all child
437 * nodes.
438 */
439 if (poll) {
440 assert(!ignore_bds_parents);
441 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
442 }
443 }
444
445 void bdrv_drained_begin(BlockDriverState *bs)
446 {
447 bdrv_do_drained_begin(bs, false, NULL, false, true);
448 }
449
450 void bdrv_subtree_drained_begin(BlockDriverState *bs)
451 {
452 bdrv_do_drained_begin(bs, true, NULL, false, true);
453 }
454
455 /**
456 * This function does not poll, nor must any of its recursively called
457 * functions. The *drained_end_counter pointee will be incremented
458 * once for every background operation scheduled, and decremented once
459 * the operation settles. Therefore, the pointer must remain valid
460 * until the pointee reaches 0. That implies that whoever sets up the
461 * pointee has to poll until it is 0.
462 *
463 * We use atomic operations to access *drained_end_counter, because
464 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
465 * @bs may contain nodes in different AioContexts,
466 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
467 * regardless of which AioContext they are in.
468 */
469 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
470 BdrvChild *parent, bool ignore_bds_parents,
471 int *drained_end_counter)
472 {
473 BdrvChild *child;
474 int old_quiesce_counter;
475
476 assert(drained_end_counter != NULL);
477
478 if (qemu_in_coroutine()) {
479 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
480 false, drained_end_counter);
481 return;
482 }
483 assert(bs->quiesce_counter > 0);
484
485 /* Re-enable things in child-to-parent order */
486 bdrv_drain_invoke(bs, false, drained_end_counter);
487 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
488 drained_end_counter);
489
490 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
491 if (old_quiesce_counter == 1) {
492 aio_enable_external(bdrv_get_aio_context(bs));
493 }
494
495 if (recursive) {
496 assert(!ignore_bds_parents);
497 bs->recursive_quiesce_counter--;
498 QLIST_FOREACH(child, &bs->children, next) {
499 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
500 drained_end_counter);
501 }
502 }
503 }
504
505 void bdrv_drained_end(BlockDriverState *bs)
506 {
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
510 }
511
512 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
513 {
514 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
515 }
516
517 void bdrv_subtree_drained_end(BlockDriverState *bs)
518 {
519 int drained_end_counter = 0;
520 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
521 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
522 }
523
524 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
525 {
526 int i;
527
528 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
529 bdrv_do_drained_begin(child->bs, true, child, false, true);
530 }
531 }
532
533 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
534 {
535 int drained_end_counter = 0;
536 int i;
537
538 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
539 bdrv_do_drained_end(child->bs, true, child, false,
540 &drained_end_counter);
541 }
542
543 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
544 }
545
546 /*
547 * Wait for pending requests to complete on a single BlockDriverState subtree,
548 * and suspend block driver's internal I/O until next request arrives.
549 *
550 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
551 * AioContext.
552 */
553 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
554 {
555 assert(qemu_in_coroutine());
556 bdrv_drained_begin(bs);
557 bdrv_drained_end(bs);
558 }
559
560 void bdrv_drain(BlockDriverState *bs)
561 {
562 bdrv_drained_begin(bs);
563 bdrv_drained_end(bs);
564 }
565
566 static void bdrv_drain_assert_idle(BlockDriverState *bs)
567 {
568 BdrvChild *child, *next;
569
570 assert(qatomic_read(&bs->in_flight) == 0);
571 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
572 bdrv_drain_assert_idle(child->bs);
573 }
574 }
575
576 unsigned int bdrv_drain_all_count = 0;
577
578 static bool bdrv_drain_all_poll(void)
579 {
580 BlockDriverState *bs = NULL;
581 bool result = false;
582
583 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
584 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
585 while ((bs = bdrv_next_all_states(bs))) {
586 AioContext *aio_context = bdrv_get_aio_context(bs);
587 aio_context_acquire(aio_context);
588 result |= bdrv_drain_poll(bs, false, NULL, true);
589 aio_context_release(aio_context);
590 }
591
592 return result;
593 }
594
595 /*
596 * Wait for pending requests to complete across all BlockDriverStates
597 *
598 * This function does not flush data to disk, use bdrv_flush_all() for that
599 * after calling this function.
600 *
601 * This pauses all block jobs and disables external clients. It must
602 * be paired with bdrv_drain_all_end().
603 *
604 * NOTE: no new block jobs or BlockDriverStates can be created between
605 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
606 */
607 void bdrv_drain_all_begin(void)
608 {
609 BlockDriverState *bs = NULL;
610
611 if (qemu_in_coroutine()) {
612 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
613 return;
614 }
615
616 /*
617 * bdrv queue is managed by record/replay,
618 * waiting for finishing the I/O requests may
619 * be infinite
620 */
621 if (replay_events_enabled()) {
622 return;
623 }
624
625 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
626 * loop AioContext, so make sure we're in the main context. */
627 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
628 assert(bdrv_drain_all_count < INT_MAX);
629 bdrv_drain_all_count++;
630
631 /* Quiesce all nodes, without polling in-flight requests yet. The graph
632 * cannot change during this loop. */
633 while ((bs = bdrv_next_all_states(bs))) {
634 AioContext *aio_context = bdrv_get_aio_context(bs);
635
636 aio_context_acquire(aio_context);
637 bdrv_do_drained_begin(bs, false, NULL, true, false);
638 aio_context_release(aio_context);
639 }
640
641 /* Now poll the in-flight requests */
642 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
643
644 while ((bs = bdrv_next_all_states(bs))) {
645 bdrv_drain_assert_idle(bs);
646 }
647 }
648
649 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
650 {
651 int drained_end_counter = 0;
652
653 g_assert(bs->quiesce_counter > 0);
654 g_assert(!bs->refcnt);
655
656 while (bs->quiesce_counter) {
657 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
658 }
659 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
660 }
661
662 void bdrv_drain_all_end(void)
663 {
664 BlockDriverState *bs = NULL;
665 int drained_end_counter = 0;
666
667 /*
668 * bdrv queue is managed by record/replay,
669 * waiting for finishing the I/O requests may
670 * be endless
671 */
672 if (replay_events_enabled()) {
673 return;
674 }
675
676 while ((bs = bdrv_next_all_states(bs))) {
677 AioContext *aio_context = bdrv_get_aio_context(bs);
678
679 aio_context_acquire(aio_context);
680 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
681 aio_context_release(aio_context);
682 }
683
684 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
685 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
686
687 assert(bdrv_drain_all_count > 0);
688 bdrv_drain_all_count--;
689 }
690
691 void bdrv_drain_all(void)
692 {
693 bdrv_drain_all_begin();
694 bdrv_drain_all_end();
695 }
696
697 /**
698 * Remove an active request from the tracked requests list
699 *
700 * This function should be called when a tracked request is completing.
701 */
702 static void tracked_request_end(BdrvTrackedRequest *req)
703 {
704 if (req->serialising) {
705 qatomic_dec(&req->bs->serialising_in_flight);
706 }
707
708 qemu_co_mutex_lock(&req->bs->reqs_lock);
709 QLIST_REMOVE(req, list);
710 qemu_co_queue_restart_all(&req->wait_queue);
711 qemu_co_mutex_unlock(&req->bs->reqs_lock);
712 }
713
714 /**
715 * Add an active request to the tracked requests list
716 */
717 static void tracked_request_begin(BdrvTrackedRequest *req,
718 BlockDriverState *bs,
719 int64_t offset,
720 uint64_t bytes,
721 enum BdrvTrackedRequestType type)
722 {
723 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
724
725 *req = (BdrvTrackedRequest){
726 .bs = bs,
727 .offset = offset,
728 .bytes = bytes,
729 .type = type,
730 .co = qemu_coroutine_self(),
731 .serialising = false,
732 .overlap_offset = offset,
733 .overlap_bytes = bytes,
734 };
735
736 qemu_co_queue_init(&req->wait_queue);
737
738 qemu_co_mutex_lock(&bs->reqs_lock);
739 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
740 qemu_co_mutex_unlock(&bs->reqs_lock);
741 }
742
743 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
744 int64_t offset, uint64_t bytes)
745 {
746 /* aaaa bbbb */
747 if (offset >= req->overlap_offset + req->overlap_bytes) {
748 return false;
749 }
750 /* bbbb aaaa */
751 if (req->overlap_offset >= offset + bytes) {
752 return false;
753 }
754 return true;
755 }
756
757 /* Called with self->bs->reqs_lock held */
758 static BdrvTrackedRequest *
759 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
760 {
761 BdrvTrackedRequest *req;
762
763 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
764 if (req == self || (!req->serialising && !self->serialising)) {
765 continue;
766 }
767 if (tracked_request_overlaps(req, self->overlap_offset,
768 self->overlap_bytes))
769 {
770 /*
771 * Hitting this means there was a reentrant request, for
772 * example, a block driver issuing nested requests. This must
773 * never happen since it means deadlock.
774 */
775 assert(qemu_coroutine_self() != req->co);
776
777 /*
778 * If the request is already (indirectly) waiting for us, or
779 * will wait for us as soon as it wakes up, then just go on
780 * (instead of producing a deadlock in the former case).
781 */
782 if (!req->waiting_for) {
783 return req;
784 }
785 }
786 }
787
788 return NULL;
789 }
790
791 /* Called with self->bs->reqs_lock held */
792 static bool coroutine_fn
793 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
794 {
795 BdrvTrackedRequest *req;
796 bool waited = false;
797
798 while ((req = bdrv_find_conflicting_request(self))) {
799 self->waiting_for = req;
800 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
801 self->waiting_for = NULL;
802 waited = true;
803 }
804
805 return waited;
806 }
807
808 /* Called with req->bs->reqs_lock held */
809 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
810 uint64_t align)
811 {
812 int64_t overlap_offset = req->offset & ~(align - 1);
813 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
814 - overlap_offset;
815
816 if (!req->serialising) {
817 qatomic_inc(&req->bs->serialising_in_flight);
818 req->serialising = true;
819 }
820
821 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
822 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
823 }
824
825 /**
826 * Return the tracked request on @bs for the current coroutine, or
827 * NULL if there is none.
828 */
829 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
830 {
831 BdrvTrackedRequest *req;
832 Coroutine *self = qemu_coroutine_self();
833
834 QLIST_FOREACH(req, &bs->tracked_requests, list) {
835 if (req->co == self) {
836 return req;
837 }
838 }
839
840 return NULL;
841 }
842
843 /**
844 * Round a region to cluster boundaries
845 */
846 void bdrv_round_to_clusters(BlockDriverState *bs,
847 int64_t offset, int64_t bytes,
848 int64_t *cluster_offset,
849 int64_t *cluster_bytes)
850 {
851 BlockDriverInfo bdi;
852
853 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
854 *cluster_offset = offset;
855 *cluster_bytes = bytes;
856 } else {
857 int64_t c = bdi.cluster_size;
858 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
859 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
860 }
861 }
862
863 static int bdrv_get_cluster_size(BlockDriverState *bs)
864 {
865 BlockDriverInfo bdi;
866 int ret;
867
868 ret = bdrv_get_info(bs, &bdi);
869 if (ret < 0 || bdi.cluster_size == 0) {
870 return bs->bl.request_alignment;
871 } else {
872 return bdi.cluster_size;
873 }
874 }
875
876 void bdrv_inc_in_flight(BlockDriverState *bs)
877 {
878 qatomic_inc(&bs->in_flight);
879 }
880
881 void bdrv_wakeup(BlockDriverState *bs)
882 {
883 aio_wait_kick();
884 }
885
886 void bdrv_dec_in_flight(BlockDriverState *bs)
887 {
888 qatomic_dec(&bs->in_flight);
889 bdrv_wakeup(bs);
890 }
891
892 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
893 {
894 BlockDriverState *bs = self->bs;
895 bool waited = false;
896
897 if (!qatomic_read(&bs->serialising_in_flight)) {
898 return false;
899 }
900
901 qemu_co_mutex_lock(&bs->reqs_lock);
902 waited = bdrv_wait_serialising_requests_locked(self);
903 qemu_co_mutex_unlock(&bs->reqs_lock);
904
905 return waited;
906 }
907
908 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
909 uint64_t align)
910 {
911 bool waited;
912
913 qemu_co_mutex_lock(&req->bs->reqs_lock);
914
915 tracked_request_set_serialising(req, align);
916 waited = bdrv_wait_serialising_requests_locked(req);
917
918 qemu_co_mutex_unlock(&req->bs->reqs_lock);
919
920 return waited;
921 }
922
923 int bdrv_check_request(int64_t offset, int64_t bytes)
924 {
925 if (offset < 0 || bytes < 0) {
926 return -EIO;
927 }
928
929 if (bytes > BDRV_MAX_LENGTH) {
930 return -EIO;
931 }
932
933 if (offset > BDRV_MAX_LENGTH - bytes) {
934 return -EIO;
935 }
936
937 return 0;
938 }
939
940 static int bdrv_check_request32(int64_t offset, int64_t bytes)
941 {
942 int ret = bdrv_check_request(offset, bytes);
943 if (ret < 0) {
944 return ret;
945 }
946
947 if (bytes > BDRV_REQUEST_MAX_BYTES) {
948 return -EIO;
949 }
950
951 return 0;
952 }
953
954 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
955 int bytes, BdrvRequestFlags flags)
956 {
957 return bdrv_pwritev(child, offset, bytes, NULL,
958 BDRV_REQ_ZERO_WRITE | flags);
959 }
960
961 /*
962 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
963 * The operation is sped up by checking the block status and only writing
964 * zeroes to the device if they currently do not return zeroes. Optional
965 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
966 * BDRV_REQ_FUA).
967 *
968 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
969 */
970 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
971 {
972 int ret;
973 int64_t target_size, bytes, offset = 0;
974 BlockDriverState *bs = child->bs;
975
976 target_size = bdrv_getlength(bs);
977 if (target_size < 0) {
978 return target_size;
979 }
980
981 for (;;) {
982 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
983 if (bytes <= 0) {
984 return 0;
985 }
986 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
987 if (ret < 0) {
988 return ret;
989 }
990 if (ret & BDRV_BLOCK_ZERO) {
991 offset += bytes;
992 continue;
993 }
994 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
995 if (ret < 0) {
996 return ret;
997 }
998 offset += bytes;
999 }
1000 }
1001
1002 /* See bdrv_pwrite() for the return codes */
1003 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1004 {
1005 int ret;
1006 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1007
1008 if (bytes < 0) {
1009 return -EINVAL;
1010 }
1011
1012 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1013
1014 return ret < 0 ? ret : bytes;
1015 }
1016
1017 /* Return no. of bytes on success or < 0 on error. Important errors are:
1018 -EIO generic I/O error (may happen for all errors)
1019 -ENOMEDIUM No media inserted.
1020 -EINVAL Invalid offset or number of bytes
1021 -EACCES Trying to write a read-only device
1022 */
1023 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1024 {
1025 int ret;
1026 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1027
1028 if (bytes < 0) {
1029 return -EINVAL;
1030 }
1031
1032 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1033
1034 return ret < 0 ? ret : bytes;
1035 }
1036
1037 /*
1038 * Writes to the file and ensures that no writes are reordered across this
1039 * request (acts as a barrier)
1040 *
1041 * Returns 0 on success, -errno in error cases.
1042 */
1043 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1044 const void *buf, int count)
1045 {
1046 int ret;
1047
1048 ret = bdrv_pwrite(child, offset, buf, count);
1049 if (ret < 0) {
1050 return ret;
1051 }
1052
1053 ret = bdrv_flush(child->bs);
1054 if (ret < 0) {
1055 return ret;
1056 }
1057
1058 return 0;
1059 }
1060
1061 typedef struct CoroutineIOCompletion {
1062 Coroutine *coroutine;
1063 int ret;
1064 } CoroutineIOCompletion;
1065
1066 static void bdrv_co_io_em_complete(void *opaque, int ret)
1067 {
1068 CoroutineIOCompletion *co = opaque;
1069
1070 co->ret = ret;
1071 aio_co_wake(co->coroutine);
1072 }
1073
1074 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1075 uint64_t offset, uint64_t bytes,
1076 QEMUIOVector *qiov,
1077 size_t qiov_offset, int flags)
1078 {
1079 BlockDriver *drv = bs->drv;
1080 int64_t sector_num;
1081 unsigned int nb_sectors;
1082 QEMUIOVector local_qiov;
1083 int ret;
1084
1085 assert(!(flags & ~BDRV_REQ_MASK));
1086 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1087
1088 if (!drv) {
1089 return -ENOMEDIUM;
1090 }
1091
1092 if (drv->bdrv_co_preadv_part) {
1093 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1094 flags);
1095 }
1096
1097 if (qiov_offset > 0 || bytes != qiov->size) {
1098 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1099 qiov = &local_qiov;
1100 }
1101
1102 if (drv->bdrv_co_preadv) {
1103 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1104 goto out;
1105 }
1106
1107 if (drv->bdrv_aio_preadv) {
1108 BlockAIOCB *acb;
1109 CoroutineIOCompletion co = {
1110 .coroutine = qemu_coroutine_self(),
1111 };
1112
1113 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1114 bdrv_co_io_em_complete, &co);
1115 if (acb == NULL) {
1116 ret = -EIO;
1117 goto out;
1118 } else {
1119 qemu_coroutine_yield();
1120 ret = co.ret;
1121 goto out;
1122 }
1123 }
1124
1125 sector_num = offset >> BDRV_SECTOR_BITS;
1126 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1127
1128 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1129 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1130 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1131 assert(drv->bdrv_co_readv);
1132
1133 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1134
1135 out:
1136 if (qiov == &local_qiov) {
1137 qemu_iovec_destroy(&local_qiov);
1138 }
1139
1140 return ret;
1141 }
1142
1143 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1144 uint64_t offset, uint64_t bytes,
1145 QEMUIOVector *qiov,
1146 size_t qiov_offset, int flags)
1147 {
1148 BlockDriver *drv = bs->drv;
1149 int64_t sector_num;
1150 unsigned int nb_sectors;
1151 QEMUIOVector local_qiov;
1152 int ret;
1153
1154 assert(!(flags & ~BDRV_REQ_MASK));
1155 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1156
1157 if (!drv) {
1158 return -ENOMEDIUM;
1159 }
1160
1161 if (drv->bdrv_co_pwritev_part) {
1162 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1163 flags & bs->supported_write_flags);
1164 flags &= ~bs->supported_write_flags;
1165 goto emulate_flags;
1166 }
1167
1168 if (qiov_offset > 0 || bytes != qiov->size) {
1169 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1170 qiov = &local_qiov;
1171 }
1172
1173 if (drv->bdrv_co_pwritev) {
1174 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1175 flags & bs->supported_write_flags);
1176 flags &= ~bs->supported_write_flags;
1177 goto emulate_flags;
1178 }
1179
1180 if (drv->bdrv_aio_pwritev) {
1181 BlockAIOCB *acb;
1182 CoroutineIOCompletion co = {
1183 .coroutine = qemu_coroutine_self(),
1184 };
1185
1186 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1187 flags & bs->supported_write_flags,
1188 bdrv_co_io_em_complete, &co);
1189 flags &= ~bs->supported_write_flags;
1190 if (acb == NULL) {
1191 ret = -EIO;
1192 } else {
1193 qemu_coroutine_yield();
1194 ret = co.ret;
1195 }
1196 goto emulate_flags;
1197 }
1198
1199 sector_num = offset >> BDRV_SECTOR_BITS;
1200 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1201
1202 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1203 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1204 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1205
1206 assert(drv->bdrv_co_writev);
1207 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1208 flags & bs->supported_write_flags);
1209 flags &= ~bs->supported_write_flags;
1210
1211 emulate_flags:
1212 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1213 ret = bdrv_co_flush(bs);
1214 }
1215
1216 if (qiov == &local_qiov) {
1217 qemu_iovec_destroy(&local_qiov);
1218 }
1219
1220 return ret;
1221 }
1222
1223 static int coroutine_fn
1224 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1225 uint64_t bytes, QEMUIOVector *qiov,
1226 size_t qiov_offset)
1227 {
1228 BlockDriver *drv = bs->drv;
1229 QEMUIOVector local_qiov;
1230 int ret;
1231
1232 if (!drv) {
1233 return -ENOMEDIUM;
1234 }
1235
1236 if (!block_driver_can_compress(drv)) {
1237 return -ENOTSUP;
1238 }
1239
1240 if (drv->bdrv_co_pwritev_compressed_part) {
1241 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1242 qiov, qiov_offset);
1243 }
1244
1245 if (qiov_offset == 0) {
1246 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1247 }
1248
1249 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1250 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1251 qemu_iovec_destroy(&local_qiov);
1252
1253 return ret;
1254 }
1255
1256 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1257 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1258 size_t qiov_offset, int flags)
1259 {
1260 BlockDriverState *bs = child->bs;
1261
1262 /* Perform I/O through a temporary buffer so that users who scribble over
1263 * their read buffer while the operation is in progress do not end up
1264 * modifying the image file. This is critical for zero-copy guest I/O
1265 * where anything might happen inside guest memory.
1266 */
1267 void *bounce_buffer = NULL;
1268
1269 BlockDriver *drv = bs->drv;
1270 int64_t cluster_offset;
1271 int64_t cluster_bytes;
1272 size_t skip_bytes;
1273 int ret;
1274 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1275 BDRV_REQUEST_MAX_BYTES);
1276 unsigned int progress = 0;
1277 bool skip_write;
1278
1279 if (!drv) {
1280 return -ENOMEDIUM;
1281 }
1282
1283 /*
1284 * Do not write anything when the BDS is inactive. That is not
1285 * allowed, and it would not help.
1286 */
1287 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1288
1289 /* FIXME We cannot require callers to have write permissions when all they
1290 * are doing is a read request. If we did things right, write permissions
1291 * would be obtained anyway, but internally by the copy-on-read code. As
1292 * long as it is implemented here rather than in a separate filter driver,
1293 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1294 * it could request permissions. Therefore we have to bypass the permission
1295 * system for the moment. */
1296 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1297
1298 /* Cover entire cluster so no additional backing file I/O is required when
1299 * allocating cluster in the image file. Note that this value may exceed
1300 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1301 * is one reason we loop rather than doing it all at once.
1302 */
1303 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1304 skip_bytes = offset - cluster_offset;
1305
1306 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1307 cluster_offset, cluster_bytes);
1308
1309 while (cluster_bytes) {
1310 int64_t pnum;
1311
1312 if (skip_write) {
1313 ret = 1; /* "already allocated", so nothing will be copied */
1314 pnum = MIN(cluster_bytes, max_transfer);
1315 } else {
1316 ret = bdrv_is_allocated(bs, cluster_offset,
1317 MIN(cluster_bytes, max_transfer), &pnum);
1318 if (ret < 0) {
1319 /*
1320 * Safe to treat errors in querying allocation as if
1321 * unallocated; we'll probably fail again soon on the
1322 * read, but at least that will set a decent errno.
1323 */
1324 pnum = MIN(cluster_bytes, max_transfer);
1325 }
1326
1327 /* Stop at EOF if the image ends in the middle of the cluster */
1328 if (ret == 0 && pnum == 0) {
1329 assert(progress >= bytes);
1330 break;
1331 }
1332
1333 assert(skip_bytes < pnum);
1334 }
1335
1336 if (ret <= 0) {
1337 QEMUIOVector local_qiov;
1338
1339 /* Must copy-on-read; use the bounce buffer */
1340 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1341 if (!bounce_buffer) {
1342 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1343 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1344 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1345
1346 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1347 if (!bounce_buffer) {
1348 ret = -ENOMEM;
1349 goto err;
1350 }
1351 }
1352 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1353
1354 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1355 &local_qiov, 0, 0);
1356 if (ret < 0) {
1357 goto err;
1358 }
1359
1360 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1361 if (drv->bdrv_co_pwrite_zeroes &&
1362 buffer_is_zero(bounce_buffer, pnum)) {
1363 /* FIXME: Should we (perhaps conditionally) be setting
1364 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1365 * that still correctly reads as zero? */
1366 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1367 BDRV_REQ_WRITE_UNCHANGED);
1368 } else {
1369 /* This does not change the data on the disk, it is not
1370 * necessary to flush even in cache=writethrough mode.
1371 */
1372 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1373 &local_qiov, 0,
1374 BDRV_REQ_WRITE_UNCHANGED);
1375 }
1376
1377 if (ret < 0) {
1378 /* It might be okay to ignore write errors for guest
1379 * requests. If this is a deliberate copy-on-read
1380 * then we don't want to ignore the error. Simply
1381 * report it in all cases.
1382 */
1383 goto err;
1384 }
1385
1386 if (!(flags & BDRV_REQ_PREFETCH)) {
1387 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1388 bounce_buffer + skip_bytes,
1389 MIN(pnum - skip_bytes, bytes - progress));
1390 }
1391 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1392 /* Read directly into the destination */
1393 ret = bdrv_driver_preadv(bs, offset + progress,
1394 MIN(pnum - skip_bytes, bytes - progress),
1395 qiov, qiov_offset + progress, 0);
1396 if (ret < 0) {
1397 goto err;
1398 }
1399 }
1400
1401 cluster_offset += pnum;
1402 cluster_bytes -= pnum;
1403 progress += pnum - skip_bytes;
1404 skip_bytes = 0;
1405 }
1406 ret = 0;
1407
1408 err:
1409 qemu_vfree(bounce_buffer);
1410 return ret;
1411 }
1412
1413 /*
1414 * Forwards an already correctly aligned request to the BlockDriver. This
1415 * handles copy on read, zeroing after EOF, and fragmentation of large
1416 * reads; any other features must be implemented by the caller.
1417 */
1418 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1419 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1420 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1421 {
1422 BlockDriverState *bs = child->bs;
1423 int64_t total_bytes, max_bytes;
1424 int ret = 0;
1425 uint64_t bytes_remaining = bytes;
1426 int max_transfer;
1427
1428 assert(is_power_of_2(align));
1429 assert((offset & (align - 1)) == 0);
1430 assert((bytes & (align - 1)) == 0);
1431 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1432 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1433 align);
1434
1435 /* TODO: We would need a per-BDS .supported_read_flags and
1436 * potential fallback support, if we ever implement any read flags
1437 * to pass through to drivers. For now, there aren't any
1438 * passthrough flags. */
1439 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1440
1441 /* Handle Copy on Read and associated serialisation */
1442 if (flags & BDRV_REQ_COPY_ON_READ) {
1443 /* If we touch the same cluster it counts as an overlap. This
1444 * guarantees that allocating writes will be serialized and not race
1445 * with each other for the same cluster. For example, in copy-on-read
1446 * it ensures that the CoR read and write operations are atomic and
1447 * guest writes cannot interleave between them. */
1448 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1449 } else {
1450 bdrv_wait_serialising_requests(req);
1451 }
1452
1453 if (flags & BDRV_REQ_COPY_ON_READ) {
1454 int64_t pnum;
1455
1456 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1457 if (ret < 0) {
1458 goto out;
1459 }
1460
1461 if (!ret || pnum != bytes) {
1462 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1463 qiov, qiov_offset, flags);
1464 goto out;
1465 } else if (flags & BDRV_REQ_PREFETCH) {
1466 goto out;
1467 }
1468 }
1469
1470 /* Forward the request to the BlockDriver, possibly fragmenting it */
1471 total_bytes = bdrv_getlength(bs);
1472 if (total_bytes < 0) {
1473 ret = total_bytes;
1474 goto out;
1475 }
1476
1477 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1478 if (bytes <= max_bytes && bytes <= max_transfer) {
1479 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1480 goto out;
1481 }
1482
1483 while (bytes_remaining) {
1484 int num;
1485
1486 if (max_bytes) {
1487 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1488 assert(num);
1489
1490 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1491 num, qiov,
1492 qiov_offset + bytes - bytes_remaining, 0);
1493 max_bytes -= num;
1494 } else {
1495 num = bytes_remaining;
1496 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1497 0, bytes_remaining);
1498 }
1499 if (ret < 0) {
1500 goto out;
1501 }
1502 bytes_remaining -= num;
1503 }
1504
1505 out:
1506 return ret < 0 ? ret : 0;
1507 }
1508
1509 /*
1510 * Request padding
1511 *
1512 * |<---- align ----->| |<----- align ---->|
1513 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1514 * | | | | | |
1515 * -*----------$-------*-------- ... --------*-----$------------*---
1516 * | | | | | |
1517 * | offset | | end |
1518 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1519 * [buf ... ) [tail_buf )
1520 *
1521 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1522 * is placed at the beginning of @buf and @tail at the @end.
1523 *
1524 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1525 * around tail, if tail exists.
1526 *
1527 * @merge_reads is true for small requests,
1528 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1529 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1530 */
1531 typedef struct BdrvRequestPadding {
1532 uint8_t *buf;
1533 size_t buf_len;
1534 uint8_t *tail_buf;
1535 size_t head;
1536 size_t tail;
1537 bool merge_reads;
1538 QEMUIOVector local_qiov;
1539 } BdrvRequestPadding;
1540
1541 static bool bdrv_init_padding(BlockDriverState *bs,
1542 int64_t offset, int64_t bytes,
1543 BdrvRequestPadding *pad)
1544 {
1545 uint64_t align = bs->bl.request_alignment;
1546 size_t sum;
1547
1548 memset(pad, 0, sizeof(*pad));
1549
1550 pad->head = offset & (align - 1);
1551 pad->tail = ((offset + bytes) & (align - 1));
1552 if (pad->tail) {
1553 pad->tail = align - pad->tail;
1554 }
1555
1556 if (!pad->head && !pad->tail) {
1557 return false;
1558 }
1559
1560 assert(bytes); /* Nothing good in aligning zero-length requests */
1561
1562 sum = pad->head + bytes + pad->tail;
1563 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1564 pad->buf = qemu_blockalign(bs, pad->buf_len);
1565 pad->merge_reads = sum == pad->buf_len;
1566 if (pad->tail) {
1567 pad->tail_buf = pad->buf + pad->buf_len - align;
1568 }
1569
1570 return true;
1571 }
1572
1573 static int bdrv_padding_rmw_read(BdrvChild *child,
1574 BdrvTrackedRequest *req,
1575 BdrvRequestPadding *pad,
1576 bool zero_middle)
1577 {
1578 QEMUIOVector local_qiov;
1579 BlockDriverState *bs = child->bs;
1580 uint64_t align = bs->bl.request_alignment;
1581 int ret;
1582
1583 assert(req->serialising && pad->buf);
1584
1585 if (pad->head || pad->merge_reads) {
1586 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1587
1588 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1589
1590 if (pad->head) {
1591 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1592 }
1593 if (pad->merge_reads && pad->tail) {
1594 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1595 }
1596 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1597 align, &local_qiov, 0, 0);
1598 if (ret < 0) {
1599 return ret;
1600 }
1601 if (pad->head) {
1602 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1603 }
1604 if (pad->merge_reads && pad->tail) {
1605 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1606 }
1607
1608 if (pad->merge_reads) {
1609 goto zero_mem;
1610 }
1611 }
1612
1613 if (pad->tail) {
1614 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1615
1616 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1617 ret = bdrv_aligned_preadv(
1618 child, req,
1619 req->overlap_offset + req->overlap_bytes - align,
1620 align, align, &local_qiov, 0, 0);
1621 if (ret < 0) {
1622 return ret;
1623 }
1624 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1625 }
1626
1627 zero_mem:
1628 if (zero_middle) {
1629 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1630 }
1631
1632 return 0;
1633 }
1634
1635 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1636 {
1637 if (pad->buf) {
1638 qemu_vfree(pad->buf);
1639 qemu_iovec_destroy(&pad->local_qiov);
1640 }
1641 }
1642
1643 /*
1644 * bdrv_pad_request
1645 *
1646 * Exchange request parameters with padded request if needed. Don't include RMW
1647 * read of padding, bdrv_padding_rmw_read() should be called separately if
1648 * needed.
1649 *
1650 * All parameters except @bs are in-out: they represent original request at
1651 * function call and padded (if padding needed) at function finish.
1652 *
1653 * Function always succeeds.
1654 */
1655 static bool bdrv_pad_request(BlockDriverState *bs,
1656 QEMUIOVector **qiov, size_t *qiov_offset,
1657 int64_t *offset, unsigned int *bytes,
1658 BdrvRequestPadding *pad)
1659 {
1660 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1661 return false;
1662 }
1663
1664 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1665 *qiov, *qiov_offset, *bytes,
1666 pad->buf + pad->buf_len - pad->tail, pad->tail);
1667 *bytes += pad->head + pad->tail;
1668 *offset -= pad->head;
1669 *qiov = &pad->local_qiov;
1670 *qiov_offset = 0;
1671
1672 return true;
1673 }
1674
1675 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1676 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1677 BdrvRequestFlags flags)
1678 {
1679 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1680 }
1681
1682 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1683 int64_t offset, unsigned int bytes,
1684 QEMUIOVector *qiov, size_t qiov_offset,
1685 BdrvRequestFlags flags)
1686 {
1687 BlockDriverState *bs = child->bs;
1688 BdrvTrackedRequest req;
1689 BdrvRequestPadding pad;
1690 int ret;
1691
1692 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1693
1694 if (!bdrv_is_inserted(bs)) {
1695 return -ENOMEDIUM;
1696 }
1697
1698 ret = bdrv_check_request32(offset, bytes);
1699 if (ret < 0) {
1700 return ret;
1701 }
1702
1703 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1704 /*
1705 * Aligning zero request is nonsense. Even if driver has special meaning
1706 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1707 * it to driver due to request_alignment.
1708 *
1709 * Still, no reason to return an error if someone do unaligned
1710 * zero-length read occasionally.
1711 */
1712 return 0;
1713 }
1714
1715 bdrv_inc_in_flight(bs);
1716
1717 /* Don't do copy-on-read if we read data before write operation */
1718 if (qatomic_read(&bs->copy_on_read)) {
1719 flags |= BDRV_REQ_COPY_ON_READ;
1720 }
1721
1722 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1723
1724 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1725 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1726 bs->bl.request_alignment,
1727 qiov, qiov_offset, flags);
1728 tracked_request_end(&req);
1729 bdrv_dec_in_flight(bs);
1730
1731 bdrv_padding_destroy(&pad);
1732
1733 return ret;
1734 }
1735
1736 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1737 int64_t offset, int bytes, BdrvRequestFlags flags)
1738 {
1739 BlockDriver *drv = bs->drv;
1740 QEMUIOVector qiov;
1741 void *buf = NULL;
1742 int ret = 0;
1743 bool need_flush = false;
1744 int head = 0;
1745 int tail = 0;
1746
1747 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1748 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1749 bs->bl.request_alignment);
1750 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1751
1752 if (!drv) {
1753 return -ENOMEDIUM;
1754 }
1755
1756 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1757 return -ENOTSUP;
1758 }
1759
1760 assert(alignment % bs->bl.request_alignment == 0);
1761 head = offset % alignment;
1762 tail = (offset + bytes) % alignment;
1763 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1764 assert(max_write_zeroes >= bs->bl.request_alignment);
1765
1766 while (bytes > 0 && !ret) {
1767 int num = bytes;
1768
1769 /* Align request. Block drivers can expect the "bulk" of the request
1770 * to be aligned, and that unaligned requests do not cross cluster
1771 * boundaries.
1772 */
1773 if (head) {
1774 /* Make a small request up to the first aligned sector. For
1775 * convenience, limit this request to max_transfer even if
1776 * we don't need to fall back to writes. */
1777 num = MIN(MIN(bytes, max_transfer), alignment - head);
1778 head = (head + num) % alignment;
1779 assert(num < max_write_zeroes);
1780 } else if (tail && num > alignment) {
1781 /* Shorten the request to the last aligned sector. */
1782 num -= tail;
1783 }
1784
1785 /* limit request size */
1786 if (num > max_write_zeroes) {
1787 num = max_write_zeroes;
1788 }
1789
1790 ret = -ENOTSUP;
1791 /* First try the efficient write zeroes operation */
1792 if (drv->bdrv_co_pwrite_zeroes) {
1793 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1794 flags & bs->supported_zero_flags);
1795 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1796 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1797 need_flush = true;
1798 }
1799 } else {
1800 assert(!bs->supported_zero_flags);
1801 }
1802
1803 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1804 /* Fall back to bounce buffer if write zeroes is unsupported */
1805 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1806
1807 if ((flags & BDRV_REQ_FUA) &&
1808 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1809 /* No need for bdrv_driver_pwrite() to do a fallback
1810 * flush on each chunk; use just one at the end */
1811 write_flags &= ~BDRV_REQ_FUA;
1812 need_flush = true;
1813 }
1814 num = MIN(num, max_transfer);
1815 if (buf == NULL) {
1816 buf = qemu_try_blockalign0(bs, num);
1817 if (buf == NULL) {
1818 ret = -ENOMEM;
1819 goto fail;
1820 }
1821 }
1822 qemu_iovec_init_buf(&qiov, buf, num);
1823
1824 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1825
1826 /* Keep bounce buffer around if it is big enough for all
1827 * all future requests.
1828 */
1829 if (num < max_transfer) {
1830 qemu_vfree(buf);
1831 buf = NULL;
1832 }
1833 }
1834
1835 offset += num;
1836 bytes -= num;
1837 }
1838
1839 fail:
1840 if (ret == 0 && need_flush) {
1841 ret = bdrv_co_flush(bs);
1842 }
1843 qemu_vfree(buf);
1844 return ret;
1845 }
1846
1847 static inline int coroutine_fn
1848 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1849 BdrvTrackedRequest *req, int flags)
1850 {
1851 BlockDriverState *bs = child->bs;
1852 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1853
1854 if (bs->read_only) {
1855 return -EPERM;
1856 }
1857
1858 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1859 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1860 assert(!(flags & ~BDRV_REQ_MASK));
1861 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1862
1863 if (flags & BDRV_REQ_SERIALISING) {
1864 QEMU_LOCK_GUARD(&bs->reqs_lock);
1865
1866 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1867
1868 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1869 return -EBUSY;
1870 }
1871
1872 bdrv_wait_serialising_requests_locked(req);
1873 } else {
1874 bdrv_wait_serialising_requests(req);
1875 }
1876
1877 assert(req->overlap_offset <= offset);
1878 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1879 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1880
1881 switch (req->type) {
1882 case BDRV_TRACKED_WRITE:
1883 case BDRV_TRACKED_DISCARD:
1884 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1885 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1886 } else {
1887 assert(child->perm & BLK_PERM_WRITE);
1888 }
1889 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1890 req);
1891 case BDRV_TRACKED_TRUNCATE:
1892 assert(child->perm & BLK_PERM_RESIZE);
1893 return 0;
1894 default:
1895 abort();
1896 }
1897 }
1898
1899 static inline void coroutine_fn
1900 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1901 BdrvTrackedRequest *req, int ret)
1902 {
1903 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1904 BlockDriverState *bs = child->bs;
1905
1906 qatomic_inc(&bs->write_gen);
1907
1908 /*
1909 * Discard cannot extend the image, but in error handling cases, such as
1910 * when reverting a qcow2 cluster allocation, the discarded range can pass
1911 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1912 * here. Instead, just skip it, since semantically a discard request
1913 * beyond EOF cannot expand the image anyway.
1914 */
1915 if (ret == 0 &&
1916 (req->type == BDRV_TRACKED_TRUNCATE ||
1917 end_sector > bs->total_sectors) &&
1918 req->type != BDRV_TRACKED_DISCARD) {
1919 bs->total_sectors = end_sector;
1920 bdrv_parent_cb_resize(bs);
1921 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1922 }
1923 if (req->bytes) {
1924 switch (req->type) {
1925 case BDRV_TRACKED_WRITE:
1926 stat64_max(&bs->wr_highest_offset, offset + bytes);
1927 /* fall through, to set dirty bits */
1928 case BDRV_TRACKED_DISCARD:
1929 bdrv_set_dirty(bs, offset, bytes);
1930 break;
1931 default:
1932 break;
1933 }
1934 }
1935 }
1936
1937 /*
1938 * Forwards an already correctly aligned write request to the BlockDriver,
1939 * after possibly fragmenting it.
1940 */
1941 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1942 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1943 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1944 {
1945 BlockDriverState *bs = child->bs;
1946 BlockDriver *drv = bs->drv;
1947 int ret;
1948
1949 uint64_t bytes_remaining = bytes;
1950 int max_transfer;
1951
1952 if (!drv) {
1953 return -ENOMEDIUM;
1954 }
1955
1956 if (bdrv_has_readonly_bitmaps(bs)) {
1957 return -EPERM;
1958 }
1959
1960 assert(is_power_of_2(align));
1961 assert((offset & (align - 1)) == 0);
1962 assert((bytes & (align - 1)) == 0);
1963 assert(!qiov || qiov_offset + bytes <= qiov->size);
1964 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1965 align);
1966
1967 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1968
1969 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1970 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1971 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1972 flags |= BDRV_REQ_ZERO_WRITE;
1973 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1974 flags |= BDRV_REQ_MAY_UNMAP;
1975 }
1976 }
1977
1978 if (ret < 0) {
1979 /* Do nothing, write notifier decided to fail this request */
1980 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1981 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1982 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1983 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1984 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1985 qiov, qiov_offset);
1986 } else if (bytes <= max_transfer) {
1987 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1988 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1989 } else {
1990 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1991 while (bytes_remaining) {
1992 int num = MIN(bytes_remaining, max_transfer);
1993 int local_flags = flags;
1994
1995 assert(num);
1996 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1997 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1998 /* If FUA is going to be emulated by flush, we only
1999 * need to flush on the last iteration */
2000 local_flags &= ~BDRV_REQ_FUA;
2001 }
2002
2003 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2004 num, qiov,
2005 qiov_offset + bytes - bytes_remaining,
2006 local_flags);
2007 if (ret < 0) {
2008 break;
2009 }
2010 bytes_remaining -= num;
2011 }
2012 }
2013 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2014
2015 if (ret >= 0) {
2016 ret = 0;
2017 }
2018 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2019
2020 return ret;
2021 }
2022
2023 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2024 int64_t offset,
2025 unsigned int bytes,
2026 BdrvRequestFlags flags,
2027 BdrvTrackedRequest *req)
2028 {
2029 BlockDriverState *bs = child->bs;
2030 QEMUIOVector local_qiov;
2031 uint64_t align = bs->bl.request_alignment;
2032 int ret = 0;
2033 bool padding;
2034 BdrvRequestPadding pad;
2035
2036 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2037 if (padding) {
2038 bdrv_make_request_serialising(req, align);
2039
2040 bdrv_padding_rmw_read(child, req, &pad, true);
2041
2042 if (pad.head || pad.merge_reads) {
2043 int64_t aligned_offset = offset & ~(align - 1);
2044 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2045
2046 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2047 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2048 align, &local_qiov, 0,
2049 flags & ~BDRV_REQ_ZERO_WRITE);
2050 if (ret < 0 || pad.merge_reads) {
2051 /* Error or all work is done */
2052 goto out;
2053 }
2054 offset += write_bytes - pad.head;
2055 bytes -= write_bytes - pad.head;
2056 }
2057 }
2058
2059 assert(!bytes || (offset & (align - 1)) == 0);
2060 if (bytes >= align) {
2061 /* Write the aligned part in the middle. */
2062 uint64_t aligned_bytes = bytes & ~(align - 1);
2063 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2064 NULL, 0, flags);
2065 if (ret < 0) {
2066 goto out;
2067 }
2068 bytes -= aligned_bytes;
2069 offset += aligned_bytes;
2070 }
2071
2072 assert(!bytes || (offset & (align - 1)) == 0);
2073 if (bytes) {
2074 assert(align == pad.tail + bytes);
2075
2076 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2077 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2078 &local_qiov, 0,
2079 flags & ~BDRV_REQ_ZERO_WRITE);
2080 }
2081
2082 out:
2083 bdrv_padding_destroy(&pad);
2084
2085 return ret;
2086 }
2087
2088 /*
2089 * Handle a write request in coroutine context
2090 */
2091 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2092 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2093 BdrvRequestFlags flags)
2094 {
2095 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2096 }
2097
2098 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2099 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2100 BdrvRequestFlags flags)
2101 {
2102 BlockDriverState *bs = child->bs;
2103 BdrvTrackedRequest req;
2104 uint64_t align = bs->bl.request_alignment;
2105 BdrvRequestPadding pad;
2106 int ret;
2107
2108 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2109
2110 if (!bdrv_is_inserted(bs)) {
2111 return -ENOMEDIUM;
2112 }
2113
2114 ret = bdrv_check_request32(offset, bytes);
2115 if (ret < 0) {
2116 return ret;
2117 }
2118
2119 /* If the request is misaligned then we can't make it efficient */
2120 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2121 !QEMU_IS_ALIGNED(offset | bytes, align))
2122 {
2123 return -ENOTSUP;
2124 }
2125
2126 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2127 /*
2128 * Aligning zero request is nonsense. Even if driver has special meaning
2129 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2130 * it to driver due to request_alignment.
2131 *
2132 * Still, no reason to return an error if someone do unaligned
2133 * zero-length write occasionally.
2134 */
2135 return 0;
2136 }
2137
2138 bdrv_inc_in_flight(bs);
2139 /*
2140 * Align write if necessary by performing a read-modify-write cycle.
2141 * Pad qiov with the read parts and be sure to have a tracked request not
2142 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2143 */
2144 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2145
2146 if (flags & BDRV_REQ_ZERO_WRITE) {
2147 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2148 goto out;
2149 }
2150
2151 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2152 bdrv_make_request_serialising(&req, align);
2153 bdrv_padding_rmw_read(child, &req, &pad, false);
2154 }
2155
2156 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2157 qiov, qiov_offset, flags);
2158
2159 bdrv_padding_destroy(&pad);
2160
2161 out:
2162 tracked_request_end(&req);
2163 bdrv_dec_in_flight(bs);
2164
2165 return ret;
2166 }
2167
2168 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2169 int bytes, BdrvRequestFlags flags)
2170 {
2171 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2172
2173 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2174 flags &= ~BDRV_REQ_MAY_UNMAP;
2175 }
2176
2177 return bdrv_co_pwritev(child, offset, bytes, NULL,
2178 BDRV_REQ_ZERO_WRITE | flags);
2179 }
2180
2181 /*
2182 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2183 */
2184 int bdrv_flush_all(void)
2185 {
2186 BdrvNextIterator it;
2187 BlockDriverState *bs = NULL;
2188 int result = 0;
2189
2190 /*
2191 * bdrv queue is managed by record/replay,
2192 * creating new flush request for stopping
2193 * the VM may break the determinism
2194 */
2195 if (replay_events_enabled()) {
2196 return result;
2197 }
2198
2199 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2200 AioContext *aio_context = bdrv_get_aio_context(bs);
2201 int ret;
2202
2203 aio_context_acquire(aio_context);
2204 ret = bdrv_flush(bs);
2205 if (ret < 0 && !result) {
2206 result = ret;
2207 }
2208 aio_context_release(aio_context);
2209 }
2210
2211 return result;
2212 }
2213
2214 /*
2215 * Returns the allocation status of the specified sectors.
2216 * Drivers not implementing the functionality are assumed to not support
2217 * backing files, hence all their sectors are reported as allocated.
2218 *
2219 * If 'want_zero' is true, the caller is querying for mapping
2220 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2221 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2222 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2223 *
2224 * If 'offset' is beyond the end of the disk image the return value is
2225 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2226 *
2227 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2228 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2229 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2230 *
2231 * 'pnum' is set to the number of bytes (including and immediately
2232 * following the specified offset) that are easily known to be in the
2233 * same allocated/unallocated state. Note that a second call starting
2234 * at the original offset plus returned pnum may have the same status.
2235 * The returned value is non-zero on success except at end-of-file.
2236 *
2237 * Returns negative errno on failure. Otherwise, if the
2238 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2239 * set to the host mapping and BDS corresponding to the guest offset.
2240 */
2241 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2242 bool want_zero,
2243 int64_t offset, int64_t bytes,
2244 int64_t *pnum, int64_t *map,
2245 BlockDriverState **file)
2246 {
2247 int64_t total_size;
2248 int64_t n; /* bytes */
2249 int ret;
2250 int64_t local_map = 0;
2251 BlockDriverState *local_file = NULL;
2252 int64_t aligned_offset, aligned_bytes;
2253 uint32_t align;
2254 bool has_filtered_child;
2255
2256 assert(pnum);
2257 *pnum = 0;
2258 total_size = bdrv_getlength(bs);
2259 if (total_size < 0) {
2260 ret = total_size;
2261 goto early_out;
2262 }
2263
2264 if (offset >= total_size) {
2265 ret = BDRV_BLOCK_EOF;
2266 goto early_out;
2267 }
2268 if (!bytes) {
2269 ret = 0;
2270 goto early_out;
2271 }
2272
2273 n = total_size - offset;
2274 if (n < bytes) {
2275 bytes = n;
2276 }
2277
2278 /* Must be non-NULL or bdrv_getlength() would have failed */
2279 assert(bs->drv);
2280 has_filtered_child = bdrv_filter_child(bs);
2281 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2282 *pnum = bytes;
2283 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2284 if (offset + bytes == total_size) {
2285 ret |= BDRV_BLOCK_EOF;
2286 }
2287 if (bs->drv->protocol_name) {
2288 ret |= BDRV_BLOCK_OFFSET_VALID;
2289 local_map = offset;
2290 local_file = bs;
2291 }
2292 goto early_out;
2293 }
2294
2295 bdrv_inc_in_flight(bs);
2296
2297 /* Round out to request_alignment boundaries */
2298 align = bs->bl.request_alignment;
2299 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2300 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2301
2302 if (bs->drv->bdrv_co_block_status) {
2303 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2304 aligned_bytes, pnum, &local_map,
2305 &local_file);
2306 } else {
2307 /* Default code for filters */
2308
2309 local_file = bdrv_filter_bs(bs);
2310 assert(local_file);
2311
2312 *pnum = aligned_bytes;
2313 local_map = aligned_offset;
2314 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2315 }
2316 if (ret < 0) {
2317 *pnum = 0;
2318 goto out;
2319 }
2320
2321 /*
2322 * The driver's result must be a non-zero multiple of request_alignment.
2323 * Clamp pnum and adjust map to original request.
2324 */
2325 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2326 align > offset - aligned_offset);
2327 if (ret & BDRV_BLOCK_RECURSE) {
2328 assert(ret & BDRV_BLOCK_DATA);
2329 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2330 assert(!(ret & BDRV_BLOCK_ZERO));
2331 }
2332
2333 *pnum -= offset - aligned_offset;
2334 if (*pnum > bytes) {
2335 *pnum = bytes;
2336 }
2337 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2338 local_map += offset - aligned_offset;
2339 }
2340
2341 if (ret & BDRV_BLOCK_RAW) {
2342 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2343 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2344 *pnum, pnum, &local_map, &local_file);
2345 goto out;
2346 }
2347
2348 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2349 ret |= BDRV_BLOCK_ALLOCATED;
2350 } else if (bs->drv->supports_backing) {
2351 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2352
2353 if (!cow_bs) {
2354 ret |= BDRV_BLOCK_ZERO;
2355 } else if (want_zero) {
2356 int64_t size2 = bdrv_getlength(cow_bs);
2357
2358 if (size2 >= 0 && offset >= size2) {
2359 ret |= BDRV_BLOCK_ZERO;
2360 }
2361 }
2362 }
2363
2364 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2365 local_file && local_file != bs &&
2366 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2367 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2368 int64_t file_pnum;
2369 int ret2;
2370
2371 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2372 *pnum, &file_pnum, NULL, NULL);
2373 if (ret2 >= 0) {
2374 /* Ignore errors. This is just providing extra information, it
2375 * is useful but not necessary.
2376 */
2377 if (ret2 & BDRV_BLOCK_EOF &&
2378 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2379 /*
2380 * It is valid for the format block driver to read
2381 * beyond the end of the underlying file's current
2382 * size; such areas read as zero.
2383 */
2384 ret |= BDRV_BLOCK_ZERO;
2385 } else {
2386 /* Limit request to the range reported by the protocol driver */
2387 *pnum = file_pnum;
2388 ret |= (ret2 & BDRV_BLOCK_ZERO);
2389 }
2390 }
2391 }
2392
2393 out:
2394 bdrv_dec_in_flight(bs);
2395 if (ret >= 0 && offset + *pnum == total_size) {
2396 ret |= BDRV_BLOCK_EOF;
2397 }
2398 early_out:
2399 if (file) {
2400 *file = local_file;
2401 }
2402 if (map) {
2403 *map = local_map;
2404 }
2405 return ret;
2406 }
2407
2408 int coroutine_fn
2409 bdrv_co_common_block_status_above(BlockDriverState *bs,
2410 BlockDriverState *base,
2411 bool include_base,
2412 bool want_zero,
2413 int64_t offset,
2414 int64_t bytes,
2415 int64_t *pnum,
2416 int64_t *map,
2417 BlockDriverState **file,
2418 int *depth)
2419 {
2420 int ret;
2421 BlockDriverState *p;
2422 int64_t eof = 0;
2423 int dummy;
2424
2425 assert(!include_base || base); /* Can't include NULL base */
2426
2427 if (!depth) {
2428 depth = &dummy;
2429 }
2430 *depth = 0;
2431
2432 if (!include_base && bs == base) {
2433 *pnum = bytes;
2434 return 0;
2435 }
2436
2437 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2438 ++*depth;
2439 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2440 return ret;
2441 }
2442
2443 if (ret & BDRV_BLOCK_EOF) {
2444 eof = offset + *pnum;
2445 }
2446
2447 assert(*pnum <= bytes);
2448 bytes = *pnum;
2449
2450 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2451 p = bdrv_filter_or_cow_bs(p))
2452 {
2453 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2454 file);
2455 ++*depth;
2456 if (ret < 0) {
2457 return ret;
2458 }
2459 if (*pnum == 0) {
2460 /*
2461 * The top layer deferred to this layer, and because this layer is
2462 * short, any zeroes that we synthesize beyond EOF behave as if they
2463 * were allocated at this layer.
2464 *
2465 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2466 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2467 * below.
2468 */
2469 assert(ret & BDRV_BLOCK_EOF);
2470 *pnum = bytes;
2471 if (file) {
2472 *file = p;
2473 }
2474 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2475 break;
2476 }
2477 if (ret & BDRV_BLOCK_ALLOCATED) {
2478 /*
2479 * We've found the node and the status, we must break.
2480 *
2481 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2482 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2483 * below.
2484 */
2485 ret &= ~BDRV_BLOCK_EOF;
2486 break;
2487 }
2488
2489 if (p == base) {
2490 assert(include_base);
2491 break;
2492 }
2493
2494 /*
2495 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2496 * let's continue the diving.
2497 */
2498 assert(*pnum <= bytes);
2499 bytes = *pnum;
2500 }
2501
2502 if (offset + *pnum == eof) {
2503 ret |= BDRV_BLOCK_EOF;
2504 }
2505
2506 return ret;
2507 }
2508
2509 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2510 int64_t offset, int64_t bytes, int64_t *pnum,
2511 int64_t *map, BlockDriverState **file)
2512 {
2513 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2514 pnum, map, file, NULL);
2515 }
2516
2517 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2518 int64_t *pnum, int64_t *map, BlockDriverState **file)
2519 {
2520 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2521 offset, bytes, pnum, map, file);
2522 }
2523
2524 /*
2525 * Check @bs (and its backing chain) to see if the range defined
2526 * by @offset and @bytes is known to read as zeroes.
2527 * Return 1 if that is the case, 0 otherwise and -errno on error.
2528 * This test is meant to be fast rather than accurate so returning 0
2529 * does not guarantee non-zero data.
2530 */
2531 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2532 int64_t bytes)
2533 {
2534 int ret;
2535 int64_t pnum = bytes;
2536
2537 if (!bytes) {
2538 return 1;
2539 }
2540
2541 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2542 bytes, &pnum, NULL, NULL, NULL);
2543
2544 if (ret < 0) {
2545 return ret;
2546 }
2547
2548 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2549 }
2550
2551 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2552 int64_t bytes, int64_t *pnum)
2553 {
2554 int ret;
2555 int64_t dummy;
2556
2557 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2558 bytes, pnum ? pnum : &dummy, NULL,
2559 NULL, NULL);
2560 if (ret < 0) {
2561 return ret;
2562 }
2563 return !!(ret & BDRV_BLOCK_ALLOCATED);
2564 }
2565
2566 /*
2567 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2568 *
2569 * Return a positive depth if (a prefix of) the given range is allocated
2570 * in any image between BASE and TOP (BASE is only included if include_base
2571 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2572 * BASE can be NULL to check if the given offset is allocated in any
2573 * image of the chain. Return 0 otherwise, or negative errno on
2574 * failure.
2575 *
2576 * 'pnum' is set to the number of bytes (including and immediately
2577 * following the specified offset) that are known to be in the same
2578 * allocated/unallocated state. Note that a subsequent call starting
2579 * at 'offset + *pnum' may return the same allocation status (in other
2580 * words, the result is not necessarily the maximum possible range);
2581 * but 'pnum' will only be 0 when end of file is reached.
2582 */
2583 int bdrv_is_allocated_above(BlockDriverState *top,
2584 BlockDriverState *base,
2585 bool include_base, int64_t offset,
2586 int64_t bytes, int64_t *pnum)
2587 {
2588 int depth;
2589 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2590 offset, bytes, pnum, NULL, NULL,
2591 &depth);
2592 if (ret < 0) {
2593 return ret;
2594 }
2595
2596 if (ret & BDRV_BLOCK_ALLOCATED) {
2597 return depth;
2598 }
2599 return 0;
2600 }
2601
2602 int coroutine_fn
2603 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2604 {
2605 BlockDriver *drv = bs->drv;
2606 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2607 int ret = -ENOTSUP;
2608
2609 if (!drv) {
2610 return -ENOMEDIUM;
2611 }
2612
2613 bdrv_inc_in_flight(bs);
2614
2615 if (drv->bdrv_load_vmstate) {
2616 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2617 } else if (child_bs) {
2618 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2619 }
2620
2621 bdrv_dec_in_flight(bs);
2622
2623 return ret;
2624 }
2625
2626 int coroutine_fn
2627 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2628 {
2629 BlockDriver *drv = bs->drv;
2630 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2631 int ret = -ENOTSUP;
2632
2633 if (!drv) {
2634 return -ENOMEDIUM;
2635 }
2636
2637 bdrv_inc_in_flight(bs);
2638
2639 if (drv->bdrv_save_vmstate) {
2640 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2641 } else if (child_bs) {
2642 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2643 }
2644
2645 bdrv_dec_in_flight(bs);
2646
2647 return ret;
2648 }
2649
2650 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2651 int64_t pos, int size)
2652 {
2653 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2654 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2655
2656 return ret < 0 ? ret : size;
2657 }
2658
2659 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2660 int64_t pos, int size)
2661 {
2662 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2663 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2664
2665 return ret < 0 ? ret : size;
2666 }
2667
2668 /**************************************************************/
2669 /* async I/Os */
2670
2671 void bdrv_aio_cancel(BlockAIOCB *acb)
2672 {
2673 qemu_aio_ref(acb);
2674 bdrv_aio_cancel_async(acb);
2675 while (acb->refcnt > 1) {
2676 if (acb->aiocb_info->get_aio_context) {
2677 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2678 } else if (acb->bs) {
2679 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2680 * assert that we're not using an I/O thread. Thread-safe
2681 * code should use bdrv_aio_cancel_async exclusively.
2682 */
2683 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2684 aio_poll(bdrv_get_aio_context(acb->bs), true);
2685 } else {
2686 abort();
2687 }
2688 }
2689 qemu_aio_unref(acb);
2690 }
2691
2692 /* Async version of aio cancel. The caller is not blocked if the acb implements
2693 * cancel_async, otherwise we do nothing and let the request normally complete.
2694 * In either case the completion callback must be called. */
2695 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2696 {
2697 if (acb->aiocb_info->cancel_async) {
2698 acb->aiocb_info->cancel_async(acb);
2699 }
2700 }
2701
2702 /**************************************************************/
2703 /* Coroutine block device emulation */
2704
2705 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2706 {
2707 BdrvChild *primary_child = bdrv_primary_child(bs);
2708 BdrvChild *child;
2709 int current_gen;
2710 int ret = 0;
2711
2712 bdrv_inc_in_flight(bs);
2713
2714 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2715 bdrv_is_sg(bs)) {
2716 goto early_exit;
2717 }
2718
2719 qemu_co_mutex_lock(&bs->reqs_lock);
2720 current_gen = qatomic_read(&bs->write_gen);
2721
2722 /* Wait until any previous flushes are completed */
2723 while (bs->active_flush_req) {
2724 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2725 }
2726
2727 /* Flushes reach this point in nondecreasing current_gen order. */
2728 bs->active_flush_req = true;
2729 qemu_co_mutex_unlock(&bs->reqs_lock);
2730
2731 /* Write back all layers by calling one driver function */
2732 if (bs->drv->bdrv_co_flush) {
2733 ret = bs->drv->bdrv_co_flush(bs);
2734 goto out;
2735 }
2736
2737 /* Write back cached data to the OS even with cache=unsafe */
2738 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2739 if (bs->drv->bdrv_co_flush_to_os) {
2740 ret = bs->drv->bdrv_co_flush_to_os(bs);
2741 if (ret < 0) {
2742 goto out;
2743 }
2744 }
2745
2746 /* But don't actually force it to the disk with cache=unsafe */
2747 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2748 goto flush_children;
2749 }
2750
2751 /* Check if we really need to flush anything */
2752 if (bs->flushed_gen == current_gen) {
2753 goto flush_children;
2754 }
2755
2756 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2757 if (!bs->drv) {
2758 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2759 * (even in case of apparent success) */
2760 ret = -ENOMEDIUM;
2761 goto out;
2762 }
2763 if (bs->drv->bdrv_co_flush_to_disk) {
2764 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2765 } else if (bs->drv->bdrv_aio_flush) {
2766 BlockAIOCB *acb;
2767 CoroutineIOCompletion co = {
2768 .coroutine = qemu_coroutine_self(),
2769 };
2770
2771 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2772 if (acb == NULL) {
2773 ret = -EIO;
2774 } else {
2775 qemu_coroutine_yield();
2776 ret = co.ret;
2777 }
2778 } else {
2779 /*
2780 * Some block drivers always operate in either writethrough or unsafe
2781 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2782 * know how the server works (because the behaviour is hardcoded or
2783 * depends on server-side configuration), so we can't ensure that
2784 * everything is safe on disk. Returning an error doesn't work because
2785 * that would break guests even if the server operates in writethrough
2786 * mode.
2787 *
2788 * Let's hope the user knows what he's doing.
2789 */
2790 ret = 0;
2791 }
2792
2793 if (ret < 0) {
2794 goto out;
2795 }
2796
2797 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2798 * in the case of cache=unsafe, so there are no useless flushes.
2799 */
2800 flush_children:
2801 ret = 0;
2802 QLIST_FOREACH(child, &bs->children, next) {
2803 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2804 int this_child_ret = bdrv_co_flush(child->bs);
2805 if (!ret) {
2806 ret = this_child_ret;
2807 }
2808 }
2809 }
2810
2811 out:
2812 /* Notify any pending flushes that we have completed */
2813 if (ret == 0) {
2814 bs->flushed_gen = current_gen;
2815 }
2816
2817 qemu_co_mutex_lock(&bs->reqs_lock);
2818 bs->active_flush_req = false;
2819 /* Return value is ignored - it's ok if wait queue is empty */
2820 qemu_co_queue_next(&bs->flush_queue);
2821 qemu_co_mutex_unlock(&bs->reqs_lock);
2822
2823 early_exit:
2824 bdrv_dec_in_flight(bs);
2825 return ret;
2826 }
2827
2828 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2829 int64_t bytes)
2830 {
2831 BdrvTrackedRequest req;
2832 int max_pdiscard, ret;
2833 int head, tail, align;
2834 BlockDriverState *bs = child->bs;
2835
2836 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2837 return -ENOMEDIUM;
2838 }
2839
2840 if (bdrv_has_readonly_bitmaps(bs)) {
2841 return -EPERM;
2842 }
2843
2844 ret = bdrv_check_request(offset, bytes);
2845 if (ret < 0) {
2846 return ret;
2847 }
2848
2849 /* Do nothing if disabled. */
2850 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2851 return 0;
2852 }
2853
2854 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2855 return 0;
2856 }
2857
2858 /* Discard is advisory, but some devices track and coalesce
2859 * unaligned requests, so we must pass everything down rather than
2860 * round here. Still, most devices will just silently ignore
2861 * unaligned requests (by returning -ENOTSUP), so we must fragment
2862 * the request accordingly. */
2863 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2864 assert(align % bs->bl.request_alignment == 0);
2865 head = offset % align;
2866 tail = (offset + bytes) % align;
2867
2868 bdrv_inc_in_flight(bs);
2869 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2870
2871 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2872 if (ret < 0) {
2873 goto out;
2874 }
2875
2876 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2877 align);
2878 assert(max_pdiscard >= bs->bl.request_alignment);
2879
2880 while (bytes > 0) {
2881 int64_t num = bytes;
2882
2883 if (head) {
2884 /* Make small requests to get to alignment boundaries. */
2885 num = MIN(bytes, align - head);
2886 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2887 num %= bs->bl.request_alignment;
2888 }
2889 head = (head + num) % align;
2890 assert(num < max_pdiscard);
2891 } else if (tail) {
2892 if (num > align) {
2893 /* Shorten the request to the last aligned cluster. */
2894 num -= tail;
2895 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2896 tail > bs->bl.request_alignment) {
2897 tail %= bs->bl.request_alignment;
2898 num -= tail;
2899 }
2900 }
2901 /* limit request size */
2902 if (num > max_pdiscard) {
2903 num = max_pdiscard;
2904 }
2905
2906 if (!bs->drv) {
2907 ret = -ENOMEDIUM;
2908 goto out;
2909 }
2910 if (bs->drv->bdrv_co_pdiscard) {
2911 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2912 } else {
2913 BlockAIOCB *acb;
2914 CoroutineIOCompletion co = {
2915 .coroutine = qemu_coroutine_self(),
2916 };
2917
2918 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2919 bdrv_co_io_em_complete, &co);
2920 if (acb == NULL) {
2921 ret = -EIO;
2922 goto out;
2923 } else {
2924 qemu_coroutine_yield();
2925 ret = co.ret;
2926 }
2927 }
2928 if (ret && ret != -ENOTSUP) {
2929 goto out;
2930 }
2931
2932 offset += num;
2933 bytes -= num;
2934 }
2935 ret = 0;
2936 out:
2937 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2938 tracked_request_end(&req);
2939 bdrv_dec_in_flight(bs);
2940 return ret;
2941 }
2942
2943 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2944 {
2945 BlockDriver *drv = bs->drv;
2946 CoroutineIOCompletion co = {
2947 .coroutine = qemu_coroutine_self(),
2948 };
2949 BlockAIOCB *acb;
2950
2951 bdrv_inc_in_flight(bs);
2952 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2953 co.ret = -ENOTSUP;
2954 goto out;
2955 }
2956
2957 if (drv->bdrv_co_ioctl) {
2958 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2959 } else {
2960 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2961 if (!acb) {
2962 co.ret = -ENOTSUP;
2963 goto out;
2964 }
2965 qemu_coroutine_yield();
2966 }
2967 out:
2968 bdrv_dec_in_flight(bs);
2969 return co.ret;
2970 }
2971
2972 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2973 {
2974 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2975 }
2976
2977 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2978 {
2979 return memset(qemu_blockalign(bs, size), 0, size);
2980 }
2981
2982 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2983 {
2984 size_t align = bdrv_opt_mem_align(bs);
2985
2986 /* Ensure that NULL is never returned on success */
2987 assert(align > 0);
2988 if (size == 0) {
2989 size = align;
2990 }
2991
2992 return qemu_try_memalign(align, size);
2993 }
2994
2995 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2996 {
2997 void *mem = qemu_try_blockalign(bs, size);
2998
2999 if (mem) {
3000 memset(mem, 0, size);
3001 }
3002
3003 return mem;
3004 }
3005
3006 /*
3007 * Check if all memory in this vector is sector aligned.
3008 */
3009 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3010 {
3011 int i;
3012 size_t alignment = bdrv_min_mem_align(bs);
3013
3014 for (i = 0; i < qiov->niov; i++) {
3015 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3016 return false;
3017 }
3018 if (qiov->iov[i].iov_len % alignment) {
3019 return false;
3020 }
3021 }
3022
3023 return true;
3024 }
3025
3026 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3027 NotifierWithReturn *notifier)
3028 {
3029 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3030 }
3031
3032 void bdrv_io_plug(BlockDriverState *bs)
3033 {
3034 BdrvChild *child;
3035
3036 QLIST_FOREACH(child, &bs->children, next) {
3037 bdrv_io_plug(child->bs);
3038 }
3039
3040 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3041 BlockDriver *drv = bs->drv;
3042 if (drv && drv->bdrv_io_plug) {
3043 drv->bdrv_io_plug(bs);
3044 }
3045 }
3046 }
3047
3048 void bdrv_io_unplug(BlockDriverState *bs)
3049 {
3050 BdrvChild *child;
3051
3052 assert(bs->io_plugged);
3053 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3054 BlockDriver *drv = bs->drv;
3055 if (drv && drv->bdrv_io_unplug) {
3056 drv->bdrv_io_unplug(bs);
3057 }
3058 }
3059
3060 QLIST_FOREACH(child, &bs->children, next) {
3061 bdrv_io_unplug(child->bs);
3062 }
3063 }
3064
3065 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3066 {
3067 BdrvChild *child;
3068
3069 if (bs->drv && bs->drv->bdrv_register_buf) {
3070 bs->drv->bdrv_register_buf(bs, host, size);
3071 }
3072 QLIST_FOREACH(child, &bs->children, next) {
3073 bdrv_register_buf(child->bs, host, size);
3074 }
3075 }
3076
3077 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3078 {
3079 BdrvChild *child;
3080
3081 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3082 bs->drv->bdrv_unregister_buf(bs, host);
3083 }
3084 QLIST_FOREACH(child, &bs->children, next) {
3085 bdrv_unregister_buf(child->bs, host);
3086 }
3087 }
3088
3089 static int coroutine_fn bdrv_co_copy_range_internal(
3090 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3091 uint64_t dst_offset, uint64_t bytes,
3092 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3093 bool recurse_src)
3094 {
3095 BdrvTrackedRequest req;
3096 int ret;
3097
3098 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3099 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3100 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3101
3102 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3103 return -ENOMEDIUM;
3104 }
3105 ret = bdrv_check_request32(dst_offset, bytes);
3106 if (ret) {
3107 return ret;
3108 }
3109 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3110 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3111 }
3112
3113 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3114 return -ENOMEDIUM;
3115 }
3116 ret = bdrv_check_request32(src_offset, bytes);
3117 if (ret) {
3118 return ret;
3119 }
3120
3121 if (!src->bs->drv->bdrv_co_copy_range_from
3122 || !dst->bs->drv->bdrv_co_copy_range_to
3123 || src->bs->encrypted || dst->bs->encrypted) {
3124 return -ENOTSUP;
3125 }
3126
3127 if (recurse_src) {
3128 bdrv_inc_in_flight(src->bs);
3129 tracked_request_begin(&req, src->bs, src_offset, bytes,
3130 BDRV_TRACKED_READ);
3131
3132 /* BDRV_REQ_SERIALISING is only for write operation */
3133 assert(!(read_flags & BDRV_REQ_SERIALISING));
3134 bdrv_wait_serialising_requests(&req);
3135
3136 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3137 src, src_offset,
3138 dst, dst_offset,
3139 bytes,
3140 read_flags, write_flags);
3141
3142 tracked_request_end(&req);
3143 bdrv_dec_in_flight(src->bs);
3144 } else {
3145 bdrv_inc_in_flight(dst->bs);
3146 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3147 BDRV_TRACKED_WRITE);
3148 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3149 write_flags);
3150 if (!ret) {
3151 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3152 src, src_offset,
3153 dst, dst_offset,
3154 bytes,
3155 read_flags, write_flags);
3156 }
3157 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3158 tracked_request_end(&req);
3159 bdrv_dec_in_flight(dst->bs);
3160 }
3161
3162 return ret;
3163 }
3164
3165 /* Copy range from @src to @dst.
3166 *
3167 * See the comment of bdrv_co_copy_range for the parameter and return value
3168 * semantics. */
3169 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3170 BdrvChild *dst, uint64_t dst_offset,
3171 uint64_t bytes,
3172 BdrvRequestFlags read_flags,
3173 BdrvRequestFlags write_flags)
3174 {
3175 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3176 read_flags, write_flags);
3177 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3178 bytes, read_flags, write_flags, true);
3179 }
3180
3181 /* Copy range from @src to @dst.
3182 *
3183 * See the comment of bdrv_co_copy_range for the parameter and return value
3184 * semantics. */
3185 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3186 BdrvChild *dst, uint64_t dst_offset,
3187 uint64_t bytes,
3188 BdrvRequestFlags read_flags,
3189 BdrvRequestFlags write_flags)
3190 {
3191 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3192 read_flags, write_flags);
3193 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3194 bytes, read_flags, write_flags, false);
3195 }
3196
3197 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3198 BdrvChild *dst, uint64_t dst_offset,
3199 uint64_t bytes, BdrvRequestFlags read_flags,
3200 BdrvRequestFlags write_flags)
3201 {
3202 return bdrv_co_copy_range_from(src, src_offset,
3203 dst, dst_offset,
3204 bytes, read_flags, write_flags);
3205 }
3206
3207 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3208 {
3209 BdrvChild *c;
3210 QLIST_FOREACH(c, &bs->parents, next_parent) {
3211 if (c->klass->resize) {
3212 c->klass->resize(c);
3213 }
3214 }
3215 }
3216
3217 /**
3218 * Truncate file to 'offset' bytes (needed only for file protocols)
3219 *
3220 * If 'exact' is true, the file must be resized to exactly the given
3221 * 'offset'. Otherwise, it is sufficient for the node to be at least
3222 * 'offset' bytes in length.
3223 */
3224 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3225 PreallocMode prealloc, BdrvRequestFlags flags,
3226 Error **errp)
3227 {
3228 BlockDriverState *bs = child->bs;
3229 BdrvChild *filtered, *backing;
3230 BlockDriver *drv = bs->drv;
3231 BdrvTrackedRequest req;
3232 int64_t old_size, new_bytes;
3233 int ret;
3234
3235
3236 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3237 if (!drv) {
3238 error_setg(errp, "No medium inserted");
3239 return -ENOMEDIUM;
3240 }
3241 if (offset < 0) {
3242 error_setg(errp, "Image size cannot be negative");
3243 return -EINVAL;
3244 }
3245
3246 ret = bdrv_check_request(offset, 0);
3247 if (ret < 0) {
3248 error_setg(errp, "Required too big image size, it must be not greater "
3249 "than %" PRId64, BDRV_MAX_LENGTH);
3250 return ret;
3251 }
3252
3253 old_size = bdrv_getlength(bs);
3254 if (old_size < 0) {
3255 error_setg_errno(errp, -old_size, "Failed to get old image size");
3256 return old_size;
3257 }
3258
3259 if (offset > old_size) {
3260 new_bytes = offset - old_size;
3261 } else {
3262 new_bytes = 0;
3263 }
3264
3265 bdrv_inc_in_flight(bs);
3266 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3267 BDRV_TRACKED_TRUNCATE);
3268
3269 /* If we are growing the image and potentially using preallocation for the
3270 * new area, we need to make sure that no write requests are made to it
3271 * concurrently or they might be overwritten by preallocation. */
3272 if (new_bytes) {
3273 bdrv_make_request_serialising(&req, 1);
3274 }
3275 if (bs->read_only) {
3276 error_setg(errp, "Image is read-only");
3277 ret = -EACCES;
3278 goto out;
3279 }
3280 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3281 0);
3282 if (ret < 0) {
3283 error_setg_errno(errp, -ret,
3284 "Failed to prepare request for truncation");
3285 goto out;
3286 }
3287
3288 filtered = bdrv_filter_child(bs);
3289 backing = bdrv_cow_child(bs);
3290
3291 /*
3292 * If the image has a backing file that is large enough that it would
3293 * provide data for the new area, we cannot leave it unallocated because
3294 * then the backing file content would become visible. Instead, zero-fill
3295 * the new area.
3296 *
3297 * Note that if the image has a backing file, but was opened without the
3298 * backing file, taking care of keeping things consistent with that backing
3299 * file is the user's responsibility.
3300 */
3301 if (new_bytes && backing) {
3302 int64_t backing_len;
3303
3304 backing_len = bdrv_getlength(backing->bs);
3305 if (backing_len < 0) {
3306 ret = backing_len;
3307 error_setg_errno(errp, -ret, "Could not get backing file size");
3308 goto out;
3309 }
3310
3311 if (backing_len > old_size) {
3312 flags |= BDRV_REQ_ZERO_WRITE;
3313 }
3314 }
3315
3316 if (drv->bdrv_co_truncate) {
3317 if (flags & ~bs->supported_truncate_flags) {
3318 error_setg(errp, "Block driver does not support requested flags");
3319 ret = -ENOTSUP;
3320 goto out;
3321 }
3322 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3323 } else if (filtered) {
3324 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3325 } else {
3326 error_setg(errp, "Image format driver does not support resize");
3327 ret = -ENOTSUP;
3328 goto out;
3329 }
3330 if (ret < 0) {
3331 goto out;
3332 }
3333
3334 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3335 if (ret < 0) {
3336 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3337 } else {
3338 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3339 }
3340 /* It's possible that truncation succeeded but refresh_total_sectors
3341 * failed, but the latter doesn't affect how we should finish the request.
3342 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3343 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3344
3345 out:
3346 tracked_request_end(&req);
3347 bdrv_dec_in_flight(bs);
3348
3349 return ret;
3350 }