]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block: Move read-only check during truncation earlier
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/write-threshold.h"
34 #include "qemu/cutils.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/main-loop.h"
38 #include "sysemu/replay.h"
39
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
46
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
49 {
50 BdrvChild *c, *next;
51
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
54 continue;
55 }
56 bdrv_parent_drained_begin_single(c, false);
57 }
58 }
59
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
62 {
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->klass->drained_end) {
66 c->klass->drained_end(c, drained_end_counter);
67 }
68 }
69
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
75 }
76
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
80 {
81 BdrvChild *c;
82
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
85 continue;
86 }
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88 }
89 }
90
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93 if (c->klass->drained_poll) {
94 return c->klass->drained_poll(c);
95 }
96 return false;
97 }
98
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
101 {
102 BdrvChild *c, *next;
103 bool busy = false;
104
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
107 continue;
108 }
109 busy |= bdrv_parent_drained_poll_single(c);
110 }
111
112 return busy;
113 }
114
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117 c->parent_quiesce_counter++;
118 if (c->klass->drained_begin) {
119 c->klass->drained_begin(c);
120 }
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123 }
124 }
125
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
131 src->max_hw_transfer);
132 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
133 src->opt_mem_alignment);
134 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
135 src->min_mem_alignment);
136 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
137 }
138
139 typedef struct BdrvRefreshLimitsState {
140 BlockDriverState *bs;
141 BlockLimits old_bl;
142 } BdrvRefreshLimitsState;
143
144 static void bdrv_refresh_limits_abort(void *opaque)
145 {
146 BdrvRefreshLimitsState *s = opaque;
147
148 s->bs->bl = s->old_bl;
149 }
150
151 static TransactionActionDrv bdrv_refresh_limits_drv = {
152 .abort = bdrv_refresh_limits_abort,
153 .clean = g_free,
154 };
155
156 /* @tran is allowed to be NULL, in this case no rollback is possible. */
157 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
158 {
159 ERRP_GUARD();
160 BlockDriver *drv = bs->drv;
161 BdrvChild *c;
162 bool have_limits;
163
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
169 };
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
171 }
172
173 memset(&bs->bl, 0, sizeof(bs->bl));
174
175 if (!drv) {
176 return;
177 }
178
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
183
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188 {
189 bdrv_refresh_limits(c->bs, tran, errp);
190 if (*errp) {
191 return;
192 }
193 bdrv_merge_limits(&bs->bl, &c->bs->bl);
194 have_limits = true;
195 }
196 }
197
198 if (!have_limits) {
199 bs->bl.min_mem_alignment = 512;
200 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
201
202 /* Safe default since most protocols use readv()/writev()/etc */
203 bs->bl.max_iov = IOV_MAX;
204 }
205
206 /* Then let the driver override it */
207 if (drv->bdrv_refresh_limits) {
208 drv->bdrv_refresh_limits(bs, errp);
209 if (*errp) {
210 return;
211 }
212 }
213
214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215 error_setg(errp, "Driver requires too large request alignment");
216 }
217 }
218
219 /**
220 * The copy-on-read flag is actually a reference count so multiple users may
221 * use the feature without worrying about clobbering its previous state.
222 * Copy-on-read stays enabled until all users have called to disable it.
223 */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226 qatomic_inc(&bs->copy_on_read);
227 }
228
229 void bdrv_disable_copy_on_read(BlockDriverState *bs)
230 {
231 int old = qatomic_fetch_dec(&bs->copy_on_read);
232 assert(old >= 1);
233 }
234
235 typedef struct {
236 Coroutine *co;
237 BlockDriverState *bs;
238 bool done;
239 bool begin;
240 bool recursive;
241 bool poll;
242 BdrvChild *parent;
243 bool ignore_bds_parents;
244 int *drained_end_counter;
245 } BdrvCoDrainData;
246
247 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
248 {
249 BdrvCoDrainData *data = opaque;
250 BlockDriverState *bs = data->bs;
251
252 if (data->begin) {
253 bs->drv->bdrv_co_drain_begin(bs);
254 } else {
255 bs->drv->bdrv_co_drain_end(bs);
256 }
257
258 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
259 qatomic_mb_set(&data->done, true);
260 if (!data->begin) {
261 qatomic_dec(data->drained_end_counter);
262 }
263 bdrv_dec_in_flight(bs);
264
265 g_free(data);
266 }
267
268 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
269 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
270 int *drained_end_counter)
271 {
272 BdrvCoDrainData *data;
273
274 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
275 (!begin && !bs->drv->bdrv_co_drain_end)) {
276 return;
277 }
278
279 data = g_new(BdrvCoDrainData, 1);
280 *data = (BdrvCoDrainData) {
281 .bs = bs,
282 .done = false,
283 .begin = begin,
284 .drained_end_counter = drained_end_counter,
285 };
286
287 if (!begin) {
288 qatomic_inc(drained_end_counter);
289 }
290
291 /* Make sure the driver callback completes during the polling phase for
292 * drain_begin. */
293 bdrv_inc_in_flight(bs);
294 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
295 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
296 }
297
298 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
299 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
300 BdrvChild *ignore_parent, bool ignore_bds_parents)
301 {
302 BdrvChild *child, *next;
303
304 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
305 return true;
306 }
307
308 if (qatomic_read(&bs->in_flight)) {
309 return true;
310 }
311
312 if (recursive) {
313 assert(!ignore_bds_parents);
314 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
315 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
316 return true;
317 }
318 }
319 }
320
321 return false;
322 }
323
324 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
325 BdrvChild *ignore_parent)
326 {
327 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
328 }
329
330 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
331 BdrvChild *parent, bool ignore_bds_parents,
332 bool poll);
333 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
334 BdrvChild *parent, bool ignore_bds_parents,
335 int *drained_end_counter);
336
337 static void bdrv_co_drain_bh_cb(void *opaque)
338 {
339 BdrvCoDrainData *data = opaque;
340 Coroutine *co = data->co;
341 BlockDriverState *bs = data->bs;
342
343 if (bs) {
344 AioContext *ctx = bdrv_get_aio_context(bs);
345 aio_context_acquire(ctx);
346 bdrv_dec_in_flight(bs);
347 if (data->begin) {
348 assert(!data->drained_end_counter);
349 bdrv_do_drained_begin(bs, data->recursive, data->parent,
350 data->ignore_bds_parents, data->poll);
351 } else {
352 assert(!data->poll);
353 bdrv_do_drained_end(bs, data->recursive, data->parent,
354 data->ignore_bds_parents,
355 data->drained_end_counter);
356 }
357 aio_context_release(ctx);
358 } else {
359 assert(data->begin);
360 bdrv_drain_all_begin();
361 }
362
363 data->done = true;
364 aio_co_wake(co);
365 }
366
367 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
368 bool begin, bool recursive,
369 BdrvChild *parent,
370 bool ignore_bds_parents,
371 bool poll,
372 int *drained_end_counter)
373 {
374 BdrvCoDrainData data;
375 Coroutine *self = qemu_coroutine_self();
376 AioContext *ctx = bdrv_get_aio_context(bs);
377 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
378
379 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
380 * other coroutines run if they were queued by aio_co_enter(). */
381
382 assert(qemu_in_coroutine());
383 data = (BdrvCoDrainData) {
384 .co = self,
385 .bs = bs,
386 .done = false,
387 .begin = begin,
388 .recursive = recursive,
389 .parent = parent,
390 .ignore_bds_parents = ignore_bds_parents,
391 .poll = poll,
392 .drained_end_counter = drained_end_counter,
393 };
394
395 if (bs) {
396 bdrv_inc_in_flight(bs);
397 }
398
399 /*
400 * Temporarily drop the lock across yield or we would get deadlocks.
401 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
402 *
403 * When we yield below, the lock for the current context will be
404 * released, so if this is actually the lock that protects bs, don't drop
405 * it a second time.
406 */
407 if (ctx != co_ctx) {
408 aio_context_release(ctx);
409 }
410 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
411
412 qemu_coroutine_yield();
413 /* If we are resumed from some other event (such as an aio completion or a
414 * timer callback), it is a bug in the caller that should be fixed. */
415 assert(data.done);
416
417 /* Reaquire the AioContext of bs if we dropped it */
418 if (ctx != co_ctx) {
419 aio_context_acquire(ctx);
420 }
421 }
422
423 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
424 BdrvChild *parent, bool ignore_bds_parents)
425 {
426 assert(!qemu_in_coroutine());
427
428 /* Stop things in parent-to-child order */
429 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
430 aio_disable_external(bdrv_get_aio_context(bs));
431 }
432
433 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
434 bdrv_drain_invoke(bs, true, NULL);
435 }
436
437 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
438 BdrvChild *parent, bool ignore_bds_parents,
439 bool poll)
440 {
441 BdrvChild *child, *next;
442
443 if (qemu_in_coroutine()) {
444 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
445 poll, NULL);
446 return;
447 }
448
449 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
450
451 if (recursive) {
452 assert(!ignore_bds_parents);
453 bs->recursive_quiesce_counter++;
454 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
455 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
456 false);
457 }
458 }
459
460 /*
461 * Wait for drained requests to finish.
462 *
463 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
464 * call is needed so things in this AioContext can make progress even
465 * though we don't return to the main AioContext loop - this automatically
466 * includes other nodes in the same AioContext and therefore all child
467 * nodes.
468 */
469 if (poll) {
470 assert(!ignore_bds_parents);
471 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
472 }
473 }
474
475 void bdrv_drained_begin(BlockDriverState *bs)
476 {
477 bdrv_do_drained_begin(bs, false, NULL, false, true);
478 }
479
480 void bdrv_subtree_drained_begin(BlockDriverState *bs)
481 {
482 bdrv_do_drained_begin(bs, true, NULL, false, true);
483 }
484
485 /**
486 * This function does not poll, nor must any of its recursively called
487 * functions. The *drained_end_counter pointee will be incremented
488 * once for every background operation scheduled, and decremented once
489 * the operation settles. Therefore, the pointer must remain valid
490 * until the pointee reaches 0. That implies that whoever sets up the
491 * pointee has to poll until it is 0.
492 *
493 * We use atomic operations to access *drained_end_counter, because
494 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
495 * @bs may contain nodes in different AioContexts,
496 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
497 * regardless of which AioContext they are in.
498 */
499 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
500 BdrvChild *parent, bool ignore_bds_parents,
501 int *drained_end_counter)
502 {
503 BdrvChild *child;
504 int old_quiesce_counter;
505
506 assert(drained_end_counter != NULL);
507
508 if (qemu_in_coroutine()) {
509 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
510 false, drained_end_counter);
511 return;
512 }
513 assert(bs->quiesce_counter > 0);
514
515 /* Re-enable things in child-to-parent order */
516 bdrv_drain_invoke(bs, false, drained_end_counter);
517 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
518 drained_end_counter);
519
520 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
521 if (old_quiesce_counter == 1) {
522 aio_enable_external(bdrv_get_aio_context(bs));
523 }
524
525 if (recursive) {
526 assert(!ignore_bds_parents);
527 bs->recursive_quiesce_counter--;
528 QLIST_FOREACH(child, &bs->children, next) {
529 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
530 drained_end_counter);
531 }
532 }
533 }
534
535 void bdrv_drained_end(BlockDriverState *bs)
536 {
537 int drained_end_counter = 0;
538 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
539 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
540 }
541
542 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
543 {
544 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
545 }
546
547 void bdrv_subtree_drained_end(BlockDriverState *bs)
548 {
549 int drained_end_counter = 0;
550 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
551 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
552 }
553
554 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
555 {
556 int i;
557
558 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
559 bdrv_do_drained_begin(child->bs, true, child, false, true);
560 }
561 }
562
563 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
564 {
565 int drained_end_counter = 0;
566 int i;
567
568 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
569 bdrv_do_drained_end(child->bs, true, child, false,
570 &drained_end_counter);
571 }
572
573 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
574 }
575
576 /*
577 * Wait for pending requests to complete on a single BlockDriverState subtree,
578 * and suspend block driver's internal I/O until next request arrives.
579 *
580 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
581 * AioContext.
582 */
583 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
584 {
585 assert(qemu_in_coroutine());
586 bdrv_drained_begin(bs);
587 bdrv_drained_end(bs);
588 }
589
590 void bdrv_drain(BlockDriverState *bs)
591 {
592 bdrv_drained_begin(bs);
593 bdrv_drained_end(bs);
594 }
595
596 static void bdrv_drain_assert_idle(BlockDriverState *bs)
597 {
598 BdrvChild *child, *next;
599
600 assert(qatomic_read(&bs->in_flight) == 0);
601 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
602 bdrv_drain_assert_idle(child->bs);
603 }
604 }
605
606 unsigned int bdrv_drain_all_count = 0;
607
608 static bool bdrv_drain_all_poll(void)
609 {
610 BlockDriverState *bs = NULL;
611 bool result = false;
612
613 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
614 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
615 while ((bs = bdrv_next_all_states(bs))) {
616 AioContext *aio_context = bdrv_get_aio_context(bs);
617 aio_context_acquire(aio_context);
618 result |= bdrv_drain_poll(bs, false, NULL, true);
619 aio_context_release(aio_context);
620 }
621
622 return result;
623 }
624
625 /*
626 * Wait for pending requests to complete across all BlockDriverStates
627 *
628 * This function does not flush data to disk, use bdrv_flush_all() for that
629 * after calling this function.
630 *
631 * This pauses all block jobs and disables external clients. It must
632 * be paired with bdrv_drain_all_end().
633 *
634 * NOTE: no new block jobs or BlockDriverStates can be created between
635 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
636 */
637 void bdrv_drain_all_begin(void)
638 {
639 BlockDriverState *bs = NULL;
640
641 if (qemu_in_coroutine()) {
642 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
643 return;
644 }
645
646 /*
647 * bdrv queue is managed by record/replay,
648 * waiting for finishing the I/O requests may
649 * be infinite
650 */
651 if (replay_events_enabled()) {
652 return;
653 }
654
655 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
656 * loop AioContext, so make sure we're in the main context. */
657 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
658 assert(bdrv_drain_all_count < INT_MAX);
659 bdrv_drain_all_count++;
660
661 /* Quiesce all nodes, without polling in-flight requests yet. The graph
662 * cannot change during this loop. */
663 while ((bs = bdrv_next_all_states(bs))) {
664 AioContext *aio_context = bdrv_get_aio_context(bs);
665
666 aio_context_acquire(aio_context);
667 bdrv_do_drained_begin(bs, false, NULL, true, false);
668 aio_context_release(aio_context);
669 }
670
671 /* Now poll the in-flight requests */
672 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
673
674 while ((bs = bdrv_next_all_states(bs))) {
675 bdrv_drain_assert_idle(bs);
676 }
677 }
678
679 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
680 {
681 int drained_end_counter = 0;
682
683 g_assert(bs->quiesce_counter > 0);
684 g_assert(!bs->refcnt);
685
686 while (bs->quiesce_counter) {
687 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
688 }
689 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
690 }
691
692 void bdrv_drain_all_end(void)
693 {
694 BlockDriverState *bs = NULL;
695 int drained_end_counter = 0;
696
697 /*
698 * bdrv queue is managed by record/replay,
699 * waiting for finishing the I/O requests may
700 * be endless
701 */
702 if (replay_events_enabled()) {
703 return;
704 }
705
706 while ((bs = bdrv_next_all_states(bs))) {
707 AioContext *aio_context = bdrv_get_aio_context(bs);
708
709 aio_context_acquire(aio_context);
710 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
711 aio_context_release(aio_context);
712 }
713
714 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
715 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
716
717 assert(bdrv_drain_all_count > 0);
718 bdrv_drain_all_count--;
719 }
720
721 void bdrv_drain_all(void)
722 {
723 bdrv_drain_all_begin();
724 bdrv_drain_all_end();
725 }
726
727 /**
728 * Remove an active request from the tracked requests list
729 *
730 * This function should be called when a tracked request is completing.
731 */
732 static void tracked_request_end(BdrvTrackedRequest *req)
733 {
734 if (req->serialising) {
735 qatomic_dec(&req->bs->serialising_in_flight);
736 }
737
738 qemu_co_mutex_lock(&req->bs->reqs_lock);
739 QLIST_REMOVE(req, list);
740 qemu_co_queue_restart_all(&req->wait_queue);
741 qemu_co_mutex_unlock(&req->bs->reqs_lock);
742 }
743
744 /**
745 * Add an active request to the tracked requests list
746 */
747 static void tracked_request_begin(BdrvTrackedRequest *req,
748 BlockDriverState *bs,
749 int64_t offset,
750 int64_t bytes,
751 enum BdrvTrackedRequestType type)
752 {
753 bdrv_check_request(offset, bytes, &error_abort);
754
755 *req = (BdrvTrackedRequest){
756 .bs = bs,
757 .offset = offset,
758 .bytes = bytes,
759 .type = type,
760 .co = qemu_coroutine_self(),
761 .serialising = false,
762 .overlap_offset = offset,
763 .overlap_bytes = bytes,
764 };
765
766 qemu_co_queue_init(&req->wait_queue);
767
768 qemu_co_mutex_lock(&bs->reqs_lock);
769 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
770 qemu_co_mutex_unlock(&bs->reqs_lock);
771 }
772
773 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
774 int64_t offset, int64_t bytes)
775 {
776 bdrv_check_request(offset, bytes, &error_abort);
777
778 /* aaaa bbbb */
779 if (offset >= req->overlap_offset + req->overlap_bytes) {
780 return false;
781 }
782 /* bbbb aaaa */
783 if (req->overlap_offset >= offset + bytes) {
784 return false;
785 }
786 return true;
787 }
788
789 /* Called with self->bs->reqs_lock held */
790 static BdrvTrackedRequest *
791 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
792 {
793 BdrvTrackedRequest *req;
794
795 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
796 if (req == self || (!req->serialising && !self->serialising)) {
797 continue;
798 }
799 if (tracked_request_overlaps(req, self->overlap_offset,
800 self->overlap_bytes))
801 {
802 /*
803 * Hitting this means there was a reentrant request, for
804 * example, a block driver issuing nested requests. This must
805 * never happen since it means deadlock.
806 */
807 assert(qemu_coroutine_self() != req->co);
808
809 /*
810 * If the request is already (indirectly) waiting for us, or
811 * will wait for us as soon as it wakes up, then just go on
812 * (instead of producing a deadlock in the former case).
813 */
814 if (!req->waiting_for) {
815 return req;
816 }
817 }
818 }
819
820 return NULL;
821 }
822
823 /* Called with self->bs->reqs_lock held */
824 static bool coroutine_fn
825 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
826 {
827 BdrvTrackedRequest *req;
828 bool waited = false;
829
830 while ((req = bdrv_find_conflicting_request(self))) {
831 self->waiting_for = req;
832 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
833 self->waiting_for = NULL;
834 waited = true;
835 }
836
837 return waited;
838 }
839
840 /* Called with req->bs->reqs_lock held */
841 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
842 uint64_t align)
843 {
844 int64_t overlap_offset = req->offset & ~(align - 1);
845 int64_t overlap_bytes =
846 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
847
848 bdrv_check_request(req->offset, req->bytes, &error_abort);
849
850 if (!req->serialising) {
851 qatomic_inc(&req->bs->serialising_in_flight);
852 req->serialising = true;
853 }
854
855 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
856 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
857 }
858
859 /**
860 * Return the tracked request on @bs for the current coroutine, or
861 * NULL if there is none.
862 */
863 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
864 {
865 BdrvTrackedRequest *req;
866 Coroutine *self = qemu_coroutine_self();
867
868 QLIST_FOREACH(req, &bs->tracked_requests, list) {
869 if (req->co == self) {
870 return req;
871 }
872 }
873
874 return NULL;
875 }
876
877 /**
878 * Round a region to cluster boundaries
879 */
880 void bdrv_round_to_clusters(BlockDriverState *bs,
881 int64_t offset, int64_t bytes,
882 int64_t *cluster_offset,
883 int64_t *cluster_bytes)
884 {
885 BlockDriverInfo bdi;
886
887 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
888 *cluster_offset = offset;
889 *cluster_bytes = bytes;
890 } else {
891 int64_t c = bdi.cluster_size;
892 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
893 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
894 }
895 }
896
897 static int bdrv_get_cluster_size(BlockDriverState *bs)
898 {
899 BlockDriverInfo bdi;
900 int ret;
901
902 ret = bdrv_get_info(bs, &bdi);
903 if (ret < 0 || bdi.cluster_size == 0) {
904 return bs->bl.request_alignment;
905 } else {
906 return bdi.cluster_size;
907 }
908 }
909
910 void bdrv_inc_in_flight(BlockDriverState *bs)
911 {
912 qatomic_inc(&bs->in_flight);
913 }
914
915 void bdrv_wakeup(BlockDriverState *bs)
916 {
917 aio_wait_kick();
918 }
919
920 void bdrv_dec_in_flight(BlockDriverState *bs)
921 {
922 qatomic_dec(&bs->in_flight);
923 bdrv_wakeup(bs);
924 }
925
926 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
927 {
928 BlockDriverState *bs = self->bs;
929 bool waited = false;
930
931 if (!qatomic_read(&bs->serialising_in_flight)) {
932 return false;
933 }
934
935 qemu_co_mutex_lock(&bs->reqs_lock);
936 waited = bdrv_wait_serialising_requests_locked(self);
937 qemu_co_mutex_unlock(&bs->reqs_lock);
938
939 return waited;
940 }
941
942 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
943 uint64_t align)
944 {
945 bool waited;
946
947 qemu_co_mutex_lock(&req->bs->reqs_lock);
948
949 tracked_request_set_serialising(req, align);
950 waited = bdrv_wait_serialising_requests_locked(req);
951
952 qemu_co_mutex_unlock(&req->bs->reqs_lock);
953
954 return waited;
955 }
956
957 static int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
958 QEMUIOVector *qiov, size_t qiov_offset,
959 Error **errp)
960 {
961 /*
962 * Check generic offset/bytes correctness
963 */
964
965 if (offset < 0) {
966 error_setg(errp, "offset is negative: %" PRIi64, offset);
967 return -EIO;
968 }
969
970 if (bytes < 0) {
971 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
972 return -EIO;
973 }
974
975 if (bytes > BDRV_MAX_LENGTH) {
976 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
977 bytes, BDRV_MAX_LENGTH);
978 return -EIO;
979 }
980
981 if (offset > BDRV_MAX_LENGTH) {
982 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
983 offset, BDRV_MAX_LENGTH);
984 return -EIO;
985 }
986
987 if (offset > BDRV_MAX_LENGTH - bytes) {
988 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
989 "exceeds maximum(%" PRIi64 ")", offset, bytes,
990 BDRV_MAX_LENGTH);
991 return -EIO;
992 }
993
994 if (!qiov) {
995 return 0;
996 }
997
998 /*
999 * Check qiov and qiov_offset
1000 */
1001
1002 if (qiov_offset > qiov->size) {
1003 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1004 qiov_offset, qiov->size);
1005 return -EIO;
1006 }
1007
1008 if (bytes > qiov->size - qiov_offset) {
1009 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1010 "vector size(%zu)", bytes, qiov_offset, qiov->size);
1011 return -EIO;
1012 }
1013
1014 return 0;
1015 }
1016
1017 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1018 {
1019 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1020 }
1021
1022 static int bdrv_check_request32(int64_t offset, int64_t bytes,
1023 QEMUIOVector *qiov, size_t qiov_offset)
1024 {
1025 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1026 if (ret < 0) {
1027 return ret;
1028 }
1029
1030 if (bytes > BDRV_REQUEST_MAX_BYTES) {
1031 return -EIO;
1032 }
1033
1034 return 0;
1035 }
1036
1037 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
1038 int64_t bytes, BdrvRequestFlags flags)
1039 {
1040 return bdrv_pwritev(child, offset, bytes, NULL,
1041 BDRV_REQ_ZERO_WRITE | flags);
1042 }
1043
1044 /*
1045 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1046 * The operation is sped up by checking the block status and only writing
1047 * zeroes to the device if they currently do not return zeroes. Optional
1048 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1049 * BDRV_REQ_FUA).
1050 *
1051 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1052 */
1053 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1054 {
1055 int ret;
1056 int64_t target_size, bytes, offset = 0;
1057 BlockDriverState *bs = child->bs;
1058
1059 target_size = bdrv_getlength(bs);
1060 if (target_size < 0) {
1061 return target_size;
1062 }
1063
1064 for (;;) {
1065 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1066 if (bytes <= 0) {
1067 return 0;
1068 }
1069 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1070 if (ret < 0) {
1071 return ret;
1072 }
1073 if (ret & BDRV_BLOCK_ZERO) {
1074 offset += bytes;
1075 continue;
1076 }
1077 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1078 if (ret < 0) {
1079 return ret;
1080 }
1081 offset += bytes;
1082 }
1083 }
1084
1085 /* See bdrv_pwrite() for the return codes */
1086 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes)
1087 {
1088 int ret;
1089 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1090
1091 if (bytes < 0) {
1092 return -EINVAL;
1093 }
1094
1095 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1096
1097 return ret < 0 ? ret : bytes;
1098 }
1099
1100 /* Return no. of bytes on success or < 0 on error. Important errors are:
1101 -EIO generic I/O error (may happen for all errors)
1102 -ENOMEDIUM No media inserted.
1103 -EINVAL Invalid offset or number of bytes
1104 -EACCES Trying to write a read-only device
1105 */
1106 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
1107 int64_t bytes)
1108 {
1109 int ret;
1110 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1111
1112 if (bytes < 0) {
1113 return -EINVAL;
1114 }
1115
1116 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1117
1118 return ret < 0 ? ret : bytes;
1119 }
1120
1121 /*
1122 * Writes to the file and ensures that no writes are reordered across this
1123 * request (acts as a barrier)
1124 *
1125 * Returns 0 on success, -errno in error cases.
1126 */
1127 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1128 const void *buf, int64_t count)
1129 {
1130 int ret;
1131
1132 ret = bdrv_pwrite(child, offset, buf, count);
1133 if (ret < 0) {
1134 return ret;
1135 }
1136
1137 ret = bdrv_flush(child->bs);
1138 if (ret < 0) {
1139 return ret;
1140 }
1141
1142 return 0;
1143 }
1144
1145 typedef struct CoroutineIOCompletion {
1146 Coroutine *coroutine;
1147 int ret;
1148 } CoroutineIOCompletion;
1149
1150 static void bdrv_co_io_em_complete(void *opaque, int ret)
1151 {
1152 CoroutineIOCompletion *co = opaque;
1153
1154 co->ret = ret;
1155 aio_co_wake(co->coroutine);
1156 }
1157
1158 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1159 int64_t offset, int64_t bytes,
1160 QEMUIOVector *qiov,
1161 size_t qiov_offset, int flags)
1162 {
1163 BlockDriver *drv = bs->drv;
1164 int64_t sector_num;
1165 unsigned int nb_sectors;
1166 QEMUIOVector local_qiov;
1167 int ret;
1168
1169 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1170 assert(!(flags & ~BDRV_REQ_MASK));
1171 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1172
1173 if (!drv) {
1174 return -ENOMEDIUM;
1175 }
1176
1177 if (drv->bdrv_co_preadv_part) {
1178 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1179 flags);
1180 }
1181
1182 if (qiov_offset > 0 || bytes != qiov->size) {
1183 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1184 qiov = &local_qiov;
1185 }
1186
1187 if (drv->bdrv_co_preadv) {
1188 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1189 goto out;
1190 }
1191
1192 if (drv->bdrv_aio_preadv) {
1193 BlockAIOCB *acb;
1194 CoroutineIOCompletion co = {
1195 .coroutine = qemu_coroutine_self(),
1196 };
1197
1198 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1199 bdrv_co_io_em_complete, &co);
1200 if (acb == NULL) {
1201 ret = -EIO;
1202 goto out;
1203 } else {
1204 qemu_coroutine_yield();
1205 ret = co.ret;
1206 goto out;
1207 }
1208 }
1209
1210 sector_num = offset >> BDRV_SECTOR_BITS;
1211 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1212
1213 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1214 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1215 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1216 assert(drv->bdrv_co_readv);
1217
1218 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1219
1220 out:
1221 if (qiov == &local_qiov) {
1222 qemu_iovec_destroy(&local_qiov);
1223 }
1224
1225 return ret;
1226 }
1227
1228 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1229 int64_t offset, int64_t bytes,
1230 QEMUIOVector *qiov,
1231 size_t qiov_offset, int flags)
1232 {
1233 BlockDriver *drv = bs->drv;
1234 int64_t sector_num;
1235 unsigned int nb_sectors;
1236 QEMUIOVector local_qiov;
1237 int ret;
1238
1239 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1240 assert(!(flags & ~BDRV_REQ_MASK));
1241 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1242
1243 if (!drv) {
1244 return -ENOMEDIUM;
1245 }
1246
1247 if (drv->bdrv_co_pwritev_part) {
1248 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1249 flags & bs->supported_write_flags);
1250 flags &= ~bs->supported_write_flags;
1251 goto emulate_flags;
1252 }
1253
1254 if (qiov_offset > 0 || bytes != qiov->size) {
1255 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1256 qiov = &local_qiov;
1257 }
1258
1259 if (drv->bdrv_co_pwritev) {
1260 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1261 flags & bs->supported_write_flags);
1262 flags &= ~bs->supported_write_flags;
1263 goto emulate_flags;
1264 }
1265
1266 if (drv->bdrv_aio_pwritev) {
1267 BlockAIOCB *acb;
1268 CoroutineIOCompletion co = {
1269 .coroutine = qemu_coroutine_self(),
1270 };
1271
1272 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1273 flags & bs->supported_write_flags,
1274 bdrv_co_io_em_complete, &co);
1275 flags &= ~bs->supported_write_flags;
1276 if (acb == NULL) {
1277 ret = -EIO;
1278 } else {
1279 qemu_coroutine_yield();
1280 ret = co.ret;
1281 }
1282 goto emulate_flags;
1283 }
1284
1285 sector_num = offset >> BDRV_SECTOR_BITS;
1286 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1287
1288 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1289 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1290 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1291
1292 assert(drv->bdrv_co_writev);
1293 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1294 flags & bs->supported_write_flags);
1295 flags &= ~bs->supported_write_flags;
1296
1297 emulate_flags:
1298 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1299 ret = bdrv_co_flush(bs);
1300 }
1301
1302 if (qiov == &local_qiov) {
1303 qemu_iovec_destroy(&local_qiov);
1304 }
1305
1306 return ret;
1307 }
1308
1309 static int coroutine_fn
1310 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1311 int64_t bytes, QEMUIOVector *qiov,
1312 size_t qiov_offset)
1313 {
1314 BlockDriver *drv = bs->drv;
1315 QEMUIOVector local_qiov;
1316 int ret;
1317
1318 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1319
1320 if (!drv) {
1321 return -ENOMEDIUM;
1322 }
1323
1324 if (!block_driver_can_compress(drv)) {
1325 return -ENOTSUP;
1326 }
1327
1328 if (drv->bdrv_co_pwritev_compressed_part) {
1329 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1330 qiov, qiov_offset);
1331 }
1332
1333 if (qiov_offset == 0) {
1334 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1335 }
1336
1337 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1338 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1339 qemu_iovec_destroy(&local_qiov);
1340
1341 return ret;
1342 }
1343
1344 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1345 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1346 size_t qiov_offset, int flags)
1347 {
1348 BlockDriverState *bs = child->bs;
1349
1350 /* Perform I/O through a temporary buffer so that users who scribble over
1351 * their read buffer while the operation is in progress do not end up
1352 * modifying the image file. This is critical for zero-copy guest I/O
1353 * where anything might happen inside guest memory.
1354 */
1355 void *bounce_buffer = NULL;
1356
1357 BlockDriver *drv = bs->drv;
1358 int64_t cluster_offset;
1359 int64_t cluster_bytes;
1360 int64_t skip_bytes;
1361 int ret;
1362 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1363 BDRV_REQUEST_MAX_BYTES);
1364 int64_t progress = 0;
1365 bool skip_write;
1366
1367 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1368
1369 if (!drv) {
1370 return -ENOMEDIUM;
1371 }
1372
1373 /*
1374 * Do not write anything when the BDS is inactive. That is not
1375 * allowed, and it would not help.
1376 */
1377 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1378
1379 /* FIXME We cannot require callers to have write permissions when all they
1380 * are doing is a read request. If we did things right, write permissions
1381 * would be obtained anyway, but internally by the copy-on-read code. As
1382 * long as it is implemented here rather than in a separate filter driver,
1383 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1384 * it could request permissions. Therefore we have to bypass the permission
1385 * system for the moment. */
1386 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1387
1388 /* Cover entire cluster so no additional backing file I/O is required when
1389 * allocating cluster in the image file. Note that this value may exceed
1390 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1391 * is one reason we loop rather than doing it all at once.
1392 */
1393 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1394 skip_bytes = offset - cluster_offset;
1395
1396 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1397 cluster_offset, cluster_bytes);
1398
1399 while (cluster_bytes) {
1400 int64_t pnum;
1401
1402 if (skip_write) {
1403 ret = 1; /* "already allocated", so nothing will be copied */
1404 pnum = MIN(cluster_bytes, max_transfer);
1405 } else {
1406 ret = bdrv_is_allocated(bs, cluster_offset,
1407 MIN(cluster_bytes, max_transfer), &pnum);
1408 if (ret < 0) {
1409 /*
1410 * Safe to treat errors in querying allocation as if
1411 * unallocated; we'll probably fail again soon on the
1412 * read, but at least that will set a decent errno.
1413 */
1414 pnum = MIN(cluster_bytes, max_transfer);
1415 }
1416
1417 /* Stop at EOF if the image ends in the middle of the cluster */
1418 if (ret == 0 && pnum == 0) {
1419 assert(progress >= bytes);
1420 break;
1421 }
1422
1423 assert(skip_bytes < pnum);
1424 }
1425
1426 if (ret <= 0) {
1427 QEMUIOVector local_qiov;
1428
1429 /* Must copy-on-read; use the bounce buffer */
1430 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1431 if (!bounce_buffer) {
1432 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1433 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1434 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1435
1436 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1437 if (!bounce_buffer) {
1438 ret = -ENOMEM;
1439 goto err;
1440 }
1441 }
1442 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1443
1444 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1445 &local_qiov, 0, 0);
1446 if (ret < 0) {
1447 goto err;
1448 }
1449
1450 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1451 if (drv->bdrv_co_pwrite_zeroes &&
1452 buffer_is_zero(bounce_buffer, pnum)) {
1453 /* FIXME: Should we (perhaps conditionally) be setting
1454 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1455 * that still correctly reads as zero? */
1456 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1457 BDRV_REQ_WRITE_UNCHANGED);
1458 } else {
1459 /* This does not change the data on the disk, it is not
1460 * necessary to flush even in cache=writethrough mode.
1461 */
1462 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1463 &local_qiov, 0,
1464 BDRV_REQ_WRITE_UNCHANGED);
1465 }
1466
1467 if (ret < 0) {
1468 /* It might be okay to ignore write errors for guest
1469 * requests. If this is a deliberate copy-on-read
1470 * then we don't want to ignore the error. Simply
1471 * report it in all cases.
1472 */
1473 goto err;
1474 }
1475
1476 if (!(flags & BDRV_REQ_PREFETCH)) {
1477 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1478 bounce_buffer + skip_bytes,
1479 MIN(pnum - skip_bytes, bytes - progress));
1480 }
1481 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1482 /* Read directly into the destination */
1483 ret = bdrv_driver_preadv(bs, offset + progress,
1484 MIN(pnum - skip_bytes, bytes - progress),
1485 qiov, qiov_offset + progress, 0);
1486 if (ret < 0) {
1487 goto err;
1488 }
1489 }
1490
1491 cluster_offset += pnum;
1492 cluster_bytes -= pnum;
1493 progress += pnum - skip_bytes;
1494 skip_bytes = 0;
1495 }
1496 ret = 0;
1497
1498 err:
1499 qemu_vfree(bounce_buffer);
1500 return ret;
1501 }
1502
1503 /*
1504 * Forwards an already correctly aligned request to the BlockDriver. This
1505 * handles copy on read, zeroing after EOF, and fragmentation of large
1506 * reads; any other features must be implemented by the caller.
1507 */
1508 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1509 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1510 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1511 {
1512 BlockDriverState *bs = child->bs;
1513 int64_t total_bytes, max_bytes;
1514 int ret = 0;
1515 int64_t bytes_remaining = bytes;
1516 int max_transfer;
1517
1518 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1519 assert(is_power_of_2(align));
1520 assert((offset & (align - 1)) == 0);
1521 assert((bytes & (align - 1)) == 0);
1522 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1523 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1524 align);
1525
1526 /* TODO: We would need a per-BDS .supported_read_flags and
1527 * potential fallback support, if we ever implement any read flags
1528 * to pass through to drivers. For now, there aren't any
1529 * passthrough flags. */
1530 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1531
1532 /* Handle Copy on Read and associated serialisation */
1533 if (flags & BDRV_REQ_COPY_ON_READ) {
1534 /* If we touch the same cluster it counts as an overlap. This
1535 * guarantees that allocating writes will be serialized and not race
1536 * with each other for the same cluster. For example, in copy-on-read
1537 * it ensures that the CoR read and write operations are atomic and
1538 * guest writes cannot interleave between them. */
1539 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1540 } else {
1541 bdrv_wait_serialising_requests(req);
1542 }
1543
1544 if (flags & BDRV_REQ_COPY_ON_READ) {
1545 int64_t pnum;
1546
1547 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1548 flags &= ~BDRV_REQ_COPY_ON_READ;
1549
1550 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1551 if (ret < 0) {
1552 goto out;
1553 }
1554
1555 if (!ret || pnum != bytes) {
1556 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1557 qiov, qiov_offset, flags);
1558 goto out;
1559 } else if (flags & BDRV_REQ_PREFETCH) {
1560 goto out;
1561 }
1562 }
1563
1564 /* Forward the request to the BlockDriver, possibly fragmenting it */
1565 total_bytes = bdrv_getlength(bs);
1566 if (total_bytes < 0) {
1567 ret = total_bytes;
1568 goto out;
1569 }
1570
1571 assert(!(flags & ~bs->supported_read_flags));
1572
1573 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1574 if (bytes <= max_bytes && bytes <= max_transfer) {
1575 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1576 goto out;
1577 }
1578
1579 while (bytes_remaining) {
1580 int64_t num;
1581
1582 if (max_bytes) {
1583 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1584 assert(num);
1585
1586 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1587 num, qiov,
1588 qiov_offset + bytes - bytes_remaining,
1589 flags);
1590 max_bytes -= num;
1591 } else {
1592 num = bytes_remaining;
1593 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1594 0, bytes_remaining);
1595 }
1596 if (ret < 0) {
1597 goto out;
1598 }
1599 bytes_remaining -= num;
1600 }
1601
1602 out:
1603 return ret < 0 ? ret : 0;
1604 }
1605
1606 /*
1607 * Request padding
1608 *
1609 * |<---- align ----->| |<----- align ---->|
1610 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1611 * | | | | | |
1612 * -*----------$-------*-------- ... --------*-----$------------*---
1613 * | | | | | |
1614 * | offset | | end |
1615 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1616 * [buf ... ) [tail_buf )
1617 *
1618 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1619 * is placed at the beginning of @buf and @tail at the @end.
1620 *
1621 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1622 * around tail, if tail exists.
1623 *
1624 * @merge_reads is true for small requests,
1625 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1626 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1627 */
1628 typedef struct BdrvRequestPadding {
1629 uint8_t *buf;
1630 size_t buf_len;
1631 uint8_t *tail_buf;
1632 size_t head;
1633 size_t tail;
1634 bool merge_reads;
1635 QEMUIOVector local_qiov;
1636 } BdrvRequestPadding;
1637
1638 static bool bdrv_init_padding(BlockDriverState *bs,
1639 int64_t offset, int64_t bytes,
1640 BdrvRequestPadding *pad)
1641 {
1642 int64_t align = bs->bl.request_alignment;
1643 int64_t sum;
1644
1645 bdrv_check_request(offset, bytes, &error_abort);
1646 assert(align <= INT_MAX); /* documented in block/block_int.h */
1647 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1648
1649 memset(pad, 0, sizeof(*pad));
1650
1651 pad->head = offset & (align - 1);
1652 pad->tail = ((offset + bytes) & (align - 1));
1653 if (pad->tail) {
1654 pad->tail = align - pad->tail;
1655 }
1656
1657 if (!pad->head && !pad->tail) {
1658 return false;
1659 }
1660
1661 assert(bytes); /* Nothing good in aligning zero-length requests */
1662
1663 sum = pad->head + bytes + pad->tail;
1664 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1665 pad->buf = qemu_blockalign(bs, pad->buf_len);
1666 pad->merge_reads = sum == pad->buf_len;
1667 if (pad->tail) {
1668 pad->tail_buf = pad->buf + pad->buf_len - align;
1669 }
1670
1671 return true;
1672 }
1673
1674 static int bdrv_padding_rmw_read(BdrvChild *child,
1675 BdrvTrackedRequest *req,
1676 BdrvRequestPadding *pad,
1677 bool zero_middle)
1678 {
1679 QEMUIOVector local_qiov;
1680 BlockDriverState *bs = child->bs;
1681 uint64_t align = bs->bl.request_alignment;
1682 int ret;
1683
1684 assert(req->serialising && pad->buf);
1685
1686 if (pad->head || pad->merge_reads) {
1687 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1688
1689 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1690
1691 if (pad->head) {
1692 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1693 }
1694 if (pad->merge_reads && pad->tail) {
1695 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1696 }
1697 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1698 align, &local_qiov, 0, 0);
1699 if (ret < 0) {
1700 return ret;
1701 }
1702 if (pad->head) {
1703 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1704 }
1705 if (pad->merge_reads && pad->tail) {
1706 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1707 }
1708
1709 if (pad->merge_reads) {
1710 goto zero_mem;
1711 }
1712 }
1713
1714 if (pad->tail) {
1715 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1716
1717 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1718 ret = bdrv_aligned_preadv(
1719 child, req,
1720 req->overlap_offset + req->overlap_bytes - align,
1721 align, align, &local_qiov, 0, 0);
1722 if (ret < 0) {
1723 return ret;
1724 }
1725 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1726 }
1727
1728 zero_mem:
1729 if (zero_middle) {
1730 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1731 }
1732
1733 return 0;
1734 }
1735
1736 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1737 {
1738 if (pad->buf) {
1739 qemu_vfree(pad->buf);
1740 qemu_iovec_destroy(&pad->local_qiov);
1741 }
1742 memset(pad, 0, sizeof(*pad));
1743 }
1744
1745 /*
1746 * bdrv_pad_request
1747 *
1748 * Exchange request parameters with padded request if needed. Don't include RMW
1749 * read of padding, bdrv_padding_rmw_read() should be called separately if
1750 * needed.
1751 *
1752 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1753 * - on function start they represent original request
1754 * - on failure or when padding is not needed they are unchanged
1755 * - on success when padding is needed they represent padded request
1756 */
1757 static int bdrv_pad_request(BlockDriverState *bs,
1758 QEMUIOVector **qiov, size_t *qiov_offset,
1759 int64_t *offset, int64_t *bytes,
1760 BdrvRequestPadding *pad, bool *padded)
1761 {
1762 int ret;
1763
1764 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1765
1766 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1767 if (padded) {
1768 *padded = false;
1769 }
1770 return 0;
1771 }
1772
1773 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1774 *qiov, *qiov_offset, *bytes,
1775 pad->buf + pad->buf_len - pad->tail,
1776 pad->tail);
1777 if (ret < 0) {
1778 bdrv_padding_destroy(pad);
1779 return ret;
1780 }
1781 *bytes += pad->head + pad->tail;
1782 *offset -= pad->head;
1783 *qiov = &pad->local_qiov;
1784 *qiov_offset = 0;
1785 if (padded) {
1786 *padded = true;
1787 }
1788
1789 return 0;
1790 }
1791
1792 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1793 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1794 BdrvRequestFlags flags)
1795 {
1796 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1797 }
1798
1799 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1800 int64_t offset, int64_t bytes,
1801 QEMUIOVector *qiov, size_t qiov_offset,
1802 BdrvRequestFlags flags)
1803 {
1804 BlockDriverState *bs = child->bs;
1805 BdrvTrackedRequest req;
1806 BdrvRequestPadding pad;
1807 int ret;
1808
1809 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1810
1811 if (!bdrv_is_inserted(bs)) {
1812 return -ENOMEDIUM;
1813 }
1814
1815 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1816 if (ret < 0) {
1817 return ret;
1818 }
1819
1820 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1821 /*
1822 * Aligning zero request is nonsense. Even if driver has special meaning
1823 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1824 * it to driver due to request_alignment.
1825 *
1826 * Still, no reason to return an error if someone do unaligned
1827 * zero-length read occasionally.
1828 */
1829 return 0;
1830 }
1831
1832 bdrv_inc_in_flight(bs);
1833
1834 /* Don't do copy-on-read if we read data before write operation */
1835 if (qatomic_read(&bs->copy_on_read)) {
1836 flags |= BDRV_REQ_COPY_ON_READ;
1837 }
1838
1839 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1840 NULL);
1841 if (ret < 0) {
1842 return ret;
1843 }
1844
1845 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1846 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1847 bs->bl.request_alignment,
1848 qiov, qiov_offset, flags);
1849 tracked_request_end(&req);
1850 bdrv_dec_in_flight(bs);
1851
1852 bdrv_padding_destroy(&pad);
1853
1854 return ret;
1855 }
1856
1857 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1858 int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1859 {
1860 BlockDriver *drv = bs->drv;
1861 QEMUIOVector qiov;
1862 void *buf = NULL;
1863 int ret = 0;
1864 bool need_flush = false;
1865 int head = 0;
1866 int tail = 0;
1867
1868 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1869 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1870 bs->bl.request_alignment);
1871 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1872
1873 bdrv_check_request(offset, bytes, &error_abort);
1874
1875 if (!drv) {
1876 return -ENOMEDIUM;
1877 }
1878
1879 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1880 return -ENOTSUP;
1881 }
1882
1883 assert(alignment % bs->bl.request_alignment == 0);
1884 head = offset % alignment;
1885 tail = (offset + bytes) % alignment;
1886 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1887 assert(max_write_zeroes >= bs->bl.request_alignment);
1888
1889 while (bytes > 0 && !ret) {
1890 int64_t num = bytes;
1891
1892 /* Align request. Block drivers can expect the "bulk" of the request
1893 * to be aligned, and that unaligned requests do not cross cluster
1894 * boundaries.
1895 */
1896 if (head) {
1897 /* Make a small request up to the first aligned sector. For
1898 * convenience, limit this request to max_transfer even if
1899 * we don't need to fall back to writes. */
1900 num = MIN(MIN(bytes, max_transfer), alignment - head);
1901 head = (head + num) % alignment;
1902 assert(num < max_write_zeroes);
1903 } else if (tail && num > alignment) {
1904 /* Shorten the request to the last aligned sector. */
1905 num -= tail;
1906 }
1907
1908 /* limit request size */
1909 if (num > max_write_zeroes) {
1910 num = max_write_zeroes;
1911 }
1912
1913 ret = -ENOTSUP;
1914 /* First try the efficient write zeroes operation */
1915 if (drv->bdrv_co_pwrite_zeroes) {
1916 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1917 flags & bs->supported_zero_flags);
1918 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1919 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1920 need_flush = true;
1921 }
1922 } else {
1923 assert(!bs->supported_zero_flags);
1924 }
1925
1926 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1927 /* Fall back to bounce buffer if write zeroes is unsupported */
1928 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1929
1930 if ((flags & BDRV_REQ_FUA) &&
1931 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1932 /* No need for bdrv_driver_pwrite() to do a fallback
1933 * flush on each chunk; use just one at the end */
1934 write_flags &= ~BDRV_REQ_FUA;
1935 need_flush = true;
1936 }
1937 num = MIN(num, max_transfer);
1938 if (buf == NULL) {
1939 buf = qemu_try_blockalign0(bs, num);
1940 if (buf == NULL) {
1941 ret = -ENOMEM;
1942 goto fail;
1943 }
1944 }
1945 qemu_iovec_init_buf(&qiov, buf, num);
1946
1947 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1948
1949 /* Keep bounce buffer around if it is big enough for all
1950 * all future requests.
1951 */
1952 if (num < max_transfer) {
1953 qemu_vfree(buf);
1954 buf = NULL;
1955 }
1956 }
1957
1958 offset += num;
1959 bytes -= num;
1960 }
1961
1962 fail:
1963 if (ret == 0 && need_flush) {
1964 ret = bdrv_co_flush(bs);
1965 }
1966 qemu_vfree(buf);
1967 return ret;
1968 }
1969
1970 static inline int coroutine_fn
1971 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1972 BdrvTrackedRequest *req, int flags)
1973 {
1974 BlockDriverState *bs = child->bs;
1975
1976 bdrv_check_request(offset, bytes, &error_abort);
1977
1978 if (bdrv_is_read_only(bs)) {
1979 return -EPERM;
1980 }
1981
1982 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1983 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1984 assert(!(flags & ~BDRV_REQ_MASK));
1985 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1986
1987 if (flags & BDRV_REQ_SERIALISING) {
1988 QEMU_LOCK_GUARD(&bs->reqs_lock);
1989
1990 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1991
1992 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1993 return -EBUSY;
1994 }
1995
1996 bdrv_wait_serialising_requests_locked(req);
1997 } else {
1998 bdrv_wait_serialising_requests(req);
1999 }
2000
2001 assert(req->overlap_offset <= offset);
2002 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2003 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2004 child->perm & BLK_PERM_RESIZE);
2005
2006 switch (req->type) {
2007 case BDRV_TRACKED_WRITE:
2008 case BDRV_TRACKED_DISCARD:
2009 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2010 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2011 } else {
2012 assert(child->perm & BLK_PERM_WRITE);
2013 }
2014 bdrv_write_threshold_check_write(bs, offset, bytes);
2015 return 0;
2016 case BDRV_TRACKED_TRUNCATE:
2017 assert(child->perm & BLK_PERM_RESIZE);
2018 return 0;
2019 default:
2020 abort();
2021 }
2022 }
2023
2024 static inline void coroutine_fn
2025 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2026 BdrvTrackedRequest *req, int ret)
2027 {
2028 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2029 BlockDriverState *bs = child->bs;
2030
2031 bdrv_check_request(offset, bytes, &error_abort);
2032
2033 qatomic_inc(&bs->write_gen);
2034
2035 /*
2036 * Discard cannot extend the image, but in error handling cases, such as
2037 * when reverting a qcow2 cluster allocation, the discarded range can pass
2038 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2039 * here. Instead, just skip it, since semantically a discard request
2040 * beyond EOF cannot expand the image anyway.
2041 */
2042 if (ret == 0 &&
2043 (req->type == BDRV_TRACKED_TRUNCATE ||
2044 end_sector > bs->total_sectors) &&
2045 req->type != BDRV_TRACKED_DISCARD) {
2046 bs->total_sectors = end_sector;
2047 bdrv_parent_cb_resize(bs);
2048 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2049 }
2050 if (req->bytes) {
2051 switch (req->type) {
2052 case BDRV_TRACKED_WRITE:
2053 stat64_max(&bs->wr_highest_offset, offset + bytes);
2054 /* fall through, to set dirty bits */
2055 case BDRV_TRACKED_DISCARD:
2056 bdrv_set_dirty(bs, offset, bytes);
2057 break;
2058 default:
2059 break;
2060 }
2061 }
2062 }
2063
2064 /*
2065 * Forwards an already correctly aligned write request to the BlockDriver,
2066 * after possibly fragmenting it.
2067 */
2068 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2069 BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2070 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
2071 {
2072 BlockDriverState *bs = child->bs;
2073 BlockDriver *drv = bs->drv;
2074 int ret;
2075
2076 int64_t bytes_remaining = bytes;
2077 int max_transfer;
2078
2079 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2080
2081 if (!drv) {
2082 return -ENOMEDIUM;
2083 }
2084
2085 if (bdrv_has_readonly_bitmaps(bs)) {
2086 return -EPERM;
2087 }
2088
2089 assert(is_power_of_2(align));
2090 assert((offset & (align - 1)) == 0);
2091 assert((bytes & (align - 1)) == 0);
2092 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2093 align);
2094
2095 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2096
2097 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2098 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2099 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2100 flags |= BDRV_REQ_ZERO_WRITE;
2101 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2102 flags |= BDRV_REQ_MAY_UNMAP;
2103 }
2104 }
2105
2106 if (ret < 0) {
2107 /* Do nothing, write notifier decided to fail this request */
2108 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2109 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2110 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2111 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2112 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2113 qiov, qiov_offset);
2114 } else if (bytes <= max_transfer) {
2115 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2116 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2117 } else {
2118 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2119 while (bytes_remaining) {
2120 int num = MIN(bytes_remaining, max_transfer);
2121 int local_flags = flags;
2122
2123 assert(num);
2124 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2125 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2126 /* If FUA is going to be emulated by flush, we only
2127 * need to flush on the last iteration */
2128 local_flags &= ~BDRV_REQ_FUA;
2129 }
2130
2131 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2132 num, qiov,
2133 qiov_offset + bytes - bytes_remaining,
2134 local_flags);
2135 if (ret < 0) {
2136 break;
2137 }
2138 bytes_remaining -= num;
2139 }
2140 }
2141 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2142
2143 if (ret >= 0) {
2144 ret = 0;
2145 }
2146 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2147
2148 return ret;
2149 }
2150
2151 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2152 int64_t offset,
2153 int64_t bytes,
2154 BdrvRequestFlags flags,
2155 BdrvTrackedRequest *req)
2156 {
2157 BlockDriverState *bs = child->bs;
2158 QEMUIOVector local_qiov;
2159 uint64_t align = bs->bl.request_alignment;
2160 int ret = 0;
2161 bool padding;
2162 BdrvRequestPadding pad;
2163
2164 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2165 if (padding) {
2166 bdrv_make_request_serialising(req, align);
2167
2168 bdrv_padding_rmw_read(child, req, &pad, true);
2169
2170 if (pad.head || pad.merge_reads) {
2171 int64_t aligned_offset = offset & ~(align - 1);
2172 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2173
2174 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2175 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2176 align, &local_qiov, 0,
2177 flags & ~BDRV_REQ_ZERO_WRITE);
2178 if (ret < 0 || pad.merge_reads) {
2179 /* Error or all work is done */
2180 goto out;
2181 }
2182 offset += write_bytes - pad.head;
2183 bytes -= write_bytes - pad.head;
2184 }
2185 }
2186
2187 assert(!bytes || (offset & (align - 1)) == 0);
2188 if (bytes >= align) {
2189 /* Write the aligned part in the middle. */
2190 int64_t aligned_bytes = bytes & ~(align - 1);
2191 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2192 NULL, 0, flags);
2193 if (ret < 0) {
2194 goto out;
2195 }
2196 bytes -= aligned_bytes;
2197 offset += aligned_bytes;
2198 }
2199
2200 assert(!bytes || (offset & (align - 1)) == 0);
2201 if (bytes) {
2202 assert(align == pad.tail + bytes);
2203
2204 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2205 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2206 &local_qiov, 0,
2207 flags & ~BDRV_REQ_ZERO_WRITE);
2208 }
2209
2210 out:
2211 bdrv_padding_destroy(&pad);
2212
2213 return ret;
2214 }
2215
2216 /*
2217 * Handle a write request in coroutine context
2218 */
2219 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2220 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2221 BdrvRequestFlags flags)
2222 {
2223 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2224 }
2225
2226 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2227 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2228 BdrvRequestFlags flags)
2229 {
2230 BlockDriverState *bs = child->bs;
2231 BdrvTrackedRequest req;
2232 uint64_t align = bs->bl.request_alignment;
2233 BdrvRequestPadding pad;
2234 int ret;
2235 bool padded = false;
2236
2237 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2238
2239 if (!bdrv_is_inserted(bs)) {
2240 return -ENOMEDIUM;
2241 }
2242
2243 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2244 if (ret < 0) {
2245 return ret;
2246 }
2247
2248 /* If the request is misaligned then we can't make it efficient */
2249 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2250 !QEMU_IS_ALIGNED(offset | bytes, align))
2251 {
2252 return -ENOTSUP;
2253 }
2254
2255 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2256 /*
2257 * Aligning zero request is nonsense. Even if driver has special meaning
2258 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2259 * it to driver due to request_alignment.
2260 *
2261 * Still, no reason to return an error if someone do unaligned
2262 * zero-length write occasionally.
2263 */
2264 return 0;
2265 }
2266
2267 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2268 /*
2269 * Pad request for following read-modify-write cycle.
2270 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2271 * alignment only if there is no ZERO flag.
2272 */
2273 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2274 &padded);
2275 if (ret < 0) {
2276 return ret;
2277 }
2278 }
2279
2280 bdrv_inc_in_flight(bs);
2281 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2282
2283 if (flags & BDRV_REQ_ZERO_WRITE) {
2284 assert(!padded);
2285 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2286 goto out;
2287 }
2288
2289 if (padded) {
2290 /*
2291 * Request was unaligned to request_alignment and therefore
2292 * padded. We are going to do read-modify-write, and must
2293 * serialize the request to prevent interactions of the
2294 * widened region with other transactions.
2295 */
2296 bdrv_make_request_serialising(&req, align);
2297 bdrv_padding_rmw_read(child, &req, &pad, false);
2298 }
2299
2300 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2301 qiov, qiov_offset, flags);
2302
2303 bdrv_padding_destroy(&pad);
2304
2305 out:
2306 tracked_request_end(&req);
2307 bdrv_dec_in_flight(bs);
2308
2309 return ret;
2310 }
2311
2312 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2313 int64_t bytes, BdrvRequestFlags flags)
2314 {
2315 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2316
2317 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2318 flags &= ~BDRV_REQ_MAY_UNMAP;
2319 }
2320
2321 return bdrv_co_pwritev(child, offset, bytes, NULL,
2322 BDRV_REQ_ZERO_WRITE | flags);
2323 }
2324
2325 /*
2326 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2327 */
2328 int bdrv_flush_all(void)
2329 {
2330 BdrvNextIterator it;
2331 BlockDriverState *bs = NULL;
2332 int result = 0;
2333
2334 /*
2335 * bdrv queue is managed by record/replay,
2336 * creating new flush request for stopping
2337 * the VM may break the determinism
2338 */
2339 if (replay_events_enabled()) {
2340 return result;
2341 }
2342
2343 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2344 AioContext *aio_context = bdrv_get_aio_context(bs);
2345 int ret;
2346
2347 aio_context_acquire(aio_context);
2348 ret = bdrv_flush(bs);
2349 if (ret < 0 && !result) {
2350 result = ret;
2351 }
2352 aio_context_release(aio_context);
2353 }
2354
2355 return result;
2356 }
2357
2358 /*
2359 * Returns the allocation status of the specified sectors.
2360 * Drivers not implementing the functionality are assumed to not support
2361 * backing files, hence all their sectors are reported as allocated.
2362 *
2363 * If 'want_zero' is true, the caller is querying for mapping
2364 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2365 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2366 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2367 *
2368 * If 'offset' is beyond the end of the disk image the return value is
2369 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2370 *
2371 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2372 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2373 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2374 *
2375 * 'pnum' is set to the number of bytes (including and immediately
2376 * following the specified offset) that are easily known to be in the
2377 * same allocated/unallocated state. Note that a second call starting
2378 * at the original offset plus returned pnum may have the same status.
2379 * The returned value is non-zero on success except at end-of-file.
2380 *
2381 * Returns negative errno on failure. Otherwise, if the
2382 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2383 * set to the host mapping and BDS corresponding to the guest offset.
2384 */
2385 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2386 bool want_zero,
2387 int64_t offset, int64_t bytes,
2388 int64_t *pnum, int64_t *map,
2389 BlockDriverState **file)
2390 {
2391 int64_t total_size;
2392 int64_t n; /* bytes */
2393 int ret;
2394 int64_t local_map = 0;
2395 BlockDriverState *local_file = NULL;
2396 int64_t aligned_offset, aligned_bytes;
2397 uint32_t align;
2398 bool has_filtered_child;
2399
2400 assert(pnum);
2401 *pnum = 0;
2402 total_size = bdrv_getlength(bs);
2403 if (total_size < 0) {
2404 ret = total_size;
2405 goto early_out;
2406 }
2407
2408 if (offset >= total_size) {
2409 ret = BDRV_BLOCK_EOF;
2410 goto early_out;
2411 }
2412 if (!bytes) {
2413 ret = 0;
2414 goto early_out;
2415 }
2416
2417 n = total_size - offset;
2418 if (n < bytes) {
2419 bytes = n;
2420 }
2421
2422 /* Must be non-NULL or bdrv_getlength() would have failed */
2423 assert(bs->drv);
2424 has_filtered_child = bdrv_filter_child(bs);
2425 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2426 *pnum = bytes;
2427 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2428 if (offset + bytes == total_size) {
2429 ret |= BDRV_BLOCK_EOF;
2430 }
2431 if (bs->drv->protocol_name) {
2432 ret |= BDRV_BLOCK_OFFSET_VALID;
2433 local_map = offset;
2434 local_file = bs;
2435 }
2436 goto early_out;
2437 }
2438
2439 bdrv_inc_in_flight(bs);
2440
2441 /* Round out to request_alignment boundaries */
2442 align = bs->bl.request_alignment;
2443 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2444 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2445
2446 if (bs->drv->bdrv_co_block_status) {
2447 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2448 aligned_bytes, pnum, &local_map,
2449 &local_file);
2450 } else {
2451 /* Default code for filters */
2452
2453 local_file = bdrv_filter_bs(bs);
2454 assert(local_file);
2455
2456 *pnum = aligned_bytes;
2457 local_map = aligned_offset;
2458 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2459 }
2460 if (ret < 0) {
2461 *pnum = 0;
2462 goto out;
2463 }
2464
2465 /*
2466 * The driver's result must be a non-zero multiple of request_alignment.
2467 * Clamp pnum and adjust map to original request.
2468 */
2469 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2470 align > offset - aligned_offset);
2471 if (ret & BDRV_BLOCK_RECURSE) {
2472 assert(ret & BDRV_BLOCK_DATA);
2473 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2474 assert(!(ret & BDRV_BLOCK_ZERO));
2475 }
2476
2477 *pnum -= offset - aligned_offset;
2478 if (*pnum > bytes) {
2479 *pnum = bytes;
2480 }
2481 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2482 local_map += offset - aligned_offset;
2483 }
2484
2485 if (ret & BDRV_BLOCK_RAW) {
2486 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2487 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2488 *pnum, pnum, &local_map, &local_file);
2489 goto out;
2490 }
2491
2492 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2493 ret |= BDRV_BLOCK_ALLOCATED;
2494 } else if (bs->drv->supports_backing) {
2495 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2496
2497 if (!cow_bs) {
2498 ret |= BDRV_BLOCK_ZERO;
2499 } else if (want_zero) {
2500 int64_t size2 = bdrv_getlength(cow_bs);
2501
2502 if (size2 >= 0 && offset >= size2) {
2503 ret |= BDRV_BLOCK_ZERO;
2504 }
2505 }
2506 }
2507
2508 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2509 local_file && local_file != bs &&
2510 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2511 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2512 int64_t file_pnum;
2513 int ret2;
2514
2515 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2516 *pnum, &file_pnum, NULL, NULL);
2517 if (ret2 >= 0) {
2518 /* Ignore errors. This is just providing extra information, it
2519 * is useful but not necessary.
2520 */
2521 if (ret2 & BDRV_BLOCK_EOF &&
2522 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2523 /*
2524 * It is valid for the format block driver to read
2525 * beyond the end of the underlying file's current
2526 * size; such areas read as zero.
2527 */
2528 ret |= BDRV_BLOCK_ZERO;
2529 } else {
2530 /* Limit request to the range reported by the protocol driver */
2531 *pnum = file_pnum;
2532 ret |= (ret2 & BDRV_BLOCK_ZERO);
2533 }
2534 }
2535 }
2536
2537 out:
2538 bdrv_dec_in_flight(bs);
2539 if (ret >= 0 && offset + *pnum == total_size) {
2540 ret |= BDRV_BLOCK_EOF;
2541 }
2542 early_out:
2543 if (file) {
2544 *file = local_file;
2545 }
2546 if (map) {
2547 *map = local_map;
2548 }
2549 return ret;
2550 }
2551
2552 int coroutine_fn
2553 bdrv_co_common_block_status_above(BlockDriverState *bs,
2554 BlockDriverState *base,
2555 bool include_base,
2556 bool want_zero,
2557 int64_t offset,
2558 int64_t bytes,
2559 int64_t *pnum,
2560 int64_t *map,
2561 BlockDriverState **file,
2562 int *depth)
2563 {
2564 int ret;
2565 BlockDriverState *p;
2566 int64_t eof = 0;
2567 int dummy;
2568
2569 assert(!include_base || base); /* Can't include NULL base */
2570
2571 if (!depth) {
2572 depth = &dummy;
2573 }
2574 *depth = 0;
2575
2576 if (!include_base && bs == base) {
2577 *pnum = bytes;
2578 return 0;
2579 }
2580
2581 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2582 ++*depth;
2583 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2584 return ret;
2585 }
2586
2587 if (ret & BDRV_BLOCK_EOF) {
2588 eof = offset + *pnum;
2589 }
2590
2591 assert(*pnum <= bytes);
2592 bytes = *pnum;
2593
2594 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2595 p = bdrv_filter_or_cow_bs(p))
2596 {
2597 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2598 file);
2599 ++*depth;
2600 if (ret < 0) {
2601 return ret;
2602 }
2603 if (*pnum == 0) {
2604 /*
2605 * The top layer deferred to this layer, and because this layer is
2606 * short, any zeroes that we synthesize beyond EOF behave as if they
2607 * were allocated at this layer.
2608 *
2609 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2610 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2611 * below.
2612 */
2613 assert(ret & BDRV_BLOCK_EOF);
2614 *pnum = bytes;
2615 if (file) {
2616 *file = p;
2617 }
2618 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2619 break;
2620 }
2621 if (ret & BDRV_BLOCK_ALLOCATED) {
2622 /*
2623 * We've found the node and the status, we must break.
2624 *
2625 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2626 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2627 * below.
2628 */
2629 ret &= ~BDRV_BLOCK_EOF;
2630 break;
2631 }
2632
2633 if (p == base) {
2634 assert(include_base);
2635 break;
2636 }
2637
2638 /*
2639 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2640 * let's continue the diving.
2641 */
2642 assert(*pnum <= bytes);
2643 bytes = *pnum;
2644 }
2645
2646 if (offset + *pnum == eof) {
2647 ret |= BDRV_BLOCK_EOF;
2648 }
2649
2650 return ret;
2651 }
2652
2653 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2654 int64_t offset, int64_t bytes, int64_t *pnum,
2655 int64_t *map, BlockDriverState **file)
2656 {
2657 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2658 pnum, map, file, NULL);
2659 }
2660
2661 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2662 int64_t *pnum, int64_t *map, BlockDriverState **file)
2663 {
2664 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2665 offset, bytes, pnum, map, file);
2666 }
2667
2668 /*
2669 * Check @bs (and its backing chain) to see if the range defined
2670 * by @offset and @bytes is known to read as zeroes.
2671 * Return 1 if that is the case, 0 otherwise and -errno on error.
2672 * This test is meant to be fast rather than accurate so returning 0
2673 * does not guarantee non-zero data.
2674 */
2675 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2676 int64_t bytes)
2677 {
2678 int ret;
2679 int64_t pnum = bytes;
2680
2681 if (!bytes) {
2682 return 1;
2683 }
2684
2685 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2686 bytes, &pnum, NULL, NULL, NULL);
2687
2688 if (ret < 0) {
2689 return ret;
2690 }
2691
2692 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2693 }
2694
2695 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2696 int64_t bytes, int64_t *pnum)
2697 {
2698 int ret;
2699 int64_t dummy;
2700
2701 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2702 bytes, pnum ? pnum : &dummy, NULL,
2703 NULL, NULL);
2704 if (ret < 0) {
2705 return ret;
2706 }
2707 return !!(ret & BDRV_BLOCK_ALLOCATED);
2708 }
2709
2710 /*
2711 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2712 *
2713 * Return a positive depth if (a prefix of) the given range is allocated
2714 * in any image between BASE and TOP (BASE is only included if include_base
2715 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2716 * BASE can be NULL to check if the given offset is allocated in any
2717 * image of the chain. Return 0 otherwise, or negative errno on
2718 * failure.
2719 *
2720 * 'pnum' is set to the number of bytes (including and immediately
2721 * following the specified offset) that are known to be in the same
2722 * allocated/unallocated state. Note that a subsequent call starting
2723 * at 'offset + *pnum' may return the same allocation status (in other
2724 * words, the result is not necessarily the maximum possible range);
2725 * but 'pnum' will only be 0 when end of file is reached.
2726 */
2727 int bdrv_is_allocated_above(BlockDriverState *top,
2728 BlockDriverState *base,
2729 bool include_base, int64_t offset,
2730 int64_t bytes, int64_t *pnum)
2731 {
2732 int depth;
2733 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2734 offset, bytes, pnum, NULL, NULL,
2735 &depth);
2736 if (ret < 0) {
2737 return ret;
2738 }
2739
2740 if (ret & BDRV_BLOCK_ALLOCATED) {
2741 return depth;
2742 }
2743 return 0;
2744 }
2745
2746 int coroutine_fn
2747 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2748 {
2749 BlockDriver *drv = bs->drv;
2750 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2751 int ret = -ENOTSUP;
2752
2753 if (!drv) {
2754 return -ENOMEDIUM;
2755 }
2756
2757 bdrv_inc_in_flight(bs);
2758
2759 if (drv->bdrv_load_vmstate) {
2760 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2761 } else if (child_bs) {
2762 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2763 }
2764
2765 bdrv_dec_in_flight(bs);
2766
2767 return ret;
2768 }
2769
2770 int coroutine_fn
2771 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2772 {
2773 BlockDriver *drv = bs->drv;
2774 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2775 int ret = -ENOTSUP;
2776
2777 if (!drv) {
2778 return -ENOMEDIUM;
2779 }
2780
2781 bdrv_inc_in_flight(bs);
2782
2783 if (drv->bdrv_save_vmstate) {
2784 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2785 } else if (child_bs) {
2786 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2787 }
2788
2789 bdrv_dec_in_flight(bs);
2790
2791 return ret;
2792 }
2793
2794 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2795 int64_t pos, int size)
2796 {
2797 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2798 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2799
2800 return ret < 0 ? ret : size;
2801 }
2802
2803 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2804 int64_t pos, int size)
2805 {
2806 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2807 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2808
2809 return ret < 0 ? ret : size;
2810 }
2811
2812 /**************************************************************/
2813 /* async I/Os */
2814
2815 void bdrv_aio_cancel(BlockAIOCB *acb)
2816 {
2817 qemu_aio_ref(acb);
2818 bdrv_aio_cancel_async(acb);
2819 while (acb->refcnt > 1) {
2820 if (acb->aiocb_info->get_aio_context) {
2821 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2822 } else if (acb->bs) {
2823 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2824 * assert that we're not using an I/O thread. Thread-safe
2825 * code should use bdrv_aio_cancel_async exclusively.
2826 */
2827 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2828 aio_poll(bdrv_get_aio_context(acb->bs), true);
2829 } else {
2830 abort();
2831 }
2832 }
2833 qemu_aio_unref(acb);
2834 }
2835
2836 /* Async version of aio cancel. The caller is not blocked if the acb implements
2837 * cancel_async, otherwise we do nothing and let the request normally complete.
2838 * In either case the completion callback must be called. */
2839 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2840 {
2841 if (acb->aiocb_info->cancel_async) {
2842 acb->aiocb_info->cancel_async(acb);
2843 }
2844 }
2845
2846 /**************************************************************/
2847 /* Coroutine block device emulation */
2848
2849 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2850 {
2851 BdrvChild *primary_child = bdrv_primary_child(bs);
2852 BdrvChild *child;
2853 int current_gen;
2854 int ret = 0;
2855
2856 bdrv_inc_in_flight(bs);
2857
2858 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2859 bdrv_is_sg(bs)) {
2860 goto early_exit;
2861 }
2862
2863 qemu_co_mutex_lock(&bs->reqs_lock);
2864 current_gen = qatomic_read(&bs->write_gen);
2865
2866 /* Wait until any previous flushes are completed */
2867 while (bs->active_flush_req) {
2868 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2869 }
2870
2871 /* Flushes reach this point in nondecreasing current_gen order. */
2872 bs->active_flush_req = true;
2873 qemu_co_mutex_unlock(&bs->reqs_lock);
2874
2875 /* Write back all layers by calling one driver function */
2876 if (bs->drv->bdrv_co_flush) {
2877 ret = bs->drv->bdrv_co_flush(bs);
2878 goto out;
2879 }
2880
2881 /* Write back cached data to the OS even with cache=unsafe */
2882 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2883 if (bs->drv->bdrv_co_flush_to_os) {
2884 ret = bs->drv->bdrv_co_flush_to_os(bs);
2885 if (ret < 0) {
2886 goto out;
2887 }
2888 }
2889
2890 /* But don't actually force it to the disk with cache=unsafe */
2891 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2892 goto flush_children;
2893 }
2894
2895 /* Check if we really need to flush anything */
2896 if (bs->flushed_gen == current_gen) {
2897 goto flush_children;
2898 }
2899
2900 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2901 if (!bs->drv) {
2902 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2903 * (even in case of apparent success) */
2904 ret = -ENOMEDIUM;
2905 goto out;
2906 }
2907 if (bs->drv->bdrv_co_flush_to_disk) {
2908 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2909 } else if (bs->drv->bdrv_aio_flush) {
2910 BlockAIOCB *acb;
2911 CoroutineIOCompletion co = {
2912 .coroutine = qemu_coroutine_self(),
2913 };
2914
2915 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2916 if (acb == NULL) {
2917 ret = -EIO;
2918 } else {
2919 qemu_coroutine_yield();
2920 ret = co.ret;
2921 }
2922 } else {
2923 /*
2924 * Some block drivers always operate in either writethrough or unsafe
2925 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2926 * know how the server works (because the behaviour is hardcoded or
2927 * depends on server-side configuration), so we can't ensure that
2928 * everything is safe on disk. Returning an error doesn't work because
2929 * that would break guests even if the server operates in writethrough
2930 * mode.
2931 *
2932 * Let's hope the user knows what he's doing.
2933 */
2934 ret = 0;
2935 }
2936
2937 if (ret < 0) {
2938 goto out;
2939 }
2940
2941 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2942 * in the case of cache=unsafe, so there are no useless flushes.
2943 */
2944 flush_children:
2945 ret = 0;
2946 QLIST_FOREACH(child, &bs->children, next) {
2947 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2948 int this_child_ret = bdrv_co_flush(child->bs);
2949 if (!ret) {
2950 ret = this_child_ret;
2951 }
2952 }
2953 }
2954
2955 out:
2956 /* Notify any pending flushes that we have completed */
2957 if (ret == 0) {
2958 bs->flushed_gen = current_gen;
2959 }
2960
2961 qemu_co_mutex_lock(&bs->reqs_lock);
2962 bs->active_flush_req = false;
2963 /* Return value is ignored - it's ok if wait queue is empty */
2964 qemu_co_queue_next(&bs->flush_queue);
2965 qemu_co_mutex_unlock(&bs->reqs_lock);
2966
2967 early_exit:
2968 bdrv_dec_in_flight(bs);
2969 return ret;
2970 }
2971
2972 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2973 int64_t bytes)
2974 {
2975 BdrvTrackedRequest req;
2976 int max_pdiscard, ret;
2977 int head, tail, align;
2978 BlockDriverState *bs = child->bs;
2979
2980 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2981 return -ENOMEDIUM;
2982 }
2983
2984 if (bdrv_has_readonly_bitmaps(bs)) {
2985 return -EPERM;
2986 }
2987
2988 ret = bdrv_check_request(offset, bytes, NULL);
2989 if (ret < 0) {
2990 return ret;
2991 }
2992
2993 /* Do nothing if disabled. */
2994 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2995 return 0;
2996 }
2997
2998 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2999 return 0;
3000 }
3001
3002 /* Discard is advisory, but some devices track and coalesce
3003 * unaligned requests, so we must pass everything down rather than
3004 * round here. Still, most devices will just silently ignore
3005 * unaligned requests (by returning -ENOTSUP), so we must fragment
3006 * the request accordingly. */
3007 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3008 assert(align % bs->bl.request_alignment == 0);
3009 head = offset % align;
3010 tail = (offset + bytes) % align;
3011
3012 bdrv_inc_in_flight(bs);
3013 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3014
3015 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3016 if (ret < 0) {
3017 goto out;
3018 }
3019
3020 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
3021 align);
3022 assert(max_pdiscard >= bs->bl.request_alignment);
3023
3024 while (bytes > 0) {
3025 int64_t num = bytes;
3026
3027 if (head) {
3028 /* Make small requests to get to alignment boundaries. */
3029 num = MIN(bytes, align - head);
3030 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3031 num %= bs->bl.request_alignment;
3032 }
3033 head = (head + num) % align;
3034 assert(num < max_pdiscard);
3035 } else if (tail) {
3036 if (num > align) {
3037 /* Shorten the request to the last aligned cluster. */
3038 num -= tail;
3039 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3040 tail > bs->bl.request_alignment) {
3041 tail %= bs->bl.request_alignment;
3042 num -= tail;
3043 }
3044 }
3045 /* limit request size */
3046 if (num > max_pdiscard) {
3047 num = max_pdiscard;
3048 }
3049
3050 if (!bs->drv) {
3051 ret = -ENOMEDIUM;
3052 goto out;
3053 }
3054 if (bs->drv->bdrv_co_pdiscard) {
3055 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3056 } else {
3057 BlockAIOCB *acb;
3058 CoroutineIOCompletion co = {
3059 .coroutine = qemu_coroutine_self(),
3060 };
3061
3062 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3063 bdrv_co_io_em_complete, &co);
3064 if (acb == NULL) {
3065 ret = -EIO;
3066 goto out;
3067 } else {
3068 qemu_coroutine_yield();
3069 ret = co.ret;
3070 }
3071 }
3072 if (ret && ret != -ENOTSUP) {
3073 goto out;
3074 }
3075
3076 offset += num;
3077 bytes -= num;
3078 }
3079 ret = 0;
3080 out:
3081 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3082 tracked_request_end(&req);
3083 bdrv_dec_in_flight(bs);
3084 return ret;
3085 }
3086
3087 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3088 {
3089 BlockDriver *drv = bs->drv;
3090 CoroutineIOCompletion co = {
3091 .coroutine = qemu_coroutine_self(),
3092 };
3093 BlockAIOCB *acb;
3094
3095 bdrv_inc_in_flight(bs);
3096 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3097 co.ret = -ENOTSUP;
3098 goto out;
3099 }
3100
3101 if (drv->bdrv_co_ioctl) {
3102 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3103 } else {
3104 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3105 if (!acb) {
3106 co.ret = -ENOTSUP;
3107 goto out;
3108 }
3109 qemu_coroutine_yield();
3110 }
3111 out:
3112 bdrv_dec_in_flight(bs);
3113 return co.ret;
3114 }
3115
3116 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3117 {
3118 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3119 }
3120
3121 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3122 {
3123 return memset(qemu_blockalign(bs, size), 0, size);
3124 }
3125
3126 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3127 {
3128 size_t align = bdrv_opt_mem_align(bs);
3129
3130 /* Ensure that NULL is never returned on success */
3131 assert(align > 0);
3132 if (size == 0) {
3133 size = align;
3134 }
3135
3136 return qemu_try_memalign(align, size);
3137 }
3138
3139 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3140 {
3141 void *mem = qemu_try_blockalign(bs, size);
3142
3143 if (mem) {
3144 memset(mem, 0, size);
3145 }
3146
3147 return mem;
3148 }
3149
3150 /*
3151 * Check if all memory in this vector is sector aligned.
3152 */
3153 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3154 {
3155 int i;
3156 size_t alignment = bdrv_min_mem_align(bs);
3157
3158 for (i = 0; i < qiov->niov; i++) {
3159 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3160 return false;
3161 }
3162 if (qiov->iov[i].iov_len % alignment) {
3163 return false;
3164 }
3165 }
3166
3167 return true;
3168 }
3169
3170 void bdrv_io_plug(BlockDriverState *bs)
3171 {
3172 BdrvChild *child;
3173
3174 QLIST_FOREACH(child, &bs->children, next) {
3175 bdrv_io_plug(child->bs);
3176 }
3177
3178 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3179 BlockDriver *drv = bs->drv;
3180 if (drv && drv->bdrv_io_plug) {
3181 drv->bdrv_io_plug(bs);
3182 }
3183 }
3184 }
3185
3186 void bdrv_io_unplug(BlockDriverState *bs)
3187 {
3188 BdrvChild *child;
3189
3190 assert(bs->io_plugged);
3191 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3192 BlockDriver *drv = bs->drv;
3193 if (drv && drv->bdrv_io_unplug) {
3194 drv->bdrv_io_unplug(bs);
3195 }
3196 }
3197
3198 QLIST_FOREACH(child, &bs->children, next) {
3199 bdrv_io_unplug(child->bs);
3200 }
3201 }
3202
3203 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3204 {
3205 BdrvChild *child;
3206
3207 if (bs->drv && bs->drv->bdrv_register_buf) {
3208 bs->drv->bdrv_register_buf(bs, host, size);
3209 }
3210 QLIST_FOREACH(child, &bs->children, next) {
3211 bdrv_register_buf(child->bs, host, size);
3212 }
3213 }
3214
3215 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3216 {
3217 BdrvChild *child;
3218
3219 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3220 bs->drv->bdrv_unregister_buf(bs, host);
3221 }
3222 QLIST_FOREACH(child, &bs->children, next) {
3223 bdrv_unregister_buf(child->bs, host);
3224 }
3225 }
3226
3227 static int coroutine_fn bdrv_co_copy_range_internal(
3228 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3229 int64_t dst_offset, int64_t bytes,
3230 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3231 bool recurse_src)
3232 {
3233 BdrvTrackedRequest req;
3234 int ret;
3235
3236 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3237 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3238 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3239
3240 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3241 return -ENOMEDIUM;
3242 }
3243 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3244 if (ret) {
3245 return ret;
3246 }
3247 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3248 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3249 }
3250
3251 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3252 return -ENOMEDIUM;
3253 }
3254 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3255 if (ret) {
3256 return ret;
3257 }
3258
3259 if (!src->bs->drv->bdrv_co_copy_range_from
3260 || !dst->bs->drv->bdrv_co_copy_range_to
3261 || src->bs->encrypted || dst->bs->encrypted) {
3262 return -ENOTSUP;
3263 }
3264
3265 if (recurse_src) {
3266 bdrv_inc_in_flight(src->bs);
3267 tracked_request_begin(&req, src->bs, src_offset, bytes,
3268 BDRV_TRACKED_READ);
3269
3270 /* BDRV_REQ_SERIALISING is only for write operation */
3271 assert(!(read_flags & BDRV_REQ_SERIALISING));
3272 bdrv_wait_serialising_requests(&req);
3273
3274 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3275 src, src_offset,
3276 dst, dst_offset,
3277 bytes,
3278 read_flags, write_flags);
3279
3280 tracked_request_end(&req);
3281 bdrv_dec_in_flight(src->bs);
3282 } else {
3283 bdrv_inc_in_flight(dst->bs);
3284 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3285 BDRV_TRACKED_WRITE);
3286 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3287 write_flags);
3288 if (!ret) {
3289 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3290 src, src_offset,
3291 dst, dst_offset,
3292 bytes,
3293 read_flags, write_flags);
3294 }
3295 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3296 tracked_request_end(&req);
3297 bdrv_dec_in_flight(dst->bs);
3298 }
3299
3300 return ret;
3301 }
3302
3303 /* Copy range from @src to @dst.
3304 *
3305 * See the comment of bdrv_co_copy_range for the parameter and return value
3306 * semantics. */
3307 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3308 BdrvChild *dst, int64_t dst_offset,
3309 int64_t bytes,
3310 BdrvRequestFlags read_flags,
3311 BdrvRequestFlags write_flags)
3312 {
3313 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3314 read_flags, write_flags);
3315 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3316 bytes, read_flags, write_flags, true);
3317 }
3318
3319 /* Copy range from @src to @dst.
3320 *
3321 * See the comment of bdrv_co_copy_range for the parameter and return value
3322 * semantics. */
3323 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3324 BdrvChild *dst, int64_t dst_offset,
3325 int64_t bytes,
3326 BdrvRequestFlags read_flags,
3327 BdrvRequestFlags write_flags)
3328 {
3329 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3330 read_flags, write_flags);
3331 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3332 bytes, read_flags, write_flags, false);
3333 }
3334
3335 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3336 BdrvChild *dst, int64_t dst_offset,
3337 int64_t bytes, BdrvRequestFlags read_flags,
3338 BdrvRequestFlags write_flags)
3339 {
3340 return bdrv_co_copy_range_from(src, src_offset,
3341 dst, dst_offset,
3342 bytes, read_flags, write_flags);
3343 }
3344
3345 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3346 {
3347 BdrvChild *c;
3348 QLIST_FOREACH(c, &bs->parents, next_parent) {
3349 if (c->klass->resize) {
3350 c->klass->resize(c);
3351 }
3352 }
3353 }
3354
3355 /**
3356 * Truncate file to 'offset' bytes (needed only for file protocols)
3357 *
3358 * If 'exact' is true, the file must be resized to exactly the given
3359 * 'offset'. Otherwise, it is sufficient for the node to be at least
3360 * 'offset' bytes in length.
3361 */
3362 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3363 PreallocMode prealloc, BdrvRequestFlags flags,
3364 Error **errp)
3365 {
3366 BlockDriverState *bs = child->bs;
3367 BdrvChild *filtered, *backing;
3368 BlockDriver *drv = bs->drv;
3369 BdrvTrackedRequest req;
3370 int64_t old_size, new_bytes;
3371 int ret;
3372
3373
3374 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3375 if (!drv) {
3376 error_setg(errp, "No medium inserted");
3377 return -ENOMEDIUM;
3378 }
3379 if (offset < 0) {
3380 error_setg(errp, "Image size cannot be negative");
3381 return -EINVAL;
3382 }
3383
3384 ret = bdrv_check_request(offset, 0, errp);
3385 if (ret < 0) {
3386 return ret;
3387 }
3388
3389 old_size = bdrv_getlength(bs);
3390 if (old_size < 0) {
3391 error_setg_errno(errp, -old_size, "Failed to get old image size");
3392 return old_size;
3393 }
3394
3395 if (bdrv_is_read_only(bs)) {
3396 error_setg(errp, "Image is read-only");
3397 return -EACCES;
3398 }
3399
3400 if (offset > old_size) {
3401 new_bytes = offset - old_size;
3402 } else {
3403 new_bytes = 0;
3404 }
3405
3406 bdrv_inc_in_flight(bs);
3407 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3408 BDRV_TRACKED_TRUNCATE);
3409
3410 /* If we are growing the image and potentially using preallocation for the
3411 * new area, we need to make sure that no write requests are made to it
3412 * concurrently or they might be overwritten by preallocation. */
3413 if (new_bytes) {
3414 bdrv_make_request_serialising(&req, 1);
3415 }
3416 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3417 0);
3418 if (ret < 0) {
3419 error_setg_errno(errp, -ret,
3420 "Failed to prepare request for truncation");
3421 goto out;
3422 }
3423
3424 filtered = bdrv_filter_child(bs);
3425 backing = bdrv_cow_child(bs);
3426
3427 /*
3428 * If the image has a backing file that is large enough that it would
3429 * provide data for the new area, we cannot leave it unallocated because
3430 * then the backing file content would become visible. Instead, zero-fill
3431 * the new area.
3432 *
3433 * Note that if the image has a backing file, but was opened without the
3434 * backing file, taking care of keeping things consistent with that backing
3435 * file is the user's responsibility.
3436 */
3437 if (new_bytes && backing) {
3438 int64_t backing_len;
3439
3440 backing_len = bdrv_getlength(backing->bs);
3441 if (backing_len < 0) {
3442 ret = backing_len;
3443 error_setg_errno(errp, -ret, "Could not get backing file size");
3444 goto out;
3445 }
3446
3447 if (backing_len > old_size) {
3448 flags |= BDRV_REQ_ZERO_WRITE;
3449 }
3450 }
3451
3452 if (drv->bdrv_co_truncate) {
3453 if (flags & ~bs->supported_truncate_flags) {
3454 error_setg(errp, "Block driver does not support requested flags");
3455 ret = -ENOTSUP;
3456 goto out;
3457 }
3458 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3459 } else if (filtered) {
3460 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3461 } else {
3462 error_setg(errp, "Image format driver does not support resize");
3463 ret = -ENOTSUP;
3464 goto out;
3465 }
3466 if (ret < 0) {
3467 goto out;
3468 }
3469
3470 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3471 if (ret < 0) {
3472 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3473 } else {
3474 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3475 }
3476 /* It's possible that truncation succeeded but refresh_total_sectors
3477 * failed, but the latter doesn't affect how we should finish the request.
3478 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3479 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3480
3481 out:
3482 tracked_request_end(&req);
3483 bdrv_dec_in_flight(bs);
3484
3485 return ret;
3486 }
3487
3488 void bdrv_cancel_in_flight(BlockDriverState *bs)
3489 {
3490 if (!bs || !bs->drv) {
3491 return;
3492 }
3493
3494 if (bs->drv->bdrv_cancel_in_flight) {
3495 bs->drv->bdrv_cancel_in_flight(bs);
3496 }
3497 }