]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge tag 'block-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51 BdrvChild *c, *next;
52
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore) {
55 continue;
56 }
57 bdrv_parent_drained_begin_single(c);
58 }
59 }
60
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63 GLOBAL_STATE_CODE();
64
65 assert(c->quiesced_parent);
66 c->quiesced_parent = false;
67
68 if (c->klass->drained_end) {
69 c->klass->drained_end(c);
70 }
71 }
72
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75 BdrvChild *c;
76
77 QLIST_FOREACH(c, &bs->parents, next_parent) {
78 if (c == ignore) {
79 continue;
80 }
81 bdrv_parent_drained_end_single(c);
82 }
83 }
84
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87 if (c->klass->drained_poll) {
88 return c->klass->drained_poll(c);
89 }
90 return false;
91 }
92
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94 bool ignore_bds_parents)
95 {
96 BdrvChild *c, *next;
97 bool busy = false;
98
99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101 continue;
102 }
103 busy |= bdrv_parent_drained_poll_single(c);
104 }
105
106 return busy;
107 }
108
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111 GLOBAL_STATE_CODE();
112
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
115
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
118 }
119 }
120
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124 src->pdiscard_alignment);
125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128 src->max_hw_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144 BdrvRefreshLimitsState *s = opaque;
145
146 s->bs->bl = s->old_bl;
147 }
148
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
152 };
153
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
161
162 GLOBAL_STATE_CODE();
163
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
169 };
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
171 }
172
173 memset(&bs->bl, 0, sizeof(bs->bl));
174
175 if (!drv) {
176 return;
177 }
178
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
183
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188 {
189 bdrv_merge_limits(&bs->bl, &c->bs->bl);
190 have_limits = true;
191 }
192
193 if (c->role & BDRV_CHILD_FILTERED) {
194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195 }
196 }
197
198 if (!have_limits) {
199 bs->bl.min_mem_alignment = 512;
200 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201
202 /* Safe default since most protocols use readv()/writev()/etc */
203 bs->bl.max_iov = IOV_MAX;
204 }
205
206 /* Then let the driver override it */
207 if (drv->bdrv_refresh_limits) {
208 drv->bdrv_refresh_limits(bs, errp);
209 if (*errp) {
210 return;
211 }
212 }
213
214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215 error_setg(errp, "Driver requires too large request alignment");
216 }
217 }
218
219 /**
220 * The copy-on-read flag is actually a reference count so multiple users may
221 * use the feature without worrying about clobbering its previous state.
222 * Copy-on-read stays enabled until all users have called to disable it.
223 */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226 IO_CODE();
227 qatomic_inc(&bs->copy_on_read);
228 }
229
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232 int old = qatomic_fetch_dec(&bs->copy_on_read);
233 IO_CODE();
234 assert(old >= 1);
235 }
236
237 typedef struct {
238 Coroutine *co;
239 BlockDriverState *bs;
240 bool done;
241 bool begin;
242 bool poll;
243 BdrvChild *parent;
244 } BdrvCoDrainData;
245
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248 bool ignore_bds_parents)
249 {
250 GLOBAL_STATE_CODE();
251
252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253 return true;
254 }
255
256 if (qatomic_read(&bs->in_flight)) {
257 return true;
258 }
259
260 return false;
261 }
262
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264 BdrvChild *ignore_parent)
265 {
266 return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270 bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275 BdrvCoDrainData *data = opaque;
276 Coroutine *co = data->co;
277 BlockDriverState *bs = data->bs;
278
279 if (bs) {
280 AioContext *ctx = bdrv_get_aio_context(bs);
281 aio_context_acquire(ctx);
282 bdrv_dec_in_flight(bs);
283 if (data->begin) {
284 bdrv_do_drained_begin(bs, data->parent, data->poll);
285 } else {
286 assert(!data->poll);
287 bdrv_do_drained_end(bs, data->parent);
288 }
289 aio_context_release(ctx);
290 } else {
291 assert(data->begin);
292 bdrv_drain_all_begin();
293 }
294
295 data->done = true;
296 aio_co_wake(co);
297 }
298
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300 bool begin,
301 BdrvChild *parent,
302 bool poll)
303 {
304 BdrvCoDrainData data;
305 Coroutine *self = qemu_coroutine_self();
306 AioContext *ctx = bdrv_get_aio_context(bs);
307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308
309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310 * other coroutines run if they were queued by aio_co_enter(). */
311
312 assert(qemu_in_coroutine());
313 data = (BdrvCoDrainData) {
314 .co = self,
315 .bs = bs,
316 .done = false,
317 .begin = begin,
318 .parent = parent,
319 .poll = poll,
320 };
321
322 if (bs) {
323 bdrv_inc_in_flight(bs);
324 }
325
326 /*
327 * Temporarily drop the lock across yield or we would get deadlocks.
328 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329 *
330 * When we yield below, the lock for the current context will be
331 * released, so if this is actually the lock that protects bs, don't drop
332 * it a second time.
333 */
334 if (ctx != co_ctx) {
335 aio_context_release(ctx);
336 }
337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
338 bdrv_co_drain_bh_cb, &data);
339
340 qemu_coroutine_yield();
341 /* If we are resumed from some other event (such as an aio completion or a
342 * timer callback), it is a bug in the caller that should be fixed. */
343 assert(data.done);
344
345 /* Reaquire the AioContext of bs if we dropped it */
346 if (ctx != co_ctx) {
347 aio_context_acquire(ctx);
348 }
349 }
350
351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352 bool poll)
353 {
354 IO_OR_GS_CODE();
355
356 if (qemu_in_coroutine()) {
357 bdrv_co_yield_to_drain(bs, true, parent, poll);
358 return;
359 }
360
361 GLOBAL_STATE_CODE();
362
363 /* Stop things in parent-to-child order */
364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365 bdrv_parent_drained_begin(bs, parent);
366 if (bs->drv && bs->drv->bdrv_drain_begin) {
367 bs->drv->bdrv_drain_begin(bs);
368 }
369 }
370
371 /*
372 * Wait for drained requests to finish.
373 *
374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
375 * call is needed so things in this AioContext can make progress even
376 * though we don't return to the main AioContext loop - this automatically
377 * includes other nodes in the same AioContext and therefore all child
378 * nodes.
379 */
380 if (poll) {
381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 }
383 }
384
385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
386 {
387 bdrv_do_drained_begin(bs, parent, false);
388 }
389
390 void bdrv_drained_begin(BlockDriverState *bs)
391 {
392 IO_OR_GS_CODE();
393 bdrv_do_drained_begin(bs, NULL, true);
394 }
395
396 /**
397 * This function does not poll, nor must any of its recursively called
398 * functions.
399 */
400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
401 {
402 int old_quiesce_counter;
403
404 IO_OR_GS_CODE();
405
406 if (qemu_in_coroutine()) {
407 bdrv_co_yield_to_drain(bs, false, parent, false);
408 return;
409 }
410 assert(bs->quiesce_counter > 0);
411 GLOBAL_STATE_CODE();
412
413 /* Re-enable things in child-to-parent order */
414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
415 if (old_quiesce_counter == 1) {
416 if (bs->drv && bs->drv->bdrv_drain_end) {
417 bs->drv->bdrv_drain_end(bs);
418 }
419 bdrv_parent_drained_end(bs, parent);
420 }
421 }
422
423 void bdrv_drained_end(BlockDriverState *bs)
424 {
425 IO_OR_GS_CODE();
426 bdrv_do_drained_end(bs, NULL);
427 }
428
429 void bdrv_drain(BlockDriverState *bs)
430 {
431 IO_OR_GS_CODE();
432 bdrv_drained_begin(bs);
433 bdrv_drained_end(bs);
434 }
435
436 static void bdrv_drain_assert_idle(BlockDriverState *bs)
437 {
438 BdrvChild *child, *next;
439
440 assert(qatomic_read(&bs->in_flight) == 0);
441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
442 bdrv_drain_assert_idle(child->bs);
443 }
444 }
445
446 unsigned int bdrv_drain_all_count = 0;
447
448 static bool bdrv_drain_all_poll(void)
449 {
450 BlockDriverState *bs = NULL;
451 bool result = false;
452 GLOBAL_STATE_CODE();
453
454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
456 while ((bs = bdrv_next_all_states(bs))) {
457 AioContext *aio_context = bdrv_get_aio_context(bs);
458 aio_context_acquire(aio_context);
459 result |= bdrv_drain_poll(bs, NULL, true);
460 aio_context_release(aio_context);
461 }
462
463 return result;
464 }
465
466 /*
467 * Wait for pending requests to complete across all BlockDriverStates
468 *
469 * This function does not flush data to disk, use bdrv_flush_all() for that
470 * after calling this function.
471 *
472 * This pauses all block jobs and disables external clients. It must
473 * be paired with bdrv_drain_all_end().
474 *
475 * NOTE: no new block jobs or BlockDriverStates can be created between
476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
477 */
478 void bdrv_drain_all_begin_nopoll(void)
479 {
480 BlockDriverState *bs = NULL;
481 GLOBAL_STATE_CODE();
482
483 /*
484 * bdrv queue is managed by record/replay,
485 * waiting for finishing the I/O requests may
486 * be infinite
487 */
488 if (replay_events_enabled()) {
489 return;
490 }
491
492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
493 * loop AioContext, so make sure we're in the main context. */
494 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
495 assert(bdrv_drain_all_count < INT_MAX);
496 bdrv_drain_all_count++;
497
498 /* Quiesce all nodes, without polling in-flight requests yet. The graph
499 * cannot change during this loop. */
500 while ((bs = bdrv_next_all_states(bs))) {
501 AioContext *aio_context = bdrv_get_aio_context(bs);
502
503 aio_context_acquire(aio_context);
504 bdrv_do_drained_begin(bs, NULL, false);
505 aio_context_release(aio_context);
506 }
507 }
508
509 void bdrv_drain_all_begin(void)
510 {
511 BlockDriverState *bs = NULL;
512
513 if (qemu_in_coroutine()) {
514 bdrv_co_yield_to_drain(NULL, true, NULL, true);
515 return;
516 }
517
518 /*
519 * bdrv queue is managed by record/replay,
520 * waiting for finishing the I/O requests may
521 * be infinite
522 */
523 if (replay_events_enabled()) {
524 return;
525 }
526
527 bdrv_drain_all_begin_nopoll();
528
529 /* Now poll the in-flight requests */
530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
531
532 while ((bs = bdrv_next_all_states(bs))) {
533 bdrv_drain_assert_idle(bs);
534 }
535 }
536
537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
538 {
539 GLOBAL_STATE_CODE();
540
541 g_assert(bs->quiesce_counter > 0);
542 g_assert(!bs->refcnt);
543
544 while (bs->quiesce_counter) {
545 bdrv_do_drained_end(bs, NULL);
546 }
547 }
548
549 void bdrv_drain_all_end(void)
550 {
551 BlockDriverState *bs = NULL;
552 GLOBAL_STATE_CODE();
553
554 /*
555 * bdrv queue is managed by record/replay,
556 * waiting for finishing the I/O requests may
557 * be endless
558 */
559 if (replay_events_enabled()) {
560 return;
561 }
562
563 while ((bs = bdrv_next_all_states(bs))) {
564 AioContext *aio_context = bdrv_get_aio_context(bs);
565
566 aio_context_acquire(aio_context);
567 bdrv_do_drained_end(bs, NULL);
568 aio_context_release(aio_context);
569 }
570
571 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
572 assert(bdrv_drain_all_count > 0);
573 bdrv_drain_all_count--;
574 }
575
576 void bdrv_drain_all(void)
577 {
578 GLOBAL_STATE_CODE();
579 bdrv_drain_all_begin();
580 bdrv_drain_all_end();
581 }
582
583 /**
584 * Remove an active request from the tracked requests list
585 *
586 * This function should be called when a tracked request is completing.
587 */
588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
589 {
590 if (req->serialising) {
591 qatomic_dec(&req->bs->serialising_in_flight);
592 }
593
594 qemu_co_mutex_lock(&req->bs->reqs_lock);
595 QLIST_REMOVE(req, list);
596 qemu_co_queue_restart_all(&req->wait_queue);
597 qemu_co_mutex_unlock(&req->bs->reqs_lock);
598 }
599
600 /**
601 * Add an active request to the tracked requests list
602 */
603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
604 BlockDriverState *bs,
605 int64_t offset,
606 int64_t bytes,
607 enum BdrvTrackedRequestType type)
608 {
609 bdrv_check_request(offset, bytes, &error_abort);
610
611 *req = (BdrvTrackedRequest){
612 .bs = bs,
613 .offset = offset,
614 .bytes = bytes,
615 .type = type,
616 .co = qemu_coroutine_self(),
617 .serialising = false,
618 .overlap_offset = offset,
619 .overlap_bytes = bytes,
620 };
621
622 qemu_co_queue_init(&req->wait_queue);
623
624 qemu_co_mutex_lock(&bs->reqs_lock);
625 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
626 qemu_co_mutex_unlock(&bs->reqs_lock);
627 }
628
629 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
630 int64_t offset, int64_t bytes)
631 {
632 bdrv_check_request(offset, bytes, &error_abort);
633
634 /* aaaa bbbb */
635 if (offset >= req->overlap_offset + req->overlap_bytes) {
636 return false;
637 }
638 /* bbbb aaaa */
639 if (req->overlap_offset >= offset + bytes) {
640 return false;
641 }
642 return true;
643 }
644
645 /* Called with self->bs->reqs_lock held */
646 static coroutine_fn BdrvTrackedRequest *
647 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
648 {
649 BdrvTrackedRequest *req;
650
651 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
652 if (req == self || (!req->serialising && !self->serialising)) {
653 continue;
654 }
655 if (tracked_request_overlaps(req, self->overlap_offset,
656 self->overlap_bytes))
657 {
658 /*
659 * Hitting this means there was a reentrant request, for
660 * example, a block driver issuing nested requests. This must
661 * never happen since it means deadlock.
662 */
663 assert(qemu_coroutine_self() != req->co);
664
665 /*
666 * If the request is already (indirectly) waiting for us, or
667 * will wait for us as soon as it wakes up, then just go on
668 * (instead of producing a deadlock in the former case).
669 */
670 if (!req->waiting_for) {
671 return req;
672 }
673 }
674 }
675
676 return NULL;
677 }
678
679 /* Called with self->bs->reqs_lock held */
680 static void coroutine_fn
681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
682 {
683 BdrvTrackedRequest *req;
684
685 while ((req = bdrv_find_conflicting_request(self))) {
686 self->waiting_for = req;
687 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
688 self->waiting_for = NULL;
689 }
690 }
691
692 /* Called with req->bs->reqs_lock held */
693 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
694 uint64_t align)
695 {
696 int64_t overlap_offset = req->offset & ~(align - 1);
697 int64_t overlap_bytes =
698 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
699
700 bdrv_check_request(req->offset, req->bytes, &error_abort);
701
702 if (!req->serialising) {
703 qatomic_inc(&req->bs->serialising_in_flight);
704 req->serialising = true;
705 }
706
707 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
708 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
709 }
710
711 /**
712 * Return the tracked request on @bs for the current coroutine, or
713 * NULL if there is none.
714 */
715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
716 {
717 BdrvTrackedRequest *req;
718 Coroutine *self = qemu_coroutine_self();
719 IO_CODE();
720
721 QLIST_FOREACH(req, &bs->tracked_requests, list) {
722 if (req->co == self) {
723 return req;
724 }
725 }
726
727 return NULL;
728 }
729
730 /**
731 * Round a region to cluster boundaries
732 */
733 void coroutine_fn GRAPH_RDLOCK
734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
735 int64_t *cluster_offset, int64_t *cluster_bytes)
736 {
737 BlockDriverInfo bdi;
738 IO_CODE();
739 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
740 *cluster_offset = offset;
741 *cluster_bytes = bytes;
742 } else {
743 int64_t c = bdi.cluster_size;
744 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
745 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
746 }
747 }
748
749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
750 {
751 BlockDriverInfo bdi;
752 int ret;
753
754 ret = bdrv_co_get_info(bs, &bdi);
755 if (ret < 0 || bdi.cluster_size == 0) {
756 return bs->bl.request_alignment;
757 } else {
758 return bdi.cluster_size;
759 }
760 }
761
762 void bdrv_inc_in_flight(BlockDriverState *bs)
763 {
764 IO_CODE();
765 qatomic_inc(&bs->in_flight);
766 }
767
768 void bdrv_wakeup(BlockDriverState *bs)
769 {
770 IO_CODE();
771 aio_wait_kick();
772 }
773
774 void bdrv_dec_in_flight(BlockDriverState *bs)
775 {
776 IO_CODE();
777 qatomic_dec(&bs->in_flight);
778 bdrv_wakeup(bs);
779 }
780
781 static void coroutine_fn
782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
783 {
784 BlockDriverState *bs = self->bs;
785
786 if (!qatomic_read(&bs->serialising_in_flight)) {
787 return;
788 }
789
790 qemu_co_mutex_lock(&bs->reqs_lock);
791 bdrv_wait_serialising_requests_locked(self);
792 qemu_co_mutex_unlock(&bs->reqs_lock);
793 }
794
795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
796 uint64_t align)
797 {
798 IO_CODE();
799
800 qemu_co_mutex_lock(&req->bs->reqs_lock);
801
802 tracked_request_set_serialising(req, align);
803 bdrv_wait_serialising_requests_locked(req);
804
805 qemu_co_mutex_unlock(&req->bs->reqs_lock);
806 }
807
808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
809 QEMUIOVector *qiov, size_t qiov_offset,
810 Error **errp)
811 {
812 /*
813 * Check generic offset/bytes correctness
814 */
815
816 if (offset < 0) {
817 error_setg(errp, "offset is negative: %" PRIi64, offset);
818 return -EIO;
819 }
820
821 if (bytes < 0) {
822 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
823 return -EIO;
824 }
825
826 if (bytes > BDRV_MAX_LENGTH) {
827 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
828 bytes, BDRV_MAX_LENGTH);
829 return -EIO;
830 }
831
832 if (offset > BDRV_MAX_LENGTH) {
833 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
834 offset, BDRV_MAX_LENGTH);
835 return -EIO;
836 }
837
838 if (offset > BDRV_MAX_LENGTH - bytes) {
839 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
840 "exceeds maximum(%" PRIi64 ")", offset, bytes,
841 BDRV_MAX_LENGTH);
842 return -EIO;
843 }
844
845 if (!qiov) {
846 return 0;
847 }
848
849 /*
850 * Check qiov and qiov_offset
851 */
852
853 if (qiov_offset > qiov->size) {
854 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
855 qiov_offset, qiov->size);
856 return -EIO;
857 }
858
859 if (bytes > qiov->size - qiov_offset) {
860 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
861 "vector size(%zu)", bytes, qiov_offset, qiov->size);
862 return -EIO;
863 }
864
865 return 0;
866 }
867
868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
869 {
870 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
871 }
872
873 static int bdrv_check_request32(int64_t offset, int64_t bytes,
874 QEMUIOVector *qiov, size_t qiov_offset)
875 {
876 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
877 if (ret < 0) {
878 return ret;
879 }
880
881 if (bytes > BDRV_REQUEST_MAX_BYTES) {
882 return -EIO;
883 }
884
885 return 0;
886 }
887
888 /*
889 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
890 * The operation is sped up by checking the block status and only writing
891 * zeroes to the device if they currently do not return zeroes. Optional
892 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
893 * BDRV_REQ_FUA).
894 *
895 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
896 */
897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
898 {
899 int ret;
900 int64_t target_size, bytes, offset = 0;
901 BlockDriverState *bs = child->bs;
902 IO_CODE();
903
904 target_size = bdrv_getlength(bs);
905 if (target_size < 0) {
906 return target_size;
907 }
908
909 for (;;) {
910 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
911 if (bytes <= 0) {
912 return 0;
913 }
914 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
915 if (ret < 0) {
916 return ret;
917 }
918 if (ret & BDRV_BLOCK_ZERO) {
919 offset += bytes;
920 continue;
921 }
922 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
923 if (ret < 0) {
924 return ret;
925 }
926 offset += bytes;
927 }
928 }
929
930 /*
931 * Writes to the file and ensures that no writes are reordered across this
932 * request (acts as a barrier)
933 *
934 * Returns 0 on success, -errno in error cases.
935 */
936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
937 int64_t bytes, const void *buf,
938 BdrvRequestFlags flags)
939 {
940 int ret;
941 IO_CODE();
942 assert_bdrv_graph_readable();
943
944 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
945 if (ret < 0) {
946 return ret;
947 }
948
949 ret = bdrv_co_flush(child->bs);
950 if (ret < 0) {
951 return ret;
952 }
953
954 return 0;
955 }
956
957 typedef struct CoroutineIOCompletion {
958 Coroutine *coroutine;
959 int ret;
960 } CoroutineIOCompletion;
961
962 static void bdrv_co_io_em_complete(void *opaque, int ret)
963 {
964 CoroutineIOCompletion *co = opaque;
965
966 co->ret = ret;
967 aio_co_wake(co->coroutine);
968 }
969
970 static int coroutine_fn GRAPH_RDLOCK
971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
972 QEMUIOVector *qiov, size_t qiov_offset, int flags)
973 {
974 BlockDriver *drv = bs->drv;
975 int64_t sector_num;
976 unsigned int nb_sectors;
977 QEMUIOVector local_qiov;
978 int ret;
979 assert_bdrv_graph_readable();
980
981 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
982 assert(!(flags & ~bs->supported_read_flags));
983
984 if (!drv) {
985 return -ENOMEDIUM;
986 }
987
988 if (drv->bdrv_co_preadv_part) {
989 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
990 flags);
991 }
992
993 if (qiov_offset > 0 || bytes != qiov->size) {
994 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
995 qiov = &local_qiov;
996 }
997
998 if (drv->bdrv_co_preadv) {
999 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1000 goto out;
1001 }
1002
1003 if (drv->bdrv_aio_preadv) {
1004 BlockAIOCB *acb;
1005 CoroutineIOCompletion co = {
1006 .coroutine = qemu_coroutine_self(),
1007 };
1008
1009 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1010 bdrv_co_io_em_complete, &co);
1011 if (acb == NULL) {
1012 ret = -EIO;
1013 goto out;
1014 } else {
1015 qemu_coroutine_yield();
1016 ret = co.ret;
1017 goto out;
1018 }
1019 }
1020
1021 sector_num = offset >> BDRV_SECTOR_BITS;
1022 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1023
1024 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1025 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1026 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1027 assert(drv->bdrv_co_readv);
1028
1029 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1030
1031 out:
1032 if (qiov == &local_qiov) {
1033 qemu_iovec_destroy(&local_qiov);
1034 }
1035
1036 return ret;
1037 }
1038
1039 static int coroutine_fn GRAPH_RDLOCK
1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1041 QEMUIOVector *qiov, size_t qiov_offset,
1042 BdrvRequestFlags flags)
1043 {
1044 BlockDriver *drv = bs->drv;
1045 bool emulate_fua = false;
1046 int64_t sector_num;
1047 unsigned int nb_sectors;
1048 QEMUIOVector local_qiov;
1049 int ret;
1050 assert_bdrv_graph_readable();
1051
1052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1053
1054 if (!drv) {
1055 return -ENOMEDIUM;
1056 }
1057
1058 if ((flags & BDRV_REQ_FUA) &&
1059 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1060 flags &= ~BDRV_REQ_FUA;
1061 emulate_fua = true;
1062 }
1063
1064 flags &= bs->supported_write_flags;
1065
1066 if (drv->bdrv_co_pwritev_part) {
1067 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1068 flags);
1069 goto emulate_flags;
1070 }
1071
1072 if (qiov_offset > 0 || bytes != qiov->size) {
1073 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1074 qiov = &local_qiov;
1075 }
1076
1077 if (drv->bdrv_co_pwritev) {
1078 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1079 goto emulate_flags;
1080 }
1081
1082 if (drv->bdrv_aio_pwritev) {
1083 BlockAIOCB *acb;
1084 CoroutineIOCompletion co = {
1085 .coroutine = qemu_coroutine_self(),
1086 };
1087
1088 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1089 bdrv_co_io_em_complete, &co);
1090 if (acb == NULL) {
1091 ret = -EIO;
1092 } else {
1093 qemu_coroutine_yield();
1094 ret = co.ret;
1095 }
1096 goto emulate_flags;
1097 }
1098
1099 sector_num = offset >> BDRV_SECTOR_BITS;
1100 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1101
1102 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1103 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1104 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1105
1106 assert(drv->bdrv_co_writev);
1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1108
1109 emulate_flags:
1110 if (ret == 0 && emulate_fua) {
1111 ret = bdrv_co_flush(bs);
1112 }
1113
1114 if (qiov == &local_qiov) {
1115 qemu_iovec_destroy(&local_qiov);
1116 }
1117
1118 return ret;
1119 }
1120
1121 static int coroutine_fn GRAPH_RDLOCK
1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1123 int64_t bytes, QEMUIOVector *qiov,
1124 size_t qiov_offset)
1125 {
1126 BlockDriver *drv = bs->drv;
1127 QEMUIOVector local_qiov;
1128 int ret;
1129 assert_bdrv_graph_readable();
1130
1131 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1132
1133 if (!drv) {
1134 return -ENOMEDIUM;
1135 }
1136
1137 if (!block_driver_can_compress(drv)) {
1138 return -ENOTSUP;
1139 }
1140
1141 if (drv->bdrv_co_pwritev_compressed_part) {
1142 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1143 qiov, qiov_offset);
1144 }
1145
1146 if (qiov_offset == 0) {
1147 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1148 }
1149
1150 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1151 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1152 qemu_iovec_destroy(&local_qiov);
1153
1154 return ret;
1155 }
1156
1157 static int coroutine_fn GRAPH_RDLOCK
1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1159 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1160 {
1161 BlockDriverState *bs = child->bs;
1162
1163 /* Perform I/O through a temporary buffer so that users who scribble over
1164 * their read buffer while the operation is in progress do not end up
1165 * modifying the image file. This is critical for zero-copy guest I/O
1166 * where anything might happen inside guest memory.
1167 */
1168 void *bounce_buffer = NULL;
1169
1170 BlockDriver *drv = bs->drv;
1171 int64_t cluster_offset;
1172 int64_t cluster_bytes;
1173 int64_t skip_bytes;
1174 int ret;
1175 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1176 BDRV_REQUEST_MAX_BYTES);
1177 int64_t progress = 0;
1178 bool skip_write;
1179
1180 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1181
1182 if (!drv) {
1183 return -ENOMEDIUM;
1184 }
1185
1186 /*
1187 * Do not write anything when the BDS is inactive. That is not
1188 * allowed, and it would not help.
1189 */
1190 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1191
1192 /* FIXME We cannot require callers to have write permissions when all they
1193 * are doing is a read request. If we did things right, write permissions
1194 * would be obtained anyway, but internally by the copy-on-read code. As
1195 * long as it is implemented here rather than in a separate filter driver,
1196 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1197 * it could request permissions. Therefore we have to bypass the permission
1198 * system for the moment. */
1199 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1200
1201 /* Cover entire cluster so no additional backing file I/O is required when
1202 * allocating cluster in the image file. Note that this value may exceed
1203 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1204 * is one reason we loop rather than doing it all at once.
1205 */
1206 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1207 skip_bytes = offset - cluster_offset;
1208
1209 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1210 cluster_offset, cluster_bytes);
1211
1212 while (cluster_bytes) {
1213 int64_t pnum;
1214
1215 if (skip_write) {
1216 ret = 1; /* "already allocated", so nothing will be copied */
1217 pnum = MIN(cluster_bytes, max_transfer);
1218 } else {
1219 ret = bdrv_is_allocated(bs, cluster_offset,
1220 MIN(cluster_bytes, max_transfer), &pnum);
1221 if (ret < 0) {
1222 /*
1223 * Safe to treat errors in querying allocation as if
1224 * unallocated; we'll probably fail again soon on the
1225 * read, but at least that will set a decent errno.
1226 */
1227 pnum = MIN(cluster_bytes, max_transfer);
1228 }
1229
1230 /* Stop at EOF if the image ends in the middle of the cluster */
1231 if (ret == 0 && pnum == 0) {
1232 assert(progress >= bytes);
1233 break;
1234 }
1235
1236 assert(skip_bytes < pnum);
1237 }
1238
1239 if (ret <= 0) {
1240 QEMUIOVector local_qiov;
1241
1242 /* Must copy-on-read; use the bounce buffer */
1243 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1244 if (!bounce_buffer) {
1245 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1246 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1247 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1248
1249 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1250 if (!bounce_buffer) {
1251 ret = -ENOMEM;
1252 goto err;
1253 }
1254 }
1255 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1256
1257 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1258 &local_qiov, 0, 0);
1259 if (ret < 0) {
1260 goto err;
1261 }
1262
1263 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1264 if (drv->bdrv_co_pwrite_zeroes &&
1265 buffer_is_zero(bounce_buffer, pnum)) {
1266 /* FIXME: Should we (perhaps conditionally) be setting
1267 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1268 * that still correctly reads as zero? */
1269 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1270 BDRV_REQ_WRITE_UNCHANGED);
1271 } else {
1272 /* This does not change the data on the disk, it is not
1273 * necessary to flush even in cache=writethrough mode.
1274 */
1275 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1276 &local_qiov, 0,
1277 BDRV_REQ_WRITE_UNCHANGED);
1278 }
1279
1280 if (ret < 0) {
1281 /* It might be okay to ignore write errors for guest
1282 * requests. If this is a deliberate copy-on-read
1283 * then we don't want to ignore the error. Simply
1284 * report it in all cases.
1285 */
1286 goto err;
1287 }
1288
1289 if (!(flags & BDRV_REQ_PREFETCH)) {
1290 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1291 bounce_buffer + skip_bytes,
1292 MIN(pnum - skip_bytes, bytes - progress));
1293 }
1294 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1295 /* Read directly into the destination */
1296 ret = bdrv_driver_preadv(bs, offset + progress,
1297 MIN(pnum - skip_bytes, bytes - progress),
1298 qiov, qiov_offset + progress, 0);
1299 if (ret < 0) {
1300 goto err;
1301 }
1302 }
1303
1304 cluster_offset += pnum;
1305 cluster_bytes -= pnum;
1306 progress += pnum - skip_bytes;
1307 skip_bytes = 0;
1308 }
1309 ret = 0;
1310
1311 err:
1312 qemu_vfree(bounce_buffer);
1313 return ret;
1314 }
1315
1316 /*
1317 * Forwards an already correctly aligned request to the BlockDriver. This
1318 * handles copy on read, zeroing after EOF, and fragmentation of large
1319 * reads; any other features must be implemented by the caller.
1320 */
1321 static int coroutine_fn GRAPH_RDLOCK
1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1323 int64_t offset, int64_t bytes, int64_t align,
1324 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1325 {
1326 BlockDriverState *bs = child->bs;
1327 int64_t total_bytes, max_bytes;
1328 int ret = 0;
1329 int64_t bytes_remaining = bytes;
1330 int max_transfer;
1331
1332 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1333 assert(is_power_of_2(align));
1334 assert((offset & (align - 1)) == 0);
1335 assert((bytes & (align - 1)) == 0);
1336 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1337 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1338 align);
1339
1340 /*
1341 * TODO: We would need a per-BDS .supported_read_flags and
1342 * potential fallback support, if we ever implement any read flags
1343 * to pass through to drivers. For now, there aren't any
1344 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1345 */
1346 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1347 BDRV_REQ_REGISTERED_BUF)));
1348
1349 /* Handle Copy on Read and associated serialisation */
1350 if (flags & BDRV_REQ_COPY_ON_READ) {
1351 /* If we touch the same cluster it counts as an overlap. This
1352 * guarantees that allocating writes will be serialized and not race
1353 * with each other for the same cluster. For example, in copy-on-read
1354 * it ensures that the CoR read and write operations are atomic and
1355 * guest writes cannot interleave between them. */
1356 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1357 } else {
1358 bdrv_wait_serialising_requests(req);
1359 }
1360
1361 if (flags & BDRV_REQ_COPY_ON_READ) {
1362 int64_t pnum;
1363
1364 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1365 flags &= ~BDRV_REQ_COPY_ON_READ;
1366
1367 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1368 if (ret < 0) {
1369 goto out;
1370 }
1371
1372 if (!ret || pnum != bytes) {
1373 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1374 qiov, qiov_offset, flags);
1375 goto out;
1376 } else if (flags & BDRV_REQ_PREFETCH) {
1377 goto out;
1378 }
1379 }
1380
1381 /* Forward the request to the BlockDriver, possibly fragmenting it */
1382 total_bytes = bdrv_getlength(bs);
1383 if (total_bytes < 0) {
1384 ret = total_bytes;
1385 goto out;
1386 }
1387
1388 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1389
1390 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1391 if (bytes <= max_bytes && bytes <= max_transfer) {
1392 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1393 goto out;
1394 }
1395
1396 while (bytes_remaining) {
1397 int64_t num;
1398
1399 if (max_bytes) {
1400 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1401 assert(num);
1402
1403 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1404 num, qiov,
1405 qiov_offset + bytes - bytes_remaining,
1406 flags);
1407 max_bytes -= num;
1408 } else {
1409 num = bytes_remaining;
1410 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1411 0, bytes_remaining);
1412 }
1413 if (ret < 0) {
1414 goto out;
1415 }
1416 bytes_remaining -= num;
1417 }
1418
1419 out:
1420 return ret < 0 ? ret : 0;
1421 }
1422
1423 /*
1424 * Request padding
1425 *
1426 * |<---- align ----->| |<----- align ---->|
1427 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1428 * | | | | | |
1429 * -*----------$-------*-------- ... --------*-----$------------*---
1430 * | | | | | |
1431 * | offset | | end |
1432 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1433 * [buf ... ) [tail_buf )
1434 *
1435 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1436 * is placed at the beginning of @buf and @tail at the @end.
1437 *
1438 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1439 * around tail, if tail exists.
1440 *
1441 * @merge_reads is true for small requests,
1442 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1443 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1444 */
1445 typedef struct BdrvRequestPadding {
1446 uint8_t *buf;
1447 size_t buf_len;
1448 uint8_t *tail_buf;
1449 size_t head;
1450 size_t tail;
1451 bool merge_reads;
1452 QEMUIOVector local_qiov;
1453 } BdrvRequestPadding;
1454
1455 static bool bdrv_init_padding(BlockDriverState *bs,
1456 int64_t offset, int64_t bytes,
1457 BdrvRequestPadding *pad)
1458 {
1459 int64_t align = bs->bl.request_alignment;
1460 int64_t sum;
1461
1462 bdrv_check_request(offset, bytes, &error_abort);
1463 assert(align <= INT_MAX); /* documented in block/block_int.h */
1464 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1465
1466 memset(pad, 0, sizeof(*pad));
1467
1468 pad->head = offset & (align - 1);
1469 pad->tail = ((offset + bytes) & (align - 1));
1470 if (pad->tail) {
1471 pad->tail = align - pad->tail;
1472 }
1473
1474 if (!pad->head && !pad->tail) {
1475 return false;
1476 }
1477
1478 assert(bytes); /* Nothing good in aligning zero-length requests */
1479
1480 sum = pad->head + bytes + pad->tail;
1481 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1482 pad->buf = qemu_blockalign(bs, pad->buf_len);
1483 pad->merge_reads = sum == pad->buf_len;
1484 if (pad->tail) {
1485 pad->tail_buf = pad->buf + pad->buf_len - align;
1486 }
1487
1488 return true;
1489 }
1490
1491 static int coroutine_fn GRAPH_RDLOCK
1492 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1493 BdrvRequestPadding *pad, bool zero_middle)
1494 {
1495 QEMUIOVector local_qiov;
1496 BlockDriverState *bs = child->bs;
1497 uint64_t align = bs->bl.request_alignment;
1498 int ret;
1499
1500 assert(req->serialising && pad->buf);
1501
1502 if (pad->head || pad->merge_reads) {
1503 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1504
1505 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1506
1507 if (pad->head) {
1508 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1509 }
1510 if (pad->merge_reads && pad->tail) {
1511 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1512 }
1513 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1514 align, &local_qiov, 0, 0);
1515 if (ret < 0) {
1516 return ret;
1517 }
1518 if (pad->head) {
1519 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1520 }
1521 if (pad->merge_reads && pad->tail) {
1522 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1523 }
1524
1525 if (pad->merge_reads) {
1526 goto zero_mem;
1527 }
1528 }
1529
1530 if (pad->tail) {
1531 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1532
1533 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1534 ret = bdrv_aligned_preadv(
1535 child, req,
1536 req->overlap_offset + req->overlap_bytes - align,
1537 align, align, &local_qiov, 0, 0);
1538 if (ret < 0) {
1539 return ret;
1540 }
1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1542 }
1543
1544 zero_mem:
1545 if (zero_middle) {
1546 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1547 }
1548
1549 return 0;
1550 }
1551
1552 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1553 {
1554 if (pad->buf) {
1555 qemu_vfree(pad->buf);
1556 qemu_iovec_destroy(&pad->local_qiov);
1557 }
1558 memset(pad, 0, sizeof(*pad));
1559 }
1560
1561 /*
1562 * bdrv_pad_request
1563 *
1564 * Exchange request parameters with padded request if needed. Don't include RMW
1565 * read of padding, bdrv_padding_rmw_read() should be called separately if
1566 * needed.
1567 *
1568 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1569 * - on function start they represent original request
1570 * - on failure or when padding is not needed they are unchanged
1571 * - on success when padding is needed they represent padded request
1572 */
1573 static int bdrv_pad_request(BlockDriverState *bs,
1574 QEMUIOVector **qiov, size_t *qiov_offset,
1575 int64_t *offset, int64_t *bytes,
1576 BdrvRequestPadding *pad, bool *padded,
1577 BdrvRequestFlags *flags)
1578 {
1579 int ret;
1580
1581 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1582
1583 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1584 if (padded) {
1585 *padded = false;
1586 }
1587 return 0;
1588 }
1589
1590 ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1591 *qiov, *qiov_offset, *bytes,
1592 pad->buf + pad->buf_len - pad->tail,
1593 pad->tail);
1594 if (ret < 0) {
1595 bdrv_padding_destroy(pad);
1596 return ret;
1597 }
1598 *bytes += pad->head + pad->tail;
1599 *offset -= pad->head;
1600 *qiov = &pad->local_qiov;
1601 *qiov_offset = 0;
1602 if (padded) {
1603 *padded = true;
1604 }
1605 if (flags) {
1606 /* Can't use optimization hint with bounce buffer */
1607 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1608 }
1609
1610 return 0;
1611 }
1612
1613 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1614 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1615 BdrvRequestFlags flags)
1616 {
1617 IO_CODE();
1618 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1619 }
1620
1621 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1622 int64_t offset, int64_t bytes,
1623 QEMUIOVector *qiov, size_t qiov_offset,
1624 BdrvRequestFlags flags)
1625 {
1626 BlockDriverState *bs = child->bs;
1627 BdrvTrackedRequest req;
1628 BdrvRequestPadding pad;
1629 int ret;
1630 IO_CODE();
1631
1632 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1633
1634 if (!bdrv_co_is_inserted(bs)) {
1635 return -ENOMEDIUM;
1636 }
1637
1638 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1639 if (ret < 0) {
1640 return ret;
1641 }
1642
1643 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1644 /*
1645 * Aligning zero request is nonsense. Even if driver has special meaning
1646 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1647 * it to driver due to request_alignment.
1648 *
1649 * Still, no reason to return an error if someone do unaligned
1650 * zero-length read occasionally.
1651 */
1652 return 0;
1653 }
1654
1655 bdrv_inc_in_flight(bs);
1656
1657 /* Don't do copy-on-read if we read data before write operation */
1658 if (qatomic_read(&bs->copy_on_read)) {
1659 flags |= BDRV_REQ_COPY_ON_READ;
1660 }
1661
1662 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1663 NULL, &flags);
1664 if (ret < 0) {
1665 goto fail;
1666 }
1667
1668 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1669 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1670 bs->bl.request_alignment,
1671 qiov, qiov_offset, flags);
1672 tracked_request_end(&req);
1673 bdrv_padding_destroy(&pad);
1674
1675 fail:
1676 bdrv_dec_in_flight(bs);
1677
1678 return ret;
1679 }
1680
1681 static int coroutine_fn GRAPH_RDLOCK
1682 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1683 BdrvRequestFlags flags)
1684 {
1685 BlockDriver *drv = bs->drv;
1686 QEMUIOVector qiov;
1687 void *buf = NULL;
1688 int ret = 0;
1689 bool need_flush = false;
1690 int head = 0;
1691 int tail = 0;
1692
1693 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1694 INT64_MAX);
1695 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1696 bs->bl.request_alignment);
1697 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1698
1699 assert_bdrv_graph_readable();
1700 bdrv_check_request(offset, bytes, &error_abort);
1701
1702 if (!drv) {
1703 return -ENOMEDIUM;
1704 }
1705
1706 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1707 return -ENOTSUP;
1708 }
1709
1710 /* By definition there is no user buffer so this flag doesn't make sense */
1711 if (flags & BDRV_REQ_REGISTERED_BUF) {
1712 return -EINVAL;
1713 }
1714
1715 /* Invalidate the cached block-status data range if this write overlaps */
1716 bdrv_bsc_invalidate_range(bs, offset, bytes);
1717
1718 assert(alignment % bs->bl.request_alignment == 0);
1719 head = offset % alignment;
1720 tail = (offset + bytes) % alignment;
1721 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1722 assert(max_write_zeroes >= bs->bl.request_alignment);
1723
1724 while (bytes > 0 && !ret) {
1725 int64_t num = bytes;
1726
1727 /* Align request. Block drivers can expect the "bulk" of the request
1728 * to be aligned, and that unaligned requests do not cross cluster
1729 * boundaries.
1730 */
1731 if (head) {
1732 /* Make a small request up to the first aligned sector. For
1733 * convenience, limit this request to max_transfer even if
1734 * we don't need to fall back to writes. */
1735 num = MIN(MIN(bytes, max_transfer), alignment - head);
1736 head = (head + num) % alignment;
1737 assert(num < max_write_zeroes);
1738 } else if (tail && num > alignment) {
1739 /* Shorten the request to the last aligned sector. */
1740 num -= tail;
1741 }
1742
1743 /* limit request size */
1744 if (num > max_write_zeroes) {
1745 num = max_write_zeroes;
1746 }
1747
1748 ret = -ENOTSUP;
1749 /* First try the efficient write zeroes operation */
1750 if (drv->bdrv_co_pwrite_zeroes) {
1751 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1752 flags & bs->supported_zero_flags);
1753 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1754 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1755 need_flush = true;
1756 }
1757 } else {
1758 assert(!bs->supported_zero_flags);
1759 }
1760
1761 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1762 /* Fall back to bounce buffer if write zeroes is unsupported */
1763 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1764
1765 if ((flags & BDRV_REQ_FUA) &&
1766 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1767 /* No need for bdrv_driver_pwrite() to do a fallback
1768 * flush on each chunk; use just one at the end */
1769 write_flags &= ~BDRV_REQ_FUA;
1770 need_flush = true;
1771 }
1772 num = MIN(num, max_transfer);
1773 if (buf == NULL) {
1774 buf = qemu_try_blockalign0(bs, num);
1775 if (buf == NULL) {
1776 ret = -ENOMEM;
1777 goto fail;
1778 }
1779 }
1780 qemu_iovec_init_buf(&qiov, buf, num);
1781
1782 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1783
1784 /* Keep bounce buffer around if it is big enough for all
1785 * all future requests.
1786 */
1787 if (num < max_transfer) {
1788 qemu_vfree(buf);
1789 buf = NULL;
1790 }
1791 }
1792
1793 offset += num;
1794 bytes -= num;
1795 }
1796
1797 fail:
1798 if (ret == 0 && need_flush) {
1799 ret = bdrv_co_flush(bs);
1800 }
1801 qemu_vfree(buf);
1802 return ret;
1803 }
1804
1805 static inline int coroutine_fn GRAPH_RDLOCK
1806 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1807 BdrvTrackedRequest *req, int flags)
1808 {
1809 BlockDriverState *bs = child->bs;
1810
1811 bdrv_check_request(offset, bytes, &error_abort);
1812
1813 if (bdrv_is_read_only(bs)) {
1814 return -EPERM;
1815 }
1816
1817 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1818 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1819 assert(!(flags & ~BDRV_REQ_MASK));
1820 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1821
1822 if (flags & BDRV_REQ_SERIALISING) {
1823 QEMU_LOCK_GUARD(&bs->reqs_lock);
1824
1825 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1826
1827 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1828 return -EBUSY;
1829 }
1830
1831 bdrv_wait_serialising_requests_locked(req);
1832 } else {
1833 bdrv_wait_serialising_requests(req);
1834 }
1835
1836 assert(req->overlap_offset <= offset);
1837 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1838 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1839 child->perm & BLK_PERM_RESIZE);
1840
1841 switch (req->type) {
1842 case BDRV_TRACKED_WRITE:
1843 case BDRV_TRACKED_DISCARD:
1844 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1845 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1846 } else {
1847 assert(child->perm & BLK_PERM_WRITE);
1848 }
1849 bdrv_write_threshold_check_write(bs, offset, bytes);
1850 return 0;
1851 case BDRV_TRACKED_TRUNCATE:
1852 assert(child->perm & BLK_PERM_RESIZE);
1853 return 0;
1854 default:
1855 abort();
1856 }
1857 }
1858
1859 static inline void coroutine_fn
1860 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1861 BdrvTrackedRequest *req, int ret)
1862 {
1863 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1864 BlockDriverState *bs = child->bs;
1865
1866 bdrv_check_request(offset, bytes, &error_abort);
1867
1868 qatomic_inc(&bs->write_gen);
1869
1870 /*
1871 * Discard cannot extend the image, but in error handling cases, such as
1872 * when reverting a qcow2 cluster allocation, the discarded range can pass
1873 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1874 * here. Instead, just skip it, since semantically a discard request
1875 * beyond EOF cannot expand the image anyway.
1876 */
1877 if (ret == 0 &&
1878 (req->type == BDRV_TRACKED_TRUNCATE ||
1879 end_sector > bs->total_sectors) &&
1880 req->type != BDRV_TRACKED_DISCARD) {
1881 bs->total_sectors = end_sector;
1882 bdrv_parent_cb_resize(bs);
1883 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1884 }
1885 if (req->bytes) {
1886 switch (req->type) {
1887 case BDRV_TRACKED_WRITE:
1888 stat64_max(&bs->wr_highest_offset, offset + bytes);
1889 /* fall through, to set dirty bits */
1890 case BDRV_TRACKED_DISCARD:
1891 bdrv_set_dirty(bs, offset, bytes);
1892 break;
1893 default:
1894 break;
1895 }
1896 }
1897 }
1898
1899 /*
1900 * Forwards an already correctly aligned write request to the BlockDriver,
1901 * after possibly fragmenting it.
1902 */
1903 static int coroutine_fn GRAPH_RDLOCK
1904 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
1905 int64_t offset, int64_t bytes, int64_t align,
1906 QEMUIOVector *qiov, size_t qiov_offset,
1907 BdrvRequestFlags flags)
1908 {
1909 BlockDriverState *bs = child->bs;
1910 BlockDriver *drv = bs->drv;
1911 int ret;
1912
1913 int64_t bytes_remaining = bytes;
1914 int max_transfer;
1915
1916 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1917
1918 if (!drv) {
1919 return -ENOMEDIUM;
1920 }
1921
1922 if (bdrv_has_readonly_bitmaps(bs)) {
1923 return -EPERM;
1924 }
1925
1926 assert(is_power_of_2(align));
1927 assert((offset & (align - 1)) == 0);
1928 assert((bytes & (align - 1)) == 0);
1929 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1930 align);
1931
1932 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1933
1934 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1935 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1936 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1937 flags |= BDRV_REQ_ZERO_WRITE;
1938 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1939 flags |= BDRV_REQ_MAY_UNMAP;
1940 }
1941
1942 /* Can't use optimization hint with bufferless zero write */
1943 flags &= ~BDRV_REQ_REGISTERED_BUF;
1944 }
1945
1946 if (ret < 0) {
1947 /* Do nothing, write notifier decided to fail this request */
1948 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1949 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1950 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1951 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1952 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1953 qiov, qiov_offset);
1954 } else if (bytes <= max_transfer) {
1955 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1956 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1957 } else {
1958 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
1959 while (bytes_remaining) {
1960 int num = MIN(bytes_remaining, max_transfer);
1961 int local_flags = flags;
1962
1963 assert(num);
1964 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1965 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1966 /* If FUA is going to be emulated by flush, we only
1967 * need to flush on the last iteration */
1968 local_flags &= ~BDRV_REQ_FUA;
1969 }
1970
1971 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1972 num, qiov,
1973 qiov_offset + bytes - bytes_remaining,
1974 local_flags);
1975 if (ret < 0) {
1976 break;
1977 }
1978 bytes_remaining -= num;
1979 }
1980 }
1981 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
1982
1983 if (ret >= 0) {
1984 ret = 0;
1985 }
1986 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1987
1988 return ret;
1989 }
1990
1991 static int coroutine_fn GRAPH_RDLOCK
1992 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
1993 BdrvRequestFlags flags, BdrvTrackedRequest *req)
1994 {
1995 BlockDriverState *bs = child->bs;
1996 QEMUIOVector local_qiov;
1997 uint64_t align = bs->bl.request_alignment;
1998 int ret = 0;
1999 bool padding;
2000 BdrvRequestPadding pad;
2001
2002 /* This flag doesn't make sense for padding or zero writes */
2003 flags &= ~BDRV_REQ_REGISTERED_BUF;
2004
2005 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2006 if (padding) {
2007 assert(!(flags & BDRV_REQ_NO_WAIT));
2008 bdrv_make_request_serialising(req, align);
2009
2010 bdrv_padding_rmw_read(child, req, &pad, true);
2011
2012 if (pad.head || pad.merge_reads) {
2013 int64_t aligned_offset = offset & ~(align - 1);
2014 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2015
2016 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2017 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2018 align, &local_qiov, 0,
2019 flags & ~BDRV_REQ_ZERO_WRITE);
2020 if (ret < 0 || pad.merge_reads) {
2021 /* Error or all work is done */
2022 goto out;
2023 }
2024 offset += write_bytes - pad.head;
2025 bytes -= write_bytes - pad.head;
2026 }
2027 }
2028
2029 assert(!bytes || (offset & (align - 1)) == 0);
2030 if (bytes >= align) {
2031 /* Write the aligned part in the middle. */
2032 int64_t aligned_bytes = bytes & ~(align - 1);
2033 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2034 NULL, 0, flags);
2035 if (ret < 0) {
2036 goto out;
2037 }
2038 bytes -= aligned_bytes;
2039 offset += aligned_bytes;
2040 }
2041
2042 assert(!bytes || (offset & (align - 1)) == 0);
2043 if (bytes) {
2044 assert(align == pad.tail + bytes);
2045
2046 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2047 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2048 &local_qiov, 0,
2049 flags & ~BDRV_REQ_ZERO_WRITE);
2050 }
2051
2052 out:
2053 bdrv_padding_destroy(&pad);
2054
2055 return ret;
2056 }
2057
2058 /*
2059 * Handle a write request in coroutine context
2060 */
2061 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2062 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2063 BdrvRequestFlags flags)
2064 {
2065 IO_CODE();
2066 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2067 }
2068
2069 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2070 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2071 BdrvRequestFlags flags)
2072 {
2073 BlockDriverState *bs = child->bs;
2074 BdrvTrackedRequest req;
2075 uint64_t align = bs->bl.request_alignment;
2076 BdrvRequestPadding pad;
2077 int ret;
2078 bool padded = false;
2079 IO_CODE();
2080
2081 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2082
2083 if (!bdrv_co_is_inserted(bs)) {
2084 return -ENOMEDIUM;
2085 }
2086
2087 if (flags & BDRV_REQ_ZERO_WRITE) {
2088 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2089 } else {
2090 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2091 }
2092 if (ret < 0) {
2093 return ret;
2094 }
2095
2096 /* If the request is misaligned then we can't make it efficient */
2097 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2098 !QEMU_IS_ALIGNED(offset | bytes, align))
2099 {
2100 return -ENOTSUP;
2101 }
2102
2103 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2104 /*
2105 * Aligning zero request is nonsense. Even if driver has special meaning
2106 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2107 * it to driver due to request_alignment.
2108 *
2109 * Still, no reason to return an error if someone do unaligned
2110 * zero-length write occasionally.
2111 */
2112 return 0;
2113 }
2114
2115 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2116 /*
2117 * Pad request for following read-modify-write cycle.
2118 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2119 * alignment only if there is no ZERO flag.
2120 */
2121 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2122 &padded, &flags);
2123 if (ret < 0) {
2124 return ret;
2125 }
2126 }
2127
2128 bdrv_inc_in_flight(bs);
2129 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2130
2131 if (flags & BDRV_REQ_ZERO_WRITE) {
2132 assert(!padded);
2133 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2134 goto out;
2135 }
2136
2137 if (padded) {
2138 /*
2139 * Request was unaligned to request_alignment and therefore
2140 * padded. We are going to do read-modify-write, and must
2141 * serialize the request to prevent interactions of the
2142 * widened region with other transactions.
2143 */
2144 assert(!(flags & BDRV_REQ_NO_WAIT));
2145 bdrv_make_request_serialising(&req, align);
2146 bdrv_padding_rmw_read(child, &req, &pad, false);
2147 }
2148
2149 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2150 qiov, qiov_offset, flags);
2151
2152 bdrv_padding_destroy(&pad);
2153
2154 out:
2155 tracked_request_end(&req);
2156 bdrv_dec_in_flight(bs);
2157
2158 return ret;
2159 }
2160
2161 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2162 int64_t bytes, BdrvRequestFlags flags)
2163 {
2164 IO_CODE();
2165 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2166 assert_bdrv_graph_readable();
2167
2168 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2169 flags &= ~BDRV_REQ_MAY_UNMAP;
2170 }
2171
2172 return bdrv_co_pwritev(child, offset, bytes, NULL,
2173 BDRV_REQ_ZERO_WRITE | flags);
2174 }
2175
2176 /*
2177 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2178 */
2179 int bdrv_flush_all(void)
2180 {
2181 BdrvNextIterator it;
2182 BlockDriverState *bs = NULL;
2183 int result = 0;
2184
2185 GLOBAL_STATE_CODE();
2186
2187 /*
2188 * bdrv queue is managed by record/replay,
2189 * creating new flush request for stopping
2190 * the VM may break the determinism
2191 */
2192 if (replay_events_enabled()) {
2193 return result;
2194 }
2195
2196 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2197 AioContext *aio_context = bdrv_get_aio_context(bs);
2198 int ret;
2199
2200 aio_context_acquire(aio_context);
2201 ret = bdrv_flush(bs);
2202 if (ret < 0 && !result) {
2203 result = ret;
2204 }
2205 aio_context_release(aio_context);
2206 }
2207
2208 return result;
2209 }
2210
2211 /*
2212 * Returns the allocation status of the specified sectors.
2213 * Drivers not implementing the functionality are assumed to not support
2214 * backing files, hence all their sectors are reported as allocated.
2215 *
2216 * If 'want_zero' is true, the caller is querying for mapping
2217 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2218 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2219 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2220 *
2221 * If 'offset' is beyond the end of the disk image the return value is
2222 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2223 *
2224 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2225 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2226 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2227 *
2228 * 'pnum' is set to the number of bytes (including and immediately
2229 * following the specified offset) that are easily known to be in the
2230 * same allocated/unallocated state. Note that a second call starting
2231 * at the original offset plus returned pnum may have the same status.
2232 * The returned value is non-zero on success except at end-of-file.
2233 *
2234 * Returns negative errno on failure. Otherwise, if the
2235 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2236 * set to the host mapping and BDS corresponding to the guest offset.
2237 */
2238 static int coroutine_fn GRAPH_RDLOCK
2239 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2240 int64_t offset, int64_t bytes,
2241 int64_t *pnum, int64_t *map, BlockDriverState **file)
2242 {
2243 int64_t total_size;
2244 int64_t n; /* bytes */
2245 int ret;
2246 int64_t local_map = 0;
2247 BlockDriverState *local_file = NULL;
2248 int64_t aligned_offset, aligned_bytes;
2249 uint32_t align;
2250 bool has_filtered_child;
2251
2252 assert(pnum);
2253 assert_bdrv_graph_readable();
2254 *pnum = 0;
2255 total_size = bdrv_getlength(bs);
2256 if (total_size < 0) {
2257 ret = total_size;
2258 goto early_out;
2259 }
2260
2261 if (offset >= total_size) {
2262 ret = BDRV_BLOCK_EOF;
2263 goto early_out;
2264 }
2265 if (!bytes) {
2266 ret = 0;
2267 goto early_out;
2268 }
2269
2270 n = total_size - offset;
2271 if (n < bytes) {
2272 bytes = n;
2273 }
2274
2275 /* Must be non-NULL or bdrv_getlength() would have failed */
2276 assert(bs->drv);
2277 has_filtered_child = bdrv_filter_child(bs);
2278 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2279 *pnum = bytes;
2280 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2281 if (offset + bytes == total_size) {
2282 ret |= BDRV_BLOCK_EOF;
2283 }
2284 if (bs->drv->protocol_name) {
2285 ret |= BDRV_BLOCK_OFFSET_VALID;
2286 local_map = offset;
2287 local_file = bs;
2288 }
2289 goto early_out;
2290 }
2291
2292 bdrv_inc_in_flight(bs);
2293
2294 /* Round out to request_alignment boundaries */
2295 align = bs->bl.request_alignment;
2296 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2297 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2298
2299 if (bs->drv->bdrv_co_block_status) {
2300 /*
2301 * Use the block-status cache only for protocol nodes: Format
2302 * drivers are generally quick to inquire the status, but protocol
2303 * drivers often need to get information from outside of qemu, so
2304 * we do not have control over the actual implementation. There
2305 * have been cases where inquiring the status took an unreasonably
2306 * long time, and we can do nothing in qemu to fix it.
2307 * This is especially problematic for images with large data areas,
2308 * because finding the few holes in them and giving them special
2309 * treatment does not gain much performance. Therefore, we try to
2310 * cache the last-identified data region.
2311 *
2312 * Second, limiting ourselves to protocol nodes allows us to assume
2313 * the block status for data regions to be DATA | OFFSET_VALID, and
2314 * that the host offset is the same as the guest offset.
2315 *
2316 * Note that it is possible that external writers zero parts of
2317 * the cached regions without the cache being invalidated, and so
2318 * we may report zeroes as data. This is not catastrophic,
2319 * however, because reporting zeroes as data is fine.
2320 */
2321 if (QLIST_EMPTY(&bs->children) &&
2322 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2323 {
2324 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2325 local_file = bs;
2326 local_map = aligned_offset;
2327 } else {
2328 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2329 aligned_bytes, pnum, &local_map,
2330 &local_file);
2331
2332 /*
2333 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2334 * the cache is queried above. Technically, we do not need to check
2335 * it here; the worst that can happen is that we fill the cache for
2336 * non-protocol nodes, and then it is never used. However, filling
2337 * the cache requires an RCU update, so double check here to avoid
2338 * such an update if possible.
2339 *
2340 * Check want_zero, because we only want to update the cache when we
2341 * have accurate information about what is zero and what is data.
2342 */
2343 if (want_zero &&
2344 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2345 QLIST_EMPTY(&bs->children))
2346 {
2347 /*
2348 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2349 * returned local_map value must be the same as the offset we
2350 * have passed (aligned_offset), and local_bs must be the node
2351 * itself.
2352 * Assert this, because we follow this rule when reading from
2353 * the cache (see the `local_file = bs` and
2354 * `local_map = aligned_offset` assignments above), and the
2355 * result the cache delivers must be the same as the driver
2356 * would deliver.
2357 */
2358 assert(local_file == bs);
2359 assert(local_map == aligned_offset);
2360 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2361 }
2362 }
2363 } else {
2364 /* Default code for filters */
2365
2366 local_file = bdrv_filter_bs(bs);
2367 assert(local_file);
2368
2369 *pnum = aligned_bytes;
2370 local_map = aligned_offset;
2371 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2372 }
2373 if (ret < 0) {
2374 *pnum = 0;
2375 goto out;
2376 }
2377
2378 /*
2379 * The driver's result must be a non-zero multiple of request_alignment.
2380 * Clamp pnum and adjust map to original request.
2381 */
2382 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2383 align > offset - aligned_offset);
2384 if (ret & BDRV_BLOCK_RECURSE) {
2385 assert(ret & BDRV_BLOCK_DATA);
2386 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2387 assert(!(ret & BDRV_BLOCK_ZERO));
2388 }
2389
2390 *pnum -= offset - aligned_offset;
2391 if (*pnum > bytes) {
2392 *pnum = bytes;
2393 }
2394 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2395 local_map += offset - aligned_offset;
2396 }
2397
2398 if (ret & BDRV_BLOCK_RAW) {
2399 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2400 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2401 *pnum, pnum, &local_map, &local_file);
2402 goto out;
2403 }
2404
2405 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2406 ret |= BDRV_BLOCK_ALLOCATED;
2407 } else if (bs->drv->supports_backing) {
2408 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2409
2410 if (!cow_bs) {
2411 ret |= BDRV_BLOCK_ZERO;
2412 } else if (want_zero) {
2413 int64_t size2 = bdrv_getlength(cow_bs);
2414
2415 if (size2 >= 0 && offset >= size2) {
2416 ret |= BDRV_BLOCK_ZERO;
2417 }
2418 }
2419 }
2420
2421 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2422 local_file && local_file != bs &&
2423 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2424 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2425 int64_t file_pnum;
2426 int ret2;
2427
2428 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2429 *pnum, &file_pnum, NULL, NULL);
2430 if (ret2 >= 0) {
2431 /* Ignore errors. This is just providing extra information, it
2432 * is useful but not necessary.
2433 */
2434 if (ret2 & BDRV_BLOCK_EOF &&
2435 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2436 /*
2437 * It is valid for the format block driver to read
2438 * beyond the end of the underlying file's current
2439 * size; such areas read as zero.
2440 */
2441 ret |= BDRV_BLOCK_ZERO;
2442 } else {
2443 /* Limit request to the range reported by the protocol driver */
2444 *pnum = file_pnum;
2445 ret |= (ret2 & BDRV_BLOCK_ZERO);
2446 }
2447 }
2448 }
2449
2450 out:
2451 bdrv_dec_in_flight(bs);
2452 if (ret >= 0 && offset + *pnum == total_size) {
2453 ret |= BDRV_BLOCK_EOF;
2454 }
2455 early_out:
2456 if (file) {
2457 *file = local_file;
2458 }
2459 if (map) {
2460 *map = local_map;
2461 }
2462 return ret;
2463 }
2464
2465 int coroutine_fn
2466 bdrv_co_common_block_status_above(BlockDriverState *bs,
2467 BlockDriverState *base,
2468 bool include_base,
2469 bool want_zero,
2470 int64_t offset,
2471 int64_t bytes,
2472 int64_t *pnum,
2473 int64_t *map,
2474 BlockDriverState **file,
2475 int *depth)
2476 {
2477 int ret;
2478 BlockDriverState *p;
2479 int64_t eof = 0;
2480 int dummy;
2481 IO_CODE();
2482
2483 assert(!include_base || base); /* Can't include NULL base */
2484 assert_bdrv_graph_readable();
2485
2486 if (!depth) {
2487 depth = &dummy;
2488 }
2489 *depth = 0;
2490
2491 if (!include_base && bs == base) {
2492 *pnum = bytes;
2493 return 0;
2494 }
2495
2496 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2497 ++*depth;
2498 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2499 return ret;
2500 }
2501
2502 if (ret & BDRV_BLOCK_EOF) {
2503 eof = offset + *pnum;
2504 }
2505
2506 assert(*pnum <= bytes);
2507 bytes = *pnum;
2508
2509 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2510 p = bdrv_filter_or_cow_bs(p))
2511 {
2512 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2513 file);
2514 ++*depth;
2515 if (ret < 0) {
2516 return ret;
2517 }
2518 if (*pnum == 0) {
2519 /*
2520 * The top layer deferred to this layer, and because this layer is
2521 * short, any zeroes that we synthesize beyond EOF behave as if they
2522 * were allocated at this layer.
2523 *
2524 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2525 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2526 * below.
2527 */
2528 assert(ret & BDRV_BLOCK_EOF);
2529 *pnum = bytes;
2530 if (file) {
2531 *file = p;
2532 }
2533 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2534 break;
2535 }
2536 if (ret & BDRV_BLOCK_ALLOCATED) {
2537 /*
2538 * We've found the node and the status, we must break.
2539 *
2540 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2541 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2542 * below.
2543 */
2544 ret &= ~BDRV_BLOCK_EOF;
2545 break;
2546 }
2547
2548 if (p == base) {
2549 assert(include_base);
2550 break;
2551 }
2552
2553 /*
2554 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2555 * let's continue the diving.
2556 */
2557 assert(*pnum <= bytes);
2558 bytes = *pnum;
2559 }
2560
2561 if (offset + *pnum == eof) {
2562 ret |= BDRV_BLOCK_EOF;
2563 }
2564
2565 return ret;
2566 }
2567
2568 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2569 BlockDriverState *base,
2570 int64_t offset, int64_t bytes,
2571 int64_t *pnum, int64_t *map,
2572 BlockDriverState **file)
2573 {
2574 IO_CODE();
2575 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2576 bytes, pnum, map, file, NULL);
2577 }
2578
2579 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2580 int64_t offset, int64_t bytes, int64_t *pnum,
2581 int64_t *map, BlockDriverState **file)
2582 {
2583 IO_CODE();
2584 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2585 pnum, map, file, NULL);
2586 }
2587
2588 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2589 int64_t *pnum, int64_t *map, BlockDriverState **file)
2590 {
2591 IO_CODE();
2592 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2593 offset, bytes, pnum, map, file);
2594 }
2595
2596 /*
2597 * Check @bs (and its backing chain) to see if the range defined
2598 * by @offset and @bytes is known to read as zeroes.
2599 * Return 1 if that is the case, 0 otherwise and -errno on error.
2600 * This test is meant to be fast rather than accurate so returning 0
2601 * does not guarantee non-zero data.
2602 */
2603 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2604 int64_t bytes)
2605 {
2606 int ret;
2607 int64_t pnum = bytes;
2608 IO_CODE();
2609
2610 if (!bytes) {
2611 return 1;
2612 }
2613
2614 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2615 bytes, &pnum, NULL, NULL, NULL);
2616
2617 if (ret < 0) {
2618 return ret;
2619 }
2620
2621 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2622 }
2623
2624 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2625 int64_t bytes, int64_t *pnum)
2626 {
2627 int ret;
2628 int64_t dummy;
2629 IO_CODE();
2630
2631 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2632 bytes, pnum ? pnum : &dummy, NULL,
2633 NULL, NULL);
2634 if (ret < 0) {
2635 return ret;
2636 }
2637 return !!(ret & BDRV_BLOCK_ALLOCATED);
2638 }
2639
2640 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2641 int64_t *pnum)
2642 {
2643 int ret;
2644 int64_t dummy;
2645 IO_CODE();
2646
2647 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2648 bytes, pnum ? pnum : &dummy, NULL,
2649 NULL, NULL);
2650 if (ret < 0) {
2651 return ret;
2652 }
2653 return !!(ret & BDRV_BLOCK_ALLOCATED);
2654 }
2655
2656 /* See bdrv_is_allocated_above for documentation */
2657 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2658 BlockDriverState *base,
2659 bool include_base, int64_t offset,
2660 int64_t bytes, int64_t *pnum)
2661 {
2662 int depth;
2663 int ret;
2664 IO_CODE();
2665
2666 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2667 offset, bytes, pnum, NULL, NULL,
2668 &depth);
2669 if (ret < 0) {
2670 return ret;
2671 }
2672
2673 if (ret & BDRV_BLOCK_ALLOCATED) {
2674 return depth;
2675 }
2676 return 0;
2677 }
2678
2679 /*
2680 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2681 *
2682 * Return a positive depth if (a prefix of) the given range is allocated
2683 * in any image between BASE and TOP (BASE is only included if include_base
2684 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2685 * BASE can be NULL to check if the given offset is allocated in any
2686 * image of the chain. Return 0 otherwise, or negative errno on
2687 * failure.
2688 *
2689 * 'pnum' is set to the number of bytes (including and immediately
2690 * following the specified offset) that are known to be in the same
2691 * allocated/unallocated state. Note that a subsequent call starting
2692 * at 'offset + *pnum' may return the same allocation status (in other
2693 * words, the result is not necessarily the maximum possible range);
2694 * but 'pnum' will only be 0 when end of file is reached.
2695 */
2696 int bdrv_is_allocated_above(BlockDriverState *top,
2697 BlockDriverState *base,
2698 bool include_base, int64_t offset,
2699 int64_t bytes, int64_t *pnum)
2700 {
2701 int depth;
2702 int ret;
2703 IO_CODE();
2704
2705 ret = bdrv_common_block_status_above(top, base, include_base, false,
2706 offset, bytes, pnum, NULL, NULL,
2707 &depth);
2708 if (ret < 0) {
2709 return ret;
2710 }
2711
2712 if (ret & BDRV_BLOCK_ALLOCATED) {
2713 return depth;
2714 }
2715 return 0;
2716 }
2717
2718 int coroutine_fn
2719 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2720 {
2721 BlockDriver *drv = bs->drv;
2722 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2723 int ret;
2724 IO_CODE();
2725 assert_bdrv_graph_readable();
2726
2727 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2728 if (ret < 0) {
2729 return ret;
2730 }
2731
2732 if (!drv) {
2733 return -ENOMEDIUM;
2734 }
2735
2736 bdrv_inc_in_flight(bs);
2737
2738 if (drv->bdrv_co_load_vmstate) {
2739 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2740 } else if (child_bs) {
2741 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2742 } else {
2743 ret = -ENOTSUP;
2744 }
2745
2746 bdrv_dec_in_flight(bs);
2747
2748 return ret;
2749 }
2750
2751 int coroutine_fn
2752 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2753 {
2754 BlockDriver *drv = bs->drv;
2755 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2756 int ret;
2757 IO_CODE();
2758 assert_bdrv_graph_readable();
2759
2760 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2761 if (ret < 0) {
2762 return ret;
2763 }
2764
2765 if (!drv) {
2766 return -ENOMEDIUM;
2767 }
2768
2769 bdrv_inc_in_flight(bs);
2770
2771 if (drv->bdrv_co_save_vmstate) {
2772 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2773 } else if (child_bs) {
2774 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2775 } else {
2776 ret = -ENOTSUP;
2777 }
2778
2779 bdrv_dec_in_flight(bs);
2780
2781 return ret;
2782 }
2783
2784 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2785 int64_t pos, int size)
2786 {
2787 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2788 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2789 IO_CODE();
2790
2791 return ret < 0 ? ret : size;
2792 }
2793
2794 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2795 int64_t pos, int size)
2796 {
2797 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2798 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2799 IO_CODE();
2800
2801 return ret < 0 ? ret : size;
2802 }
2803
2804 /**************************************************************/
2805 /* async I/Os */
2806
2807 void bdrv_aio_cancel(BlockAIOCB *acb)
2808 {
2809 IO_CODE();
2810 qemu_aio_ref(acb);
2811 bdrv_aio_cancel_async(acb);
2812 while (acb->refcnt > 1) {
2813 if (acb->aiocb_info->get_aio_context) {
2814 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2815 } else if (acb->bs) {
2816 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2817 * assert that we're not using an I/O thread. Thread-safe
2818 * code should use bdrv_aio_cancel_async exclusively.
2819 */
2820 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2821 aio_poll(bdrv_get_aio_context(acb->bs), true);
2822 } else {
2823 abort();
2824 }
2825 }
2826 qemu_aio_unref(acb);
2827 }
2828
2829 /* Async version of aio cancel. The caller is not blocked if the acb implements
2830 * cancel_async, otherwise we do nothing and let the request normally complete.
2831 * In either case the completion callback must be called. */
2832 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2833 {
2834 IO_CODE();
2835 if (acb->aiocb_info->cancel_async) {
2836 acb->aiocb_info->cancel_async(acb);
2837 }
2838 }
2839
2840 /**************************************************************/
2841 /* Coroutine block device emulation */
2842
2843 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2844 {
2845 BdrvChild *primary_child = bdrv_primary_child(bs);
2846 BdrvChild *child;
2847 int current_gen;
2848 int ret = 0;
2849 IO_CODE();
2850
2851 assert_bdrv_graph_readable();
2852 bdrv_inc_in_flight(bs);
2853
2854 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2855 bdrv_is_sg(bs)) {
2856 goto early_exit;
2857 }
2858
2859 qemu_co_mutex_lock(&bs->reqs_lock);
2860 current_gen = qatomic_read(&bs->write_gen);
2861
2862 /* Wait until any previous flushes are completed */
2863 while (bs->active_flush_req) {
2864 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2865 }
2866
2867 /* Flushes reach this point in nondecreasing current_gen order. */
2868 bs->active_flush_req = true;
2869 qemu_co_mutex_unlock(&bs->reqs_lock);
2870
2871 /* Write back all layers by calling one driver function */
2872 if (bs->drv->bdrv_co_flush) {
2873 ret = bs->drv->bdrv_co_flush(bs);
2874 goto out;
2875 }
2876
2877 /* Write back cached data to the OS even with cache=unsafe */
2878 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2879 if (bs->drv->bdrv_co_flush_to_os) {
2880 ret = bs->drv->bdrv_co_flush_to_os(bs);
2881 if (ret < 0) {
2882 goto out;
2883 }
2884 }
2885
2886 /* But don't actually force it to the disk with cache=unsafe */
2887 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2888 goto flush_children;
2889 }
2890
2891 /* Check if we really need to flush anything */
2892 if (bs->flushed_gen == current_gen) {
2893 goto flush_children;
2894 }
2895
2896 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2897 if (!bs->drv) {
2898 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2899 * (even in case of apparent success) */
2900 ret = -ENOMEDIUM;
2901 goto out;
2902 }
2903 if (bs->drv->bdrv_co_flush_to_disk) {
2904 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2905 } else if (bs->drv->bdrv_aio_flush) {
2906 BlockAIOCB *acb;
2907 CoroutineIOCompletion co = {
2908 .coroutine = qemu_coroutine_self(),
2909 };
2910
2911 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2912 if (acb == NULL) {
2913 ret = -EIO;
2914 } else {
2915 qemu_coroutine_yield();
2916 ret = co.ret;
2917 }
2918 } else {
2919 /*
2920 * Some block drivers always operate in either writethrough or unsafe
2921 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2922 * know how the server works (because the behaviour is hardcoded or
2923 * depends on server-side configuration), so we can't ensure that
2924 * everything is safe on disk. Returning an error doesn't work because
2925 * that would break guests even if the server operates in writethrough
2926 * mode.
2927 *
2928 * Let's hope the user knows what he's doing.
2929 */
2930 ret = 0;
2931 }
2932
2933 if (ret < 0) {
2934 goto out;
2935 }
2936
2937 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2938 * in the case of cache=unsafe, so there are no useless flushes.
2939 */
2940 flush_children:
2941 ret = 0;
2942 QLIST_FOREACH(child, &bs->children, next) {
2943 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2944 int this_child_ret = bdrv_co_flush(child->bs);
2945 if (!ret) {
2946 ret = this_child_ret;
2947 }
2948 }
2949 }
2950
2951 out:
2952 /* Notify any pending flushes that we have completed */
2953 if (ret == 0) {
2954 bs->flushed_gen = current_gen;
2955 }
2956
2957 qemu_co_mutex_lock(&bs->reqs_lock);
2958 bs->active_flush_req = false;
2959 /* Return value is ignored - it's ok if wait queue is empty */
2960 qemu_co_queue_next(&bs->flush_queue);
2961 qemu_co_mutex_unlock(&bs->reqs_lock);
2962
2963 early_exit:
2964 bdrv_dec_in_flight(bs);
2965 return ret;
2966 }
2967
2968 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2969 int64_t bytes)
2970 {
2971 BdrvTrackedRequest req;
2972 int ret;
2973 int64_t max_pdiscard;
2974 int head, tail, align;
2975 BlockDriverState *bs = child->bs;
2976 IO_CODE();
2977 assert_bdrv_graph_readable();
2978
2979 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
2980 return -ENOMEDIUM;
2981 }
2982
2983 if (bdrv_has_readonly_bitmaps(bs)) {
2984 return -EPERM;
2985 }
2986
2987 ret = bdrv_check_request(offset, bytes, NULL);
2988 if (ret < 0) {
2989 return ret;
2990 }
2991
2992 /* Do nothing if disabled. */
2993 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2994 return 0;
2995 }
2996
2997 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2998 return 0;
2999 }
3000
3001 /* Invalidate the cached block-status data range if this discard overlaps */
3002 bdrv_bsc_invalidate_range(bs, offset, bytes);
3003
3004 /* Discard is advisory, but some devices track and coalesce
3005 * unaligned requests, so we must pass everything down rather than
3006 * round here. Still, most devices will just silently ignore
3007 * unaligned requests (by returning -ENOTSUP), so we must fragment
3008 * the request accordingly. */
3009 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3010 assert(align % bs->bl.request_alignment == 0);
3011 head = offset % align;
3012 tail = (offset + bytes) % align;
3013
3014 bdrv_inc_in_flight(bs);
3015 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3016
3017 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3018 if (ret < 0) {
3019 goto out;
3020 }
3021
3022 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3023 align);
3024 assert(max_pdiscard >= bs->bl.request_alignment);
3025
3026 while (bytes > 0) {
3027 int64_t num = bytes;
3028
3029 if (head) {
3030 /* Make small requests to get to alignment boundaries. */
3031 num = MIN(bytes, align - head);
3032 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3033 num %= bs->bl.request_alignment;
3034 }
3035 head = (head + num) % align;
3036 assert(num < max_pdiscard);
3037 } else if (tail) {
3038 if (num > align) {
3039 /* Shorten the request to the last aligned cluster. */
3040 num -= tail;
3041 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3042 tail > bs->bl.request_alignment) {
3043 tail %= bs->bl.request_alignment;
3044 num -= tail;
3045 }
3046 }
3047 /* limit request size */
3048 if (num > max_pdiscard) {
3049 num = max_pdiscard;
3050 }
3051
3052 if (!bs->drv) {
3053 ret = -ENOMEDIUM;
3054 goto out;
3055 }
3056 if (bs->drv->bdrv_co_pdiscard) {
3057 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3058 } else {
3059 BlockAIOCB *acb;
3060 CoroutineIOCompletion co = {
3061 .coroutine = qemu_coroutine_self(),
3062 };
3063
3064 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3065 bdrv_co_io_em_complete, &co);
3066 if (acb == NULL) {
3067 ret = -EIO;
3068 goto out;
3069 } else {
3070 qemu_coroutine_yield();
3071 ret = co.ret;
3072 }
3073 }
3074 if (ret && ret != -ENOTSUP) {
3075 goto out;
3076 }
3077
3078 offset += num;
3079 bytes -= num;
3080 }
3081 ret = 0;
3082 out:
3083 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3084 tracked_request_end(&req);
3085 bdrv_dec_in_flight(bs);
3086 return ret;
3087 }
3088
3089 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3090 {
3091 BlockDriver *drv = bs->drv;
3092 CoroutineIOCompletion co = {
3093 .coroutine = qemu_coroutine_self(),
3094 };
3095 BlockAIOCB *acb;
3096 IO_CODE();
3097 assert_bdrv_graph_readable();
3098
3099 bdrv_inc_in_flight(bs);
3100 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3101 co.ret = -ENOTSUP;
3102 goto out;
3103 }
3104
3105 if (drv->bdrv_co_ioctl) {
3106 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3107 } else {
3108 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3109 if (!acb) {
3110 co.ret = -ENOTSUP;
3111 goto out;
3112 }
3113 qemu_coroutine_yield();
3114 }
3115 out:
3116 bdrv_dec_in_flight(bs);
3117 return co.ret;
3118 }
3119
3120 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3121 unsigned int *nr_zones,
3122 BlockZoneDescriptor *zones)
3123 {
3124 BlockDriver *drv = bs->drv;
3125 CoroutineIOCompletion co = {
3126 .coroutine = qemu_coroutine_self(),
3127 };
3128 IO_CODE();
3129
3130 bdrv_inc_in_flight(bs);
3131 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3132 co.ret = -ENOTSUP;
3133 goto out;
3134 }
3135 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3136 out:
3137 bdrv_dec_in_flight(bs);
3138 return co.ret;
3139 }
3140
3141 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3142 int64_t offset, int64_t len)
3143 {
3144 BlockDriver *drv = bs->drv;
3145 CoroutineIOCompletion co = {
3146 .coroutine = qemu_coroutine_self(),
3147 };
3148 IO_CODE();
3149
3150 bdrv_inc_in_flight(bs);
3151 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3152 co.ret = -ENOTSUP;
3153 goto out;
3154 }
3155 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3156 out:
3157 bdrv_dec_in_flight(bs);
3158 return co.ret;
3159 }
3160
3161 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3162 QEMUIOVector *qiov,
3163 BdrvRequestFlags flags)
3164 {
3165 int ret;
3166 BlockDriver *drv = bs->drv;
3167 CoroutineIOCompletion co = {
3168 .coroutine = qemu_coroutine_self(),
3169 };
3170 IO_CODE();
3171
3172 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3173 if (ret < 0) {
3174 return ret;
3175 }
3176
3177 bdrv_inc_in_flight(bs);
3178 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3179 co.ret = -ENOTSUP;
3180 goto out;
3181 }
3182 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3183 out:
3184 bdrv_dec_in_flight(bs);
3185 return co.ret;
3186 }
3187
3188 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3189 {
3190 IO_CODE();
3191 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3192 }
3193
3194 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3195 {
3196 IO_CODE();
3197 return memset(qemu_blockalign(bs, size), 0, size);
3198 }
3199
3200 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3201 {
3202 size_t align = bdrv_opt_mem_align(bs);
3203 IO_CODE();
3204
3205 /* Ensure that NULL is never returned on success */
3206 assert(align > 0);
3207 if (size == 0) {
3208 size = align;
3209 }
3210
3211 return qemu_try_memalign(align, size);
3212 }
3213
3214 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3215 {
3216 void *mem = qemu_try_blockalign(bs, size);
3217 IO_CODE();
3218
3219 if (mem) {
3220 memset(mem, 0, size);
3221 }
3222
3223 return mem;
3224 }
3225
3226 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3227 static void GRAPH_RDLOCK
3228 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3229 BdrvChild *final_child)
3230 {
3231 BdrvChild *child;
3232
3233 GLOBAL_STATE_CODE();
3234 assert_bdrv_graph_readable();
3235
3236 QLIST_FOREACH(child, &bs->children, next) {
3237 if (child == final_child) {
3238 break;
3239 }
3240
3241 bdrv_unregister_buf(child->bs, host, size);
3242 }
3243
3244 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3245 bs->drv->bdrv_unregister_buf(bs, host, size);
3246 }
3247 }
3248
3249 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3250 Error **errp)
3251 {
3252 BdrvChild *child;
3253
3254 GLOBAL_STATE_CODE();
3255 GRAPH_RDLOCK_GUARD_MAINLOOP();
3256
3257 if (bs->drv && bs->drv->bdrv_register_buf) {
3258 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3259 return false;
3260 }
3261 }
3262 QLIST_FOREACH(child, &bs->children, next) {
3263 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3264 bdrv_register_buf_rollback(bs, host, size, child);
3265 return false;
3266 }
3267 }
3268 return true;
3269 }
3270
3271 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3272 {
3273 BdrvChild *child;
3274
3275 GLOBAL_STATE_CODE();
3276 GRAPH_RDLOCK_GUARD_MAINLOOP();
3277
3278 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3279 bs->drv->bdrv_unregister_buf(bs, host, size);
3280 }
3281 QLIST_FOREACH(child, &bs->children, next) {
3282 bdrv_unregister_buf(child->bs, host, size);
3283 }
3284 }
3285
3286 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3287 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3288 int64_t dst_offset, int64_t bytes,
3289 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3290 bool recurse_src)
3291 {
3292 BdrvTrackedRequest req;
3293 int ret;
3294 assert_bdrv_graph_readable();
3295
3296 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3297 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3298 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3299 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3300 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3301
3302 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3303 return -ENOMEDIUM;
3304 }
3305 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3306 if (ret) {
3307 return ret;
3308 }
3309 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3310 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3311 }
3312
3313 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3314 return -ENOMEDIUM;
3315 }
3316 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3317 if (ret) {
3318 return ret;
3319 }
3320
3321 if (!src->bs->drv->bdrv_co_copy_range_from
3322 || !dst->bs->drv->bdrv_co_copy_range_to
3323 || src->bs->encrypted || dst->bs->encrypted) {
3324 return -ENOTSUP;
3325 }
3326
3327 if (recurse_src) {
3328 bdrv_inc_in_flight(src->bs);
3329 tracked_request_begin(&req, src->bs, src_offset, bytes,
3330 BDRV_TRACKED_READ);
3331
3332 /* BDRV_REQ_SERIALISING is only for write operation */
3333 assert(!(read_flags & BDRV_REQ_SERIALISING));
3334 bdrv_wait_serialising_requests(&req);
3335
3336 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3337 src, src_offset,
3338 dst, dst_offset,
3339 bytes,
3340 read_flags, write_flags);
3341
3342 tracked_request_end(&req);
3343 bdrv_dec_in_flight(src->bs);
3344 } else {
3345 bdrv_inc_in_flight(dst->bs);
3346 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3347 BDRV_TRACKED_WRITE);
3348 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3349 write_flags);
3350 if (!ret) {
3351 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3352 src, src_offset,
3353 dst, dst_offset,
3354 bytes,
3355 read_flags, write_flags);
3356 }
3357 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3358 tracked_request_end(&req);
3359 bdrv_dec_in_flight(dst->bs);
3360 }
3361
3362 return ret;
3363 }
3364
3365 /* Copy range from @src to @dst.
3366 *
3367 * See the comment of bdrv_co_copy_range for the parameter and return value
3368 * semantics. */
3369 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3370 BdrvChild *dst, int64_t dst_offset,
3371 int64_t bytes,
3372 BdrvRequestFlags read_flags,
3373 BdrvRequestFlags write_flags)
3374 {
3375 IO_CODE();
3376 assert_bdrv_graph_readable();
3377 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3378 read_flags, write_flags);
3379 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3380 bytes, read_flags, write_flags, true);
3381 }
3382
3383 /* Copy range from @src to @dst.
3384 *
3385 * See the comment of bdrv_co_copy_range for the parameter and return value
3386 * semantics. */
3387 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3388 BdrvChild *dst, int64_t dst_offset,
3389 int64_t bytes,
3390 BdrvRequestFlags read_flags,
3391 BdrvRequestFlags write_flags)
3392 {
3393 IO_CODE();
3394 assert_bdrv_graph_readable();
3395 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3396 read_flags, write_flags);
3397 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3398 bytes, read_flags, write_flags, false);
3399 }
3400
3401 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3402 BdrvChild *dst, int64_t dst_offset,
3403 int64_t bytes, BdrvRequestFlags read_flags,
3404 BdrvRequestFlags write_flags)
3405 {
3406 IO_CODE();
3407 assert_bdrv_graph_readable();
3408
3409 return bdrv_co_copy_range_from(src, src_offset,
3410 dst, dst_offset,
3411 bytes, read_flags, write_flags);
3412 }
3413
3414 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3415 {
3416 BdrvChild *c;
3417 QLIST_FOREACH(c, &bs->parents, next_parent) {
3418 if (c->klass->resize) {
3419 c->klass->resize(c);
3420 }
3421 }
3422 }
3423
3424 /**
3425 * Truncate file to 'offset' bytes (needed only for file protocols)
3426 *
3427 * If 'exact' is true, the file must be resized to exactly the given
3428 * 'offset'. Otherwise, it is sufficient for the node to be at least
3429 * 'offset' bytes in length.
3430 */
3431 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3432 PreallocMode prealloc, BdrvRequestFlags flags,
3433 Error **errp)
3434 {
3435 BlockDriverState *bs = child->bs;
3436 BdrvChild *filtered, *backing;
3437 BlockDriver *drv = bs->drv;
3438 BdrvTrackedRequest req;
3439 int64_t old_size, new_bytes;
3440 int ret;
3441 IO_CODE();
3442 assert_bdrv_graph_readable();
3443
3444 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3445 if (!drv) {
3446 error_setg(errp, "No medium inserted");
3447 return -ENOMEDIUM;
3448 }
3449 if (offset < 0) {
3450 error_setg(errp, "Image size cannot be negative");
3451 return -EINVAL;
3452 }
3453
3454 ret = bdrv_check_request(offset, 0, errp);
3455 if (ret < 0) {
3456 return ret;
3457 }
3458
3459 old_size = bdrv_getlength(bs);
3460 if (old_size < 0) {
3461 error_setg_errno(errp, -old_size, "Failed to get old image size");
3462 return old_size;
3463 }
3464
3465 if (bdrv_is_read_only(bs)) {
3466 error_setg(errp, "Image is read-only");
3467 return -EACCES;
3468 }
3469
3470 if (offset > old_size) {
3471 new_bytes = offset - old_size;
3472 } else {
3473 new_bytes = 0;
3474 }
3475
3476 bdrv_inc_in_flight(bs);
3477 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3478 BDRV_TRACKED_TRUNCATE);
3479
3480 /* If we are growing the image and potentially using preallocation for the
3481 * new area, we need to make sure that no write requests are made to it
3482 * concurrently or they might be overwritten by preallocation. */
3483 if (new_bytes) {
3484 bdrv_make_request_serialising(&req, 1);
3485 }
3486 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3487 0);
3488 if (ret < 0) {
3489 error_setg_errno(errp, -ret,
3490 "Failed to prepare request for truncation");
3491 goto out;
3492 }
3493
3494 filtered = bdrv_filter_child(bs);
3495 backing = bdrv_cow_child(bs);
3496
3497 /*
3498 * If the image has a backing file that is large enough that it would
3499 * provide data for the new area, we cannot leave it unallocated because
3500 * then the backing file content would become visible. Instead, zero-fill
3501 * the new area.
3502 *
3503 * Note that if the image has a backing file, but was opened without the
3504 * backing file, taking care of keeping things consistent with that backing
3505 * file is the user's responsibility.
3506 */
3507 if (new_bytes && backing) {
3508 int64_t backing_len;
3509
3510 backing_len = bdrv_co_getlength(backing->bs);
3511 if (backing_len < 0) {
3512 ret = backing_len;
3513 error_setg_errno(errp, -ret, "Could not get backing file size");
3514 goto out;
3515 }
3516
3517 if (backing_len > old_size) {
3518 flags |= BDRV_REQ_ZERO_WRITE;
3519 }
3520 }
3521
3522 if (drv->bdrv_co_truncate) {
3523 if (flags & ~bs->supported_truncate_flags) {
3524 error_setg(errp, "Block driver does not support requested flags");
3525 ret = -ENOTSUP;
3526 goto out;
3527 }
3528 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3529 } else if (filtered) {
3530 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3531 } else {
3532 error_setg(errp, "Image format driver does not support resize");
3533 ret = -ENOTSUP;
3534 goto out;
3535 }
3536 if (ret < 0) {
3537 goto out;
3538 }
3539
3540 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3541 if (ret < 0) {
3542 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3543 } else {
3544 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3545 }
3546 /*
3547 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3548 * failed, but the latter doesn't affect how we should finish the request.
3549 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3550 */
3551 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3552
3553 out:
3554 tracked_request_end(&req);
3555 bdrv_dec_in_flight(bs);
3556
3557 return ret;
3558 }
3559
3560 void bdrv_cancel_in_flight(BlockDriverState *bs)
3561 {
3562 GLOBAL_STATE_CODE();
3563 if (!bs || !bs->drv) {
3564 return;
3565 }
3566
3567 if (bs->drv->bdrv_cancel_in_flight) {
3568 bs->drv->bdrv_cancel_in_flight(bs);
3569 }
3570 }
3571
3572 int coroutine_fn
3573 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3574 QEMUIOVector *qiov, size_t qiov_offset)
3575 {
3576 BlockDriverState *bs = child->bs;
3577 BlockDriver *drv = bs->drv;
3578 int ret;
3579 IO_CODE();
3580 assert_bdrv_graph_readable();
3581
3582 if (!drv) {
3583 return -ENOMEDIUM;
3584 }
3585
3586 if (!drv->bdrv_co_preadv_snapshot) {
3587 return -ENOTSUP;
3588 }
3589
3590 bdrv_inc_in_flight(bs);
3591 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3592 bdrv_dec_in_flight(bs);
3593
3594 return ret;
3595 }
3596
3597 int coroutine_fn
3598 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3599 bool want_zero, int64_t offset, int64_t bytes,
3600 int64_t *pnum, int64_t *map,
3601 BlockDriverState **file)
3602 {
3603 BlockDriver *drv = bs->drv;
3604 int ret;
3605 IO_CODE();
3606 assert_bdrv_graph_readable();
3607
3608 if (!drv) {
3609 return -ENOMEDIUM;
3610 }
3611
3612 if (!drv->bdrv_co_snapshot_block_status) {
3613 return -ENOTSUP;
3614 }
3615
3616 bdrv_inc_in_flight(bs);
3617 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3618 pnum, map, file);
3619 bdrv_dec_in_flight(bs);
3620
3621 return ret;
3622 }
3623
3624 int coroutine_fn
3625 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3626 {
3627 BlockDriver *drv = bs->drv;
3628 int ret;
3629 IO_CODE();
3630 assert_bdrv_graph_readable();
3631
3632 if (!drv) {
3633 return -ENOMEDIUM;
3634 }
3635
3636 if (!drv->bdrv_co_pdiscard_snapshot) {
3637 return -ENOTSUP;
3638 }
3639
3640 bdrv_inc_in_flight(bs);
3641 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3642 bdrv_dec_in_flight(bs);
3643
3644 return ret;
3645 }