]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
block: Assertions for write permissions
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35
36 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
37 int64_t offset,
38 QEMUIOVector *qiov,
39 BdrvRequestFlags flags,
40 BlockCompletionFunc *cb,
41 void *opaque,
42 bool is_write);
43 static void coroutine_fn bdrv_co_do_rw(void *opaque);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int count, BdrvRequestFlags flags);
46
47 static void bdrv_parent_drained_begin(BlockDriverState *bs)
48 {
49 BdrvChild *c;
50
51 QLIST_FOREACH(c, &bs->parents, next_parent) {
52 if (c->role->drained_begin) {
53 c->role->drained_begin(c);
54 }
55 }
56 }
57
58 static void bdrv_parent_drained_end(BlockDriverState *bs)
59 {
60 BdrvChild *c;
61
62 QLIST_FOREACH(c, &bs->parents, next_parent) {
63 if (c->role->drained_end) {
64 c->role->drained_end(c);
65 }
66 }
67 }
68
69 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
70 {
71 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
72 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
73 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
74 src->opt_mem_alignment);
75 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
76 src->min_mem_alignment);
77 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
78 }
79
80 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
81 {
82 BlockDriver *drv = bs->drv;
83 Error *local_err = NULL;
84
85 memset(&bs->bl, 0, sizeof(bs->bl));
86
87 if (!drv) {
88 return;
89 }
90
91 /* Default alignment based on whether driver has byte interface */
92 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
93
94 /* Take some limits from the children as a default */
95 if (bs->file) {
96 bdrv_refresh_limits(bs->file->bs, &local_err);
97 if (local_err) {
98 error_propagate(errp, local_err);
99 return;
100 }
101 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
102 } else {
103 bs->bl.min_mem_alignment = 512;
104 bs->bl.opt_mem_alignment = getpagesize();
105
106 /* Safe default since most protocols use readv()/writev()/etc */
107 bs->bl.max_iov = IOV_MAX;
108 }
109
110 if (bs->backing) {
111 bdrv_refresh_limits(bs->backing->bs, &local_err);
112 if (local_err) {
113 error_propagate(errp, local_err);
114 return;
115 }
116 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
117 }
118
119 /* Then let the driver override it */
120 if (drv->bdrv_refresh_limits) {
121 drv->bdrv_refresh_limits(bs, errp);
122 }
123 }
124
125 /**
126 * The copy-on-read flag is actually a reference count so multiple users may
127 * use the feature without worrying about clobbering its previous state.
128 * Copy-on-read stays enabled until all users have called to disable it.
129 */
130 void bdrv_enable_copy_on_read(BlockDriverState *bs)
131 {
132 bs->copy_on_read++;
133 }
134
135 void bdrv_disable_copy_on_read(BlockDriverState *bs)
136 {
137 assert(bs->copy_on_read > 0);
138 bs->copy_on_read--;
139 }
140
141 /* Check if any requests are in-flight (including throttled requests) */
142 bool bdrv_requests_pending(BlockDriverState *bs)
143 {
144 BdrvChild *child;
145
146 if (atomic_read(&bs->in_flight)) {
147 return true;
148 }
149
150 QLIST_FOREACH(child, &bs->children, next) {
151 if (bdrv_requests_pending(child->bs)) {
152 return true;
153 }
154 }
155
156 return false;
157 }
158
159 static bool bdrv_drain_recurse(BlockDriverState *bs)
160 {
161 BdrvChild *child;
162 bool waited;
163
164 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
165
166 if (bs->drv && bs->drv->bdrv_drain) {
167 bs->drv->bdrv_drain(bs);
168 }
169
170 QLIST_FOREACH(child, &bs->children, next) {
171 waited |= bdrv_drain_recurse(child->bs);
172 }
173
174 return waited;
175 }
176
177 typedef struct {
178 Coroutine *co;
179 BlockDriverState *bs;
180 bool done;
181 } BdrvCoDrainData;
182
183 static void bdrv_co_drain_bh_cb(void *opaque)
184 {
185 BdrvCoDrainData *data = opaque;
186 Coroutine *co = data->co;
187 BlockDriverState *bs = data->bs;
188
189 bdrv_dec_in_flight(bs);
190 bdrv_drained_begin(bs);
191 data->done = true;
192 aio_co_wake(co);
193 }
194
195 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
196 {
197 BdrvCoDrainData data;
198
199 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
200 * other coroutines run if they were queued from
201 * qemu_co_queue_run_restart(). */
202
203 assert(qemu_in_coroutine());
204 data = (BdrvCoDrainData) {
205 .co = qemu_coroutine_self(),
206 .bs = bs,
207 .done = false,
208 };
209 bdrv_inc_in_flight(bs);
210 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
211 bdrv_co_drain_bh_cb, &data);
212
213 qemu_coroutine_yield();
214 /* If we are resumed from some other event (such as an aio completion or a
215 * timer callback), it is a bug in the caller that should be fixed. */
216 assert(data.done);
217 }
218
219 void bdrv_drained_begin(BlockDriverState *bs)
220 {
221 if (qemu_in_coroutine()) {
222 bdrv_co_yield_to_drain(bs);
223 return;
224 }
225
226 if (!bs->quiesce_counter++) {
227 aio_disable_external(bdrv_get_aio_context(bs));
228 bdrv_parent_drained_begin(bs);
229 }
230
231 bdrv_drain_recurse(bs);
232 }
233
234 void bdrv_drained_end(BlockDriverState *bs)
235 {
236 assert(bs->quiesce_counter > 0);
237 if (--bs->quiesce_counter > 0) {
238 return;
239 }
240
241 bdrv_parent_drained_end(bs);
242 aio_enable_external(bdrv_get_aio_context(bs));
243 }
244
245 /*
246 * Wait for pending requests to complete on a single BlockDriverState subtree,
247 * and suspend block driver's internal I/O until next request arrives.
248 *
249 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
250 * AioContext.
251 *
252 * Only this BlockDriverState's AioContext is run, so in-flight requests must
253 * not depend on events in other AioContexts. In that case, use
254 * bdrv_drain_all() instead.
255 */
256 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
257 {
258 assert(qemu_in_coroutine());
259 bdrv_drained_begin(bs);
260 bdrv_drained_end(bs);
261 }
262
263 void bdrv_drain(BlockDriverState *bs)
264 {
265 bdrv_drained_begin(bs);
266 bdrv_drained_end(bs);
267 }
268
269 /*
270 * Wait for pending requests to complete across all BlockDriverStates
271 *
272 * This function does not flush data to disk, use bdrv_flush_all() for that
273 * after calling this function.
274 *
275 * This pauses all block jobs and disables external clients. It must
276 * be paired with bdrv_drain_all_end().
277 *
278 * NOTE: no new block jobs or BlockDriverStates can be created between
279 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
280 */
281 void bdrv_drain_all_begin(void)
282 {
283 /* Always run first iteration so any pending completion BHs run */
284 bool waited = true;
285 BlockDriverState *bs;
286 BdrvNextIterator it;
287 BlockJob *job = NULL;
288 GSList *aio_ctxs = NULL, *ctx;
289
290 while ((job = block_job_next(job))) {
291 AioContext *aio_context = blk_get_aio_context(job->blk);
292
293 aio_context_acquire(aio_context);
294 block_job_pause(job);
295 aio_context_release(aio_context);
296 }
297
298 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
299 AioContext *aio_context = bdrv_get_aio_context(bs);
300
301 aio_context_acquire(aio_context);
302 bdrv_parent_drained_begin(bs);
303 aio_disable_external(aio_context);
304 aio_context_release(aio_context);
305
306 if (!g_slist_find(aio_ctxs, aio_context)) {
307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
308 }
309 }
310
311 /* Note that completion of an asynchronous I/O operation can trigger any
312 * number of other I/O operations on other devices---for example a
313 * coroutine can submit an I/O request to another device in response to
314 * request completion. Therefore we must keep looping until there was no
315 * more activity rather than simply draining each device independently.
316 */
317 while (waited) {
318 waited = false;
319
320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
321 AioContext *aio_context = ctx->data;
322
323 aio_context_acquire(aio_context);
324 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
325 if (aio_context == bdrv_get_aio_context(bs)) {
326 waited |= bdrv_drain_recurse(bs);
327 }
328 }
329 aio_context_release(aio_context);
330 }
331 }
332
333 g_slist_free(aio_ctxs);
334 }
335
336 void bdrv_drain_all_end(void)
337 {
338 BlockDriverState *bs;
339 BdrvNextIterator it;
340 BlockJob *job = NULL;
341
342 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
343 AioContext *aio_context = bdrv_get_aio_context(bs);
344
345 aio_context_acquire(aio_context);
346 aio_enable_external(aio_context);
347 bdrv_parent_drained_end(bs);
348 aio_context_release(aio_context);
349 }
350
351 while ((job = block_job_next(job))) {
352 AioContext *aio_context = blk_get_aio_context(job->blk);
353
354 aio_context_acquire(aio_context);
355 block_job_resume(job);
356 aio_context_release(aio_context);
357 }
358 }
359
360 void bdrv_drain_all(void)
361 {
362 bdrv_drain_all_begin();
363 bdrv_drain_all_end();
364 }
365
366 /**
367 * Remove an active request from the tracked requests list
368 *
369 * This function should be called when a tracked request is completing.
370 */
371 static void tracked_request_end(BdrvTrackedRequest *req)
372 {
373 if (req->serialising) {
374 req->bs->serialising_in_flight--;
375 }
376
377 QLIST_REMOVE(req, list);
378 qemu_co_queue_restart_all(&req->wait_queue);
379 }
380
381 /**
382 * Add an active request to the tracked requests list
383 */
384 static void tracked_request_begin(BdrvTrackedRequest *req,
385 BlockDriverState *bs,
386 int64_t offset,
387 unsigned int bytes,
388 enum BdrvTrackedRequestType type)
389 {
390 *req = (BdrvTrackedRequest){
391 .bs = bs,
392 .offset = offset,
393 .bytes = bytes,
394 .type = type,
395 .co = qemu_coroutine_self(),
396 .serialising = false,
397 .overlap_offset = offset,
398 .overlap_bytes = bytes,
399 };
400
401 qemu_co_queue_init(&req->wait_queue);
402
403 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
404 }
405
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
407 {
408 int64_t overlap_offset = req->offset & ~(align - 1);
409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410 - overlap_offset;
411
412 if (!req->serialising) {
413 req->bs->serialising_in_flight++;
414 req->serialising = true;
415 }
416
417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
419 }
420
421 /**
422 * Round a region to cluster boundaries (sector-based)
423 */
424 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
425 int64_t sector_num, int nb_sectors,
426 int64_t *cluster_sector_num,
427 int *cluster_nb_sectors)
428 {
429 BlockDriverInfo bdi;
430
431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432 *cluster_sector_num = sector_num;
433 *cluster_nb_sectors = nb_sectors;
434 } else {
435 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
436 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
437 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
438 nb_sectors, c);
439 }
440 }
441
442 /**
443 * Round a region to cluster boundaries
444 */
445 void bdrv_round_to_clusters(BlockDriverState *bs,
446 int64_t offset, unsigned int bytes,
447 int64_t *cluster_offset,
448 unsigned int *cluster_bytes)
449 {
450 BlockDriverInfo bdi;
451
452 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
453 *cluster_offset = offset;
454 *cluster_bytes = bytes;
455 } else {
456 int64_t c = bdi.cluster_size;
457 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
458 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
459 }
460 }
461
462 static int bdrv_get_cluster_size(BlockDriverState *bs)
463 {
464 BlockDriverInfo bdi;
465 int ret;
466
467 ret = bdrv_get_info(bs, &bdi);
468 if (ret < 0 || bdi.cluster_size == 0) {
469 return bs->bl.request_alignment;
470 } else {
471 return bdi.cluster_size;
472 }
473 }
474
475 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
476 int64_t offset, unsigned int bytes)
477 {
478 /* aaaa bbbb */
479 if (offset >= req->overlap_offset + req->overlap_bytes) {
480 return false;
481 }
482 /* bbbb aaaa */
483 if (req->overlap_offset >= offset + bytes) {
484 return false;
485 }
486 return true;
487 }
488
489 void bdrv_inc_in_flight(BlockDriverState *bs)
490 {
491 atomic_inc(&bs->in_flight);
492 }
493
494 static void dummy_bh_cb(void *opaque)
495 {
496 }
497
498 void bdrv_wakeup(BlockDriverState *bs)
499 {
500 if (bs->wakeup) {
501 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
502 }
503 }
504
505 void bdrv_dec_in_flight(BlockDriverState *bs)
506 {
507 atomic_dec(&bs->in_flight);
508 bdrv_wakeup(bs);
509 }
510
511 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
512 {
513 BlockDriverState *bs = self->bs;
514 BdrvTrackedRequest *req;
515 bool retry;
516 bool waited = false;
517
518 if (!bs->serialising_in_flight) {
519 return false;
520 }
521
522 do {
523 retry = false;
524 QLIST_FOREACH(req, &bs->tracked_requests, list) {
525 if (req == self || (!req->serialising && !self->serialising)) {
526 continue;
527 }
528 if (tracked_request_overlaps(req, self->overlap_offset,
529 self->overlap_bytes))
530 {
531 /* Hitting this means there was a reentrant request, for
532 * example, a block driver issuing nested requests. This must
533 * never happen since it means deadlock.
534 */
535 assert(qemu_coroutine_self() != req->co);
536
537 /* If the request is already (indirectly) waiting for us, or
538 * will wait for us as soon as it wakes up, then just go on
539 * (instead of producing a deadlock in the former case). */
540 if (!req->waiting_for) {
541 self->waiting_for = req;
542 qemu_co_queue_wait(&req->wait_queue, NULL);
543 self->waiting_for = NULL;
544 retry = true;
545 waited = true;
546 break;
547 }
548 }
549 }
550 } while (retry);
551
552 return waited;
553 }
554
555 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
556 size_t size)
557 {
558 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
559 return -EIO;
560 }
561
562 if (!bdrv_is_inserted(bs)) {
563 return -ENOMEDIUM;
564 }
565
566 if (offset < 0) {
567 return -EIO;
568 }
569
570 return 0;
571 }
572
573 typedef struct RwCo {
574 BdrvChild *child;
575 int64_t offset;
576 QEMUIOVector *qiov;
577 bool is_write;
578 int ret;
579 BdrvRequestFlags flags;
580 } RwCo;
581
582 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
583 {
584 RwCo *rwco = opaque;
585
586 if (!rwco->is_write) {
587 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
588 rwco->qiov->size, rwco->qiov,
589 rwco->flags);
590 } else {
591 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
592 rwco->qiov->size, rwco->qiov,
593 rwco->flags);
594 }
595 }
596
597 /*
598 * Process a vectored synchronous request using coroutines
599 */
600 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
601 QEMUIOVector *qiov, bool is_write,
602 BdrvRequestFlags flags)
603 {
604 Coroutine *co;
605 RwCo rwco = {
606 .child = child,
607 .offset = offset,
608 .qiov = qiov,
609 .is_write = is_write,
610 .ret = NOT_DONE,
611 .flags = flags,
612 };
613
614 if (qemu_in_coroutine()) {
615 /* Fast-path if already in coroutine context */
616 bdrv_rw_co_entry(&rwco);
617 } else {
618 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
619 qemu_coroutine_enter(co);
620 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
621 }
622 return rwco.ret;
623 }
624
625 /*
626 * Process a synchronous request using coroutines
627 */
628 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
629 int nb_sectors, bool is_write, BdrvRequestFlags flags)
630 {
631 QEMUIOVector qiov;
632 struct iovec iov = {
633 .iov_base = (void *)buf,
634 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
635 };
636
637 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
638 return -EINVAL;
639 }
640
641 qemu_iovec_init_external(&qiov, &iov, 1);
642 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
643 &qiov, is_write, flags);
644 }
645
646 /* return < 0 if error. See bdrv_write() for the return codes */
647 int bdrv_read(BdrvChild *child, int64_t sector_num,
648 uint8_t *buf, int nb_sectors)
649 {
650 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
651 }
652
653 /* Return < 0 if error. Important errors are:
654 -EIO generic I/O error (may happen for all errors)
655 -ENOMEDIUM No media inserted.
656 -EINVAL Invalid sector number or nb_sectors
657 -EACCES Trying to write a read-only device
658 */
659 int bdrv_write(BdrvChild *child, int64_t sector_num,
660 const uint8_t *buf, int nb_sectors)
661 {
662 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
663 }
664
665 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
666 int count, BdrvRequestFlags flags)
667 {
668 QEMUIOVector qiov;
669 struct iovec iov = {
670 .iov_base = NULL,
671 .iov_len = count,
672 };
673
674 qemu_iovec_init_external(&qiov, &iov, 1);
675 return bdrv_prwv_co(child, offset, &qiov, true,
676 BDRV_REQ_ZERO_WRITE | flags);
677 }
678
679 /*
680 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
681 * The operation is sped up by checking the block status and only writing
682 * zeroes to the device if they currently do not return zeroes. Optional
683 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
684 * BDRV_REQ_FUA).
685 *
686 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
687 */
688 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
689 {
690 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
691 BlockDriverState *bs = child->bs;
692 BlockDriverState *file;
693 int n;
694
695 target_sectors = bdrv_nb_sectors(bs);
696 if (target_sectors < 0) {
697 return target_sectors;
698 }
699
700 for (;;) {
701 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
702 if (nb_sectors <= 0) {
703 return 0;
704 }
705 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
706 if (ret < 0) {
707 error_report("error getting block status at sector %" PRId64 ": %s",
708 sector_num, strerror(-ret));
709 return ret;
710 }
711 if (ret & BDRV_BLOCK_ZERO) {
712 sector_num += n;
713 continue;
714 }
715 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
716 n << BDRV_SECTOR_BITS, flags);
717 if (ret < 0) {
718 error_report("error writing zeroes at sector %" PRId64 ": %s",
719 sector_num, strerror(-ret));
720 return ret;
721 }
722 sector_num += n;
723 }
724 }
725
726 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
727 {
728 int ret;
729
730 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
731 if (ret < 0) {
732 return ret;
733 }
734
735 return qiov->size;
736 }
737
738 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
739 {
740 QEMUIOVector qiov;
741 struct iovec iov = {
742 .iov_base = (void *)buf,
743 .iov_len = bytes,
744 };
745
746 if (bytes < 0) {
747 return -EINVAL;
748 }
749
750 qemu_iovec_init_external(&qiov, &iov, 1);
751 return bdrv_preadv(child, offset, &qiov);
752 }
753
754 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
755 {
756 int ret;
757
758 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
759 if (ret < 0) {
760 return ret;
761 }
762
763 return qiov->size;
764 }
765
766 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
767 {
768 QEMUIOVector qiov;
769 struct iovec iov = {
770 .iov_base = (void *) buf,
771 .iov_len = bytes,
772 };
773
774 if (bytes < 0) {
775 return -EINVAL;
776 }
777
778 qemu_iovec_init_external(&qiov, &iov, 1);
779 return bdrv_pwritev(child, offset, &qiov);
780 }
781
782 /*
783 * Writes to the file and ensures that no writes are reordered across this
784 * request (acts as a barrier)
785 *
786 * Returns 0 on success, -errno in error cases.
787 */
788 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
789 const void *buf, int count)
790 {
791 int ret;
792
793 ret = bdrv_pwrite(child, offset, buf, count);
794 if (ret < 0) {
795 return ret;
796 }
797
798 ret = bdrv_flush(child->bs);
799 if (ret < 0) {
800 return ret;
801 }
802
803 return 0;
804 }
805
806 typedef struct CoroutineIOCompletion {
807 Coroutine *coroutine;
808 int ret;
809 } CoroutineIOCompletion;
810
811 static void bdrv_co_io_em_complete(void *opaque, int ret)
812 {
813 CoroutineIOCompletion *co = opaque;
814
815 co->ret = ret;
816 aio_co_wake(co->coroutine);
817 }
818
819 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
820 uint64_t offset, uint64_t bytes,
821 QEMUIOVector *qiov, int flags)
822 {
823 BlockDriver *drv = bs->drv;
824 int64_t sector_num;
825 unsigned int nb_sectors;
826
827 assert(!(flags & ~BDRV_REQ_MASK));
828
829 if (drv->bdrv_co_preadv) {
830 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
831 }
832
833 sector_num = offset >> BDRV_SECTOR_BITS;
834 nb_sectors = bytes >> BDRV_SECTOR_BITS;
835
836 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
837 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
838 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
839
840 if (drv->bdrv_co_readv) {
841 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
842 } else {
843 BlockAIOCB *acb;
844 CoroutineIOCompletion co = {
845 .coroutine = qemu_coroutine_self(),
846 };
847
848 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
849 bdrv_co_io_em_complete, &co);
850 if (acb == NULL) {
851 return -EIO;
852 } else {
853 qemu_coroutine_yield();
854 return co.ret;
855 }
856 }
857 }
858
859 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
860 uint64_t offset, uint64_t bytes,
861 QEMUIOVector *qiov, int flags)
862 {
863 BlockDriver *drv = bs->drv;
864 int64_t sector_num;
865 unsigned int nb_sectors;
866 int ret;
867
868 assert(!(flags & ~BDRV_REQ_MASK));
869
870 if (drv->bdrv_co_pwritev) {
871 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
872 flags & bs->supported_write_flags);
873 flags &= ~bs->supported_write_flags;
874 goto emulate_flags;
875 }
876
877 sector_num = offset >> BDRV_SECTOR_BITS;
878 nb_sectors = bytes >> BDRV_SECTOR_BITS;
879
880 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
881 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
882 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
883
884 if (drv->bdrv_co_writev_flags) {
885 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
886 flags & bs->supported_write_flags);
887 flags &= ~bs->supported_write_flags;
888 } else if (drv->bdrv_co_writev) {
889 assert(!bs->supported_write_flags);
890 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
891 } else {
892 BlockAIOCB *acb;
893 CoroutineIOCompletion co = {
894 .coroutine = qemu_coroutine_self(),
895 };
896
897 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
898 bdrv_co_io_em_complete, &co);
899 if (acb == NULL) {
900 ret = -EIO;
901 } else {
902 qemu_coroutine_yield();
903 ret = co.ret;
904 }
905 }
906
907 emulate_flags:
908 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
909 ret = bdrv_co_flush(bs);
910 }
911
912 return ret;
913 }
914
915 static int coroutine_fn
916 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
917 uint64_t bytes, QEMUIOVector *qiov)
918 {
919 BlockDriver *drv = bs->drv;
920
921 if (!drv->bdrv_co_pwritev_compressed) {
922 return -ENOTSUP;
923 }
924
925 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
926 }
927
928 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
929 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
930 {
931 BlockDriverState *bs = child->bs;
932
933 /* Perform I/O through a temporary buffer so that users who scribble over
934 * their read buffer while the operation is in progress do not end up
935 * modifying the image file. This is critical for zero-copy guest I/O
936 * where anything might happen inside guest memory.
937 */
938 void *bounce_buffer;
939
940 BlockDriver *drv = bs->drv;
941 struct iovec iov;
942 QEMUIOVector bounce_qiov;
943 int64_t cluster_offset;
944 unsigned int cluster_bytes;
945 size_t skip_bytes;
946 int ret;
947
948 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
949
950 /* Cover entire cluster so no additional backing file I/O is required when
951 * allocating cluster in the image file.
952 */
953 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
954
955 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
956 cluster_offset, cluster_bytes);
957
958 iov.iov_len = cluster_bytes;
959 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
960 if (bounce_buffer == NULL) {
961 ret = -ENOMEM;
962 goto err;
963 }
964
965 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
966
967 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
968 &bounce_qiov, 0);
969 if (ret < 0) {
970 goto err;
971 }
972
973 if (drv->bdrv_co_pwrite_zeroes &&
974 buffer_is_zero(bounce_buffer, iov.iov_len)) {
975 /* FIXME: Should we (perhaps conditionally) be setting
976 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
977 * that still correctly reads as zero? */
978 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
979 } else {
980 /* This does not change the data on the disk, it is not necessary
981 * to flush even in cache=writethrough mode.
982 */
983 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
984 &bounce_qiov, 0);
985 }
986
987 if (ret < 0) {
988 /* It might be okay to ignore write errors for guest requests. If this
989 * is a deliberate copy-on-read then we don't want to ignore the error.
990 * Simply report it in all cases.
991 */
992 goto err;
993 }
994
995 skip_bytes = offset - cluster_offset;
996 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
997
998 err:
999 qemu_vfree(bounce_buffer);
1000 return ret;
1001 }
1002
1003 /*
1004 * Forwards an already correctly aligned request to the BlockDriver. This
1005 * handles copy on read, zeroing after EOF, and fragmentation of large
1006 * reads; any other features must be implemented by the caller.
1007 */
1008 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1009 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1010 int64_t align, QEMUIOVector *qiov, int flags)
1011 {
1012 BlockDriverState *bs = child->bs;
1013 int64_t total_bytes, max_bytes;
1014 int ret = 0;
1015 uint64_t bytes_remaining = bytes;
1016 int max_transfer;
1017
1018 assert(is_power_of_2(align));
1019 assert((offset & (align - 1)) == 0);
1020 assert((bytes & (align - 1)) == 0);
1021 assert(!qiov || bytes == qiov->size);
1022 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1023 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1024 align);
1025
1026 /* TODO: We would need a per-BDS .supported_read_flags and
1027 * potential fallback support, if we ever implement any read flags
1028 * to pass through to drivers. For now, there aren't any
1029 * passthrough flags. */
1030 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1031
1032 /* Handle Copy on Read and associated serialisation */
1033 if (flags & BDRV_REQ_COPY_ON_READ) {
1034 /* If we touch the same cluster it counts as an overlap. This
1035 * guarantees that allocating writes will be serialized and not race
1036 * with each other for the same cluster. For example, in copy-on-read
1037 * it ensures that the CoR read and write operations are atomic and
1038 * guest writes cannot interleave between them. */
1039 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1040 }
1041
1042 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1043 wait_serialising_requests(req);
1044 }
1045
1046 if (flags & BDRV_REQ_COPY_ON_READ) {
1047 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1048 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1049 unsigned int nb_sectors = end_sector - start_sector;
1050 int pnum;
1051
1052 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1053 if (ret < 0) {
1054 goto out;
1055 }
1056
1057 if (!ret || pnum != nb_sectors) {
1058 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1059 goto out;
1060 }
1061 }
1062
1063 /* Forward the request to the BlockDriver, possibly fragmenting it */
1064 total_bytes = bdrv_getlength(bs);
1065 if (total_bytes < 0) {
1066 ret = total_bytes;
1067 goto out;
1068 }
1069
1070 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1071 if (bytes <= max_bytes && bytes <= max_transfer) {
1072 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1073 goto out;
1074 }
1075
1076 while (bytes_remaining) {
1077 int num;
1078
1079 if (max_bytes) {
1080 QEMUIOVector local_qiov;
1081
1082 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1083 assert(num);
1084 qemu_iovec_init(&local_qiov, qiov->niov);
1085 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1086
1087 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1088 num, &local_qiov, 0);
1089 max_bytes -= num;
1090 qemu_iovec_destroy(&local_qiov);
1091 } else {
1092 num = bytes_remaining;
1093 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1094 bytes_remaining);
1095 }
1096 if (ret < 0) {
1097 goto out;
1098 }
1099 bytes_remaining -= num;
1100 }
1101
1102 out:
1103 return ret < 0 ? ret : 0;
1104 }
1105
1106 /*
1107 * Handle a read request in coroutine context
1108 */
1109 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1110 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1111 BdrvRequestFlags flags)
1112 {
1113 BlockDriverState *bs = child->bs;
1114 BlockDriver *drv = bs->drv;
1115 BdrvTrackedRequest req;
1116
1117 uint64_t align = bs->bl.request_alignment;
1118 uint8_t *head_buf = NULL;
1119 uint8_t *tail_buf = NULL;
1120 QEMUIOVector local_qiov;
1121 bool use_local_qiov = false;
1122 int ret;
1123
1124 if (!drv) {
1125 return -ENOMEDIUM;
1126 }
1127
1128 ret = bdrv_check_byte_request(bs, offset, bytes);
1129 if (ret < 0) {
1130 return ret;
1131 }
1132
1133 bdrv_inc_in_flight(bs);
1134
1135 /* Don't do copy-on-read if we read data before write operation */
1136 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1137 flags |= BDRV_REQ_COPY_ON_READ;
1138 }
1139
1140 /* Align read if necessary by padding qiov */
1141 if (offset & (align - 1)) {
1142 head_buf = qemu_blockalign(bs, align);
1143 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1144 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1145 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1146 use_local_qiov = true;
1147
1148 bytes += offset & (align - 1);
1149 offset = offset & ~(align - 1);
1150 }
1151
1152 if ((offset + bytes) & (align - 1)) {
1153 if (!use_local_qiov) {
1154 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1155 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1156 use_local_qiov = true;
1157 }
1158 tail_buf = qemu_blockalign(bs, align);
1159 qemu_iovec_add(&local_qiov, tail_buf,
1160 align - ((offset + bytes) & (align - 1)));
1161
1162 bytes = ROUND_UP(bytes, align);
1163 }
1164
1165 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1166 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1167 use_local_qiov ? &local_qiov : qiov,
1168 flags);
1169 tracked_request_end(&req);
1170 bdrv_dec_in_flight(bs);
1171
1172 if (use_local_qiov) {
1173 qemu_iovec_destroy(&local_qiov);
1174 qemu_vfree(head_buf);
1175 qemu_vfree(tail_buf);
1176 }
1177
1178 return ret;
1179 }
1180
1181 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1182 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1183 BdrvRequestFlags flags)
1184 {
1185 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1186 return -EINVAL;
1187 }
1188
1189 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1190 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1191 }
1192
1193 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1194 int nb_sectors, QEMUIOVector *qiov)
1195 {
1196 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1197
1198 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1199 }
1200
1201 /* Maximum buffer for write zeroes fallback, in bytes */
1202 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1203
1204 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1205 int64_t offset, int count, BdrvRequestFlags flags)
1206 {
1207 BlockDriver *drv = bs->drv;
1208 QEMUIOVector qiov;
1209 struct iovec iov = {0};
1210 int ret = 0;
1211 bool need_flush = false;
1212 int head = 0;
1213 int tail = 0;
1214
1215 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1216 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1217 bs->bl.request_alignment);
1218 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1219 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1220
1221 assert(alignment % bs->bl.request_alignment == 0);
1222 head = offset % alignment;
1223 tail = (offset + count) % alignment;
1224 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1225 assert(max_write_zeroes >= bs->bl.request_alignment);
1226
1227 while (count > 0 && !ret) {
1228 int num = count;
1229
1230 /* Align request. Block drivers can expect the "bulk" of the request
1231 * to be aligned, and that unaligned requests do not cross cluster
1232 * boundaries.
1233 */
1234 if (head) {
1235 /* Make a small request up to the first aligned sector. For
1236 * convenience, limit this request to max_transfer even if
1237 * we don't need to fall back to writes. */
1238 num = MIN(MIN(count, max_transfer), alignment - head);
1239 head = (head + num) % alignment;
1240 assert(num < max_write_zeroes);
1241 } else if (tail && num > alignment) {
1242 /* Shorten the request to the last aligned sector. */
1243 num -= tail;
1244 }
1245
1246 /* limit request size */
1247 if (num > max_write_zeroes) {
1248 num = max_write_zeroes;
1249 }
1250
1251 ret = -ENOTSUP;
1252 /* First try the efficient write zeroes operation */
1253 if (drv->bdrv_co_pwrite_zeroes) {
1254 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1255 flags & bs->supported_zero_flags);
1256 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1257 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1258 need_flush = true;
1259 }
1260 } else {
1261 assert(!bs->supported_zero_flags);
1262 }
1263
1264 if (ret == -ENOTSUP) {
1265 /* Fall back to bounce buffer if write zeroes is unsupported */
1266 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1267
1268 if ((flags & BDRV_REQ_FUA) &&
1269 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1270 /* No need for bdrv_driver_pwrite() to do a fallback
1271 * flush on each chunk; use just one at the end */
1272 write_flags &= ~BDRV_REQ_FUA;
1273 need_flush = true;
1274 }
1275 num = MIN(num, max_transfer);
1276 iov.iov_len = num;
1277 if (iov.iov_base == NULL) {
1278 iov.iov_base = qemu_try_blockalign(bs, num);
1279 if (iov.iov_base == NULL) {
1280 ret = -ENOMEM;
1281 goto fail;
1282 }
1283 memset(iov.iov_base, 0, num);
1284 }
1285 qemu_iovec_init_external(&qiov, &iov, 1);
1286
1287 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1288
1289 /* Keep bounce buffer around if it is big enough for all
1290 * all future requests.
1291 */
1292 if (num < max_transfer) {
1293 qemu_vfree(iov.iov_base);
1294 iov.iov_base = NULL;
1295 }
1296 }
1297
1298 offset += num;
1299 count -= num;
1300 }
1301
1302 fail:
1303 if (ret == 0 && need_flush) {
1304 ret = bdrv_co_flush(bs);
1305 }
1306 qemu_vfree(iov.iov_base);
1307 return ret;
1308 }
1309
1310 /*
1311 * Forwards an already correctly aligned write request to the BlockDriver,
1312 * after possibly fragmenting it.
1313 */
1314 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1315 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1316 int64_t align, QEMUIOVector *qiov, int flags)
1317 {
1318 BlockDriverState *bs = child->bs;
1319 BlockDriver *drv = bs->drv;
1320 bool waited;
1321 int ret;
1322
1323 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1324 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1325 uint64_t bytes_remaining = bytes;
1326 int max_transfer;
1327
1328 assert(is_power_of_2(align));
1329 assert((offset & (align - 1)) == 0);
1330 assert((bytes & (align - 1)) == 0);
1331 assert(!qiov || bytes == qiov->size);
1332 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1333 assert(!(flags & ~BDRV_REQ_MASK));
1334 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1335 align);
1336
1337 waited = wait_serialising_requests(req);
1338 assert(!waited || !req->serialising);
1339 assert(req->overlap_offset <= offset);
1340 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1341 assert(child->perm & BLK_PERM_WRITE);
1342
1343 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1344
1345 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1346 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1347 qemu_iovec_is_zero(qiov)) {
1348 flags |= BDRV_REQ_ZERO_WRITE;
1349 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1350 flags |= BDRV_REQ_MAY_UNMAP;
1351 }
1352 }
1353
1354 if (ret < 0) {
1355 /* Do nothing, write notifier decided to fail this request */
1356 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1357 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1358 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1359 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1360 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1361 } else if (bytes <= max_transfer) {
1362 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1363 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1364 } else {
1365 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1366 while (bytes_remaining) {
1367 int num = MIN(bytes_remaining, max_transfer);
1368 QEMUIOVector local_qiov;
1369 int local_flags = flags;
1370
1371 assert(num);
1372 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1373 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1374 /* If FUA is going to be emulated by flush, we only
1375 * need to flush on the last iteration */
1376 local_flags &= ~BDRV_REQ_FUA;
1377 }
1378 qemu_iovec_init(&local_qiov, qiov->niov);
1379 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1380
1381 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1382 num, &local_qiov, local_flags);
1383 qemu_iovec_destroy(&local_qiov);
1384 if (ret < 0) {
1385 break;
1386 }
1387 bytes_remaining -= num;
1388 }
1389 }
1390 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1391
1392 ++bs->write_gen;
1393 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1394
1395 if (bs->wr_highest_offset < offset + bytes) {
1396 bs->wr_highest_offset = offset + bytes;
1397 }
1398
1399 if (ret >= 0) {
1400 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1401 ret = 0;
1402 }
1403
1404 return ret;
1405 }
1406
1407 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1408 int64_t offset,
1409 unsigned int bytes,
1410 BdrvRequestFlags flags,
1411 BdrvTrackedRequest *req)
1412 {
1413 BlockDriverState *bs = child->bs;
1414 uint8_t *buf = NULL;
1415 QEMUIOVector local_qiov;
1416 struct iovec iov;
1417 uint64_t align = bs->bl.request_alignment;
1418 unsigned int head_padding_bytes, tail_padding_bytes;
1419 int ret = 0;
1420
1421 head_padding_bytes = offset & (align - 1);
1422 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1423
1424
1425 assert(flags & BDRV_REQ_ZERO_WRITE);
1426 if (head_padding_bytes || tail_padding_bytes) {
1427 buf = qemu_blockalign(bs, align);
1428 iov = (struct iovec) {
1429 .iov_base = buf,
1430 .iov_len = align,
1431 };
1432 qemu_iovec_init_external(&local_qiov, &iov, 1);
1433 }
1434 if (head_padding_bytes) {
1435 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1436
1437 /* RMW the unaligned part before head. */
1438 mark_request_serialising(req, align);
1439 wait_serialising_requests(req);
1440 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1441 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1442 align, &local_qiov, 0);
1443 if (ret < 0) {
1444 goto fail;
1445 }
1446 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1447
1448 memset(buf + head_padding_bytes, 0, zero_bytes);
1449 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1450 align, &local_qiov,
1451 flags & ~BDRV_REQ_ZERO_WRITE);
1452 if (ret < 0) {
1453 goto fail;
1454 }
1455 offset += zero_bytes;
1456 bytes -= zero_bytes;
1457 }
1458
1459 assert(!bytes || (offset & (align - 1)) == 0);
1460 if (bytes >= align) {
1461 /* Write the aligned part in the middle. */
1462 uint64_t aligned_bytes = bytes & ~(align - 1);
1463 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1464 NULL, flags);
1465 if (ret < 0) {
1466 goto fail;
1467 }
1468 bytes -= aligned_bytes;
1469 offset += aligned_bytes;
1470 }
1471
1472 assert(!bytes || (offset & (align - 1)) == 0);
1473 if (bytes) {
1474 assert(align == tail_padding_bytes + bytes);
1475 /* RMW the unaligned part after tail. */
1476 mark_request_serialising(req, align);
1477 wait_serialising_requests(req);
1478 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1479 ret = bdrv_aligned_preadv(child, req, offset, align,
1480 align, &local_qiov, 0);
1481 if (ret < 0) {
1482 goto fail;
1483 }
1484 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1485
1486 memset(buf, 0, bytes);
1487 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1488 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1489 }
1490 fail:
1491 qemu_vfree(buf);
1492 return ret;
1493
1494 }
1495
1496 /*
1497 * Handle a write request in coroutine context
1498 */
1499 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1500 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1501 BdrvRequestFlags flags)
1502 {
1503 BlockDriverState *bs = child->bs;
1504 BdrvTrackedRequest req;
1505 uint64_t align = bs->bl.request_alignment;
1506 uint8_t *head_buf = NULL;
1507 uint8_t *tail_buf = NULL;
1508 QEMUIOVector local_qiov;
1509 bool use_local_qiov = false;
1510 int ret;
1511
1512 if (!bs->drv) {
1513 return -ENOMEDIUM;
1514 }
1515 if (bs->read_only) {
1516 return -EPERM;
1517 }
1518 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1519
1520 ret = bdrv_check_byte_request(bs, offset, bytes);
1521 if (ret < 0) {
1522 return ret;
1523 }
1524
1525 bdrv_inc_in_flight(bs);
1526 /*
1527 * Align write if necessary by performing a read-modify-write cycle.
1528 * Pad qiov with the read parts and be sure to have a tracked request not
1529 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1530 */
1531 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1532
1533 if (!qiov) {
1534 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1535 goto out;
1536 }
1537
1538 if (offset & (align - 1)) {
1539 QEMUIOVector head_qiov;
1540 struct iovec head_iov;
1541
1542 mark_request_serialising(&req, align);
1543 wait_serialising_requests(&req);
1544
1545 head_buf = qemu_blockalign(bs, align);
1546 head_iov = (struct iovec) {
1547 .iov_base = head_buf,
1548 .iov_len = align,
1549 };
1550 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1551
1552 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1553 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1554 align, &head_qiov, 0);
1555 if (ret < 0) {
1556 goto fail;
1557 }
1558 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1559
1560 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1561 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1562 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1563 use_local_qiov = true;
1564
1565 bytes += offset & (align - 1);
1566 offset = offset & ~(align - 1);
1567
1568 /* We have read the tail already if the request is smaller
1569 * than one aligned block.
1570 */
1571 if (bytes < align) {
1572 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1573 bytes = align;
1574 }
1575 }
1576
1577 if ((offset + bytes) & (align - 1)) {
1578 QEMUIOVector tail_qiov;
1579 struct iovec tail_iov;
1580 size_t tail_bytes;
1581 bool waited;
1582
1583 mark_request_serialising(&req, align);
1584 waited = wait_serialising_requests(&req);
1585 assert(!waited || !use_local_qiov);
1586
1587 tail_buf = qemu_blockalign(bs, align);
1588 tail_iov = (struct iovec) {
1589 .iov_base = tail_buf,
1590 .iov_len = align,
1591 };
1592 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1593
1594 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1595 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1596 align, align, &tail_qiov, 0);
1597 if (ret < 0) {
1598 goto fail;
1599 }
1600 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1601
1602 if (!use_local_qiov) {
1603 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1604 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1605 use_local_qiov = true;
1606 }
1607
1608 tail_bytes = (offset + bytes) & (align - 1);
1609 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1610
1611 bytes = ROUND_UP(bytes, align);
1612 }
1613
1614 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1615 use_local_qiov ? &local_qiov : qiov,
1616 flags);
1617
1618 fail:
1619
1620 if (use_local_qiov) {
1621 qemu_iovec_destroy(&local_qiov);
1622 }
1623 qemu_vfree(head_buf);
1624 qemu_vfree(tail_buf);
1625 out:
1626 tracked_request_end(&req);
1627 bdrv_dec_in_flight(bs);
1628 return ret;
1629 }
1630
1631 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1632 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1633 BdrvRequestFlags flags)
1634 {
1635 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1636 return -EINVAL;
1637 }
1638
1639 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1640 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1641 }
1642
1643 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1644 int nb_sectors, QEMUIOVector *qiov)
1645 {
1646 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1647
1648 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1649 }
1650
1651 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1652 int count, BdrvRequestFlags flags)
1653 {
1654 trace_bdrv_co_pwrite_zeroes(child->bs, offset, count, flags);
1655
1656 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1657 flags &= ~BDRV_REQ_MAY_UNMAP;
1658 }
1659
1660 return bdrv_co_pwritev(child, offset, count, NULL,
1661 BDRV_REQ_ZERO_WRITE | flags);
1662 }
1663
1664 /*
1665 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1666 */
1667 int bdrv_flush_all(void)
1668 {
1669 BdrvNextIterator it;
1670 BlockDriverState *bs = NULL;
1671 int result = 0;
1672
1673 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1674 AioContext *aio_context = bdrv_get_aio_context(bs);
1675 int ret;
1676
1677 aio_context_acquire(aio_context);
1678 ret = bdrv_flush(bs);
1679 if (ret < 0 && !result) {
1680 result = ret;
1681 }
1682 aio_context_release(aio_context);
1683 }
1684
1685 return result;
1686 }
1687
1688
1689 typedef struct BdrvCoGetBlockStatusData {
1690 BlockDriverState *bs;
1691 BlockDriverState *base;
1692 BlockDriverState **file;
1693 int64_t sector_num;
1694 int nb_sectors;
1695 int *pnum;
1696 int64_t ret;
1697 bool done;
1698 } BdrvCoGetBlockStatusData;
1699
1700 /*
1701 * Returns the allocation status of the specified sectors.
1702 * Drivers not implementing the functionality are assumed to not support
1703 * backing files, hence all their sectors are reported as allocated.
1704 *
1705 * If 'sector_num' is beyond the end of the disk image the return value is 0
1706 * and 'pnum' is set to 0.
1707 *
1708 * 'pnum' is set to the number of sectors (including and immediately following
1709 * the specified sector) that are known to be in the same
1710 * allocated/unallocated state.
1711 *
1712 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1713 * beyond the end of the disk image it will be clamped.
1714 *
1715 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1716 * points to the BDS which the sector range is allocated in.
1717 */
1718 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1719 int64_t sector_num,
1720 int nb_sectors, int *pnum,
1721 BlockDriverState **file)
1722 {
1723 int64_t total_sectors;
1724 int64_t n;
1725 int64_t ret, ret2;
1726
1727 total_sectors = bdrv_nb_sectors(bs);
1728 if (total_sectors < 0) {
1729 return total_sectors;
1730 }
1731
1732 if (sector_num >= total_sectors) {
1733 *pnum = 0;
1734 return 0;
1735 }
1736
1737 n = total_sectors - sector_num;
1738 if (n < nb_sectors) {
1739 nb_sectors = n;
1740 }
1741
1742 if (!bs->drv->bdrv_co_get_block_status) {
1743 *pnum = nb_sectors;
1744 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1745 if (bs->drv->protocol_name) {
1746 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1747 }
1748 return ret;
1749 }
1750
1751 *file = NULL;
1752 bdrv_inc_in_flight(bs);
1753 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1754 file);
1755 if (ret < 0) {
1756 *pnum = 0;
1757 goto out;
1758 }
1759
1760 if (ret & BDRV_BLOCK_RAW) {
1761 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1762 ret = bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1763 *pnum, pnum, file);
1764 goto out;
1765 }
1766
1767 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1768 ret |= BDRV_BLOCK_ALLOCATED;
1769 } else {
1770 if (bdrv_unallocated_blocks_are_zero(bs)) {
1771 ret |= BDRV_BLOCK_ZERO;
1772 } else if (bs->backing) {
1773 BlockDriverState *bs2 = bs->backing->bs;
1774 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1775 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1776 ret |= BDRV_BLOCK_ZERO;
1777 }
1778 }
1779 }
1780
1781 if (*file && *file != bs &&
1782 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1783 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1784 BlockDriverState *file2;
1785 int file_pnum;
1786
1787 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1788 *pnum, &file_pnum, &file2);
1789 if (ret2 >= 0) {
1790 /* Ignore errors. This is just providing extra information, it
1791 * is useful but not necessary.
1792 */
1793 if (!file_pnum) {
1794 /* !file_pnum indicates an offset at or beyond the EOF; it is
1795 * perfectly valid for the format block driver to point to such
1796 * offsets, so catch it and mark everything as zero */
1797 ret |= BDRV_BLOCK_ZERO;
1798 } else {
1799 /* Limit request to the range reported by the protocol driver */
1800 *pnum = file_pnum;
1801 ret |= (ret2 & BDRV_BLOCK_ZERO);
1802 }
1803 }
1804 }
1805
1806 out:
1807 bdrv_dec_in_flight(bs);
1808 return ret;
1809 }
1810
1811 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1812 BlockDriverState *base,
1813 int64_t sector_num,
1814 int nb_sectors,
1815 int *pnum,
1816 BlockDriverState **file)
1817 {
1818 BlockDriverState *p;
1819 int64_t ret = 0;
1820
1821 assert(bs != base);
1822 for (p = bs; p != base; p = backing_bs(p)) {
1823 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1824 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1825 break;
1826 }
1827 /* [sector_num, pnum] unallocated on this layer, which could be only
1828 * the first part of [sector_num, nb_sectors]. */
1829 nb_sectors = MIN(nb_sectors, *pnum);
1830 }
1831 return ret;
1832 }
1833
1834 /* Coroutine wrapper for bdrv_get_block_status_above() */
1835 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1836 {
1837 BdrvCoGetBlockStatusData *data = opaque;
1838
1839 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1840 data->sector_num,
1841 data->nb_sectors,
1842 data->pnum,
1843 data->file);
1844 data->done = true;
1845 }
1846
1847 /*
1848 * Synchronous wrapper around bdrv_co_get_block_status_above().
1849 *
1850 * See bdrv_co_get_block_status_above() for details.
1851 */
1852 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1853 BlockDriverState *base,
1854 int64_t sector_num,
1855 int nb_sectors, int *pnum,
1856 BlockDriverState **file)
1857 {
1858 Coroutine *co;
1859 BdrvCoGetBlockStatusData data = {
1860 .bs = bs,
1861 .base = base,
1862 .file = file,
1863 .sector_num = sector_num,
1864 .nb_sectors = nb_sectors,
1865 .pnum = pnum,
1866 .done = false,
1867 };
1868
1869 if (qemu_in_coroutine()) {
1870 /* Fast-path if already in coroutine context */
1871 bdrv_get_block_status_above_co_entry(&data);
1872 } else {
1873 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1874 &data);
1875 qemu_coroutine_enter(co);
1876 BDRV_POLL_WHILE(bs, !data.done);
1877 }
1878 return data.ret;
1879 }
1880
1881 int64_t bdrv_get_block_status(BlockDriverState *bs,
1882 int64_t sector_num,
1883 int nb_sectors, int *pnum,
1884 BlockDriverState **file)
1885 {
1886 return bdrv_get_block_status_above(bs, backing_bs(bs),
1887 sector_num, nb_sectors, pnum, file);
1888 }
1889
1890 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1891 int nb_sectors, int *pnum)
1892 {
1893 BlockDriverState *file;
1894 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1895 &file);
1896 if (ret < 0) {
1897 return ret;
1898 }
1899 return !!(ret & BDRV_BLOCK_ALLOCATED);
1900 }
1901
1902 /*
1903 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1904 *
1905 * Return true if the given sector is allocated in any image between
1906 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1907 * sector is allocated in any image of the chain. Return false otherwise.
1908 *
1909 * 'pnum' is set to the number of sectors (including and immediately following
1910 * the specified sector) that are known to be in the same
1911 * allocated/unallocated state.
1912 *
1913 */
1914 int bdrv_is_allocated_above(BlockDriverState *top,
1915 BlockDriverState *base,
1916 int64_t sector_num,
1917 int nb_sectors, int *pnum)
1918 {
1919 BlockDriverState *intermediate;
1920 int ret, n = nb_sectors;
1921
1922 intermediate = top;
1923 while (intermediate && intermediate != base) {
1924 int pnum_inter;
1925 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1926 &pnum_inter);
1927 if (ret < 0) {
1928 return ret;
1929 } else if (ret) {
1930 *pnum = pnum_inter;
1931 return 1;
1932 }
1933
1934 /*
1935 * [sector_num, nb_sectors] is unallocated on top but intermediate
1936 * might have
1937 *
1938 * [sector_num+x, nr_sectors] allocated.
1939 */
1940 if (n > pnum_inter &&
1941 (intermediate == top ||
1942 sector_num + pnum_inter < intermediate->total_sectors)) {
1943 n = pnum_inter;
1944 }
1945
1946 intermediate = backing_bs(intermediate);
1947 }
1948
1949 *pnum = n;
1950 return 0;
1951 }
1952
1953 typedef struct BdrvVmstateCo {
1954 BlockDriverState *bs;
1955 QEMUIOVector *qiov;
1956 int64_t pos;
1957 bool is_read;
1958 int ret;
1959 } BdrvVmstateCo;
1960
1961 static int coroutine_fn
1962 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1963 bool is_read)
1964 {
1965 BlockDriver *drv = bs->drv;
1966
1967 if (!drv) {
1968 return -ENOMEDIUM;
1969 } else if (drv->bdrv_load_vmstate) {
1970 return is_read ? drv->bdrv_load_vmstate(bs, qiov, pos)
1971 : drv->bdrv_save_vmstate(bs, qiov, pos);
1972 } else if (bs->file) {
1973 return bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1974 }
1975
1976 return -ENOTSUP;
1977 }
1978
1979 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1980 {
1981 BdrvVmstateCo *co = opaque;
1982 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
1983 }
1984
1985 static inline int
1986 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1987 bool is_read)
1988 {
1989 if (qemu_in_coroutine()) {
1990 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
1991 } else {
1992 BdrvVmstateCo data = {
1993 .bs = bs,
1994 .qiov = qiov,
1995 .pos = pos,
1996 .is_read = is_read,
1997 .ret = -EINPROGRESS,
1998 };
1999 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2000
2001 qemu_coroutine_enter(co);
2002 while (data.ret == -EINPROGRESS) {
2003 aio_poll(bdrv_get_aio_context(bs), true);
2004 }
2005 return data.ret;
2006 }
2007 }
2008
2009 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2010 int64_t pos, int size)
2011 {
2012 QEMUIOVector qiov;
2013 struct iovec iov = {
2014 .iov_base = (void *) buf,
2015 .iov_len = size,
2016 };
2017 int ret;
2018
2019 qemu_iovec_init_external(&qiov, &iov, 1);
2020
2021 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2022 if (ret < 0) {
2023 return ret;
2024 }
2025
2026 return size;
2027 }
2028
2029 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2030 {
2031 return bdrv_rw_vmstate(bs, qiov, pos, false);
2032 }
2033
2034 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2035 int64_t pos, int size)
2036 {
2037 QEMUIOVector qiov;
2038 struct iovec iov = {
2039 .iov_base = buf,
2040 .iov_len = size,
2041 };
2042 int ret;
2043
2044 qemu_iovec_init_external(&qiov, &iov, 1);
2045 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2046 if (ret < 0) {
2047 return ret;
2048 }
2049
2050 return size;
2051 }
2052
2053 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2054 {
2055 return bdrv_rw_vmstate(bs, qiov, pos, true);
2056 }
2057
2058 /**************************************************************/
2059 /* async I/Os */
2060
2061 BlockAIOCB *bdrv_aio_readv(BdrvChild *child, int64_t sector_num,
2062 QEMUIOVector *qiov, int nb_sectors,
2063 BlockCompletionFunc *cb, void *opaque)
2064 {
2065 trace_bdrv_aio_readv(child->bs, sector_num, nb_sectors, opaque);
2066
2067 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2068 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2069 0, cb, opaque, false);
2070 }
2071
2072 BlockAIOCB *bdrv_aio_writev(BdrvChild *child, int64_t sector_num,
2073 QEMUIOVector *qiov, int nb_sectors,
2074 BlockCompletionFunc *cb, void *opaque)
2075 {
2076 trace_bdrv_aio_writev(child->bs, sector_num, nb_sectors, opaque);
2077
2078 assert(nb_sectors << BDRV_SECTOR_BITS == qiov->size);
2079 return bdrv_co_aio_prw_vector(child, sector_num << BDRV_SECTOR_BITS, qiov,
2080 0, cb, opaque, true);
2081 }
2082
2083 void bdrv_aio_cancel(BlockAIOCB *acb)
2084 {
2085 qemu_aio_ref(acb);
2086 bdrv_aio_cancel_async(acb);
2087 while (acb->refcnt > 1) {
2088 if (acb->aiocb_info->get_aio_context) {
2089 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2090 } else if (acb->bs) {
2091 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2092 * assert that we're not using an I/O thread. Thread-safe
2093 * code should use bdrv_aio_cancel_async exclusively.
2094 */
2095 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2096 aio_poll(bdrv_get_aio_context(acb->bs), true);
2097 } else {
2098 abort();
2099 }
2100 }
2101 qemu_aio_unref(acb);
2102 }
2103
2104 /* Async version of aio cancel. The caller is not blocked if the acb implements
2105 * cancel_async, otherwise we do nothing and let the request normally complete.
2106 * In either case the completion callback must be called. */
2107 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2108 {
2109 if (acb->aiocb_info->cancel_async) {
2110 acb->aiocb_info->cancel_async(acb);
2111 }
2112 }
2113
2114 /**************************************************************/
2115 /* async block device emulation */
2116
2117 typedef struct BlockRequest {
2118 union {
2119 /* Used during read, write, trim */
2120 struct {
2121 int64_t offset;
2122 int bytes;
2123 int flags;
2124 QEMUIOVector *qiov;
2125 };
2126 /* Used during ioctl */
2127 struct {
2128 int req;
2129 void *buf;
2130 };
2131 };
2132 BlockCompletionFunc *cb;
2133 void *opaque;
2134
2135 int error;
2136 } BlockRequest;
2137
2138 typedef struct BlockAIOCBCoroutine {
2139 BlockAIOCB common;
2140 BdrvChild *child;
2141 BlockRequest req;
2142 bool is_write;
2143 bool need_bh;
2144 bool *done;
2145 } BlockAIOCBCoroutine;
2146
2147 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2148 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2149 };
2150
2151 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2152 {
2153 if (!acb->need_bh) {
2154 bdrv_dec_in_flight(acb->common.bs);
2155 acb->common.cb(acb->common.opaque, acb->req.error);
2156 qemu_aio_unref(acb);
2157 }
2158 }
2159
2160 static void bdrv_co_em_bh(void *opaque)
2161 {
2162 BlockAIOCBCoroutine *acb = opaque;
2163
2164 assert(!acb->need_bh);
2165 bdrv_co_complete(acb);
2166 }
2167
2168 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2169 {
2170 acb->need_bh = false;
2171 if (acb->req.error != -EINPROGRESS) {
2172 BlockDriverState *bs = acb->common.bs;
2173
2174 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2175 }
2176 }
2177
2178 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2179 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2180 {
2181 BlockAIOCBCoroutine *acb = opaque;
2182
2183 if (!acb->is_write) {
2184 acb->req.error = bdrv_co_preadv(acb->child, acb->req.offset,
2185 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2186 } else {
2187 acb->req.error = bdrv_co_pwritev(acb->child, acb->req.offset,
2188 acb->req.qiov->size, acb->req.qiov, acb->req.flags);
2189 }
2190
2191 bdrv_co_complete(acb);
2192 }
2193
2194 static BlockAIOCB *bdrv_co_aio_prw_vector(BdrvChild *child,
2195 int64_t offset,
2196 QEMUIOVector *qiov,
2197 BdrvRequestFlags flags,
2198 BlockCompletionFunc *cb,
2199 void *opaque,
2200 bool is_write)
2201 {
2202 Coroutine *co;
2203 BlockAIOCBCoroutine *acb;
2204
2205 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2206 bdrv_inc_in_flight(child->bs);
2207
2208 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, child->bs, cb, opaque);
2209 acb->child = child;
2210 acb->need_bh = true;
2211 acb->req.error = -EINPROGRESS;
2212 acb->req.offset = offset;
2213 acb->req.qiov = qiov;
2214 acb->req.flags = flags;
2215 acb->is_write = is_write;
2216
2217 co = qemu_coroutine_create(bdrv_co_do_rw, acb);
2218 qemu_coroutine_enter(co);
2219
2220 bdrv_co_maybe_schedule_bh(acb);
2221 return &acb->common;
2222 }
2223
2224 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2225 {
2226 BlockAIOCBCoroutine *acb = opaque;
2227 BlockDriverState *bs = acb->common.bs;
2228
2229 acb->req.error = bdrv_co_flush(bs);
2230 bdrv_co_complete(acb);
2231 }
2232
2233 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2234 BlockCompletionFunc *cb, void *opaque)
2235 {
2236 trace_bdrv_aio_flush(bs, opaque);
2237
2238 Coroutine *co;
2239 BlockAIOCBCoroutine *acb;
2240
2241 /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */
2242 bdrv_inc_in_flight(bs);
2243
2244 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2245 acb->need_bh = true;
2246 acb->req.error = -EINPROGRESS;
2247
2248 co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb);
2249 qemu_coroutine_enter(co);
2250
2251 bdrv_co_maybe_schedule_bh(acb);
2252 return &acb->common;
2253 }
2254
2255 /**************************************************************/
2256 /* Coroutine block device emulation */
2257
2258 typedef struct FlushCo {
2259 BlockDriverState *bs;
2260 int ret;
2261 } FlushCo;
2262
2263
2264 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2265 {
2266 FlushCo *rwco = opaque;
2267
2268 rwco->ret = bdrv_co_flush(rwco->bs);
2269 }
2270
2271 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2272 {
2273 int ret;
2274
2275 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2276 bdrv_is_sg(bs)) {
2277 return 0;
2278 }
2279
2280 bdrv_inc_in_flight(bs);
2281
2282 int current_gen = bs->write_gen;
2283
2284 /* Wait until any previous flushes are completed */
2285 while (bs->active_flush_req) {
2286 qemu_co_queue_wait(&bs->flush_queue, NULL);
2287 }
2288
2289 bs->active_flush_req = true;
2290
2291 /* Write back all layers by calling one driver function */
2292 if (bs->drv->bdrv_co_flush) {
2293 ret = bs->drv->bdrv_co_flush(bs);
2294 goto out;
2295 }
2296
2297 /* Write back cached data to the OS even with cache=unsafe */
2298 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2299 if (bs->drv->bdrv_co_flush_to_os) {
2300 ret = bs->drv->bdrv_co_flush_to_os(bs);
2301 if (ret < 0) {
2302 goto out;
2303 }
2304 }
2305
2306 /* But don't actually force it to the disk with cache=unsafe */
2307 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2308 goto flush_parent;
2309 }
2310
2311 /* Check if we really need to flush anything */
2312 if (bs->flushed_gen == current_gen) {
2313 goto flush_parent;
2314 }
2315
2316 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2317 if (bs->drv->bdrv_co_flush_to_disk) {
2318 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2319 } else if (bs->drv->bdrv_aio_flush) {
2320 BlockAIOCB *acb;
2321 CoroutineIOCompletion co = {
2322 .coroutine = qemu_coroutine_self(),
2323 };
2324
2325 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2326 if (acb == NULL) {
2327 ret = -EIO;
2328 } else {
2329 qemu_coroutine_yield();
2330 ret = co.ret;
2331 }
2332 } else {
2333 /*
2334 * Some block drivers always operate in either writethrough or unsafe
2335 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2336 * know how the server works (because the behaviour is hardcoded or
2337 * depends on server-side configuration), so we can't ensure that
2338 * everything is safe on disk. Returning an error doesn't work because
2339 * that would break guests even if the server operates in writethrough
2340 * mode.
2341 *
2342 * Let's hope the user knows what he's doing.
2343 */
2344 ret = 0;
2345 }
2346
2347 if (ret < 0) {
2348 goto out;
2349 }
2350
2351 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2352 * in the case of cache=unsafe, so there are no useless flushes.
2353 */
2354 flush_parent:
2355 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2356 out:
2357 /* Notify any pending flushes that we have completed */
2358 if (ret == 0) {
2359 bs->flushed_gen = current_gen;
2360 }
2361 bs->active_flush_req = false;
2362 /* Return value is ignored - it's ok if wait queue is empty */
2363 qemu_co_queue_next(&bs->flush_queue);
2364
2365 bdrv_dec_in_flight(bs);
2366 return ret;
2367 }
2368
2369 int bdrv_flush(BlockDriverState *bs)
2370 {
2371 Coroutine *co;
2372 FlushCo flush_co = {
2373 .bs = bs,
2374 .ret = NOT_DONE,
2375 };
2376
2377 if (qemu_in_coroutine()) {
2378 /* Fast-path if already in coroutine context */
2379 bdrv_flush_co_entry(&flush_co);
2380 } else {
2381 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2382 qemu_coroutine_enter(co);
2383 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2384 }
2385
2386 return flush_co.ret;
2387 }
2388
2389 typedef struct DiscardCo {
2390 BlockDriverState *bs;
2391 int64_t offset;
2392 int count;
2393 int ret;
2394 } DiscardCo;
2395 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2396 {
2397 DiscardCo *rwco = opaque;
2398
2399 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->count);
2400 }
2401
2402 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2403 int count)
2404 {
2405 BdrvTrackedRequest req;
2406 int max_pdiscard, ret;
2407 int head, tail, align;
2408
2409 if (!bs->drv) {
2410 return -ENOMEDIUM;
2411 }
2412
2413 ret = bdrv_check_byte_request(bs, offset, count);
2414 if (ret < 0) {
2415 return ret;
2416 } else if (bs->read_only) {
2417 return -EPERM;
2418 }
2419 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2420
2421 /* Do nothing if disabled. */
2422 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2423 return 0;
2424 }
2425
2426 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2427 return 0;
2428 }
2429
2430 /* Discard is advisory, but some devices track and coalesce
2431 * unaligned requests, so we must pass everything down rather than
2432 * round here. Still, most devices will just silently ignore
2433 * unaligned requests (by returning -ENOTSUP), so we must fragment
2434 * the request accordingly. */
2435 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2436 assert(align % bs->bl.request_alignment == 0);
2437 head = offset % align;
2438 tail = (offset + count) % align;
2439
2440 bdrv_inc_in_flight(bs);
2441 tracked_request_begin(&req, bs, offset, count, BDRV_TRACKED_DISCARD);
2442
2443 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2444 if (ret < 0) {
2445 goto out;
2446 }
2447
2448 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2449 align);
2450 assert(max_pdiscard >= bs->bl.request_alignment);
2451
2452 while (count > 0) {
2453 int ret;
2454 int num = count;
2455
2456 if (head) {
2457 /* Make small requests to get to alignment boundaries. */
2458 num = MIN(count, align - head);
2459 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2460 num %= bs->bl.request_alignment;
2461 }
2462 head = (head + num) % align;
2463 assert(num < max_pdiscard);
2464 } else if (tail) {
2465 if (num > align) {
2466 /* Shorten the request to the last aligned cluster. */
2467 num -= tail;
2468 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2469 tail > bs->bl.request_alignment) {
2470 tail %= bs->bl.request_alignment;
2471 num -= tail;
2472 }
2473 }
2474 /* limit request size */
2475 if (num > max_pdiscard) {
2476 num = max_pdiscard;
2477 }
2478
2479 if (bs->drv->bdrv_co_pdiscard) {
2480 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2481 } else {
2482 BlockAIOCB *acb;
2483 CoroutineIOCompletion co = {
2484 .coroutine = qemu_coroutine_self(),
2485 };
2486
2487 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2488 bdrv_co_io_em_complete, &co);
2489 if (acb == NULL) {
2490 ret = -EIO;
2491 goto out;
2492 } else {
2493 qemu_coroutine_yield();
2494 ret = co.ret;
2495 }
2496 }
2497 if (ret && ret != -ENOTSUP) {
2498 goto out;
2499 }
2500
2501 offset += num;
2502 count -= num;
2503 }
2504 ret = 0;
2505 out:
2506 ++bs->write_gen;
2507 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2508 req.bytes >> BDRV_SECTOR_BITS);
2509 tracked_request_end(&req);
2510 bdrv_dec_in_flight(bs);
2511 return ret;
2512 }
2513
2514 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int count)
2515 {
2516 Coroutine *co;
2517 DiscardCo rwco = {
2518 .bs = bs,
2519 .offset = offset,
2520 .count = count,
2521 .ret = NOT_DONE,
2522 };
2523
2524 if (qemu_in_coroutine()) {
2525 /* Fast-path if already in coroutine context */
2526 bdrv_pdiscard_co_entry(&rwco);
2527 } else {
2528 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2529 qemu_coroutine_enter(co);
2530 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2531 }
2532
2533 return rwco.ret;
2534 }
2535
2536 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2537 {
2538 BlockDriver *drv = bs->drv;
2539 CoroutineIOCompletion co = {
2540 .coroutine = qemu_coroutine_self(),
2541 };
2542 BlockAIOCB *acb;
2543
2544 bdrv_inc_in_flight(bs);
2545 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2546 co.ret = -ENOTSUP;
2547 goto out;
2548 }
2549
2550 if (drv->bdrv_co_ioctl) {
2551 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2552 } else {
2553 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2554 if (!acb) {
2555 co.ret = -ENOTSUP;
2556 goto out;
2557 }
2558 qemu_coroutine_yield();
2559 }
2560 out:
2561 bdrv_dec_in_flight(bs);
2562 return co.ret;
2563 }
2564
2565 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2566 {
2567 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2568 }
2569
2570 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2571 {
2572 return memset(qemu_blockalign(bs, size), 0, size);
2573 }
2574
2575 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2576 {
2577 size_t align = bdrv_opt_mem_align(bs);
2578
2579 /* Ensure that NULL is never returned on success */
2580 assert(align > 0);
2581 if (size == 0) {
2582 size = align;
2583 }
2584
2585 return qemu_try_memalign(align, size);
2586 }
2587
2588 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2589 {
2590 void *mem = qemu_try_blockalign(bs, size);
2591
2592 if (mem) {
2593 memset(mem, 0, size);
2594 }
2595
2596 return mem;
2597 }
2598
2599 /*
2600 * Check if all memory in this vector is sector aligned.
2601 */
2602 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2603 {
2604 int i;
2605 size_t alignment = bdrv_min_mem_align(bs);
2606
2607 for (i = 0; i < qiov->niov; i++) {
2608 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2609 return false;
2610 }
2611 if (qiov->iov[i].iov_len % alignment) {
2612 return false;
2613 }
2614 }
2615
2616 return true;
2617 }
2618
2619 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2620 NotifierWithReturn *notifier)
2621 {
2622 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2623 }
2624
2625 void bdrv_io_plug(BlockDriverState *bs)
2626 {
2627 BdrvChild *child;
2628
2629 QLIST_FOREACH(child, &bs->children, next) {
2630 bdrv_io_plug(child->bs);
2631 }
2632
2633 if (bs->io_plugged++ == 0) {
2634 BlockDriver *drv = bs->drv;
2635 if (drv && drv->bdrv_io_plug) {
2636 drv->bdrv_io_plug(bs);
2637 }
2638 }
2639 }
2640
2641 void bdrv_io_unplug(BlockDriverState *bs)
2642 {
2643 BdrvChild *child;
2644
2645 assert(bs->io_plugged);
2646 if (--bs->io_plugged == 0) {
2647 BlockDriver *drv = bs->drv;
2648 if (drv && drv->bdrv_io_unplug) {
2649 drv->bdrv_io_unplug(bs);
2650 }
2651 }
2652
2653 QLIST_FOREACH(child, &bs->children, next) {
2654 bdrv_io_unplug(child->bs);
2655 }
2656 }