]> git.proxmox.com Git - mirror_qemu.git/blob - block/io.c
Merge tag 'pull-block-2023-06-05' of https://gitlab.com/hreitz/qemu into staging
[mirror_qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void bdrv_parent_cb_resize(BlockDriverState *bs);
46 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
47 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
48
49 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
50 {
51 BdrvChild *c, *next;
52
53 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
54 if (c == ignore) {
55 continue;
56 }
57 bdrv_parent_drained_begin_single(c);
58 }
59 }
60
61 void bdrv_parent_drained_end_single(BdrvChild *c)
62 {
63 GLOBAL_STATE_CODE();
64
65 assert(c->quiesced_parent);
66 c->quiesced_parent = false;
67
68 if (c->klass->drained_end) {
69 c->klass->drained_end(c);
70 }
71 }
72
73 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
74 {
75 BdrvChild *c;
76
77 QLIST_FOREACH(c, &bs->parents, next_parent) {
78 if (c == ignore) {
79 continue;
80 }
81 bdrv_parent_drained_end_single(c);
82 }
83 }
84
85 bool bdrv_parent_drained_poll_single(BdrvChild *c)
86 {
87 if (c->klass->drained_poll) {
88 return c->klass->drained_poll(c);
89 }
90 return false;
91 }
92
93 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
94 bool ignore_bds_parents)
95 {
96 BdrvChild *c, *next;
97 bool busy = false;
98
99 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
100 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
101 continue;
102 }
103 busy |= bdrv_parent_drained_poll_single(c);
104 }
105
106 return busy;
107 }
108
109 void bdrv_parent_drained_begin_single(BdrvChild *c)
110 {
111 GLOBAL_STATE_CODE();
112
113 assert(!c->quiesced_parent);
114 c->quiesced_parent = true;
115
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
118 }
119 }
120
121 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
122 {
123 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
124 src->pdiscard_alignment);
125 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
126 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
127 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
128 src->max_hw_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
134 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
135 }
136
137 typedef struct BdrvRefreshLimitsState {
138 BlockDriverState *bs;
139 BlockLimits old_bl;
140 } BdrvRefreshLimitsState;
141
142 static void bdrv_refresh_limits_abort(void *opaque)
143 {
144 BdrvRefreshLimitsState *s = opaque;
145
146 s->bs->bl = s->old_bl;
147 }
148
149 static TransactionActionDrv bdrv_refresh_limits_drv = {
150 .abort = bdrv_refresh_limits_abort,
151 .clean = g_free,
152 };
153
154 /* @tran is allowed to be NULL, in this case no rollback is possible. */
155 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
156 {
157 ERRP_GUARD();
158 BlockDriver *drv = bs->drv;
159 BdrvChild *c;
160 bool have_limits;
161
162 GLOBAL_STATE_CODE();
163
164 if (tran) {
165 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
166 *s = (BdrvRefreshLimitsState) {
167 .bs = bs,
168 .old_bl = bs->bl,
169 };
170 tran_add(tran, &bdrv_refresh_limits_drv, s);
171 }
172
173 memset(&bs->bl, 0, sizeof(bs->bl));
174
175 if (!drv) {
176 return;
177 }
178
179 /* Default alignment based on whether driver has byte interface */
180 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
181 drv->bdrv_aio_preadv ||
182 drv->bdrv_co_preadv_part) ? 1 : 512;
183
184 /* Take some limits from the children as a default */
185 have_limits = false;
186 QLIST_FOREACH(c, &bs->children, next) {
187 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
188 {
189 bdrv_merge_limits(&bs->bl, &c->bs->bl);
190 have_limits = true;
191 }
192
193 if (c->role & BDRV_CHILD_FILTERED) {
194 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
195 }
196 }
197
198 if (!have_limits) {
199 bs->bl.min_mem_alignment = 512;
200 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
201
202 /* Safe default since most protocols use readv()/writev()/etc */
203 bs->bl.max_iov = IOV_MAX;
204 }
205
206 /* Then let the driver override it */
207 if (drv->bdrv_refresh_limits) {
208 drv->bdrv_refresh_limits(bs, errp);
209 if (*errp) {
210 return;
211 }
212 }
213
214 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
215 error_setg(errp, "Driver requires too large request alignment");
216 }
217 }
218
219 /**
220 * The copy-on-read flag is actually a reference count so multiple users may
221 * use the feature without worrying about clobbering its previous state.
222 * Copy-on-read stays enabled until all users have called to disable it.
223 */
224 void bdrv_enable_copy_on_read(BlockDriverState *bs)
225 {
226 IO_CODE();
227 qatomic_inc(&bs->copy_on_read);
228 }
229
230 void bdrv_disable_copy_on_read(BlockDriverState *bs)
231 {
232 int old = qatomic_fetch_dec(&bs->copy_on_read);
233 IO_CODE();
234 assert(old >= 1);
235 }
236
237 typedef struct {
238 Coroutine *co;
239 BlockDriverState *bs;
240 bool done;
241 bool begin;
242 bool poll;
243 BdrvChild *parent;
244 } BdrvCoDrainData;
245
246 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
247 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
248 bool ignore_bds_parents)
249 {
250 GLOBAL_STATE_CODE();
251
252 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
253 return true;
254 }
255
256 if (qatomic_read(&bs->in_flight)) {
257 return true;
258 }
259
260 return false;
261 }
262
263 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
264 BdrvChild *ignore_parent)
265 {
266 return bdrv_drain_poll(bs, ignore_parent, false);
267 }
268
269 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
270 bool poll);
271 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
272
273 static void bdrv_co_drain_bh_cb(void *opaque)
274 {
275 BdrvCoDrainData *data = opaque;
276 Coroutine *co = data->co;
277 BlockDriverState *bs = data->bs;
278
279 if (bs) {
280 AioContext *ctx = bdrv_get_aio_context(bs);
281 aio_context_acquire(ctx);
282 bdrv_dec_in_flight(bs);
283 if (data->begin) {
284 bdrv_do_drained_begin(bs, data->parent, data->poll);
285 } else {
286 assert(!data->poll);
287 bdrv_do_drained_end(bs, data->parent);
288 }
289 aio_context_release(ctx);
290 } else {
291 assert(data->begin);
292 bdrv_drain_all_begin();
293 }
294
295 data->done = true;
296 aio_co_wake(co);
297 }
298
299 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
300 bool begin,
301 BdrvChild *parent,
302 bool poll)
303 {
304 BdrvCoDrainData data;
305 Coroutine *self = qemu_coroutine_self();
306 AioContext *ctx = bdrv_get_aio_context(bs);
307 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
308
309 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
310 * other coroutines run if they were queued by aio_co_enter(). */
311
312 assert(qemu_in_coroutine());
313 data = (BdrvCoDrainData) {
314 .co = self,
315 .bs = bs,
316 .done = false,
317 .begin = begin,
318 .parent = parent,
319 .poll = poll,
320 };
321
322 if (bs) {
323 bdrv_inc_in_flight(bs);
324 }
325
326 /*
327 * Temporarily drop the lock across yield or we would get deadlocks.
328 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
329 *
330 * When we yield below, the lock for the current context will be
331 * released, so if this is actually the lock that protects bs, don't drop
332 * it a second time.
333 */
334 if (ctx != co_ctx) {
335 aio_context_release(ctx);
336 }
337 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
338 bdrv_co_drain_bh_cb, &data);
339
340 qemu_coroutine_yield();
341 /* If we are resumed from some other event (such as an aio completion or a
342 * timer callback), it is a bug in the caller that should be fixed. */
343 assert(data.done);
344
345 /* Reaquire the AioContext of bs if we dropped it */
346 if (ctx != co_ctx) {
347 aio_context_acquire(ctx);
348 }
349 }
350
351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352 bool poll)
353 {
354 IO_OR_GS_CODE();
355
356 if (qemu_in_coroutine()) {
357 bdrv_co_yield_to_drain(bs, true, parent, poll);
358 return;
359 }
360
361 GLOBAL_STATE_CODE();
362
363 /* Stop things in parent-to-child order */
364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365 bdrv_parent_drained_begin(bs, parent);
366 if (bs->drv && bs->drv->bdrv_drain_begin) {
367 bs->drv->bdrv_drain_begin(bs);
368 }
369 }
370
371 /*
372 * Wait for drained requests to finish.
373 *
374 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
375 * call is needed so things in this AioContext can make progress even
376 * though we don't return to the main AioContext loop - this automatically
377 * includes other nodes in the same AioContext and therefore all child
378 * nodes.
379 */
380 if (poll) {
381 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 }
383 }
384
385 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
386 {
387 bdrv_do_drained_begin(bs, parent, false);
388 }
389
390 void bdrv_drained_begin(BlockDriverState *bs)
391 {
392 IO_OR_GS_CODE();
393 bdrv_do_drained_begin(bs, NULL, true);
394 }
395
396 /**
397 * This function does not poll, nor must any of its recursively called
398 * functions.
399 */
400 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
401 {
402 int old_quiesce_counter;
403
404 IO_OR_GS_CODE();
405
406 if (qemu_in_coroutine()) {
407 bdrv_co_yield_to_drain(bs, false, parent, false);
408 return;
409 }
410 assert(bs->quiesce_counter > 0);
411 GLOBAL_STATE_CODE();
412
413 /* Re-enable things in child-to-parent order */
414 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
415 if (old_quiesce_counter == 1) {
416 if (bs->drv && bs->drv->bdrv_drain_end) {
417 bs->drv->bdrv_drain_end(bs);
418 }
419 bdrv_parent_drained_end(bs, parent);
420 }
421 }
422
423 void bdrv_drained_end(BlockDriverState *bs)
424 {
425 IO_OR_GS_CODE();
426 bdrv_do_drained_end(bs, NULL);
427 }
428
429 void bdrv_drain(BlockDriverState *bs)
430 {
431 IO_OR_GS_CODE();
432 bdrv_drained_begin(bs);
433 bdrv_drained_end(bs);
434 }
435
436 static void bdrv_drain_assert_idle(BlockDriverState *bs)
437 {
438 BdrvChild *child, *next;
439
440 assert(qatomic_read(&bs->in_flight) == 0);
441 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
442 bdrv_drain_assert_idle(child->bs);
443 }
444 }
445
446 unsigned int bdrv_drain_all_count = 0;
447
448 static bool bdrv_drain_all_poll(void)
449 {
450 BlockDriverState *bs = NULL;
451 bool result = false;
452 GLOBAL_STATE_CODE();
453
454 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
455 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
456 while ((bs = bdrv_next_all_states(bs))) {
457 AioContext *aio_context = bdrv_get_aio_context(bs);
458 aio_context_acquire(aio_context);
459 result |= bdrv_drain_poll(bs, NULL, true);
460 aio_context_release(aio_context);
461 }
462
463 return result;
464 }
465
466 /*
467 * Wait for pending requests to complete across all BlockDriverStates
468 *
469 * This function does not flush data to disk, use bdrv_flush_all() for that
470 * after calling this function.
471 *
472 * This pauses all block jobs and disables external clients. It must
473 * be paired with bdrv_drain_all_end().
474 *
475 * NOTE: no new block jobs or BlockDriverStates can be created between
476 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
477 */
478 void bdrv_drain_all_begin_nopoll(void)
479 {
480 BlockDriverState *bs = NULL;
481 GLOBAL_STATE_CODE();
482
483 /*
484 * bdrv queue is managed by record/replay,
485 * waiting for finishing the I/O requests may
486 * be infinite
487 */
488 if (replay_events_enabled()) {
489 return;
490 }
491
492 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
493 * loop AioContext, so make sure we're in the main context. */
494 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
495 assert(bdrv_drain_all_count < INT_MAX);
496 bdrv_drain_all_count++;
497
498 /* Quiesce all nodes, without polling in-flight requests yet. The graph
499 * cannot change during this loop. */
500 while ((bs = bdrv_next_all_states(bs))) {
501 AioContext *aio_context = bdrv_get_aio_context(bs);
502
503 aio_context_acquire(aio_context);
504 bdrv_do_drained_begin(bs, NULL, false);
505 aio_context_release(aio_context);
506 }
507 }
508
509 void bdrv_drain_all_begin(void)
510 {
511 BlockDriverState *bs = NULL;
512
513 if (qemu_in_coroutine()) {
514 bdrv_co_yield_to_drain(NULL, true, NULL, true);
515 return;
516 }
517
518 /*
519 * bdrv queue is managed by record/replay,
520 * waiting for finishing the I/O requests may
521 * be infinite
522 */
523 if (replay_events_enabled()) {
524 return;
525 }
526
527 bdrv_drain_all_begin_nopoll();
528
529 /* Now poll the in-flight requests */
530 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
531
532 while ((bs = bdrv_next_all_states(bs))) {
533 bdrv_drain_assert_idle(bs);
534 }
535 }
536
537 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
538 {
539 GLOBAL_STATE_CODE();
540
541 g_assert(bs->quiesce_counter > 0);
542 g_assert(!bs->refcnt);
543
544 while (bs->quiesce_counter) {
545 bdrv_do_drained_end(bs, NULL);
546 }
547 }
548
549 void bdrv_drain_all_end(void)
550 {
551 BlockDriverState *bs = NULL;
552 GLOBAL_STATE_CODE();
553
554 /*
555 * bdrv queue is managed by record/replay,
556 * waiting for finishing the I/O requests may
557 * be endless
558 */
559 if (replay_events_enabled()) {
560 return;
561 }
562
563 while ((bs = bdrv_next_all_states(bs))) {
564 AioContext *aio_context = bdrv_get_aio_context(bs);
565
566 aio_context_acquire(aio_context);
567 bdrv_do_drained_end(bs, NULL);
568 aio_context_release(aio_context);
569 }
570
571 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
572 assert(bdrv_drain_all_count > 0);
573 bdrv_drain_all_count--;
574 }
575
576 void bdrv_drain_all(void)
577 {
578 GLOBAL_STATE_CODE();
579 bdrv_drain_all_begin();
580 bdrv_drain_all_end();
581 }
582
583 /**
584 * Remove an active request from the tracked requests list
585 *
586 * This function should be called when a tracked request is completing.
587 */
588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
589 {
590 if (req->serialising) {
591 qatomic_dec(&req->bs->serialising_in_flight);
592 }
593
594 qemu_co_mutex_lock(&req->bs->reqs_lock);
595 QLIST_REMOVE(req, list);
596 qemu_co_queue_restart_all(&req->wait_queue);
597 qemu_co_mutex_unlock(&req->bs->reqs_lock);
598 }
599
600 /**
601 * Add an active request to the tracked requests list
602 */
603 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
604 BlockDriverState *bs,
605 int64_t offset,
606 int64_t bytes,
607 enum BdrvTrackedRequestType type)
608 {
609 bdrv_check_request(offset, bytes, &error_abort);
610
611 *req = (BdrvTrackedRequest){
612 .bs = bs,
613 .offset = offset,
614 .bytes = bytes,
615 .type = type,
616 .co = qemu_coroutine_self(),
617 .serialising = false,
618 .overlap_offset = offset,
619 .overlap_bytes = bytes,
620 };
621
622 qemu_co_queue_init(&req->wait_queue);
623
624 qemu_co_mutex_lock(&bs->reqs_lock);
625 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
626 qemu_co_mutex_unlock(&bs->reqs_lock);
627 }
628
629 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
630 int64_t offset, int64_t bytes)
631 {
632 bdrv_check_request(offset, bytes, &error_abort);
633
634 /* aaaa bbbb */
635 if (offset >= req->overlap_offset + req->overlap_bytes) {
636 return false;
637 }
638 /* bbbb aaaa */
639 if (req->overlap_offset >= offset + bytes) {
640 return false;
641 }
642 return true;
643 }
644
645 /* Called with self->bs->reqs_lock held */
646 static coroutine_fn BdrvTrackedRequest *
647 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
648 {
649 BdrvTrackedRequest *req;
650
651 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
652 if (req == self || (!req->serialising && !self->serialising)) {
653 continue;
654 }
655 if (tracked_request_overlaps(req, self->overlap_offset,
656 self->overlap_bytes))
657 {
658 /*
659 * Hitting this means there was a reentrant request, for
660 * example, a block driver issuing nested requests. This must
661 * never happen since it means deadlock.
662 */
663 assert(qemu_coroutine_self() != req->co);
664
665 /*
666 * If the request is already (indirectly) waiting for us, or
667 * will wait for us as soon as it wakes up, then just go on
668 * (instead of producing a deadlock in the former case).
669 */
670 if (!req->waiting_for) {
671 return req;
672 }
673 }
674 }
675
676 return NULL;
677 }
678
679 /* Called with self->bs->reqs_lock held */
680 static void coroutine_fn
681 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
682 {
683 BdrvTrackedRequest *req;
684
685 while ((req = bdrv_find_conflicting_request(self))) {
686 self->waiting_for = req;
687 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
688 self->waiting_for = NULL;
689 }
690 }
691
692 /* Called with req->bs->reqs_lock held */
693 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
694 uint64_t align)
695 {
696 int64_t overlap_offset = req->offset & ~(align - 1);
697 int64_t overlap_bytes =
698 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
699
700 bdrv_check_request(req->offset, req->bytes, &error_abort);
701
702 if (!req->serialising) {
703 qatomic_inc(&req->bs->serialising_in_flight);
704 req->serialising = true;
705 }
706
707 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
708 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
709 }
710
711 /**
712 * Return the tracked request on @bs for the current coroutine, or
713 * NULL if there is none.
714 */
715 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
716 {
717 BdrvTrackedRequest *req;
718 Coroutine *self = qemu_coroutine_self();
719 IO_CODE();
720
721 QLIST_FOREACH(req, &bs->tracked_requests, list) {
722 if (req->co == self) {
723 return req;
724 }
725 }
726
727 return NULL;
728 }
729
730 /**
731 * Round a region to cluster boundaries
732 */
733 void coroutine_fn GRAPH_RDLOCK
734 bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
735 int64_t *cluster_offset, int64_t *cluster_bytes)
736 {
737 BlockDriverInfo bdi;
738 IO_CODE();
739 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
740 *cluster_offset = offset;
741 *cluster_bytes = bytes;
742 } else {
743 int64_t c = bdi.cluster_size;
744 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
745 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
746 }
747 }
748
749 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
750 {
751 BlockDriverInfo bdi;
752 int ret;
753
754 ret = bdrv_co_get_info(bs, &bdi);
755 if (ret < 0 || bdi.cluster_size == 0) {
756 return bs->bl.request_alignment;
757 } else {
758 return bdi.cluster_size;
759 }
760 }
761
762 void bdrv_inc_in_flight(BlockDriverState *bs)
763 {
764 IO_CODE();
765 qatomic_inc(&bs->in_flight);
766 }
767
768 void bdrv_wakeup(BlockDriverState *bs)
769 {
770 IO_CODE();
771 aio_wait_kick();
772 }
773
774 void bdrv_dec_in_flight(BlockDriverState *bs)
775 {
776 IO_CODE();
777 qatomic_dec(&bs->in_flight);
778 bdrv_wakeup(bs);
779 }
780
781 static void coroutine_fn
782 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
783 {
784 BlockDriverState *bs = self->bs;
785
786 if (!qatomic_read(&bs->serialising_in_flight)) {
787 return;
788 }
789
790 qemu_co_mutex_lock(&bs->reqs_lock);
791 bdrv_wait_serialising_requests_locked(self);
792 qemu_co_mutex_unlock(&bs->reqs_lock);
793 }
794
795 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
796 uint64_t align)
797 {
798 IO_CODE();
799
800 qemu_co_mutex_lock(&req->bs->reqs_lock);
801
802 tracked_request_set_serialising(req, align);
803 bdrv_wait_serialising_requests_locked(req);
804
805 qemu_co_mutex_unlock(&req->bs->reqs_lock);
806 }
807
808 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
809 QEMUIOVector *qiov, size_t qiov_offset,
810 Error **errp)
811 {
812 /*
813 * Check generic offset/bytes correctness
814 */
815
816 if (offset < 0) {
817 error_setg(errp, "offset is negative: %" PRIi64, offset);
818 return -EIO;
819 }
820
821 if (bytes < 0) {
822 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
823 return -EIO;
824 }
825
826 if (bytes > BDRV_MAX_LENGTH) {
827 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
828 bytes, BDRV_MAX_LENGTH);
829 return -EIO;
830 }
831
832 if (offset > BDRV_MAX_LENGTH) {
833 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
834 offset, BDRV_MAX_LENGTH);
835 return -EIO;
836 }
837
838 if (offset > BDRV_MAX_LENGTH - bytes) {
839 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
840 "exceeds maximum(%" PRIi64 ")", offset, bytes,
841 BDRV_MAX_LENGTH);
842 return -EIO;
843 }
844
845 if (!qiov) {
846 return 0;
847 }
848
849 /*
850 * Check qiov and qiov_offset
851 */
852
853 if (qiov_offset > qiov->size) {
854 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
855 qiov_offset, qiov->size);
856 return -EIO;
857 }
858
859 if (bytes > qiov->size - qiov_offset) {
860 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
861 "vector size(%zu)", bytes, qiov_offset, qiov->size);
862 return -EIO;
863 }
864
865 return 0;
866 }
867
868 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
869 {
870 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
871 }
872
873 static int bdrv_check_request32(int64_t offset, int64_t bytes,
874 QEMUIOVector *qiov, size_t qiov_offset)
875 {
876 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
877 if (ret < 0) {
878 return ret;
879 }
880
881 if (bytes > BDRV_REQUEST_MAX_BYTES) {
882 return -EIO;
883 }
884
885 return 0;
886 }
887
888 /*
889 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
890 * The operation is sped up by checking the block status and only writing
891 * zeroes to the device if they currently do not return zeroes. Optional
892 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
893 * BDRV_REQ_FUA).
894 *
895 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
896 */
897 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
898 {
899 int ret;
900 int64_t target_size, bytes, offset = 0;
901 BlockDriverState *bs = child->bs;
902 IO_CODE();
903
904 target_size = bdrv_getlength(bs);
905 if (target_size < 0) {
906 return target_size;
907 }
908
909 for (;;) {
910 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
911 if (bytes <= 0) {
912 return 0;
913 }
914 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
915 if (ret < 0) {
916 return ret;
917 }
918 if (ret & BDRV_BLOCK_ZERO) {
919 offset += bytes;
920 continue;
921 }
922 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
923 if (ret < 0) {
924 return ret;
925 }
926 offset += bytes;
927 }
928 }
929
930 /*
931 * Writes to the file and ensures that no writes are reordered across this
932 * request (acts as a barrier)
933 *
934 * Returns 0 on success, -errno in error cases.
935 */
936 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
937 int64_t bytes, const void *buf,
938 BdrvRequestFlags flags)
939 {
940 int ret;
941 IO_CODE();
942 assert_bdrv_graph_readable();
943
944 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
945 if (ret < 0) {
946 return ret;
947 }
948
949 ret = bdrv_co_flush(child->bs);
950 if (ret < 0) {
951 return ret;
952 }
953
954 return 0;
955 }
956
957 typedef struct CoroutineIOCompletion {
958 Coroutine *coroutine;
959 int ret;
960 } CoroutineIOCompletion;
961
962 static void bdrv_co_io_em_complete(void *opaque, int ret)
963 {
964 CoroutineIOCompletion *co = opaque;
965
966 co->ret = ret;
967 aio_co_wake(co->coroutine);
968 }
969
970 static int coroutine_fn GRAPH_RDLOCK
971 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
972 QEMUIOVector *qiov, size_t qiov_offset, int flags)
973 {
974 BlockDriver *drv = bs->drv;
975 int64_t sector_num;
976 unsigned int nb_sectors;
977 QEMUIOVector local_qiov;
978 int ret;
979 assert_bdrv_graph_readable();
980
981 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
982 assert(!(flags & ~bs->supported_read_flags));
983
984 if (!drv) {
985 return -ENOMEDIUM;
986 }
987
988 if (drv->bdrv_co_preadv_part) {
989 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
990 flags);
991 }
992
993 if (qiov_offset > 0 || bytes != qiov->size) {
994 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
995 qiov = &local_qiov;
996 }
997
998 if (drv->bdrv_co_preadv) {
999 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1000 goto out;
1001 }
1002
1003 if (drv->bdrv_aio_preadv) {
1004 BlockAIOCB *acb;
1005 CoroutineIOCompletion co = {
1006 .coroutine = qemu_coroutine_self(),
1007 };
1008
1009 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1010 bdrv_co_io_em_complete, &co);
1011 if (acb == NULL) {
1012 ret = -EIO;
1013 goto out;
1014 } else {
1015 qemu_coroutine_yield();
1016 ret = co.ret;
1017 goto out;
1018 }
1019 }
1020
1021 sector_num = offset >> BDRV_SECTOR_BITS;
1022 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1023
1024 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1025 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1026 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1027 assert(drv->bdrv_co_readv);
1028
1029 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1030
1031 out:
1032 if (qiov == &local_qiov) {
1033 qemu_iovec_destroy(&local_qiov);
1034 }
1035
1036 return ret;
1037 }
1038
1039 static int coroutine_fn GRAPH_RDLOCK
1040 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1041 QEMUIOVector *qiov, size_t qiov_offset,
1042 BdrvRequestFlags flags)
1043 {
1044 BlockDriver *drv = bs->drv;
1045 bool emulate_fua = false;
1046 int64_t sector_num;
1047 unsigned int nb_sectors;
1048 QEMUIOVector local_qiov;
1049 int ret;
1050 assert_bdrv_graph_readable();
1051
1052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1053
1054 if (!drv) {
1055 return -ENOMEDIUM;
1056 }
1057
1058 if ((flags & BDRV_REQ_FUA) &&
1059 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1060 flags &= ~BDRV_REQ_FUA;
1061 emulate_fua = true;
1062 }
1063
1064 flags &= bs->supported_write_flags;
1065
1066 if (drv->bdrv_co_pwritev_part) {
1067 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1068 flags);
1069 goto emulate_flags;
1070 }
1071
1072 if (qiov_offset > 0 || bytes != qiov->size) {
1073 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1074 qiov = &local_qiov;
1075 }
1076
1077 if (drv->bdrv_co_pwritev) {
1078 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1079 goto emulate_flags;
1080 }
1081
1082 if (drv->bdrv_aio_pwritev) {
1083 BlockAIOCB *acb;
1084 CoroutineIOCompletion co = {
1085 .coroutine = qemu_coroutine_self(),
1086 };
1087
1088 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1089 bdrv_co_io_em_complete, &co);
1090 if (acb == NULL) {
1091 ret = -EIO;
1092 } else {
1093 qemu_coroutine_yield();
1094 ret = co.ret;
1095 }
1096 goto emulate_flags;
1097 }
1098
1099 sector_num = offset >> BDRV_SECTOR_BITS;
1100 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1101
1102 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1103 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1104 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1105
1106 assert(drv->bdrv_co_writev);
1107 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1108
1109 emulate_flags:
1110 if (ret == 0 && emulate_fua) {
1111 ret = bdrv_co_flush(bs);
1112 }
1113
1114 if (qiov == &local_qiov) {
1115 qemu_iovec_destroy(&local_qiov);
1116 }
1117
1118 return ret;
1119 }
1120
1121 static int coroutine_fn GRAPH_RDLOCK
1122 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1123 int64_t bytes, QEMUIOVector *qiov,
1124 size_t qiov_offset)
1125 {
1126 BlockDriver *drv = bs->drv;
1127 QEMUIOVector local_qiov;
1128 int ret;
1129 assert_bdrv_graph_readable();
1130
1131 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1132
1133 if (!drv) {
1134 return -ENOMEDIUM;
1135 }
1136
1137 if (!block_driver_can_compress(drv)) {
1138 return -ENOTSUP;
1139 }
1140
1141 if (drv->bdrv_co_pwritev_compressed_part) {
1142 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1143 qiov, qiov_offset);
1144 }
1145
1146 if (qiov_offset == 0) {
1147 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1148 }
1149
1150 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1151 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1152 qemu_iovec_destroy(&local_qiov);
1153
1154 return ret;
1155 }
1156
1157 static int coroutine_fn GRAPH_RDLOCK
1158 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1159 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1160 {
1161 BlockDriverState *bs = child->bs;
1162
1163 /* Perform I/O through a temporary buffer so that users who scribble over
1164 * their read buffer while the operation is in progress do not end up
1165 * modifying the image file. This is critical for zero-copy guest I/O
1166 * where anything might happen inside guest memory.
1167 */
1168 void *bounce_buffer = NULL;
1169
1170 BlockDriver *drv = bs->drv;
1171 int64_t cluster_offset;
1172 int64_t cluster_bytes;
1173 int64_t skip_bytes;
1174 int ret;
1175 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1176 BDRV_REQUEST_MAX_BYTES);
1177 int64_t progress = 0;
1178 bool skip_write;
1179
1180 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1181
1182 if (!drv) {
1183 return -ENOMEDIUM;
1184 }
1185
1186 /*
1187 * Do not write anything when the BDS is inactive. That is not
1188 * allowed, and it would not help.
1189 */
1190 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1191
1192 /* FIXME We cannot require callers to have write permissions when all they
1193 * are doing is a read request. If we did things right, write permissions
1194 * would be obtained anyway, but internally by the copy-on-read code. As
1195 * long as it is implemented here rather than in a separate filter driver,
1196 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1197 * it could request permissions. Therefore we have to bypass the permission
1198 * system for the moment. */
1199 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1200
1201 /* Cover entire cluster so no additional backing file I/O is required when
1202 * allocating cluster in the image file. Note that this value may exceed
1203 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1204 * is one reason we loop rather than doing it all at once.
1205 */
1206 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1207 skip_bytes = offset - cluster_offset;
1208
1209 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1210 cluster_offset, cluster_bytes);
1211
1212 while (cluster_bytes) {
1213 int64_t pnum;
1214
1215 if (skip_write) {
1216 ret = 1; /* "already allocated", so nothing will be copied */
1217 pnum = MIN(cluster_bytes, max_transfer);
1218 } else {
1219 ret = bdrv_is_allocated(bs, cluster_offset,
1220 MIN(cluster_bytes, max_transfer), &pnum);
1221 if (ret < 0) {
1222 /*
1223 * Safe to treat errors in querying allocation as if
1224 * unallocated; we'll probably fail again soon on the
1225 * read, but at least that will set a decent errno.
1226 */
1227 pnum = MIN(cluster_bytes, max_transfer);
1228 }
1229
1230 /* Stop at EOF if the image ends in the middle of the cluster */
1231 if (ret == 0 && pnum == 0) {
1232 assert(progress >= bytes);
1233 break;
1234 }
1235
1236 assert(skip_bytes < pnum);
1237 }
1238
1239 if (ret <= 0) {
1240 QEMUIOVector local_qiov;
1241
1242 /* Must copy-on-read; use the bounce buffer */
1243 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1244 if (!bounce_buffer) {
1245 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1246 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1247 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1248
1249 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1250 if (!bounce_buffer) {
1251 ret = -ENOMEM;
1252 goto err;
1253 }
1254 }
1255 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1256
1257 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1258 &local_qiov, 0, 0);
1259 if (ret < 0) {
1260 goto err;
1261 }
1262
1263 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1264 if (drv->bdrv_co_pwrite_zeroes &&
1265 buffer_is_zero(bounce_buffer, pnum)) {
1266 /* FIXME: Should we (perhaps conditionally) be setting
1267 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1268 * that still correctly reads as zero? */
1269 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1270 BDRV_REQ_WRITE_UNCHANGED);
1271 } else {
1272 /* This does not change the data on the disk, it is not
1273 * necessary to flush even in cache=writethrough mode.
1274 */
1275 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1276 &local_qiov, 0,
1277 BDRV_REQ_WRITE_UNCHANGED);
1278 }
1279
1280 if (ret < 0) {
1281 /* It might be okay to ignore write errors for guest
1282 * requests. If this is a deliberate copy-on-read
1283 * then we don't want to ignore the error. Simply
1284 * report it in all cases.
1285 */
1286 goto err;
1287 }
1288
1289 if (!(flags & BDRV_REQ_PREFETCH)) {
1290 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1291 bounce_buffer + skip_bytes,
1292 MIN(pnum - skip_bytes, bytes - progress));
1293 }
1294 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1295 /* Read directly into the destination */
1296 ret = bdrv_driver_preadv(bs, offset + progress,
1297 MIN(pnum - skip_bytes, bytes - progress),
1298 qiov, qiov_offset + progress, 0);
1299 if (ret < 0) {
1300 goto err;
1301 }
1302 }
1303
1304 cluster_offset += pnum;
1305 cluster_bytes -= pnum;
1306 progress += pnum - skip_bytes;
1307 skip_bytes = 0;
1308 }
1309 ret = 0;
1310
1311 err:
1312 qemu_vfree(bounce_buffer);
1313 return ret;
1314 }
1315
1316 /*
1317 * Forwards an already correctly aligned request to the BlockDriver. This
1318 * handles copy on read, zeroing after EOF, and fragmentation of large
1319 * reads; any other features must be implemented by the caller.
1320 */
1321 static int coroutine_fn GRAPH_RDLOCK
1322 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1323 int64_t offset, int64_t bytes, int64_t align,
1324 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1325 {
1326 BlockDriverState *bs = child->bs;
1327 int64_t total_bytes, max_bytes;
1328 int ret = 0;
1329 int64_t bytes_remaining = bytes;
1330 int max_transfer;
1331
1332 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1333 assert(is_power_of_2(align));
1334 assert((offset & (align - 1)) == 0);
1335 assert((bytes & (align - 1)) == 0);
1336 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1337 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1338 align);
1339
1340 /*
1341 * TODO: We would need a per-BDS .supported_read_flags and
1342 * potential fallback support, if we ever implement any read flags
1343 * to pass through to drivers. For now, there aren't any
1344 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1345 */
1346 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1347 BDRV_REQ_REGISTERED_BUF)));
1348
1349 /* Handle Copy on Read and associated serialisation */
1350 if (flags & BDRV_REQ_COPY_ON_READ) {
1351 /* If we touch the same cluster it counts as an overlap. This
1352 * guarantees that allocating writes will be serialized and not race
1353 * with each other for the same cluster. For example, in copy-on-read
1354 * it ensures that the CoR read and write operations are atomic and
1355 * guest writes cannot interleave between them. */
1356 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1357 } else {
1358 bdrv_wait_serialising_requests(req);
1359 }
1360
1361 if (flags & BDRV_REQ_COPY_ON_READ) {
1362 int64_t pnum;
1363
1364 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1365 flags &= ~BDRV_REQ_COPY_ON_READ;
1366
1367 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1368 if (ret < 0) {
1369 goto out;
1370 }
1371
1372 if (!ret || pnum != bytes) {
1373 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1374 qiov, qiov_offset, flags);
1375 goto out;
1376 } else if (flags & BDRV_REQ_PREFETCH) {
1377 goto out;
1378 }
1379 }
1380
1381 /* Forward the request to the BlockDriver, possibly fragmenting it */
1382 total_bytes = bdrv_getlength(bs);
1383 if (total_bytes < 0) {
1384 ret = total_bytes;
1385 goto out;
1386 }
1387
1388 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1389
1390 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1391 if (bytes <= max_bytes && bytes <= max_transfer) {
1392 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1393 goto out;
1394 }
1395
1396 while (bytes_remaining) {
1397 int64_t num;
1398
1399 if (max_bytes) {
1400 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1401 assert(num);
1402
1403 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1404 num, qiov,
1405 qiov_offset + bytes - bytes_remaining,
1406 flags);
1407 max_bytes -= num;
1408 } else {
1409 num = bytes_remaining;
1410 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1411 0, bytes_remaining);
1412 }
1413 if (ret < 0) {
1414 goto out;
1415 }
1416 bytes_remaining -= num;
1417 }
1418
1419 out:
1420 return ret < 0 ? ret : 0;
1421 }
1422
1423 /*
1424 * Request padding
1425 *
1426 * |<---- align ----->| |<----- align ---->|
1427 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1428 * | | | | | |
1429 * -*----------$-------*-------- ... --------*-----$------------*---
1430 * | | | | | |
1431 * | offset | | end |
1432 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1433 * [buf ... ) [tail_buf )
1434 *
1435 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1436 * is placed at the beginning of @buf and @tail at the @end.
1437 *
1438 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1439 * around tail, if tail exists.
1440 *
1441 * @merge_reads is true for small requests,
1442 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1443 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1444 *
1445 * @write is true for write requests, false for read requests.
1446 *
1447 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1448 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1449 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1450 * I/O vector elements so for read requests, the data can be copied back after
1451 * the read is done.
1452 */
1453 typedef struct BdrvRequestPadding {
1454 uint8_t *buf;
1455 size_t buf_len;
1456 uint8_t *tail_buf;
1457 size_t head;
1458 size_t tail;
1459 bool merge_reads;
1460 bool write;
1461 QEMUIOVector local_qiov;
1462
1463 uint8_t *collapse_bounce_buf;
1464 size_t collapse_len;
1465 QEMUIOVector pre_collapse_qiov;
1466 } BdrvRequestPadding;
1467
1468 static bool bdrv_init_padding(BlockDriverState *bs,
1469 int64_t offset, int64_t bytes,
1470 bool write,
1471 BdrvRequestPadding *pad)
1472 {
1473 int64_t align = bs->bl.request_alignment;
1474 int64_t sum;
1475
1476 bdrv_check_request(offset, bytes, &error_abort);
1477 assert(align <= INT_MAX); /* documented in block/block_int.h */
1478 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1479
1480 memset(pad, 0, sizeof(*pad));
1481
1482 pad->head = offset & (align - 1);
1483 pad->tail = ((offset + bytes) & (align - 1));
1484 if (pad->tail) {
1485 pad->tail = align - pad->tail;
1486 }
1487
1488 if (!pad->head && !pad->tail) {
1489 return false;
1490 }
1491
1492 assert(bytes); /* Nothing good in aligning zero-length requests */
1493
1494 sum = pad->head + bytes + pad->tail;
1495 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1496 pad->buf = qemu_blockalign(bs, pad->buf_len);
1497 pad->merge_reads = sum == pad->buf_len;
1498 if (pad->tail) {
1499 pad->tail_buf = pad->buf + pad->buf_len - align;
1500 }
1501
1502 pad->write = write;
1503
1504 return true;
1505 }
1506
1507 static int coroutine_fn GRAPH_RDLOCK
1508 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1509 BdrvRequestPadding *pad, bool zero_middle)
1510 {
1511 QEMUIOVector local_qiov;
1512 BlockDriverState *bs = child->bs;
1513 uint64_t align = bs->bl.request_alignment;
1514 int ret;
1515
1516 assert(req->serialising && pad->buf);
1517
1518 if (pad->head || pad->merge_reads) {
1519 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1520
1521 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1522
1523 if (pad->head) {
1524 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1525 }
1526 if (pad->merge_reads && pad->tail) {
1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1528 }
1529 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1530 align, &local_qiov, 0, 0);
1531 if (ret < 0) {
1532 return ret;
1533 }
1534 if (pad->head) {
1535 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1536 }
1537 if (pad->merge_reads && pad->tail) {
1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1539 }
1540
1541 if (pad->merge_reads) {
1542 goto zero_mem;
1543 }
1544 }
1545
1546 if (pad->tail) {
1547 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1548
1549 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1550 ret = bdrv_aligned_preadv(
1551 child, req,
1552 req->overlap_offset + req->overlap_bytes - align,
1553 align, align, &local_qiov, 0, 0);
1554 if (ret < 0) {
1555 return ret;
1556 }
1557 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1558 }
1559
1560 zero_mem:
1561 if (zero_middle) {
1562 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1563 }
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * Free *pad's associated buffers, and perform any necessary finalization steps.
1570 */
1571 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1572 {
1573 if (pad->collapse_bounce_buf) {
1574 if (!pad->write) {
1575 /*
1576 * If padding required elements in the vector to be collapsed into a
1577 * bounce buffer, copy the bounce buffer content back
1578 */
1579 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1580 pad->collapse_bounce_buf, pad->collapse_len);
1581 }
1582 qemu_vfree(pad->collapse_bounce_buf);
1583 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1584 }
1585 if (pad->buf) {
1586 qemu_vfree(pad->buf);
1587 qemu_iovec_destroy(&pad->local_qiov);
1588 }
1589 memset(pad, 0, sizeof(*pad));
1590 }
1591
1592 /*
1593 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1594 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1595 *
1596 * To ensure this, when necessary, the first two or three elements of @iov are
1597 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1598 * bounce buffer in pad->local_qiov.
1599 *
1600 * After performing a read request, the data from the bounce buffer must be
1601 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1602 */
1603 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1604 BdrvRequestPadding *pad,
1605 struct iovec *iov, int niov,
1606 size_t iov_offset, size_t bytes)
1607 {
1608 int padded_niov, surplus_count, collapse_count;
1609
1610 /* Assert this invariant */
1611 assert(niov <= IOV_MAX);
1612
1613 /*
1614 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1615 * to the guest is not ideal, but there is little else we can do. At least
1616 * this will practically never happen on 64-bit systems.
1617 */
1618 if (SIZE_MAX - pad->head < bytes ||
1619 SIZE_MAX - pad->head - bytes < pad->tail)
1620 {
1621 return -EINVAL;
1622 }
1623
1624 /* Length of the resulting IOV if we just concatenated everything */
1625 padded_niov = !!pad->head + niov + !!pad->tail;
1626
1627 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1628
1629 if (pad->head) {
1630 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1631 }
1632
1633 /*
1634 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1635 * Instead, merge the first two or three elements of @iov to reduce the
1636 * number of vector elements as necessary.
1637 */
1638 if (padded_niov > IOV_MAX) {
1639 /*
1640 * Only head and tail can have lead to the number of entries exceeding
1641 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1642 * to reduce the number of elements by `surplus_count`, so we merge that
1643 * many elements plus one into one element.
1644 */
1645 surplus_count = padded_niov - IOV_MAX;
1646 assert(surplus_count <= !!pad->head + !!pad->tail);
1647 collapse_count = surplus_count + 1;
1648
1649 /*
1650 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1651 * advance `iov` (and associated variables) by those elements.
1652 */
1653 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1654 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1655 collapse_count, iov_offset, SIZE_MAX);
1656 iov += collapse_count;
1657 iov_offset = 0;
1658 niov -= collapse_count;
1659 bytes -= pad->pre_collapse_qiov.size;
1660
1661 /*
1662 * Construct the bounce buffer to match the length of the to-collapse
1663 * vector elements, and for write requests, initialize it with the data
1664 * from those elements. Then add it to `pad->local_qiov`.
1665 */
1666 pad->collapse_len = pad->pre_collapse_qiov.size;
1667 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1668 if (pad->write) {
1669 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1670 pad->collapse_bounce_buf, pad->collapse_len);
1671 }
1672 qemu_iovec_add(&pad->local_qiov,
1673 pad->collapse_bounce_buf, pad->collapse_len);
1674 }
1675
1676 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1677
1678 if (pad->tail) {
1679 qemu_iovec_add(&pad->local_qiov,
1680 pad->buf + pad->buf_len - pad->tail, pad->tail);
1681 }
1682
1683 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1684 return 0;
1685 }
1686
1687 /*
1688 * bdrv_pad_request
1689 *
1690 * Exchange request parameters with padded request if needed. Don't include RMW
1691 * read of padding, bdrv_padding_rmw_read() should be called separately if
1692 * needed.
1693 *
1694 * @write is true for write requests, false for read requests.
1695 *
1696 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1697 * - on function start they represent original request
1698 * - on failure or when padding is not needed they are unchanged
1699 * - on success when padding is needed they represent padded request
1700 */
1701 static int bdrv_pad_request(BlockDriverState *bs,
1702 QEMUIOVector **qiov, size_t *qiov_offset,
1703 int64_t *offset, int64_t *bytes,
1704 bool write,
1705 BdrvRequestPadding *pad, bool *padded,
1706 BdrvRequestFlags *flags)
1707 {
1708 int ret;
1709 struct iovec *sliced_iov;
1710 int sliced_niov;
1711 size_t sliced_head, sliced_tail;
1712
1713 bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1714
1715 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1716 if (padded) {
1717 *padded = false;
1718 }
1719 return 0;
1720 }
1721
1722 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1723 &sliced_head, &sliced_tail,
1724 &sliced_niov);
1725
1726 /* Guaranteed by bdrv_check_qiov_request() */
1727 assert(*bytes <= SIZE_MAX);
1728 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1729 sliced_head, *bytes);
1730 if (ret < 0) {
1731 bdrv_padding_finalize(pad);
1732 return ret;
1733 }
1734 *bytes += pad->head + pad->tail;
1735 *offset -= pad->head;
1736 *qiov = &pad->local_qiov;
1737 *qiov_offset = 0;
1738 if (padded) {
1739 *padded = true;
1740 }
1741 if (flags) {
1742 /* Can't use optimization hint with bounce buffer */
1743 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1744 }
1745
1746 return 0;
1747 }
1748
1749 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1750 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1751 BdrvRequestFlags flags)
1752 {
1753 IO_CODE();
1754 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1755 }
1756
1757 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1758 int64_t offset, int64_t bytes,
1759 QEMUIOVector *qiov, size_t qiov_offset,
1760 BdrvRequestFlags flags)
1761 {
1762 BlockDriverState *bs = child->bs;
1763 BdrvTrackedRequest req;
1764 BdrvRequestPadding pad;
1765 int ret;
1766 IO_CODE();
1767
1768 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1769
1770 if (!bdrv_co_is_inserted(bs)) {
1771 return -ENOMEDIUM;
1772 }
1773
1774 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1775 if (ret < 0) {
1776 return ret;
1777 }
1778
1779 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1780 /*
1781 * Aligning zero request is nonsense. Even if driver has special meaning
1782 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1783 * it to driver due to request_alignment.
1784 *
1785 * Still, no reason to return an error if someone do unaligned
1786 * zero-length read occasionally.
1787 */
1788 return 0;
1789 }
1790
1791 bdrv_inc_in_flight(bs);
1792
1793 /* Don't do copy-on-read if we read data before write operation */
1794 if (qatomic_read(&bs->copy_on_read)) {
1795 flags |= BDRV_REQ_COPY_ON_READ;
1796 }
1797
1798 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1799 &pad, NULL, &flags);
1800 if (ret < 0) {
1801 goto fail;
1802 }
1803
1804 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1805 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1806 bs->bl.request_alignment,
1807 qiov, qiov_offset, flags);
1808 tracked_request_end(&req);
1809 bdrv_padding_finalize(&pad);
1810
1811 fail:
1812 bdrv_dec_in_flight(bs);
1813
1814 return ret;
1815 }
1816
1817 static int coroutine_fn GRAPH_RDLOCK
1818 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1819 BdrvRequestFlags flags)
1820 {
1821 BlockDriver *drv = bs->drv;
1822 QEMUIOVector qiov;
1823 void *buf = NULL;
1824 int ret = 0;
1825 bool need_flush = false;
1826 int head = 0;
1827 int tail = 0;
1828
1829 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1830 INT64_MAX);
1831 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1832 bs->bl.request_alignment);
1833 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1834
1835 assert_bdrv_graph_readable();
1836 bdrv_check_request(offset, bytes, &error_abort);
1837
1838 if (!drv) {
1839 return -ENOMEDIUM;
1840 }
1841
1842 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1843 return -ENOTSUP;
1844 }
1845
1846 /* By definition there is no user buffer so this flag doesn't make sense */
1847 if (flags & BDRV_REQ_REGISTERED_BUF) {
1848 return -EINVAL;
1849 }
1850
1851 /* Invalidate the cached block-status data range if this write overlaps */
1852 bdrv_bsc_invalidate_range(bs, offset, bytes);
1853
1854 assert(alignment % bs->bl.request_alignment == 0);
1855 head = offset % alignment;
1856 tail = (offset + bytes) % alignment;
1857 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1858 assert(max_write_zeroes >= bs->bl.request_alignment);
1859
1860 while (bytes > 0 && !ret) {
1861 int64_t num = bytes;
1862
1863 /* Align request. Block drivers can expect the "bulk" of the request
1864 * to be aligned, and that unaligned requests do not cross cluster
1865 * boundaries.
1866 */
1867 if (head) {
1868 /* Make a small request up to the first aligned sector. For
1869 * convenience, limit this request to max_transfer even if
1870 * we don't need to fall back to writes. */
1871 num = MIN(MIN(bytes, max_transfer), alignment - head);
1872 head = (head + num) % alignment;
1873 assert(num < max_write_zeroes);
1874 } else if (tail && num > alignment) {
1875 /* Shorten the request to the last aligned sector. */
1876 num -= tail;
1877 }
1878
1879 /* limit request size */
1880 if (num > max_write_zeroes) {
1881 num = max_write_zeroes;
1882 }
1883
1884 ret = -ENOTSUP;
1885 /* First try the efficient write zeroes operation */
1886 if (drv->bdrv_co_pwrite_zeroes) {
1887 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1888 flags & bs->supported_zero_flags);
1889 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1890 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1891 need_flush = true;
1892 }
1893 } else {
1894 assert(!bs->supported_zero_flags);
1895 }
1896
1897 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1898 /* Fall back to bounce buffer if write zeroes is unsupported */
1899 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1900
1901 if ((flags & BDRV_REQ_FUA) &&
1902 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1903 /* No need for bdrv_driver_pwrite() to do a fallback
1904 * flush on each chunk; use just one at the end */
1905 write_flags &= ~BDRV_REQ_FUA;
1906 need_flush = true;
1907 }
1908 num = MIN(num, max_transfer);
1909 if (buf == NULL) {
1910 buf = qemu_try_blockalign0(bs, num);
1911 if (buf == NULL) {
1912 ret = -ENOMEM;
1913 goto fail;
1914 }
1915 }
1916 qemu_iovec_init_buf(&qiov, buf, num);
1917
1918 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1919
1920 /* Keep bounce buffer around if it is big enough for all
1921 * all future requests.
1922 */
1923 if (num < max_transfer) {
1924 qemu_vfree(buf);
1925 buf = NULL;
1926 }
1927 }
1928
1929 offset += num;
1930 bytes -= num;
1931 }
1932
1933 fail:
1934 if (ret == 0 && need_flush) {
1935 ret = bdrv_co_flush(bs);
1936 }
1937 qemu_vfree(buf);
1938 return ret;
1939 }
1940
1941 static inline int coroutine_fn GRAPH_RDLOCK
1942 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1943 BdrvTrackedRequest *req, int flags)
1944 {
1945 BlockDriverState *bs = child->bs;
1946
1947 bdrv_check_request(offset, bytes, &error_abort);
1948
1949 if (bdrv_is_read_only(bs)) {
1950 return -EPERM;
1951 }
1952
1953 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1954 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1955 assert(!(flags & ~BDRV_REQ_MASK));
1956 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1957
1958 if (flags & BDRV_REQ_SERIALISING) {
1959 QEMU_LOCK_GUARD(&bs->reqs_lock);
1960
1961 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1962
1963 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1964 return -EBUSY;
1965 }
1966
1967 bdrv_wait_serialising_requests_locked(req);
1968 } else {
1969 bdrv_wait_serialising_requests(req);
1970 }
1971
1972 assert(req->overlap_offset <= offset);
1973 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1974 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1975 child->perm & BLK_PERM_RESIZE);
1976
1977 switch (req->type) {
1978 case BDRV_TRACKED_WRITE:
1979 case BDRV_TRACKED_DISCARD:
1980 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1981 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1982 } else {
1983 assert(child->perm & BLK_PERM_WRITE);
1984 }
1985 bdrv_write_threshold_check_write(bs, offset, bytes);
1986 return 0;
1987 case BDRV_TRACKED_TRUNCATE:
1988 assert(child->perm & BLK_PERM_RESIZE);
1989 return 0;
1990 default:
1991 abort();
1992 }
1993 }
1994
1995 static inline void coroutine_fn
1996 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
1997 BdrvTrackedRequest *req, int ret)
1998 {
1999 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2000 BlockDriverState *bs = child->bs;
2001
2002 bdrv_check_request(offset, bytes, &error_abort);
2003
2004 qatomic_inc(&bs->write_gen);
2005
2006 /*
2007 * Discard cannot extend the image, but in error handling cases, such as
2008 * when reverting a qcow2 cluster allocation, the discarded range can pass
2009 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2010 * here. Instead, just skip it, since semantically a discard request
2011 * beyond EOF cannot expand the image anyway.
2012 */
2013 if (ret == 0 &&
2014 (req->type == BDRV_TRACKED_TRUNCATE ||
2015 end_sector > bs->total_sectors) &&
2016 req->type != BDRV_TRACKED_DISCARD) {
2017 bs->total_sectors = end_sector;
2018 bdrv_parent_cb_resize(bs);
2019 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2020 }
2021 if (req->bytes) {
2022 switch (req->type) {
2023 case BDRV_TRACKED_WRITE:
2024 stat64_max(&bs->wr_highest_offset, offset + bytes);
2025 /* fall through, to set dirty bits */
2026 case BDRV_TRACKED_DISCARD:
2027 bdrv_set_dirty(bs, offset, bytes);
2028 break;
2029 default:
2030 break;
2031 }
2032 }
2033 }
2034
2035 /*
2036 * Forwards an already correctly aligned write request to the BlockDriver,
2037 * after possibly fragmenting it.
2038 */
2039 static int coroutine_fn GRAPH_RDLOCK
2040 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2041 int64_t offset, int64_t bytes, int64_t align,
2042 QEMUIOVector *qiov, size_t qiov_offset,
2043 BdrvRequestFlags flags)
2044 {
2045 BlockDriverState *bs = child->bs;
2046 BlockDriver *drv = bs->drv;
2047 int ret;
2048
2049 int64_t bytes_remaining = bytes;
2050 int max_transfer;
2051
2052 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2053
2054 if (!drv) {
2055 return -ENOMEDIUM;
2056 }
2057
2058 if (bdrv_has_readonly_bitmaps(bs)) {
2059 return -EPERM;
2060 }
2061
2062 assert(is_power_of_2(align));
2063 assert((offset & (align - 1)) == 0);
2064 assert((bytes & (align - 1)) == 0);
2065 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2066 align);
2067
2068 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2069
2070 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2071 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2072 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2073 flags |= BDRV_REQ_ZERO_WRITE;
2074 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2075 flags |= BDRV_REQ_MAY_UNMAP;
2076 }
2077
2078 /* Can't use optimization hint with bufferless zero write */
2079 flags &= ~BDRV_REQ_REGISTERED_BUF;
2080 }
2081
2082 if (ret < 0) {
2083 /* Do nothing, write notifier decided to fail this request */
2084 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2085 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2086 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2087 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2088 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2089 qiov, qiov_offset);
2090 } else if (bytes <= max_transfer) {
2091 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2092 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2093 } else {
2094 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2095 while (bytes_remaining) {
2096 int num = MIN(bytes_remaining, max_transfer);
2097 int local_flags = flags;
2098
2099 assert(num);
2100 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2101 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2102 /* If FUA is going to be emulated by flush, we only
2103 * need to flush on the last iteration */
2104 local_flags &= ~BDRV_REQ_FUA;
2105 }
2106
2107 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2108 num, qiov,
2109 qiov_offset + bytes - bytes_remaining,
2110 local_flags);
2111 if (ret < 0) {
2112 break;
2113 }
2114 bytes_remaining -= num;
2115 }
2116 }
2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2118
2119 if (ret >= 0) {
2120 ret = 0;
2121 }
2122 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2123
2124 return ret;
2125 }
2126
2127 static int coroutine_fn GRAPH_RDLOCK
2128 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2129 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2130 {
2131 BlockDriverState *bs = child->bs;
2132 QEMUIOVector local_qiov;
2133 uint64_t align = bs->bl.request_alignment;
2134 int ret = 0;
2135 bool padding;
2136 BdrvRequestPadding pad;
2137
2138 /* This flag doesn't make sense for padding or zero writes */
2139 flags &= ~BDRV_REQ_REGISTERED_BUF;
2140
2141 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2142 if (padding) {
2143 assert(!(flags & BDRV_REQ_NO_WAIT));
2144 bdrv_make_request_serialising(req, align);
2145
2146 bdrv_padding_rmw_read(child, req, &pad, true);
2147
2148 if (pad.head || pad.merge_reads) {
2149 int64_t aligned_offset = offset & ~(align - 1);
2150 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2151
2152 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2153 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2154 align, &local_qiov, 0,
2155 flags & ~BDRV_REQ_ZERO_WRITE);
2156 if (ret < 0 || pad.merge_reads) {
2157 /* Error or all work is done */
2158 goto out;
2159 }
2160 offset += write_bytes - pad.head;
2161 bytes -= write_bytes - pad.head;
2162 }
2163 }
2164
2165 assert(!bytes || (offset & (align - 1)) == 0);
2166 if (bytes >= align) {
2167 /* Write the aligned part in the middle. */
2168 int64_t aligned_bytes = bytes & ~(align - 1);
2169 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2170 NULL, 0, flags);
2171 if (ret < 0) {
2172 goto out;
2173 }
2174 bytes -= aligned_bytes;
2175 offset += aligned_bytes;
2176 }
2177
2178 assert(!bytes || (offset & (align - 1)) == 0);
2179 if (bytes) {
2180 assert(align == pad.tail + bytes);
2181
2182 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2183 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2184 &local_qiov, 0,
2185 flags & ~BDRV_REQ_ZERO_WRITE);
2186 }
2187
2188 out:
2189 bdrv_padding_finalize(&pad);
2190
2191 return ret;
2192 }
2193
2194 /*
2195 * Handle a write request in coroutine context
2196 */
2197 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2198 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2199 BdrvRequestFlags flags)
2200 {
2201 IO_CODE();
2202 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2203 }
2204
2205 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2206 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2207 BdrvRequestFlags flags)
2208 {
2209 BlockDriverState *bs = child->bs;
2210 BdrvTrackedRequest req;
2211 uint64_t align = bs->bl.request_alignment;
2212 BdrvRequestPadding pad;
2213 int ret;
2214 bool padded = false;
2215 IO_CODE();
2216
2217 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2218
2219 if (!bdrv_co_is_inserted(bs)) {
2220 return -ENOMEDIUM;
2221 }
2222
2223 if (flags & BDRV_REQ_ZERO_WRITE) {
2224 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2225 } else {
2226 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2227 }
2228 if (ret < 0) {
2229 return ret;
2230 }
2231
2232 /* If the request is misaligned then we can't make it efficient */
2233 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2234 !QEMU_IS_ALIGNED(offset | bytes, align))
2235 {
2236 return -ENOTSUP;
2237 }
2238
2239 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2240 /*
2241 * Aligning zero request is nonsense. Even if driver has special meaning
2242 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2243 * it to driver due to request_alignment.
2244 *
2245 * Still, no reason to return an error if someone do unaligned
2246 * zero-length write occasionally.
2247 */
2248 return 0;
2249 }
2250
2251 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2252 /*
2253 * Pad request for following read-modify-write cycle.
2254 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2255 * alignment only if there is no ZERO flag.
2256 */
2257 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2258 &pad, &padded, &flags);
2259 if (ret < 0) {
2260 return ret;
2261 }
2262 }
2263
2264 bdrv_inc_in_flight(bs);
2265 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2266
2267 if (flags & BDRV_REQ_ZERO_WRITE) {
2268 assert(!padded);
2269 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2270 goto out;
2271 }
2272
2273 if (padded) {
2274 /*
2275 * Request was unaligned to request_alignment and therefore
2276 * padded. We are going to do read-modify-write, and must
2277 * serialize the request to prevent interactions of the
2278 * widened region with other transactions.
2279 */
2280 assert(!(flags & BDRV_REQ_NO_WAIT));
2281 bdrv_make_request_serialising(&req, align);
2282 bdrv_padding_rmw_read(child, &req, &pad, false);
2283 }
2284
2285 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2286 qiov, qiov_offset, flags);
2287
2288 bdrv_padding_finalize(&pad);
2289
2290 out:
2291 tracked_request_end(&req);
2292 bdrv_dec_in_flight(bs);
2293
2294 return ret;
2295 }
2296
2297 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2298 int64_t bytes, BdrvRequestFlags flags)
2299 {
2300 IO_CODE();
2301 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2302 assert_bdrv_graph_readable();
2303
2304 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2305 flags &= ~BDRV_REQ_MAY_UNMAP;
2306 }
2307
2308 return bdrv_co_pwritev(child, offset, bytes, NULL,
2309 BDRV_REQ_ZERO_WRITE | flags);
2310 }
2311
2312 /*
2313 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2314 */
2315 int bdrv_flush_all(void)
2316 {
2317 BdrvNextIterator it;
2318 BlockDriverState *bs = NULL;
2319 int result = 0;
2320
2321 GLOBAL_STATE_CODE();
2322
2323 /*
2324 * bdrv queue is managed by record/replay,
2325 * creating new flush request for stopping
2326 * the VM may break the determinism
2327 */
2328 if (replay_events_enabled()) {
2329 return result;
2330 }
2331
2332 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2333 AioContext *aio_context = bdrv_get_aio_context(bs);
2334 int ret;
2335
2336 aio_context_acquire(aio_context);
2337 ret = bdrv_flush(bs);
2338 if (ret < 0 && !result) {
2339 result = ret;
2340 }
2341 aio_context_release(aio_context);
2342 }
2343
2344 return result;
2345 }
2346
2347 /*
2348 * Returns the allocation status of the specified sectors.
2349 * Drivers not implementing the functionality are assumed to not support
2350 * backing files, hence all their sectors are reported as allocated.
2351 *
2352 * If 'want_zero' is true, the caller is querying for mapping
2353 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2354 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2355 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2356 *
2357 * If 'offset' is beyond the end of the disk image the return value is
2358 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2359 *
2360 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2361 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2362 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2363 *
2364 * 'pnum' is set to the number of bytes (including and immediately
2365 * following the specified offset) that are easily known to be in the
2366 * same allocated/unallocated state. Note that a second call starting
2367 * at the original offset plus returned pnum may have the same status.
2368 * The returned value is non-zero on success except at end-of-file.
2369 *
2370 * Returns negative errno on failure. Otherwise, if the
2371 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2372 * set to the host mapping and BDS corresponding to the guest offset.
2373 */
2374 static int coroutine_fn GRAPH_RDLOCK
2375 bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
2376 int64_t offset, int64_t bytes,
2377 int64_t *pnum, int64_t *map, BlockDriverState **file)
2378 {
2379 int64_t total_size;
2380 int64_t n; /* bytes */
2381 int ret;
2382 int64_t local_map = 0;
2383 BlockDriverState *local_file = NULL;
2384 int64_t aligned_offset, aligned_bytes;
2385 uint32_t align;
2386 bool has_filtered_child;
2387
2388 assert(pnum);
2389 assert_bdrv_graph_readable();
2390 *pnum = 0;
2391 total_size = bdrv_getlength(bs);
2392 if (total_size < 0) {
2393 ret = total_size;
2394 goto early_out;
2395 }
2396
2397 if (offset >= total_size) {
2398 ret = BDRV_BLOCK_EOF;
2399 goto early_out;
2400 }
2401 if (!bytes) {
2402 ret = 0;
2403 goto early_out;
2404 }
2405
2406 n = total_size - offset;
2407 if (n < bytes) {
2408 bytes = n;
2409 }
2410
2411 /* Must be non-NULL or bdrv_getlength() would have failed */
2412 assert(bs->drv);
2413 has_filtered_child = bdrv_filter_child(bs);
2414 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2415 *pnum = bytes;
2416 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2417 if (offset + bytes == total_size) {
2418 ret |= BDRV_BLOCK_EOF;
2419 }
2420 if (bs->drv->protocol_name) {
2421 ret |= BDRV_BLOCK_OFFSET_VALID;
2422 local_map = offset;
2423 local_file = bs;
2424 }
2425 goto early_out;
2426 }
2427
2428 bdrv_inc_in_flight(bs);
2429
2430 /* Round out to request_alignment boundaries */
2431 align = bs->bl.request_alignment;
2432 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2433 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2434
2435 if (bs->drv->bdrv_co_block_status) {
2436 /*
2437 * Use the block-status cache only for protocol nodes: Format
2438 * drivers are generally quick to inquire the status, but protocol
2439 * drivers often need to get information from outside of qemu, so
2440 * we do not have control over the actual implementation. There
2441 * have been cases where inquiring the status took an unreasonably
2442 * long time, and we can do nothing in qemu to fix it.
2443 * This is especially problematic for images with large data areas,
2444 * because finding the few holes in them and giving them special
2445 * treatment does not gain much performance. Therefore, we try to
2446 * cache the last-identified data region.
2447 *
2448 * Second, limiting ourselves to protocol nodes allows us to assume
2449 * the block status for data regions to be DATA | OFFSET_VALID, and
2450 * that the host offset is the same as the guest offset.
2451 *
2452 * Note that it is possible that external writers zero parts of
2453 * the cached regions without the cache being invalidated, and so
2454 * we may report zeroes as data. This is not catastrophic,
2455 * however, because reporting zeroes as data is fine.
2456 */
2457 if (QLIST_EMPTY(&bs->children) &&
2458 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2459 {
2460 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2461 local_file = bs;
2462 local_map = aligned_offset;
2463 } else {
2464 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2465 aligned_bytes, pnum, &local_map,
2466 &local_file);
2467
2468 /*
2469 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2470 * the cache is queried above. Technically, we do not need to check
2471 * it here; the worst that can happen is that we fill the cache for
2472 * non-protocol nodes, and then it is never used. However, filling
2473 * the cache requires an RCU update, so double check here to avoid
2474 * such an update if possible.
2475 *
2476 * Check want_zero, because we only want to update the cache when we
2477 * have accurate information about what is zero and what is data.
2478 */
2479 if (want_zero &&
2480 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2481 QLIST_EMPTY(&bs->children))
2482 {
2483 /*
2484 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2485 * returned local_map value must be the same as the offset we
2486 * have passed (aligned_offset), and local_bs must be the node
2487 * itself.
2488 * Assert this, because we follow this rule when reading from
2489 * the cache (see the `local_file = bs` and
2490 * `local_map = aligned_offset` assignments above), and the
2491 * result the cache delivers must be the same as the driver
2492 * would deliver.
2493 */
2494 assert(local_file == bs);
2495 assert(local_map == aligned_offset);
2496 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2497 }
2498 }
2499 } else {
2500 /* Default code for filters */
2501
2502 local_file = bdrv_filter_bs(bs);
2503 assert(local_file);
2504
2505 *pnum = aligned_bytes;
2506 local_map = aligned_offset;
2507 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2508 }
2509 if (ret < 0) {
2510 *pnum = 0;
2511 goto out;
2512 }
2513
2514 /*
2515 * The driver's result must be a non-zero multiple of request_alignment.
2516 * Clamp pnum and adjust map to original request.
2517 */
2518 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2519 align > offset - aligned_offset);
2520 if (ret & BDRV_BLOCK_RECURSE) {
2521 assert(ret & BDRV_BLOCK_DATA);
2522 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2523 assert(!(ret & BDRV_BLOCK_ZERO));
2524 }
2525
2526 *pnum -= offset - aligned_offset;
2527 if (*pnum > bytes) {
2528 *pnum = bytes;
2529 }
2530 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2531 local_map += offset - aligned_offset;
2532 }
2533
2534 if (ret & BDRV_BLOCK_RAW) {
2535 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2536 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2537 *pnum, pnum, &local_map, &local_file);
2538 goto out;
2539 }
2540
2541 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2542 ret |= BDRV_BLOCK_ALLOCATED;
2543 } else if (bs->drv->supports_backing) {
2544 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2545
2546 if (!cow_bs) {
2547 ret |= BDRV_BLOCK_ZERO;
2548 } else if (want_zero) {
2549 int64_t size2 = bdrv_getlength(cow_bs);
2550
2551 if (size2 >= 0 && offset >= size2) {
2552 ret |= BDRV_BLOCK_ZERO;
2553 }
2554 }
2555 }
2556
2557 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2558 local_file && local_file != bs &&
2559 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2560 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2561 int64_t file_pnum;
2562 int ret2;
2563
2564 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2565 *pnum, &file_pnum, NULL, NULL);
2566 if (ret2 >= 0) {
2567 /* Ignore errors. This is just providing extra information, it
2568 * is useful but not necessary.
2569 */
2570 if (ret2 & BDRV_BLOCK_EOF &&
2571 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2572 /*
2573 * It is valid for the format block driver to read
2574 * beyond the end of the underlying file's current
2575 * size; such areas read as zero.
2576 */
2577 ret |= BDRV_BLOCK_ZERO;
2578 } else {
2579 /* Limit request to the range reported by the protocol driver */
2580 *pnum = file_pnum;
2581 ret |= (ret2 & BDRV_BLOCK_ZERO);
2582 }
2583 }
2584 }
2585
2586 out:
2587 bdrv_dec_in_flight(bs);
2588 if (ret >= 0 && offset + *pnum == total_size) {
2589 ret |= BDRV_BLOCK_EOF;
2590 }
2591 early_out:
2592 if (file) {
2593 *file = local_file;
2594 }
2595 if (map) {
2596 *map = local_map;
2597 }
2598 return ret;
2599 }
2600
2601 int coroutine_fn
2602 bdrv_co_common_block_status_above(BlockDriverState *bs,
2603 BlockDriverState *base,
2604 bool include_base,
2605 bool want_zero,
2606 int64_t offset,
2607 int64_t bytes,
2608 int64_t *pnum,
2609 int64_t *map,
2610 BlockDriverState **file,
2611 int *depth)
2612 {
2613 int ret;
2614 BlockDriverState *p;
2615 int64_t eof = 0;
2616 int dummy;
2617 IO_CODE();
2618
2619 assert(!include_base || base); /* Can't include NULL base */
2620 assert_bdrv_graph_readable();
2621
2622 if (!depth) {
2623 depth = &dummy;
2624 }
2625 *depth = 0;
2626
2627 if (!include_base && bs == base) {
2628 *pnum = bytes;
2629 return 0;
2630 }
2631
2632 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2633 ++*depth;
2634 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2635 return ret;
2636 }
2637
2638 if (ret & BDRV_BLOCK_EOF) {
2639 eof = offset + *pnum;
2640 }
2641
2642 assert(*pnum <= bytes);
2643 bytes = *pnum;
2644
2645 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2646 p = bdrv_filter_or_cow_bs(p))
2647 {
2648 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2649 file);
2650 ++*depth;
2651 if (ret < 0) {
2652 return ret;
2653 }
2654 if (*pnum == 0) {
2655 /*
2656 * The top layer deferred to this layer, and because this layer is
2657 * short, any zeroes that we synthesize beyond EOF behave as if they
2658 * were allocated at this layer.
2659 *
2660 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2661 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2662 * below.
2663 */
2664 assert(ret & BDRV_BLOCK_EOF);
2665 *pnum = bytes;
2666 if (file) {
2667 *file = p;
2668 }
2669 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2670 break;
2671 }
2672 if (ret & BDRV_BLOCK_ALLOCATED) {
2673 /*
2674 * We've found the node and the status, we must break.
2675 *
2676 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2677 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2678 * below.
2679 */
2680 ret &= ~BDRV_BLOCK_EOF;
2681 break;
2682 }
2683
2684 if (p == base) {
2685 assert(include_base);
2686 break;
2687 }
2688
2689 /*
2690 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2691 * let's continue the diving.
2692 */
2693 assert(*pnum <= bytes);
2694 bytes = *pnum;
2695 }
2696
2697 if (offset + *pnum == eof) {
2698 ret |= BDRV_BLOCK_EOF;
2699 }
2700
2701 return ret;
2702 }
2703
2704 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2705 BlockDriverState *base,
2706 int64_t offset, int64_t bytes,
2707 int64_t *pnum, int64_t *map,
2708 BlockDriverState **file)
2709 {
2710 IO_CODE();
2711 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2712 bytes, pnum, map, file, NULL);
2713 }
2714
2715 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2716 int64_t offset, int64_t bytes, int64_t *pnum,
2717 int64_t *map, BlockDriverState **file)
2718 {
2719 IO_CODE();
2720 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2721 pnum, map, file, NULL);
2722 }
2723
2724 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2725 int64_t *pnum, int64_t *map, BlockDriverState **file)
2726 {
2727 IO_CODE();
2728 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2729 offset, bytes, pnum, map, file);
2730 }
2731
2732 /*
2733 * Check @bs (and its backing chain) to see if the range defined
2734 * by @offset and @bytes is known to read as zeroes.
2735 * Return 1 if that is the case, 0 otherwise and -errno on error.
2736 * This test is meant to be fast rather than accurate so returning 0
2737 * does not guarantee non-zero data.
2738 */
2739 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2740 int64_t bytes)
2741 {
2742 int ret;
2743 int64_t pnum = bytes;
2744 IO_CODE();
2745
2746 if (!bytes) {
2747 return 1;
2748 }
2749
2750 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2751 bytes, &pnum, NULL, NULL, NULL);
2752
2753 if (ret < 0) {
2754 return ret;
2755 }
2756
2757 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2758 }
2759
2760 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2761 int64_t bytes, int64_t *pnum)
2762 {
2763 int ret;
2764 int64_t dummy;
2765 IO_CODE();
2766
2767 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2768 bytes, pnum ? pnum : &dummy, NULL,
2769 NULL, NULL);
2770 if (ret < 0) {
2771 return ret;
2772 }
2773 return !!(ret & BDRV_BLOCK_ALLOCATED);
2774 }
2775
2776 int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
2777 int64_t *pnum)
2778 {
2779 int ret;
2780 int64_t dummy;
2781 IO_CODE();
2782
2783 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2784 bytes, pnum ? pnum : &dummy, NULL,
2785 NULL, NULL);
2786 if (ret < 0) {
2787 return ret;
2788 }
2789 return !!(ret & BDRV_BLOCK_ALLOCATED);
2790 }
2791
2792 /* See bdrv_is_allocated_above for documentation */
2793 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2794 BlockDriverState *base,
2795 bool include_base, int64_t offset,
2796 int64_t bytes, int64_t *pnum)
2797 {
2798 int depth;
2799 int ret;
2800 IO_CODE();
2801
2802 ret = bdrv_co_common_block_status_above(top, base, include_base, false,
2803 offset, bytes, pnum, NULL, NULL,
2804 &depth);
2805 if (ret < 0) {
2806 return ret;
2807 }
2808
2809 if (ret & BDRV_BLOCK_ALLOCATED) {
2810 return depth;
2811 }
2812 return 0;
2813 }
2814
2815 /*
2816 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2817 *
2818 * Return a positive depth if (a prefix of) the given range is allocated
2819 * in any image between BASE and TOP (BASE is only included if include_base
2820 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2821 * BASE can be NULL to check if the given offset is allocated in any
2822 * image of the chain. Return 0 otherwise, or negative errno on
2823 * failure.
2824 *
2825 * 'pnum' is set to the number of bytes (including and immediately
2826 * following the specified offset) that are known to be in the same
2827 * allocated/unallocated state. Note that a subsequent call starting
2828 * at 'offset + *pnum' may return the same allocation status (in other
2829 * words, the result is not necessarily the maximum possible range);
2830 * but 'pnum' will only be 0 when end of file is reached.
2831 */
2832 int bdrv_is_allocated_above(BlockDriverState *top,
2833 BlockDriverState *base,
2834 bool include_base, int64_t offset,
2835 int64_t bytes, int64_t *pnum)
2836 {
2837 int depth;
2838 int ret;
2839 IO_CODE();
2840
2841 ret = bdrv_common_block_status_above(top, base, include_base, false,
2842 offset, bytes, pnum, NULL, NULL,
2843 &depth);
2844 if (ret < 0) {
2845 return ret;
2846 }
2847
2848 if (ret & BDRV_BLOCK_ALLOCATED) {
2849 return depth;
2850 }
2851 return 0;
2852 }
2853
2854 int coroutine_fn
2855 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2856 {
2857 BlockDriver *drv = bs->drv;
2858 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2859 int ret;
2860 IO_CODE();
2861 assert_bdrv_graph_readable();
2862
2863 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2864 if (ret < 0) {
2865 return ret;
2866 }
2867
2868 if (!drv) {
2869 return -ENOMEDIUM;
2870 }
2871
2872 bdrv_inc_in_flight(bs);
2873
2874 if (drv->bdrv_co_load_vmstate) {
2875 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2876 } else if (child_bs) {
2877 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2878 } else {
2879 ret = -ENOTSUP;
2880 }
2881
2882 bdrv_dec_in_flight(bs);
2883
2884 return ret;
2885 }
2886
2887 int coroutine_fn
2888 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2889 {
2890 BlockDriver *drv = bs->drv;
2891 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2892 int ret;
2893 IO_CODE();
2894 assert_bdrv_graph_readable();
2895
2896 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2897 if (ret < 0) {
2898 return ret;
2899 }
2900
2901 if (!drv) {
2902 return -ENOMEDIUM;
2903 }
2904
2905 bdrv_inc_in_flight(bs);
2906
2907 if (drv->bdrv_co_save_vmstate) {
2908 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2909 } else if (child_bs) {
2910 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2911 } else {
2912 ret = -ENOTSUP;
2913 }
2914
2915 bdrv_dec_in_flight(bs);
2916
2917 return ret;
2918 }
2919
2920 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2921 int64_t pos, int size)
2922 {
2923 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2924 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2925 IO_CODE();
2926
2927 return ret < 0 ? ret : size;
2928 }
2929
2930 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2931 int64_t pos, int size)
2932 {
2933 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2934 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2935 IO_CODE();
2936
2937 return ret < 0 ? ret : size;
2938 }
2939
2940 /**************************************************************/
2941 /* async I/Os */
2942
2943 void bdrv_aio_cancel(BlockAIOCB *acb)
2944 {
2945 IO_CODE();
2946 qemu_aio_ref(acb);
2947 bdrv_aio_cancel_async(acb);
2948 while (acb->refcnt > 1) {
2949 if (acb->aiocb_info->get_aio_context) {
2950 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2951 } else if (acb->bs) {
2952 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2953 * assert that we're not using an I/O thread. Thread-safe
2954 * code should use bdrv_aio_cancel_async exclusively.
2955 */
2956 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2957 aio_poll(bdrv_get_aio_context(acb->bs), true);
2958 } else {
2959 abort();
2960 }
2961 }
2962 qemu_aio_unref(acb);
2963 }
2964
2965 /* Async version of aio cancel. The caller is not blocked if the acb implements
2966 * cancel_async, otherwise we do nothing and let the request normally complete.
2967 * In either case the completion callback must be called. */
2968 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2969 {
2970 IO_CODE();
2971 if (acb->aiocb_info->cancel_async) {
2972 acb->aiocb_info->cancel_async(acb);
2973 }
2974 }
2975
2976 /**************************************************************/
2977 /* Coroutine block device emulation */
2978
2979 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2980 {
2981 BdrvChild *primary_child = bdrv_primary_child(bs);
2982 BdrvChild *child;
2983 int current_gen;
2984 int ret = 0;
2985 IO_CODE();
2986
2987 assert_bdrv_graph_readable();
2988 bdrv_inc_in_flight(bs);
2989
2990 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2991 bdrv_is_sg(bs)) {
2992 goto early_exit;
2993 }
2994
2995 qemu_co_mutex_lock(&bs->reqs_lock);
2996 current_gen = qatomic_read(&bs->write_gen);
2997
2998 /* Wait until any previous flushes are completed */
2999 while (bs->active_flush_req) {
3000 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3001 }
3002
3003 /* Flushes reach this point in nondecreasing current_gen order. */
3004 bs->active_flush_req = true;
3005 qemu_co_mutex_unlock(&bs->reqs_lock);
3006
3007 /* Write back all layers by calling one driver function */
3008 if (bs->drv->bdrv_co_flush) {
3009 ret = bs->drv->bdrv_co_flush(bs);
3010 goto out;
3011 }
3012
3013 /* Write back cached data to the OS even with cache=unsafe */
3014 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3015 if (bs->drv->bdrv_co_flush_to_os) {
3016 ret = bs->drv->bdrv_co_flush_to_os(bs);
3017 if (ret < 0) {
3018 goto out;
3019 }
3020 }
3021
3022 /* But don't actually force it to the disk with cache=unsafe */
3023 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3024 goto flush_children;
3025 }
3026
3027 /* Check if we really need to flush anything */
3028 if (bs->flushed_gen == current_gen) {
3029 goto flush_children;
3030 }
3031
3032 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3033 if (!bs->drv) {
3034 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3035 * (even in case of apparent success) */
3036 ret = -ENOMEDIUM;
3037 goto out;
3038 }
3039 if (bs->drv->bdrv_co_flush_to_disk) {
3040 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3041 } else if (bs->drv->bdrv_aio_flush) {
3042 BlockAIOCB *acb;
3043 CoroutineIOCompletion co = {
3044 .coroutine = qemu_coroutine_self(),
3045 };
3046
3047 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3048 if (acb == NULL) {
3049 ret = -EIO;
3050 } else {
3051 qemu_coroutine_yield();
3052 ret = co.ret;
3053 }
3054 } else {
3055 /*
3056 * Some block drivers always operate in either writethrough or unsafe
3057 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3058 * know how the server works (because the behaviour is hardcoded or
3059 * depends on server-side configuration), so we can't ensure that
3060 * everything is safe on disk. Returning an error doesn't work because
3061 * that would break guests even if the server operates in writethrough
3062 * mode.
3063 *
3064 * Let's hope the user knows what he's doing.
3065 */
3066 ret = 0;
3067 }
3068
3069 if (ret < 0) {
3070 goto out;
3071 }
3072
3073 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3074 * in the case of cache=unsafe, so there are no useless flushes.
3075 */
3076 flush_children:
3077 ret = 0;
3078 QLIST_FOREACH(child, &bs->children, next) {
3079 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3080 int this_child_ret = bdrv_co_flush(child->bs);
3081 if (!ret) {
3082 ret = this_child_ret;
3083 }
3084 }
3085 }
3086
3087 out:
3088 /* Notify any pending flushes that we have completed */
3089 if (ret == 0) {
3090 bs->flushed_gen = current_gen;
3091 }
3092
3093 qemu_co_mutex_lock(&bs->reqs_lock);
3094 bs->active_flush_req = false;
3095 /* Return value is ignored - it's ok if wait queue is empty */
3096 qemu_co_queue_next(&bs->flush_queue);
3097 qemu_co_mutex_unlock(&bs->reqs_lock);
3098
3099 early_exit:
3100 bdrv_dec_in_flight(bs);
3101 return ret;
3102 }
3103
3104 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3105 int64_t bytes)
3106 {
3107 BdrvTrackedRequest req;
3108 int ret;
3109 int64_t max_pdiscard;
3110 int head, tail, align;
3111 BlockDriverState *bs = child->bs;
3112 IO_CODE();
3113 assert_bdrv_graph_readable();
3114
3115 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3116 return -ENOMEDIUM;
3117 }
3118
3119 if (bdrv_has_readonly_bitmaps(bs)) {
3120 return -EPERM;
3121 }
3122
3123 ret = bdrv_check_request(offset, bytes, NULL);
3124 if (ret < 0) {
3125 return ret;
3126 }
3127
3128 /* Do nothing if disabled. */
3129 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3130 return 0;
3131 }
3132
3133 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3134 return 0;
3135 }
3136
3137 /* Invalidate the cached block-status data range if this discard overlaps */
3138 bdrv_bsc_invalidate_range(bs, offset, bytes);
3139
3140 /* Discard is advisory, but some devices track and coalesce
3141 * unaligned requests, so we must pass everything down rather than
3142 * round here. Still, most devices will just silently ignore
3143 * unaligned requests (by returning -ENOTSUP), so we must fragment
3144 * the request accordingly. */
3145 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3146 assert(align % bs->bl.request_alignment == 0);
3147 head = offset % align;
3148 tail = (offset + bytes) % align;
3149
3150 bdrv_inc_in_flight(bs);
3151 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3152
3153 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3154 if (ret < 0) {
3155 goto out;
3156 }
3157
3158 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3159 align);
3160 assert(max_pdiscard >= bs->bl.request_alignment);
3161
3162 while (bytes > 0) {
3163 int64_t num = bytes;
3164
3165 if (head) {
3166 /* Make small requests to get to alignment boundaries. */
3167 num = MIN(bytes, align - head);
3168 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3169 num %= bs->bl.request_alignment;
3170 }
3171 head = (head + num) % align;
3172 assert(num < max_pdiscard);
3173 } else if (tail) {
3174 if (num > align) {
3175 /* Shorten the request to the last aligned cluster. */
3176 num -= tail;
3177 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3178 tail > bs->bl.request_alignment) {
3179 tail %= bs->bl.request_alignment;
3180 num -= tail;
3181 }
3182 }
3183 /* limit request size */
3184 if (num > max_pdiscard) {
3185 num = max_pdiscard;
3186 }
3187
3188 if (!bs->drv) {
3189 ret = -ENOMEDIUM;
3190 goto out;
3191 }
3192 if (bs->drv->bdrv_co_pdiscard) {
3193 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3194 } else {
3195 BlockAIOCB *acb;
3196 CoroutineIOCompletion co = {
3197 .coroutine = qemu_coroutine_self(),
3198 };
3199
3200 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3201 bdrv_co_io_em_complete, &co);
3202 if (acb == NULL) {
3203 ret = -EIO;
3204 goto out;
3205 } else {
3206 qemu_coroutine_yield();
3207 ret = co.ret;
3208 }
3209 }
3210 if (ret && ret != -ENOTSUP) {
3211 goto out;
3212 }
3213
3214 offset += num;
3215 bytes -= num;
3216 }
3217 ret = 0;
3218 out:
3219 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3220 tracked_request_end(&req);
3221 bdrv_dec_in_flight(bs);
3222 return ret;
3223 }
3224
3225 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3226 {
3227 BlockDriver *drv = bs->drv;
3228 CoroutineIOCompletion co = {
3229 .coroutine = qemu_coroutine_self(),
3230 };
3231 BlockAIOCB *acb;
3232 IO_CODE();
3233 assert_bdrv_graph_readable();
3234
3235 bdrv_inc_in_flight(bs);
3236 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3237 co.ret = -ENOTSUP;
3238 goto out;
3239 }
3240
3241 if (drv->bdrv_co_ioctl) {
3242 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3243 } else {
3244 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3245 if (!acb) {
3246 co.ret = -ENOTSUP;
3247 goto out;
3248 }
3249 qemu_coroutine_yield();
3250 }
3251 out:
3252 bdrv_dec_in_flight(bs);
3253 return co.ret;
3254 }
3255
3256 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3257 unsigned int *nr_zones,
3258 BlockZoneDescriptor *zones)
3259 {
3260 BlockDriver *drv = bs->drv;
3261 CoroutineIOCompletion co = {
3262 .coroutine = qemu_coroutine_self(),
3263 };
3264 IO_CODE();
3265
3266 bdrv_inc_in_flight(bs);
3267 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3268 co.ret = -ENOTSUP;
3269 goto out;
3270 }
3271 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3272 out:
3273 bdrv_dec_in_flight(bs);
3274 return co.ret;
3275 }
3276
3277 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3278 int64_t offset, int64_t len)
3279 {
3280 BlockDriver *drv = bs->drv;
3281 CoroutineIOCompletion co = {
3282 .coroutine = qemu_coroutine_self(),
3283 };
3284 IO_CODE();
3285
3286 bdrv_inc_in_flight(bs);
3287 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3288 co.ret = -ENOTSUP;
3289 goto out;
3290 }
3291 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3292 out:
3293 bdrv_dec_in_flight(bs);
3294 return co.ret;
3295 }
3296
3297 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3298 QEMUIOVector *qiov,
3299 BdrvRequestFlags flags)
3300 {
3301 int ret;
3302 BlockDriver *drv = bs->drv;
3303 CoroutineIOCompletion co = {
3304 .coroutine = qemu_coroutine_self(),
3305 };
3306 IO_CODE();
3307
3308 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3309 if (ret < 0) {
3310 return ret;
3311 }
3312
3313 bdrv_inc_in_flight(bs);
3314 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3315 co.ret = -ENOTSUP;
3316 goto out;
3317 }
3318 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3319 out:
3320 bdrv_dec_in_flight(bs);
3321 return co.ret;
3322 }
3323
3324 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3325 {
3326 IO_CODE();
3327 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3328 }
3329
3330 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3331 {
3332 IO_CODE();
3333 return memset(qemu_blockalign(bs, size), 0, size);
3334 }
3335
3336 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3337 {
3338 size_t align = bdrv_opt_mem_align(bs);
3339 IO_CODE();
3340
3341 /* Ensure that NULL is never returned on success */
3342 assert(align > 0);
3343 if (size == 0) {
3344 size = align;
3345 }
3346
3347 return qemu_try_memalign(align, size);
3348 }
3349
3350 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3351 {
3352 void *mem = qemu_try_blockalign(bs, size);
3353 IO_CODE();
3354
3355 if (mem) {
3356 memset(mem, 0, size);
3357 }
3358
3359 return mem;
3360 }
3361
3362 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3363 static void GRAPH_RDLOCK
3364 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3365 BdrvChild *final_child)
3366 {
3367 BdrvChild *child;
3368
3369 GLOBAL_STATE_CODE();
3370 assert_bdrv_graph_readable();
3371
3372 QLIST_FOREACH(child, &bs->children, next) {
3373 if (child == final_child) {
3374 break;
3375 }
3376
3377 bdrv_unregister_buf(child->bs, host, size);
3378 }
3379
3380 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3381 bs->drv->bdrv_unregister_buf(bs, host, size);
3382 }
3383 }
3384
3385 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3386 Error **errp)
3387 {
3388 BdrvChild *child;
3389
3390 GLOBAL_STATE_CODE();
3391 GRAPH_RDLOCK_GUARD_MAINLOOP();
3392
3393 if (bs->drv && bs->drv->bdrv_register_buf) {
3394 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3395 return false;
3396 }
3397 }
3398 QLIST_FOREACH(child, &bs->children, next) {
3399 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3400 bdrv_register_buf_rollback(bs, host, size, child);
3401 return false;
3402 }
3403 }
3404 return true;
3405 }
3406
3407 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3408 {
3409 BdrvChild *child;
3410
3411 GLOBAL_STATE_CODE();
3412 GRAPH_RDLOCK_GUARD_MAINLOOP();
3413
3414 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3415 bs->drv->bdrv_unregister_buf(bs, host, size);
3416 }
3417 QLIST_FOREACH(child, &bs->children, next) {
3418 bdrv_unregister_buf(child->bs, host, size);
3419 }
3420 }
3421
3422 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3423 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3424 int64_t dst_offset, int64_t bytes,
3425 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3426 bool recurse_src)
3427 {
3428 BdrvTrackedRequest req;
3429 int ret;
3430 assert_bdrv_graph_readable();
3431
3432 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3433 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3434 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3435 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3436 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3437
3438 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3439 return -ENOMEDIUM;
3440 }
3441 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3442 if (ret) {
3443 return ret;
3444 }
3445 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3446 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3447 }
3448
3449 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3450 return -ENOMEDIUM;
3451 }
3452 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3453 if (ret) {
3454 return ret;
3455 }
3456
3457 if (!src->bs->drv->bdrv_co_copy_range_from
3458 || !dst->bs->drv->bdrv_co_copy_range_to
3459 || src->bs->encrypted || dst->bs->encrypted) {
3460 return -ENOTSUP;
3461 }
3462
3463 if (recurse_src) {
3464 bdrv_inc_in_flight(src->bs);
3465 tracked_request_begin(&req, src->bs, src_offset, bytes,
3466 BDRV_TRACKED_READ);
3467
3468 /* BDRV_REQ_SERIALISING is only for write operation */
3469 assert(!(read_flags & BDRV_REQ_SERIALISING));
3470 bdrv_wait_serialising_requests(&req);
3471
3472 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3473 src, src_offset,
3474 dst, dst_offset,
3475 bytes,
3476 read_flags, write_flags);
3477
3478 tracked_request_end(&req);
3479 bdrv_dec_in_flight(src->bs);
3480 } else {
3481 bdrv_inc_in_flight(dst->bs);
3482 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3483 BDRV_TRACKED_WRITE);
3484 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3485 write_flags);
3486 if (!ret) {
3487 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3488 src, src_offset,
3489 dst, dst_offset,
3490 bytes,
3491 read_flags, write_flags);
3492 }
3493 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3494 tracked_request_end(&req);
3495 bdrv_dec_in_flight(dst->bs);
3496 }
3497
3498 return ret;
3499 }
3500
3501 /* Copy range from @src to @dst.
3502 *
3503 * See the comment of bdrv_co_copy_range for the parameter and return value
3504 * semantics. */
3505 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3506 BdrvChild *dst, int64_t dst_offset,
3507 int64_t bytes,
3508 BdrvRequestFlags read_flags,
3509 BdrvRequestFlags write_flags)
3510 {
3511 IO_CODE();
3512 assert_bdrv_graph_readable();
3513 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3514 read_flags, write_flags);
3515 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3516 bytes, read_flags, write_flags, true);
3517 }
3518
3519 /* Copy range from @src to @dst.
3520 *
3521 * See the comment of bdrv_co_copy_range for the parameter and return value
3522 * semantics. */
3523 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3524 BdrvChild *dst, int64_t dst_offset,
3525 int64_t bytes,
3526 BdrvRequestFlags read_flags,
3527 BdrvRequestFlags write_flags)
3528 {
3529 IO_CODE();
3530 assert_bdrv_graph_readable();
3531 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3532 read_flags, write_flags);
3533 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3534 bytes, read_flags, write_flags, false);
3535 }
3536
3537 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3538 BdrvChild *dst, int64_t dst_offset,
3539 int64_t bytes, BdrvRequestFlags read_flags,
3540 BdrvRequestFlags write_flags)
3541 {
3542 IO_CODE();
3543 assert_bdrv_graph_readable();
3544
3545 return bdrv_co_copy_range_from(src, src_offset,
3546 dst, dst_offset,
3547 bytes, read_flags, write_flags);
3548 }
3549
3550 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3551 {
3552 BdrvChild *c;
3553 QLIST_FOREACH(c, &bs->parents, next_parent) {
3554 if (c->klass->resize) {
3555 c->klass->resize(c);
3556 }
3557 }
3558 }
3559
3560 /**
3561 * Truncate file to 'offset' bytes (needed only for file protocols)
3562 *
3563 * If 'exact' is true, the file must be resized to exactly the given
3564 * 'offset'. Otherwise, it is sufficient for the node to be at least
3565 * 'offset' bytes in length.
3566 */
3567 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3568 PreallocMode prealloc, BdrvRequestFlags flags,
3569 Error **errp)
3570 {
3571 BlockDriverState *bs = child->bs;
3572 BdrvChild *filtered, *backing;
3573 BlockDriver *drv = bs->drv;
3574 BdrvTrackedRequest req;
3575 int64_t old_size, new_bytes;
3576 int ret;
3577 IO_CODE();
3578 assert_bdrv_graph_readable();
3579
3580 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3581 if (!drv) {
3582 error_setg(errp, "No medium inserted");
3583 return -ENOMEDIUM;
3584 }
3585 if (offset < 0) {
3586 error_setg(errp, "Image size cannot be negative");
3587 return -EINVAL;
3588 }
3589
3590 ret = bdrv_check_request(offset, 0, errp);
3591 if (ret < 0) {
3592 return ret;
3593 }
3594
3595 old_size = bdrv_getlength(bs);
3596 if (old_size < 0) {
3597 error_setg_errno(errp, -old_size, "Failed to get old image size");
3598 return old_size;
3599 }
3600
3601 if (bdrv_is_read_only(bs)) {
3602 error_setg(errp, "Image is read-only");
3603 return -EACCES;
3604 }
3605
3606 if (offset > old_size) {
3607 new_bytes = offset - old_size;
3608 } else {
3609 new_bytes = 0;
3610 }
3611
3612 bdrv_inc_in_flight(bs);
3613 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3614 BDRV_TRACKED_TRUNCATE);
3615
3616 /* If we are growing the image and potentially using preallocation for the
3617 * new area, we need to make sure that no write requests are made to it
3618 * concurrently or they might be overwritten by preallocation. */
3619 if (new_bytes) {
3620 bdrv_make_request_serialising(&req, 1);
3621 }
3622 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3623 0);
3624 if (ret < 0) {
3625 error_setg_errno(errp, -ret,
3626 "Failed to prepare request for truncation");
3627 goto out;
3628 }
3629
3630 filtered = bdrv_filter_child(bs);
3631 backing = bdrv_cow_child(bs);
3632
3633 /*
3634 * If the image has a backing file that is large enough that it would
3635 * provide data for the new area, we cannot leave it unallocated because
3636 * then the backing file content would become visible. Instead, zero-fill
3637 * the new area.
3638 *
3639 * Note that if the image has a backing file, but was opened without the
3640 * backing file, taking care of keeping things consistent with that backing
3641 * file is the user's responsibility.
3642 */
3643 if (new_bytes && backing) {
3644 int64_t backing_len;
3645
3646 backing_len = bdrv_co_getlength(backing->bs);
3647 if (backing_len < 0) {
3648 ret = backing_len;
3649 error_setg_errno(errp, -ret, "Could not get backing file size");
3650 goto out;
3651 }
3652
3653 if (backing_len > old_size) {
3654 flags |= BDRV_REQ_ZERO_WRITE;
3655 }
3656 }
3657
3658 if (drv->bdrv_co_truncate) {
3659 if (flags & ~bs->supported_truncate_flags) {
3660 error_setg(errp, "Block driver does not support requested flags");
3661 ret = -ENOTSUP;
3662 goto out;
3663 }
3664 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3665 } else if (filtered) {
3666 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3667 } else {
3668 error_setg(errp, "Image format driver does not support resize");
3669 ret = -ENOTSUP;
3670 goto out;
3671 }
3672 if (ret < 0) {
3673 goto out;
3674 }
3675
3676 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3677 if (ret < 0) {
3678 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3679 } else {
3680 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3681 }
3682 /*
3683 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3684 * failed, but the latter doesn't affect how we should finish the request.
3685 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3686 */
3687 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3688
3689 out:
3690 tracked_request_end(&req);
3691 bdrv_dec_in_flight(bs);
3692
3693 return ret;
3694 }
3695
3696 void bdrv_cancel_in_flight(BlockDriverState *bs)
3697 {
3698 GLOBAL_STATE_CODE();
3699 if (!bs || !bs->drv) {
3700 return;
3701 }
3702
3703 if (bs->drv->bdrv_cancel_in_flight) {
3704 bs->drv->bdrv_cancel_in_flight(bs);
3705 }
3706 }
3707
3708 int coroutine_fn
3709 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3710 QEMUIOVector *qiov, size_t qiov_offset)
3711 {
3712 BlockDriverState *bs = child->bs;
3713 BlockDriver *drv = bs->drv;
3714 int ret;
3715 IO_CODE();
3716 assert_bdrv_graph_readable();
3717
3718 if (!drv) {
3719 return -ENOMEDIUM;
3720 }
3721
3722 if (!drv->bdrv_co_preadv_snapshot) {
3723 return -ENOTSUP;
3724 }
3725
3726 bdrv_inc_in_flight(bs);
3727 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3728 bdrv_dec_in_flight(bs);
3729
3730 return ret;
3731 }
3732
3733 int coroutine_fn
3734 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3735 bool want_zero, int64_t offset, int64_t bytes,
3736 int64_t *pnum, int64_t *map,
3737 BlockDriverState **file)
3738 {
3739 BlockDriver *drv = bs->drv;
3740 int ret;
3741 IO_CODE();
3742 assert_bdrv_graph_readable();
3743
3744 if (!drv) {
3745 return -ENOMEDIUM;
3746 }
3747
3748 if (!drv->bdrv_co_snapshot_block_status) {
3749 return -ENOTSUP;
3750 }
3751
3752 bdrv_inc_in_flight(bs);
3753 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3754 pnum, map, file);
3755 bdrv_dec_in_flight(bs);
3756
3757 return ret;
3758 }
3759
3760 int coroutine_fn
3761 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3762 {
3763 BlockDriver *drv = bs->drv;
3764 int ret;
3765 IO_CODE();
3766 assert_bdrv_graph_readable();
3767
3768 if (!drv) {
3769 return -ENOMEDIUM;
3770 }
3771
3772 if (!drv->bdrv_co_pdiscard_snapshot) {
3773 return -ENOTSUP;
3774 }
3775
3776 bdrv_inc_in_flight(bs);
3777 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3778 bdrv_dec_in_flight(bs);
3779
3780 return ret;
3781 }