]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/ll_rw_blk.c
add a struct request pointer to the request structure
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 /*
35 * for max sense size
36 */
37 #include <scsi/scsi_cmnd.h>
38
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(request_queue_t *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45
46 /*
47 * For the allocated request tables
48 */
49 static struct kmem_cache *request_cachep;
50
51 /*
52 * For queue allocation
53 */
54 static struct kmem_cache *requestq_cachep;
55
56 /*
57 * For io context allocations
58 */
59 static struct kmem_cache *iocontext_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 unsigned long blk_max_low_pfn, blk_max_pfn;
67
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
70
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
72
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
75
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
78
79 /*
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
83 */
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
85 {
86 return q->nr_congestion_on;
87 }
88
89 /*
90 * The threshold at which a queue is considered to be uncongested
91 */
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
93 {
94 return q->nr_congestion_off;
95 }
96
97 static void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110 }
111
112 /**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 struct backing_dev_info *ret = NULL;
124 request_queue_t *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132 /**
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q: queue
135 * @pfn: prepare_request function
136 *
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
141 *
142 */
143 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
144 {
145 q->prep_rq_fn = pfn;
146 }
147
148 EXPORT_SYMBOL(blk_queue_prep_rq);
149
150 /**
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q: queue
153 * @mbfn: merge_bvec_fn
154 *
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
165 */
166 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
167 {
168 q->merge_bvec_fn = mbfn;
169 }
170
171 EXPORT_SYMBOL(blk_queue_merge_bvec);
172
173 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
174 {
175 q->softirq_done_fn = fn;
176 }
177
178 EXPORT_SYMBOL(blk_queue_softirq_done);
179
180 /**
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
184 *
185 * Description:
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
195 *
196 * Caveat:
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
201 **/
202 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
203 {
204 /*
205 * set defaults
206 */
207 q->nr_requests = BLKDEV_MAX_RQ;
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
219
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
223 q->unplug_delay = 1;
224
225 INIT_WORK(&q->unplug_work, blk_unplug_work);
226
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
229
230 /*
231 * by default assume old behaviour and bounce for any highmem page
232 */
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
234 }
235
236 EXPORT_SYMBOL(blk_queue_make_request);
237
238 static void rq_init(request_queue_t *q, struct request *rq)
239 {
240 INIT_LIST_HEAD(&rq->queuelist);
241 INIT_LIST_HEAD(&rq->donelist);
242
243 rq->errors = 0;
244 rq->bio = rq->biotail = NULL;
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
247 rq->ioprio = 0;
248 rq->buffer = NULL;
249 rq->ref_count = 1;
250 rq->q = q;
251 rq->special = NULL;
252 rq->data_len = 0;
253 rq->data = NULL;
254 rq->nr_phys_segments = 0;
255 rq->sense = NULL;
256 rq->end_io = NULL;
257 rq->end_io_data = NULL;
258 rq->completion_data = NULL;
259 rq->next_rq = NULL;
260 }
261
262 /**
263 * blk_queue_ordered - does this queue support ordered writes
264 * @q: the request queue
265 * @ordered: one of QUEUE_ORDERED_*
266 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
267 *
268 * Description:
269 * For journalled file systems, doing ordered writes on a commit
270 * block instead of explicitly doing wait_on_buffer (which is bad
271 * for performance) can be a big win. Block drivers supporting this
272 * feature should call this function and indicate so.
273 *
274 **/
275 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
276 prepare_flush_fn *prepare_flush_fn)
277 {
278 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
279 prepare_flush_fn == NULL) {
280 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
281 return -EINVAL;
282 }
283
284 if (ordered != QUEUE_ORDERED_NONE &&
285 ordered != QUEUE_ORDERED_DRAIN &&
286 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
287 ordered != QUEUE_ORDERED_DRAIN_FUA &&
288 ordered != QUEUE_ORDERED_TAG &&
289 ordered != QUEUE_ORDERED_TAG_FLUSH &&
290 ordered != QUEUE_ORDERED_TAG_FUA) {
291 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
292 return -EINVAL;
293 }
294
295 q->ordered = ordered;
296 q->next_ordered = ordered;
297 q->prepare_flush_fn = prepare_flush_fn;
298
299 return 0;
300 }
301
302 EXPORT_SYMBOL(blk_queue_ordered);
303
304 /**
305 * blk_queue_issue_flush_fn - set function for issuing a flush
306 * @q: the request queue
307 * @iff: the function to be called issuing the flush
308 *
309 * Description:
310 * If a driver supports issuing a flush command, the support is notified
311 * to the block layer by defining it through this call.
312 *
313 **/
314 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
315 {
316 q->issue_flush_fn = iff;
317 }
318
319 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
320
321 /*
322 * Cache flushing for ordered writes handling
323 */
324 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
325 {
326 if (!q->ordseq)
327 return 0;
328 return 1 << ffz(q->ordseq);
329 }
330
331 unsigned blk_ordered_req_seq(struct request *rq)
332 {
333 request_queue_t *q = rq->q;
334
335 BUG_ON(q->ordseq == 0);
336
337 if (rq == &q->pre_flush_rq)
338 return QUEUE_ORDSEQ_PREFLUSH;
339 if (rq == &q->bar_rq)
340 return QUEUE_ORDSEQ_BAR;
341 if (rq == &q->post_flush_rq)
342 return QUEUE_ORDSEQ_POSTFLUSH;
343
344 /*
345 * !fs requests don't need to follow barrier ordering. Always
346 * put them at the front. This fixes the following deadlock.
347 *
348 * http://thread.gmane.org/gmane.linux.kernel/537473
349 */
350 if (!blk_fs_request(rq))
351 return QUEUE_ORDSEQ_DRAIN;
352
353 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
354 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
355 return QUEUE_ORDSEQ_DRAIN;
356 else
357 return QUEUE_ORDSEQ_DONE;
358 }
359
360 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
361 {
362 struct request *rq;
363 int uptodate;
364
365 if (error && !q->orderr)
366 q->orderr = error;
367
368 BUG_ON(q->ordseq & seq);
369 q->ordseq |= seq;
370
371 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
372 return;
373
374 /*
375 * Okay, sequence complete.
376 */
377 rq = q->orig_bar_rq;
378 uptodate = q->orderr ? q->orderr : 1;
379
380 q->ordseq = 0;
381
382 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
383 end_that_request_last(rq, uptodate);
384 }
385
386 static void pre_flush_end_io(struct request *rq, int error)
387 {
388 elv_completed_request(rq->q, rq);
389 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
390 }
391
392 static void bar_end_io(struct request *rq, int error)
393 {
394 elv_completed_request(rq->q, rq);
395 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
396 }
397
398 static void post_flush_end_io(struct request *rq, int error)
399 {
400 elv_completed_request(rq->q, rq);
401 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
402 }
403
404 static void queue_flush(request_queue_t *q, unsigned which)
405 {
406 struct request *rq;
407 rq_end_io_fn *end_io;
408
409 if (which == QUEUE_ORDERED_PREFLUSH) {
410 rq = &q->pre_flush_rq;
411 end_io = pre_flush_end_io;
412 } else {
413 rq = &q->post_flush_rq;
414 end_io = post_flush_end_io;
415 }
416
417 rq->cmd_flags = REQ_HARDBARRIER;
418 rq_init(q, rq);
419 rq->elevator_private = NULL;
420 rq->elevator_private2 = NULL;
421 rq->rq_disk = q->bar_rq.rq_disk;
422 rq->end_io = end_io;
423 q->prepare_flush_fn(q, rq);
424
425 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
426 }
427
428 static inline struct request *start_ordered(request_queue_t *q,
429 struct request *rq)
430 {
431 q->bi_size = 0;
432 q->orderr = 0;
433 q->ordered = q->next_ordered;
434 q->ordseq |= QUEUE_ORDSEQ_STARTED;
435
436 /*
437 * Prep proxy barrier request.
438 */
439 blkdev_dequeue_request(rq);
440 q->orig_bar_rq = rq;
441 rq = &q->bar_rq;
442 rq->cmd_flags = 0;
443 rq_init(q, rq);
444 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
445 rq->cmd_flags |= REQ_RW;
446 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
447 rq->elevator_private = NULL;
448 rq->elevator_private2 = NULL;
449 init_request_from_bio(rq, q->orig_bar_rq->bio);
450 rq->end_io = bar_end_io;
451
452 /*
453 * Queue ordered sequence. As we stack them at the head, we
454 * need to queue in reverse order. Note that we rely on that
455 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
456 * request gets inbetween ordered sequence.
457 */
458 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
459 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
460 else
461 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
462
463 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
464
465 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
466 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
467 rq = &q->pre_flush_rq;
468 } else
469 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
470
471 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
472 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
473 else
474 rq = NULL;
475
476 return rq;
477 }
478
479 int blk_do_ordered(request_queue_t *q, struct request **rqp)
480 {
481 struct request *rq = *rqp;
482 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
483
484 if (!q->ordseq) {
485 if (!is_barrier)
486 return 1;
487
488 if (q->next_ordered != QUEUE_ORDERED_NONE) {
489 *rqp = start_ordered(q, rq);
490 return 1;
491 } else {
492 /*
493 * This can happen when the queue switches to
494 * ORDERED_NONE while this request is on it.
495 */
496 blkdev_dequeue_request(rq);
497 end_that_request_first(rq, -EOPNOTSUPP,
498 rq->hard_nr_sectors);
499 end_that_request_last(rq, -EOPNOTSUPP);
500 *rqp = NULL;
501 return 0;
502 }
503 }
504
505 /*
506 * Ordered sequence in progress
507 */
508
509 /* Special requests are not subject to ordering rules. */
510 if (!blk_fs_request(rq) &&
511 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
512 return 1;
513
514 if (q->ordered & QUEUE_ORDERED_TAG) {
515 /* Ordered by tag. Blocking the next barrier is enough. */
516 if (is_barrier && rq != &q->bar_rq)
517 *rqp = NULL;
518 } else {
519 /* Ordered by draining. Wait for turn. */
520 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
521 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
522 *rqp = NULL;
523 }
524
525 return 1;
526 }
527
528 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
529 {
530 request_queue_t *q = bio->bi_private;
531
532 /*
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
536 */
537 q->bi_size += bytes;
538
539 if (bio->bi_size)
540 return 1;
541
542 /* Reset bio */
543 set_bit(BIO_UPTODATE, &bio->bi_flags);
544 bio->bi_size = q->bi_size;
545 bio->bi_sector -= (q->bi_size >> 9);
546 q->bi_size = 0;
547
548 return 0;
549 }
550
551 static int ordered_bio_endio(struct request *rq, struct bio *bio,
552 unsigned int nbytes, int error)
553 {
554 request_queue_t *q = rq->q;
555 bio_end_io_t *endio;
556 void *private;
557
558 if (&q->bar_rq != rq)
559 return 0;
560
561 /*
562 * Okay, this is the barrier request in progress, dry finish it.
563 */
564 if (error && !q->orderr)
565 q->orderr = error;
566
567 endio = bio->bi_end_io;
568 private = bio->bi_private;
569 bio->bi_end_io = flush_dry_bio_endio;
570 bio->bi_private = q;
571
572 bio_endio(bio, nbytes, error);
573
574 bio->bi_end_io = endio;
575 bio->bi_private = private;
576
577 return 1;
578 }
579
580 /**
581 * blk_queue_bounce_limit - set bounce buffer limit for queue
582 * @q: the request queue for the device
583 * @dma_addr: bus address limit
584 *
585 * Description:
586 * Different hardware can have different requirements as to what pages
587 * it can do I/O directly to. A low level driver can call
588 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
589 * buffers for doing I/O to pages residing above @page.
590 **/
591 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
592 {
593 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
594 int dma = 0;
595
596 q->bounce_gfp = GFP_NOIO;
597 #if BITS_PER_LONG == 64
598 /* Assume anything <= 4GB can be handled by IOMMU.
599 Actually some IOMMUs can handle everything, but I don't
600 know of a way to test this here. */
601 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
602 dma = 1;
603 q->bounce_pfn = max_low_pfn;
604 #else
605 if (bounce_pfn < blk_max_low_pfn)
606 dma = 1;
607 q->bounce_pfn = bounce_pfn;
608 #endif
609 if (dma) {
610 init_emergency_isa_pool();
611 q->bounce_gfp = GFP_NOIO | GFP_DMA;
612 q->bounce_pfn = bounce_pfn;
613 }
614 }
615
616 EXPORT_SYMBOL(blk_queue_bounce_limit);
617
618 /**
619 * blk_queue_max_sectors - set max sectors for a request for this queue
620 * @q: the request queue for the device
621 * @max_sectors: max sectors in the usual 512b unit
622 *
623 * Description:
624 * Enables a low level driver to set an upper limit on the size of
625 * received requests.
626 **/
627 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
628 {
629 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
630 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
632 }
633
634 if (BLK_DEF_MAX_SECTORS > max_sectors)
635 q->max_hw_sectors = q->max_sectors = max_sectors;
636 else {
637 q->max_sectors = BLK_DEF_MAX_SECTORS;
638 q->max_hw_sectors = max_sectors;
639 }
640 }
641
642 EXPORT_SYMBOL(blk_queue_max_sectors);
643
644 /**
645 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
646 * @q: the request queue for the device
647 * @max_segments: max number of segments
648 *
649 * Description:
650 * Enables a low level driver to set an upper limit on the number of
651 * physical data segments in a request. This would be the largest sized
652 * scatter list the driver could handle.
653 **/
654 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
655 {
656 if (!max_segments) {
657 max_segments = 1;
658 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
659 }
660
661 q->max_phys_segments = max_segments;
662 }
663
664 EXPORT_SYMBOL(blk_queue_max_phys_segments);
665
666 /**
667 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
668 * @q: the request queue for the device
669 * @max_segments: max number of segments
670 *
671 * Description:
672 * Enables a low level driver to set an upper limit on the number of
673 * hw data segments in a request. This would be the largest number of
674 * address/length pairs the host adapter can actually give as once
675 * to the device.
676 **/
677 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
678 {
679 if (!max_segments) {
680 max_segments = 1;
681 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
682 }
683
684 q->max_hw_segments = max_segments;
685 }
686
687 EXPORT_SYMBOL(blk_queue_max_hw_segments);
688
689 /**
690 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
691 * @q: the request queue for the device
692 * @max_size: max size of segment in bytes
693 *
694 * Description:
695 * Enables a low level driver to set an upper limit on the size of a
696 * coalesced segment
697 **/
698 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
699 {
700 if (max_size < PAGE_CACHE_SIZE) {
701 max_size = PAGE_CACHE_SIZE;
702 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
703 }
704
705 q->max_segment_size = max_size;
706 }
707
708 EXPORT_SYMBOL(blk_queue_max_segment_size);
709
710 /**
711 * blk_queue_hardsect_size - set hardware sector size for the queue
712 * @q: the request queue for the device
713 * @size: the hardware sector size, in bytes
714 *
715 * Description:
716 * This should typically be set to the lowest possible sector size
717 * that the hardware can operate on (possible without reverting to
718 * even internal read-modify-write operations). Usually the default
719 * of 512 covers most hardware.
720 **/
721 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
722 {
723 q->hardsect_size = size;
724 }
725
726 EXPORT_SYMBOL(blk_queue_hardsect_size);
727
728 /*
729 * Returns the minimum that is _not_ zero, unless both are zero.
730 */
731 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
732
733 /**
734 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
735 * @t: the stacking driver (top)
736 * @b: the underlying device (bottom)
737 **/
738 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
739 {
740 /* zero is "infinity" */
741 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
742 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
743
744 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
745 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
746 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
747 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
748 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
749 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
750 }
751
752 EXPORT_SYMBOL(blk_queue_stack_limits);
753
754 /**
755 * blk_queue_segment_boundary - set boundary rules for segment merging
756 * @q: the request queue for the device
757 * @mask: the memory boundary mask
758 **/
759 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
760 {
761 if (mask < PAGE_CACHE_SIZE - 1) {
762 mask = PAGE_CACHE_SIZE - 1;
763 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
764 }
765
766 q->seg_boundary_mask = mask;
767 }
768
769 EXPORT_SYMBOL(blk_queue_segment_boundary);
770
771 /**
772 * blk_queue_dma_alignment - set dma length and memory alignment
773 * @q: the request queue for the device
774 * @mask: alignment mask
775 *
776 * description:
777 * set required memory and length aligment for direct dma transactions.
778 * this is used when buiding direct io requests for the queue.
779 *
780 **/
781 void blk_queue_dma_alignment(request_queue_t *q, int mask)
782 {
783 q->dma_alignment = mask;
784 }
785
786 EXPORT_SYMBOL(blk_queue_dma_alignment);
787
788 /**
789 * blk_queue_find_tag - find a request by its tag and queue
790 * @q: The request queue for the device
791 * @tag: The tag of the request
792 *
793 * Notes:
794 * Should be used when a device returns a tag and you want to match
795 * it with a request.
796 *
797 * no locks need be held.
798 **/
799 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
800 {
801 return blk_map_queue_find_tag(q->queue_tags, tag);
802 }
803
804 EXPORT_SYMBOL(blk_queue_find_tag);
805
806 /**
807 * __blk_free_tags - release a given set of tag maintenance info
808 * @bqt: the tag map to free
809 *
810 * Tries to free the specified @bqt@. Returns true if it was
811 * actually freed and false if there are still references using it
812 */
813 static int __blk_free_tags(struct blk_queue_tag *bqt)
814 {
815 int retval;
816
817 retval = atomic_dec_and_test(&bqt->refcnt);
818 if (retval) {
819 BUG_ON(bqt->busy);
820 BUG_ON(!list_empty(&bqt->busy_list));
821
822 kfree(bqt->tag_index);
823 bqt->tag_index = NULL;
824
825 kfree(bqt->tag_map);
826 bqt->tag_map = NULL;
827
828 kfree(bqt);
829
830 }
831
832 return retval;
833 }
834
835 /**
836 * __blk_queue_free_tags - release tag maintenance info
837 * @q: the request queue for the device
838 *
839 * Notes:
840 * blk_cleanup_queue() will take care of calling this function, if tagging
841 * has been used. So there's no need to call this directly.
842 **/
843 static void __blk_queue_free_tags(request_queue_t *q)
844 {
845 struct blk_queue_tag *bqt = q->queue_tags;
846
847 if (!bqt)
848 return;
849
850 __blk_free_tags(bqt);
851
852 q->queue_tags = NULL;
853 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
854 }
855
856
857 /**
858 * blk_free_tags - release a given set of tag maintenance info
859 * @bqt: the tag map to free
860 *
861 * For externally managed @bqt@ frees the map. Callers of this
862 * function must guarantee to have released all the queues that
863 * might have been using this tag map.
864 */
865 void blk_free_tags(struct blk_queue_tag *bqt)
866 {
867 if (unlikely(!__blk_free_tags(bqt)))
868 BUG();
869 }
870 EXPORT_SYMBOL(blk_free_tags);
871
872 /**
873 * blk_queue_free_tags - release tag maintenance info
874 * @q: the request queue for the device
875 *
876 * Notes:
877 * This is used to disabled tagged queuing to a device, yet leave
878 * queue in function.
879 **/
880 void blk_queue_free_tags(request_queue_t *q)
881 {
882 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
883 }
884
885 EXPORT_SYMBOL(blk_queue_free_tags);
886
887 static int
888 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
889 {
890 struct request **tag_index;
891 unsigned long *tag_map;
892 int nr_ulongs;
893
894 if (q && depth > q->nr_requests * 2) {
895 depth = q->nr_requests * 2;
896 printk(KERN_ERR "%s: adjusted depth to %d\n",
897 __FUNCTION__, depth);
898 }
899
900 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
901 if (!tag_index)
902 goto fail;
903
904 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
905 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
906 if (!tag_map)
907 goto fail;
908
909 tags->real_max_depth = depth;
910 tags->max_depth = depth;
911 tags->tag_index = tag_index;
912 tags->tag_map = tag_map;
913
914 return 0;
915 fail:
916 kfree(tag_index);
917 return -ENOMEM;
918 }
919
920 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
921 int depth)
922 {
923 struct blk_queue_tag *tags;
924
925 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
926 if (!tags)
927 goto fail;
928
929 if (init_tag_map(q, tags, depth))
930 goto fail;
931
932 INIT_LIST_HEAD(&tags->busy_list);
933 tags->busy = 0;
934 atomic_set(&tags->refcnt, 1);
935 return tags;
936 fail:
937 kfree(tags);
938 return NULL;
939 }
940
941 /**
942 * blk_init_tags - initialize the tag info for an external tag map
943 * @depth: the maximum queue depth supported
944 * @tags: the tag to use
945 **/
946 struct blk_queue_tag *blk_init_tags(int depth)
947 {
948 return __blk_queue_init_tags(NULL, depth);
949 }
950 EXPORT_SYMBOL(blk_init_tags);
951
952 /**
953 * blk_queue_init_tags - initialize the queue tag info
954 * @q: the request queue for the device
955 * @depth: the maximum queue depth supported
956 * @tags: the tag to use
957 **/
958 int blk_queue_init_tags(request_queue_t *q, int depth,
959 struct blk_queue_tag *tags)
960 {
961 int rc;
962
963 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
964
965 if (!tags && !q->queue_tags) {
966 tags = __blk_queue_init_tags(q, depth);
967
968 if (!tags)
969 goto fail;
970 } else if (q->queue_tags) {
971 if ((rc = blk_queue_resize_tags(q, depth)))
972 return rc;
973 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
974 return 0;
975 } else
976 atomic_inc(&tags->refcnt);
977
978 /*
979 * assign it, all done
980 */
981 q->queue_tags = tags;
982 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
983 return 0;
984 fail:
985 kfree(tags);
986 return -ENOMEM;
987 }
988
989 EXPORT_SYMBOL(blk_queue_init_tags);
990
991 /**
992 * blk_queue_resize_tags - change the queueing depth
993 * @q: the request queue for the device
994 * @new_depth: the new max command queueing depth
995 *
996 * Notes:
997 * Must be called with the queue lock held.
998 **/
999 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1000 {
1001 struct blk_queue_tag *bqt = q->queue_tags;
1002 struct request **tag_index;
1003 unsigned long *tag_map;
1004 int max_depth, nr_ulongs;
1005
1006 if (!bqt)
1007 return -ENXIO;
1008
1009 /*
1010 * if we already have large enough real_max_depth. just
1011 * adjust max_depth. *NOTE* as requests with tag value
1012 * between new_depth and real_max_depth can be in-flight, tag
1013 * map can not be shrunk blindly here.
1014 */
1015 if (new_depth <= bqt->real_max_depth) {
1016 bqt->max_depth = new_depth;
1017 return 0;
1018 }
1019
1020 /*
1021 * Currently cannot replace a shared tag map with a new
1022 * one, so error out if this is the case
1023 */
1024 if (atomic_read(&bqt->refcnt) != 1)
1025 return -EBUSY;
1026
1027 /*
1028 * save the old state info, so we can copy it back
1029 */
1030 tag_index = bqt->tag_index;
1031 tag_map = bqt->tag_map;
1032 max_depth = bqt->real_max_depth;
1033
1034 if (init_tag_map(q, bqt, new_depth))
1035 return -ENOMEM;
1036
1037 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1038 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1039 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1040
1041 kfree(tag_index);
1042 kfree(tag_map);
1043 return 0;
1044 }
1045
1046 EXPORT_SYMBOL(blk_queue_resize_tags);
1047
1048 /**
1049 * blk_queue_end_tag - end tag operations for a request
1050 * @q: the request queue for the device
1051 * @rq: the request that has completed
1052 *
1053 * Description:
1054 * Typically called when end_that_request_first() returns 0, meaning
1055 * all transfers have been done for a request. It's important to call
1056 * this function before end_that_request_last(), as that will put the
1057 * request back on the free list thus corrupting the internal tag list.
1058 *
1059 * Notes:
1060 * queue lock must be held.
1061 **/
1062 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1063 {
1064 struct blk_queue_tag *bqt = q->queue_tags;
1065 int tag = rq->tag;
1066
1067 BUG_ON(tag == -1);
1068
1069 if (unlikely(tag >= bqt->real_max_depth))
1070 /*
1071 * This can happen after tag depth has been reduced.
1072 * FIXME: how about a warning or info message here?
1073 */
1074 return;
1075
1076 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1077 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1078 __FUNCTION__, tag);
1079 return;
1080 }
1081
1082 list_del_init(&rq->queuelist);
1083 rq->cmd_flags &= ~REQ_QUEUED;
1084 rq->tag = -1;
1085
1086 if (unlikely(bqt->tag_index[tag] == NULL))
1087 printk(KERN_ERR "%s: tag %d is missing\n",
1088 __FUNCTION__, tag);
1089
1090 bqt->tag_index[tag] = NULL;
1091 bqt->busy--;
1092 }
1093
1094 EXPORT_SYMBOL(blk_queue_end_tag);
1095
1096 /**
1097 * blk_queue_start_tag - find a free tag and assign it
1098 * @q: the request queue for the device
1099 * @rq: the block request that needs tagging
1100 *
1101 * Description:
1102 * This can either be used as a stand-alone helper, or possibly be
1103 * assigned as the queue &prep_rq_fn (in which case &struct request
1104 * automagically gets a tag assigned). Note that this function
1105 * assumes that any type of request can be queued! if this is not
1106 * true for your device, you must check the request type before
1107 * calling this function. The request will also be removed from
1108 * the request queue, so it's the drivers responsibility to readd
1109 * it if it should need to be restarted for some reason.
1110 *
1111 * Notes:
1112 * queue lock must be held.
1113 **/
1114 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1115 {
1116 struct blk_queue_tag *bqt = q->queue_tags;
1117 int tag;
1118
1119 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1120 printk(KERN_ERR
1121 "%s: request %p for device [%s] already tagged %d",
1122 __FUNCTION__, rq,
1123 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1124 BUG();
1125 }
1126
1127 /*
1128 * Protect against shared tag maps, as we may not have exclusive
1129 * access to the tag map.
1130 */
1131 do {
1132 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1133 if (tag >= bqt->max_depth)
1134 return 1;
1135
1136 } while (test_and_set_bit(tag, bqt->tag_map));
1137
1138 rq->cmd_flags |= REQ_QUEUED;
1139 rq->tag = tag;
1140 bqt->tag_index[tag] = rq;
1141 blkdev_dequeue_request(rq);
1142 list_add(&rq->queuelist, &bqt->busy_list);
1143 bqt->busy++;
1144 return 0;
1145 }
1146
1147 EXPORT_SYMBOL(blk_queue_start_tag);
1148
1149 /**
1150 * blk_queue_invalidate_tags - invalidate all pending tags
1151 * @q: the request queue for the device
1152 *
1153 * Description:
1154 * Hardware conditions may dictate a need to stop all pending requests.
1155 * In this case, we will safely clear the block side of the tag queue and
1156 * readd all requests to the request queue in the right order.
1157 *
1158 * Notes:
1159 * queue lock must be held.
1160 **/
1161 void blk_queue_invalidate_tags(request_queue_t *q)
1162 {
1163 struct blk_queue_tag *bqt = q->queue_tags;
1164 struct list_head *tmp, *n;
1165 struct request *rq;
1166
1167 list_for_each_safe(tmp, n, &bqt->busy_list) {
1168 rq = list_entry_rq(tmp);
1169
1170 if (rq->tag == -1) {
1171 printk(KERN_ERR
1172 "%s: bad tag found on list\n", __FUNCTION__);
1173 list_del_init(&rq->queuelist);
1174 rq->cmd_flags &= ~REQ_QUEUED;
1175 } else
1176 blk_queue_end_tag(q, rq);
1177
1178 rq->cmd_flags &= ~REQ_STARTED;
1179 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1180 }
1181 }
1182
1183 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1184
1185 void blk_dump_rq_flags(struct request *rq, char *msg)
1186 {
1187 int bit;
1188
1189 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1190 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1191 rq->cmd_flags);
1192
1193 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1194 rq->nr_sectors,
1195 rq->current_nr_sectors);
1196 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1197
1198 if (blk_pc_request(rq)) {
1199 printk("cdb: ");
1200 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1201 printk("%02x ", rq->cmd[bit]);
1202 printk("\n");
1203 }
1204 }
1205
1206 EXPORT_SYMBOL(blk_dump_rq_flags);
1207
1208 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1209 {
1210 struct bio_vec *bv, *bvprv = NULL;
1211 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1212 int high, highprv = 1;
1213
1214 if (unlikely(!bio->bi_io_vec))
1215 return;
1216
1217 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1218 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1219 bio_for_each_segment(bv, bio, i) {
1220 /*
1221 * the trick here is making sure that a high page is never
1222 * considered part of another segment, since that might
1223 * change with the bounce page.
1224 */
1225 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1226 if (high || highprv)
1227 goto new_hw_segment;
1228 if (cluster) {
1229 if (seg_size + bv->bv_len > q->max_segment_size)
1230 goto new_segment;
1231 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1232 goto new_segment;
1233 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1234 goto new_segment;
1235 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1236 goto new_hw_segment;
1237
1238 seg_size += bv->bv_len;
1239 hw_seg_size += bv->bv_len;
1240 bvprv = bv;
1241 continue;
1242 }
1243 new_segment:
1244 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1245 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1246 hw_seg_size += bv->bv_len;
1247 } else {
1248 new_hw_segment:
1249 if (hw_seg_size > bio->bi_hw_front_size)
1250 bio->bi_hw_front_size = hw_seg_size;
1251 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1252 nr_hw_segs++;
1253 }
1254
1255 nr_phys_segs++;
1256 bvprv = bv;
1257 seg_size = bv->bv_len;
1258 highprv = high;
1259 }
1260 if (hw_seg_size > bio->bi_hw_back_size)
1261 bio->bi_hw_back_size = hw_seg_size;
1262 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1263 bio->bi_hw_front_size = hw_seg_size;
1264 bio->bi_phys_segments = nr_phys_segs;
1265 bio->bi_hw_segments = nr_hw_segs;
1266 bio->bi_flags |= (1 << BIO_SEG_VALID);
1267 }
1268 EXPORT_SYMBOL(blk_recount_segments);
1269
1270 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1271 struct bio *nxt)
1272 {
1273 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1274 return 0;
1275
1276 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1277 return 0;
1278 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1279 return 0;
1280
1281 /*
1282 * bio and nxt are contigous in memory, check if the queue allows
1283 * these two to be merged into one
1284 */
1285 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1286 return 1;
1287
1288 return 0;
1289 }
1290
1291 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1292 struct bio *nxt)
1293 {
1294 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1295 blk_recount_segments(q, bio);
1296 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1297 blk_recount_segments(q, nxt);
1298 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1299 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1300 return 0;
1301 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1302 return 0;
1303
1304 return 1;
1305 }
1306
1307 /*
1308 * map a request to scatterlist, return number of sg entries setup. Caller
1309 * must make sure sg can hold rq->nr_phys_segments entries
1310 */
1311 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1312 {
1313 struct bio_vec *bvec, *bvprv;
1314 struct bio *bio;
1315 int nsegs, i, cluster;
1316
1317 nsegs = 0;
1318 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1319
1320 /*
1321 * for each bio in rq
1322 */
1323 bvprv = NULL;
1324 rq_for_each_bio(bio, rq) {
1325 /*
1326 * for each segment in bio
1327 */
1328 bio_for_each_segment(bvec, bio, i) {
1329 int nbytes = bvec->bv_len;
1330
1331 if (bvprv && cluster) {
1332 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1333 goto new_segment;
1334
1335 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1336 goto new_segment;
1337 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1338 goto new_segment;
1339
1340 sg[nsegs - 1].length += nbytes;
1341 } else {
1342 new_segment:
1343 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1344 sg[nsegs].page = bvec->bv_page;
1345 sg[nsegs].length = nbytes;
1346 sg[nsegs].offset = bvec->bv_offset;
1347
1348 nsegs++;
1349 }
1350 bvprv = bvec;
1351 } /* segments in bio */
1352 } /* bios in rq */
1353
1354 return nsegs;
1355 }
1356
1357 EXPORT_SYMBOL(blk_rq_map_sg);
1358
1359 /*
1360 * the standard queue merge functions, can be overridden with device
1361 * specific ones if so desired
1362 */
1363
1364 static inline int ll_new_mergeable(request_queue_t *q,
1365 struct request *req,
1366 struct bio *bio)
1367 {
1368 int nr_phys_segs = bio_phys_segments(q, bio);
1369
1370 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1371 req->cmd_flags |= REQ_NOMERGE;
1372 if (req == q->last_merge)
1373 q->last_merge = NULL;
1374 return 0;
1375 }
1376
1377 /*
1378 * A hw segment is just getting larger, bump just the phys
1379 * counter.
1380 */
1381 req->nr_phys_segments += nr_phys_segs;
1382 return 1;
1383 }
1384
1385 static inline int ll_new_hw_segment(request_queue_t *q,
1386 struct request *req,
1387 struct bio *bio)
1388 {
1389 int nr_hw_segs = bio_hw_segments(q, bio);
1390 int nr_phys_segs = bio_phys_segments(q, bio);
1391
1392 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1393 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1394 req->cmd_flags |= REQ_NOMERGE;
1395 if (req == q->last_merge)
1396 q->last_merge = NULL;
1397 return 0;
1398 }
1399
1400 /*
1401 * This will form the start of a new hw segment. Bump both
1402 * counters.
1403 */
1404 req->nr_hw_segments += nr_hw_segs;
1405 req->nr_phys_segments += nr_phys_segs;
1406 return 1;
1407 }
1408
1409 int ll_back_merge_fn(request_queue_t *q, struct request *req, struct bio *bio)
1410 {
1411 unsigned short max_sectors;
1412 int len;
1413
1414 if (unlikely(blk_pc_request(req)))
1415 max_sectors = q->max_hw_sectors;
1416 else
1417 max_sectors = q->max_sectors;
1418
1419 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1420 req->cmd_flags |= REQ_NOMERGE;
1421 if (req == q->last_merge)
1422 q->last_merge = NULL;
1423 return 0;
1424 }
1425 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1426 blk_recount_segments(q, req->biotail);
1427 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1428 blk_recount_segments(q, bio);
1429 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1430 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1431 !BIOVEC_VIRT_OVERSIZE(len)) {
1432 int mergeable = ll_new_mergeable(q, req, bio);
1433
1434 if (mergeable) {
1435 if (req->nr_hw_segments == 1)
1436 req->bio->bi_hw_front_size = len;
1437 if (bio->bi_hw_segments == 1)
1438 bio->bi_hw_back_size = len;
1439 }
1440 return mergeable;
1441 }
1442
1443 return ll_new_hw_segment(q, req, bio);
1444 }
1445 EXPORT_SYMBOL(ll_back_merge_fn);
1446
1447 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1448 struct bio *bio)
1449 {
1450 unsigned short max_sectors;
1451 int len;
1452
1453 if (unlikely(blk_pc_request(req)))
1454 max_sectors = q->max_hw_sectors;
1455 else
1456 max_sectors = q->max_sectors;
1457
1458
1459 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1460 req->cmd_flags |= REQ_NOMERGE;
1461 if (req == q->last_merge)
1462 q->last_merge = NULL;
1463 return 0;
1464 }
1465 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1466 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1467 blk_recount_segments(q, bio);
1468 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1469 blk_recount_segments(q, req->bio);
1470 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1471 !BIOVEC_VIRT_OVERSIZE(len)) {
1472 int mergeable = ll_new_mergeable(q, req, bio);
1473
1474 if (mergeable) {
1475 if (bio->bi_hw_segments == 1)
1476 bio->bi_hw_front_size = len;
1477 if (req->nr_hw_segments == 1)
1478 req->biotail->bi_hw_back_size = len;
1479 }
1480 return mergeable;
1481 }
1482
1483 return ll_new_hw_segment(q, req, bio);
1484 }
1485
1486 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1487 struct request *next)
1488 {
1489 int total_phys_segments;
1490 int total_hw_segments;
1491
1492 /*
1493 * First check if the either of the requests are re-queued
1494 * requests. Can't merge them if they are.
1495 */
1496 if (req->special || next->special)
1497 return 0;
1498
1499 /*
1500 * Will it become too large?
1501 */
1502 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1503 return 0;
1504
1505 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1506 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1507 total_phys_segments--;
1508
1509 if (total_phys_segments > q->max_phys_segments)
1510 return 0;
1511
1512 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1513 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1514 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1515 /*
1516 * propagate the combined length to the end of the requests
1517 */
1518 if (req->nr_hw_segments == 1)
1519 req->bio->bi_hw_front_size = len;
1520 if (next->nr_hw_segments == 1)
1521 next->biotail->bi_hw_back_size = len;
1522 total_hw_segments--;
1523 }
1524
1525 if (total_hw_segments > q->max_hw_segments)
1526 return 0;
1527
1528 /* Merge is OK... */
1529 req->nr_phys_segments = total_phys_segments;
1530 req->nr_hw_segments = total_hw_segments;
1531 return 1;
1532 }
1533
1534 /*
1535 * "plug" the device if there are no outstanding requests: this will
1536 * force the transfer to start only after we have put all the requests
1537 * on the list.
1538 *
1539 * This is called with interrupts off and no requests on the queue and
1540 * with the queue lock held.
1541 */
1542 void blk_plug_device(request_queue_t *q)
1543 {
1544 WARN_ON(!irqs_disabled());
1545
1546 /*
1547 * don't plug a stopped queue, it must be paired with blk_start_queue()
1548 * which will restart the queueing
1549 */
1550 if (blk_queue_stopped(q))
1551 return;
1552
1553 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1554 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1555 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1556 }
1557 }
1558
1559 EXPORT_SYMBOL(blk_plug_device);
1560
1561 /*
1562 * remove the queue from the plugged list, if present. called with
1563 * queue lock held and interrupts disabled.
1564 */
1565 int blk_remove_plug(request_queue_t *q)
1566 {
1567 WARN_ON(!irqs_disabled());
1568
1569 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1570 return 0;
1571
1572 del_timer(&q->unplug_timer);
1573 return 1;
1574 }
1575
1576 EXPORT_SYMBOL(blk_remove_plug);
1577
1578 /*
1579 * remove the plug and let it rip..
1580 */
1581 void __generic_unplug_device(request_queue_t *q)
1582 {
1583 if (unlikely(blk_queue_stopped(q)))
1584 return;
1585
1586 if (!blk_remove_plug(q))
1587 return;
1588
1589 q->request_fn(q);
1590 }
1591 EXPORT_SYMBOL(__generic_unplug_device);
1592
1593 /**
1594 * generic_unplug_device - fire a request queue
1595 * @q: The &request_queue_t in question
1596 *
1597 * Description:
1598 * Linux uses plugging to build bigger requests queues before letting
1599 * the device have at them. If a queue is plugged, the I/O scheduler
1600 * is still adding and merging requests on the queue. Once the queue
1601 * gets unplugged, the request_fn defined for the queue is invoked and
1602 * transfers started.
1603 **/
1604 void generic_unplug_device(request_queue_t *q)
1605 {
1606 spin_lock_irq(q->queue_lock);
1607 __generic_unplug_device(q);
1608 spin_unlock_irq(q->queue_lock);
1609 }
1610 EXPORT_SYMBOL(generic_unplug_device);
1611
1612 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1613 struct page *page)
1614 {
1615 request_queue_t *q = bdi->unplug_io_data;
1616
1617 /*
1618 * devices don't necessarily have an ->unplug_fn defined
1619 */
1620 if (q->unplug_fn) {
1621 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1622 q->rq.count[READ] + q->rq.count[WRITE]);
1623
1624 q->unplug_fn(q);
1625 }
1626 }
1627
1628 static void blk_unplug_work(struct work_struct *work)
1629 {
1630 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1631
1632 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1633 q->rq.count[READ] + q->rq.count[WRITE]);
1634
1635 q->unplug_fn(q);
1636 }
1637
1638 static void blk_unplug_timeout(unsigned long data)
1639 {
1640 request_queue_t *q = (request_queue_t *)data;
1641
1642 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1643 q->rq.count[READ] + q->rq.count[WRITE]);
1644
1645 kblockd_schedule_work(&q->unplug_work);
1646 }
1647
1648 /**
1649 * blk_start_queue - restart a previously stopped queue
1650 * @q: The &request_queue_t in question
1651 *
1652 * Description:
1653 * blk_start_queue() will clear the stop flag on the queue, and call
1654 * the request_fn for the queue if it was in a stopped state when
1655 * entered. Also see blk_stop_queue(). Queue lock must be held.
1656 **/
1657 void blk_start_queue(request_queue_t *q)
1658 {
1659 WARN_ON(!irqs_disabled());
1660
1661 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1662
1663 /*
1664 * one level of recursion is ok and is much faster than kicking
1665 * the unplug handling
1666 */
1667 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1668 q->request_fn(q);
1669 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1670 } else {
1671 blk_plug_device(q);
1672 kblockd_schedule_work(&q->unplug_work);
1673 }
1674 }
1675
1676 EXPORT_SYMBOL(blk_start_queue);
1677
1678 /**
1679 * blk_stop_queue - stop a queue
1680 * @q: The &request_queue_t in question
1681 *
1682 * Description:
1683 * The Linux block layer assumes that a block driver will consume all
1684 * entries on the request queue when the request_fn strategy is called.
1685 * Often this will not happen, because of hardware limitations (queue
1686 * depth settings). If a device driver gets a 'queue full' response,
1687 * or if it simply chooses not to queue more I/O at one point, it can
1688 * call this function to prevent the request_fn from being called until
1689 * the driver has signalled it's ready to go again. This happens by calling
1690 * blk_start_queue() to restart queue operations. Queue lock must be held.
1691 **/
1692 void blk_stop_queue(request_queue_t *q)
1693 {
1694 blk_remove_plug(q);
1695 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1696 }
1697 EXPORT_SYMBOL(blk_stop_queue);
1698
1699 /**
1700 * blk_sync_queue - cancel any pending callbacks on a queue
1701 * @q: the queue
1702 *
1703 * Description:
1704 * The block layer may perform asynchronous callback activity
1705 * on a queue, such as calling the unplug function after a timeout.
1706 * A block device may call blk_sync_queue to ensure that any
1707 * such activity is cancelled, thus allowing it to release resources
1708 * that the callbacks might use. The caller must already have made sure
1709 * that its ->make_request_fn will not re-add plugging prior to calling
1710 * this function.
1711 *
1712 */
1713 void blk_sync_queue(struct request_queue *q)
1714 {
1715 del_timer_sync(&q->unplug_timer);
1716 }
1717 EXPORT_SYMBOL(blk_sync_queue);
1718
1719 /**
1720 * blk_run_queue - run a single device queue
1721 * @q: The queue to run
1722 */
1723 void blk_run_queue(struct request_queue *q)
1724 {
1725 unsigned long flags;
1726
1727 spin_lock_irqsave(q->queue_lock, flags);
1728 blk_remove_plug(q);
1729
1730 /*
1731 * Only recurse once to avoid overrunning the stack, let the unplug
1732 * handling reinvoke the handler shortly if we already got there.
1733 */
1734 if (!elv_queue_empty(q)) {
1735 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1736 q->request_fn(q);
1737 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1738 } else {
1739 blk_plug_device(q);
1740 kblockd_schedule_work(&q->unplug_work);
1741 }
1742 }
1743
1744 spin_unlock_irqrestore(q->queue_lock, flags);
1745 }
1746 EXPORT_SYMBOL(blk_run_queue);
1747
1748 /**
1749 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1750 * @kobj: the kobj belonging of the request queue to be released
1751 *
1752 * Description:
1753 * blk_cleanup_queue is the pair to blk_init_queue() or
1754 * blk_queue_make_request(). It should be called when a request queue is
1755 * being released; typically when a block device is being de-registered.
1756 * Currently, its primary task it to free all the &struct request
1757 * structures that were allocated to the queue and the queue itself.
1758 *
1759 * Caveat:
1760 * Hopefully the low level driver will have finished any
1761 * outstanding requests first...
1762 **/
1763 static void blk_release_queue(struct kobject *kobj)
1764 {
1765 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1766 struct request_list *rl = &q->rq;
1767
1768 blk_sync_queue(q);
1769
1770 if (rl->rq_pool)
1771 mempool_destroy(rl->rq_pool);
1772
1773 if (q->queue_tags)
1774 __blk_queue_free_tags(q);
1775
1776 blk_trace_shutdown(q);
1777
1778 kmem_cache_free(requestq_cachep, q);
1779 }
1780
1781 void blk_put_queue(request_queue_t *q)
1782 {
1783 kobject_put(&q->kobj);
1784 }
1785 EXPORT_SYMBOL(blk_put_queue);
1786
1787 void blk_cleanup_queue(request_queue_t * q)
1788 {
1789 mutex_lock(&q->sysfs_lock);
1790 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1791 mutex_unlock(&q->sysfs_lock);
1792
1793 if (q->elevator)
1794 elevator_exit(q->elevator);
1795
1796 blk_put_queue(q);
1797 }
1798
1799 EXPORT_SYMBOL(blk_cleanup_queue);
1800
1801 static int blk_init_free_list(request_queue_t *q)
1802 {
1803 struct request_list *rl = &q->rq;
1804
1805 rl->count[READ] = rl->count[WRITE] = 0;
1806 rl->starved[READ] = rl->starved[WRITE] = 0;
1807 rl->elvpriv = 0;
1808 init_waitqueue_head(&rl->wait[READ]);
1809 init_waitqueue_head(&rl->wait[WRITE]);
1810
1811 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1812 mempool_free_slab, request_cachep, q->node);
1813
1814 if (!rl->rq_pool)
1815 return -ENOMEM;
1816
1817 return 0;
1818 }
1819
1820 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1821 {
1822 return blk_alloc_queue_node(gfp_mask, -1);
1823 }
1824 EXPORT_SYMBOL(blk_alloc_queue);
1825
1826 static struct kobj_type queue_ktype;
1827
1828 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1829 {
1830 request_queue_t *q;
1831
1832 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1833 if (!q)
1834 return NULL;
1835
1836 memset(q, 0, sizeof(*q));
1837 init_timer(&q->unplug_timer);
1838
1839 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1840 q->kobj.ktype = &queue_ktype;
1841 kobject_init(&q->kobj);
1842
1843 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1844 q->backing_dev_info.unplug_io_data = q;
1845
1846 mutex_init(&q->sysfs_lock);
1847
1848 return q;
1849 }
1850 EXPORT_SYMBOL(blk_alloc_queue_node);
1851
1852 /**
1853 * blk_init_queue - prepare a request queue for use with a block device
1854 * @rfn: The function to be called to process requests that have been
1855 * placed on the queue.
1856 * @lock: Request queue spin lock
1857 *
1858 * Description:
1859 * If a block device wishes to use the standard request handling procedures,
1860 * which sorts requests and coalesces adjacent requests, then it must
1861 * call blk_init_queue(). The function @rfn will be called when there
1862 * are requests on the queue that need to be processed. If the device
1863 * supports plugging, then @rfn may not be called immediately when requests
1864 * are available on the queue, but may be called at some time later instead.
1865 * Plugged queues are generally unplugged when a buffer belonging to one
1866 * of the requests on the queue is needed, or due to memory pressure.
1867 *
1868 * @rfn is not required, or even expected, to remove all requests off the
1869 * queue, but only as many as it can handle at a time. If it does leave
1870 * requests on the queue, it is responsible for arranging that the requests
1871 * get dealt with eventually.
1872 *
1873 * The queue spin lock must be held while manipulating the requests on the
1874 * request queue; this lock will be taken also from interrupt context, so irq
1875 * disabling is needed for it.
1876 *
1877 * Function returns a pointer to the initialized request queue, or NULL if
1878 * it didn't succeed.
1879 *
1880 * Note:
1881 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1882 * when the block device is deactivated (such as at module unload).
1883 **/
1884
1885 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1886 {
1887 return blk_init_queue_node(rfn, lock, -1);
1888 }
1889 EXPORT_SYMBOL(blk_init_queue);
1890
1891 request_queue_t *
1892 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1893 {
1894 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1895
1896 if (!q)
1897 return NULL;
1898
1899 q->node = node_id;
1900 if (blk_init_free_list(q)) {
1901 kmem_cache_free(requestq_cachep, q);
1902 return NULL;
1903 }
1904
1905 /*
1906 * if caller didn't supply a lock, they get per-queue locking with
1907 * our embedded lock
1908 */
1909 if (!lock) {
1910 spin_lock_init(&q->__queue_lock);
1911 lock = &q->__queue_lock;
1912 }
1913
1914 q->request_fn = rfn;
1915 q->prep_rq_fn = NULL;
1916 q->unplug_fn = generic_unplug_device;
1917 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1918 q->queue_lock = lock;
1919
1920 blk_queue_segment_boundary(q, 0xffffffff);
1921
1922 blk_queue_make_request(q, __make_request);
1923 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1924
1925 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1926 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1927
1928 q->sg_reserved_size = INT_MAX;
1929
1930 /*
1931 * all done
1932 */
1933 if (!elevator_init(q, NULL)) {
1934 blk_queue_congestion_threshold(q);
1935 return q;
1936 }
1937
1938 blk_put_queue(q);
1939 return NULL;
1940 }
1941 EXPORT_SYMBOL(blk_init_queue_node);
1942
1943 int blk_get_queue(request_queue_t *q)
1944 {
1945 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1946 kobject_get(&q->kobj);
1947 return 0;
1948 }
1949
1950 return 1;
1951 }
1952
1953 EXPORT_SYMBOL(blk_get_queue);
1954
1955 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1956 {
1957 if (rq->cmd_flags & REQ_ELVPRIV)
1958 elv_put_request(q, rq);
1959 mempool_free(rq, q->rq.rq_pool);
1960 }
1961
1962 static struct request *
1963 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1964 {
1965 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1966
1967 if (!rq)
1968 return NULL;
1969
1970 /*
1971 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1972 * see bio.h and blkdev.h
1973 */
1974 rq->cmd_flags = rw | REQ_ALLOCED;
1975
1976 if (priv) {
1977 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1978 mempool_free(rq, q->rq.rq_pool);
1979 return NULL;
1980 }
1981 rq->cmd_flags |= REQ_ELVPRIV;
1982 }
1983
1984 return rq;
1985 }
1986
1987 /*
1988 * ioc_batching returns true if the ioc is a valid batching request and
1989 * should be given priority access to a request.
1990 */
1991 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1992 {
1993 if (!ioc)
1994 return 0;
1995
1996 /*
1997 * Make sure the process is able to allocate at least 1 request
1998 * even if the batch times out, otherwise we could theoretically
1999 * lose wakeups.
2000 */
2001 return ioc->nr_batch_requests == q->nr_batching ||
2002 (ioc->nr_batch_requests > 0
2003 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2004 }
2005
2006 /*
2007 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2008 * will cause the process to be a "batcher" on all queues in the system. This
2009 * is the behaviour we want though - once it gets a wakeup it should be given
2010 * a nice run.
2011 */
2012 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2013 {
2014 if (!ioc || ioc_batching(q, ioc))
2015 return;
2016
2017 ioc->nr_batch_requests = q->nr_batching;
2018 ioc->last_waited = jiffies;
2019 }
2020
2021 static void __freed_request(request_queue_t *q, int rw)
2022 {
2023 struct request_list *rl = &q->rq;
2024
2025 if (rl->count[rw] < queue_congestion_off_threshold(q))
2026 blk_clear_queue_congested(q, rw);
2027
2028 if (rl->count[rw] + 1 <= q->nr_requests) {
2029 if (waitqueue_active(&rl->wait[rw]))
2030 wake_up(&rl->wait[rw]);
2031
2032 blk_clear_queue_full(q, rw);
2033 }
2034 }
2035
2036 /*
2037 * A request has just been released. Account for it, update the full and
2038 * congestion status, wake up any waiters. Called under q->queue_lock.
2039 */
2040 static void freed_request(request_queue_t *q, int rw, int priv)
2041 {
2042 struct request_list *rl = &q->rq;
2043
2044 rl->count[rw]--;
2045 if (priv)
2046 rl->elvpriv--;
2047
2048 __freed_request(q, rw);
2049
2050 if (unlikely(rl->starved[rw ^ 1]))
2051 __freed_request(q, rw ^ 1);
2052 }
2053
2054 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2055 /*
2056 * Get a free request, queue_lock must be held.
2057 * Returns NULL on failure, with queue_lock held.
2058 * Returns !NULL on success, with queue_lock *not held*.
2059 */
2060 static struct request *get_request(request_queue_t *q, int rw_flags,
2061 struct bio *bio, gfp_t gfp_mask)
2062 {
2063 struct request *rq = NULL;
2064 struct request_list *rl = &q->rq;
2065 struct io_context *ioc = NULL;
2066 const int rw = rw_flags & 0x01;
2067 int may_queue, priv;
2068
2069 may_queue = elv_may_queue(q, rw_flags);
2070 if (may_queue == ELV_MQUEUE_NO)
2071 goto rq_starved;
2072
2073 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2074 if (rl->count[rw]+1 >= q->nr_requests) {
2075 ioc = current_io_context(GFP_ATOMIC, q->node);
2076 /*
2077 * The queue will fill after this allocation, so set
2078 * it as full, and mark this process as "batching".
2079 * This process will be allowed to complete a batch of
2080 * requests, others will be blocked.
2081 */
2082 if (!blk_queue_full(q, rw)) {
2083 ioc_set_batching(q, ioc);
2084 blk_set_queue_full(q, rw);
2085 } else {
2086 if (may_queue != ELV_MQUEUE_MUST
2087 && !ioc_batching(q, ioc)) {
2088 /*
2089 * The queue is full and the allocating
2090 * process is not a "batcher", and not
2091 * exempted by the IO scheduler
2092 */
2093 goto out;
2094 }
2095 }
2096 }
2097 blk_set_queue_congested(q, rw);
2098 }
2099
2100 /*
2101 * Only allow batching queuers to allocate up to 50% over the defined
2102 * limit of requests, otherwise we could have thousands of requests
2103 * allocated with any setting of ->nr_requests
2104 */
2105 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2106 goto out;
2107
2108 rl->count[rw]++;
2109 rl->starved[rw] = 0;
2110
2111 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2112 if (priv)
2113 rl->elvpriv++;
2114
2115 spin_unlock_irq(q->queue_lock);
2116
2117 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2118 if (unlikely(!rq)) {
2119 /*
2120 * Allocation failed presumably due to memory. Undo anything
2121 * we might have messed up.
2122 *
2123 * Allocating task should really be put onto the front of the
2124 * wait queue, but this is pretty rare.
2125 */
2126 spin_lock_irq(q->queue_lock);
2127 freed_request(q, rw, priv);
2128
2129 /*
2130 * in the very unlikely event that allocation failed and no
2131 * requests for this direction was pending, mark us starved
2132 * so that freeing of a request in the other direction will
2133 * notice us. another possible fix would be to split the
2134 * rq mempool into READ and WRITE
2135 */
2136 rq_starved:
2137 if (unlikely(rl->count[rw] == 0))
2138 rl->starved[rw] = 1;
2139
2140 goto out;
2141 }
2142
2143 /*
2144 * ioc may be NULL here, and ioc_batching will be false. That's
2145 * OK, if the queue is under the request limit then requests need
2146 * not count toward the nr_batch_requests limit. There will always
2147 * be some limit enforced by BLK_BATCH_TIME.
2148 */
2149 if (ioc_batching(q, ioc))
2150 ioc->nr_batch_requests--;
2151
2152 rq_init(q, rq);
2153
2154 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2155 out:
2156 return rq;
2157 }
2158
2159 /*
2160 * No available requests for this queue, unplug the device and wait for some
2161 * requests to become available.
2162 *
2163 * Called with q->queue_lock held, and returns with it unlocked.
2164 */
2165 static struct request *get_request_wait(request_queue_t *q, int rw_flags,
2166 struct bio *bio)
2167 {
2168 const int rw = rw_flags & 0x01;
2169 struct request *rq;
2170
2171 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2172 while (!rq) {
2173 DEFINE_WAIT(wait);
2174 struct request_list *rl = &q->rq;
2175
2176 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2177 TASK_UNINTERRUPTIBLE);
2178
2179 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2180
2181 if (!rq) {
2182 struct io_context *ioc;
2183
2184 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2185
2186 __generic_unplug_device(q);
2187 spin_unlock_irq(q->queue_lock);
2188 io_schedule();
2189
2190 /*
2191 * After sleeping, we become a "batching" process and
2192 * will be able to allocate at least one request, and
2193 * up to a big batch of them for a small period time.
2194 * See ioc_batching, ioc_set_batching
2195 */
2196 ioc = current_io_context(GFP_NOIO, q->node);
2197 ioc_set_batching(q, ioc);
2198
2199 spin_lock_irq(q->queue_lock);
2200 }
2201 finish_wait(&rl->wait[rw], &wait);
2202 }
2203
2204 return rq;
2205 }
2206
2207 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2208 {
2209 struct request *rq;
2210
2211 BUG_ON(rw != READ && rw != WRITE);
2212
2213 spin_lock_irq(q->queue_lock);
2214 if (gfp_mask & __GFP_WAIT) {
2215 rq = get_request_wait(q, rw, NULL);
2216 } else {
2217 rq = get_request(q, rw, NULL, gfp_mask);
2218 if (!rq)
2219 spin_unlock_irq(q->queue_lock);
2220 }
2221 /* q->queue_lock is unlocked at this point */
2222
2223 return rq;
2224 }
2225 EXPORT_SYMBOL(blk_get_request);
2226
2227 /**
2228 * blk_start_queueing - initiate dispatch of requests to device
2229 * @q: request queue to kick into gear
2230 *
2231 * This is basically a helper to remove the need to know whether a queue
2232 * is plugged or not if someone just wants to initiate dispatch of requests
2233 * for this queue.
2234 *
2235 * The queue lock must be held with interrupts disabled.
2236 */
2237 void blk_start_queueing(request_queue_t *q)
2238 {
2239 if (!blk_queue_plugged(q))
2240 q->request_fn(q);
2241 else
2242 __generic_unplug_device(q);
2243 }
2244 EXPORT_SYMBOL(blk_start_queueing);
2245
2246 /**
2247 * blk_requeue_request - put a request back on queue
2248 * @q: request queue where request should be inserted
2249 * @rq: request to be inserted
2250 *
2251 * Description:
2252 * Drivers often keep queueing requests until the hardware cannot accept
2253 * more, when that condition happens we need to put the request back
2254 * on the queue. Must be called with queue lock held.
2255 */
2256 void blk_requeue_request(request_queue_t *q, struct request *rq)
2257 {
2258 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2259
2260 if (blk_rq_tagged(rq))
2261 blk_queue_end_tag(q, rq);
2262
2263 elv_requeue_request(q, rq);
2264 }
2265
2266 EXPORT_SYMBOL(blk_requeue_request);
2267
2268 /**
2269 * blk_insert_request - insert a special request in to a request queue
2270 * @q: request queue where request should be inserted
2271 * @rq: request to be inserted
2272 * @at_head: insert request at head or tail of queue
2273 * @data: private data
2274 *
2275 * Description:
2276 * Many block devices need to execute commands asynchronously, so they don't
2277 * block the whole kernel from preemption during request execution. This is
2278 * accomplished normally by inserting aritficial requests tagged as
2279 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2280 * scheduled for actual execution by the request queue.
2281 *
2282 * We have the option of inserting the head or the tail of the queue.
2283 * Typically we use the tail for new ioctls and so forth. We use the head
2284 * of the queue for things like a QUEUE_FULL message from a device, or a
2285 * host that is unable to accept a particular command.
2286 */
2287 void blk_insert_request(request_queue_t *q, struct request *rq,
2288 int at_head, void *data)
2289 {
2290 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2291 unsigned long flags;
2292
2293 /*
2294 * tell I/O scheduler that this isn't a regular read/write (ie it
2295 * must not attempt merges on this) and that it acts as a soft
2296 * barrier
2297 */
2298 rq->cmd_type = REQ_TYPE_SPECIAL;
2299 rq->cmd_flags |= REQ_SOFTBARRIER;
2300
2301 rq->special = data;
2302
2303 spin_lock_irqsave(q->queue_lock, flags);
2304
2305 /*
2306 * If command is tagged, release the tag
2307 */
2308 if (blk_rq_tagged(rq))
2309 blk_queue_end_tag(q, rq);
2310
2311 drive_stat_acct(rq, rq->nr_sectors, 1);
2312 __elv_add_request(q, rq, where, 0);
2313 blk_start_queueing(q);
2314 spin_unlock_irqrestore(q->queue_lock, flags);
2315 }
2316
2317 EXPORT_SYMBOL(blk_insert_request);
2318
2319 static int __blk_rq_unmap_user(struct bio *bio)
2320 {
2321 int ret = 0;
2322
2323 if (bio) {
2324 if (bio_flagged(bio, BIO_USER_MAPPED))
2325 bio_unmap_user(bio);
2326 else
2327 ret = bio_uncopy_user(bio);
2328 }
2329
2330 return ret;
2331 }
2332
2333 static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2334 void __user *ubuf, unsigned int len)
2335 {
2336 unsigned long uaddr;
2337 struct bio *bio, *orig_bio;
2338 int reading, ret;
2339
2340 reading = rq_data_dir(rq) == READ;
2341
2342 /*
2343 * if alignment requirement is satisfied, map in user pages for
2344 * direct dma. else, set up kernel bounce buffers
2345 */
2346 uaddr = (unsigned long) ubuf;
2347 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2348 bio = bio_map_user(q, NULL, uaddr, len, reading);
2349 else
2350 bio = bio_copy_user(q, uaddr, len, reading);
2351
2352 if (IS_ERR(bio))
2353 return PTR_ERR(bio);
2354
2355 orig_bio = bio;
2356 blk_queue_bounce(q, &bio);
2357
2358 /*
2359 * We link the bounce buffer in and could have to traverse it
2360 * later so we have to get a ref to prevent it from being freed
2361 */
2362 bio_get(bio);
2363
2364 if (!rq->bio)
2365 blk_rq_bio_prep(q, rq, bio);
2366 else if (!ll_back_merge_fn(q, rq, bio)) {
2367 ret = -EINVAL;
2368 goto unmap_bio;
2369 } else {
2370 rq->biotail->bi_next = bio;
2371 rq->biotail = bio;
2372
2373 rq->data_len += bio->bi_size;
2374 }
2375
2376 return bio->bi_size;
2377
2378 unmap_bio:
2379 /* if it was boucned we must call the end io function */
2380 bio_endio(bio, bio->bi_size, 0);
2381 __blk_rq_unmap_user(orig_bio);
2382 bio_put(bio);
2383 return ret;
2384 }
2385
2386 /**
2387 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2388 * @q: request queue where request should be inserted
2389 * @rq: request structure to fill
2390 * @ubuf: the user buffer
2391 * @len: length of user data
2392 *
2393 * Description:
2394 * Data will be mapped directly for zero copy io, if possible. Otherwise
2395 * a kernel bounce buffer is used.
2396 *
2397 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2398 * still in process context.
2399 *
2400 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2401 * before being submitted to the device, as pages mapped may be out of
2402 * reach. It's the callers responsibility to make sure this happens. The
2403 * original bio must be passed back in to blk_rq_unmap_user() for proper
2404 * unmapping.
2405 */
2406 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2407 unsigned long len)
2408 {
2409 unsigned long bytes_read = 0;
2410 struct bio *bio = NULL;
2411 int ret;
2412
2413 if (len > (q->max_hw_sectors << 9))
2414 return -EINVAL;
2415 if (!len || !ubuf)
2416 return -EINVAL;
2417
2418 while (bytes_read != len) {
2419 unsigned long map_len, end, start;
2420
2421 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2422 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2423 >> PAGE_SHIFT;
2424 start = (unsigned long)ubuf >> PAGE_SHIFT;
2425
2426 /*
2427 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2428 * pages. If this happens we just lower the requested
2429 * mapping len by a page so that we can fit
2430 */
2431 if (end - start > BIO_MAX_PAGES)
2432 map_len -= PAGE_SIZE;
2433
2434 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2435 if (ret < 0)
2436 goto unmap_rq;
2437 if (!bio)
2438 bio = rq->bio;
2439 bytes_read += ret;
2440 ubuf += ret;
2441 }
2442
2443 rq->buffer = rq->data = NULL;
2444 return 0;
2445 unmap_rq:
2446 blk_rq_unmap_user(bio);
2447 return ret;
2448 }
2449
2450 EXPORT_SYMBOL(blk_rq_map_user);
2451
2452 /**
2453 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2454 * @q: request queue where request should be inserted
2455 * @rq: request to map data to
2456 * @iov: pointer to the iovec
2457 * @iov_count: number of elements in the iovec
2458 * @len: I/O byte count
2459 *
2460 * Description:
2461 * Data will be mapped directly for zero copy io, if possible. Otherwise
2462 * a kernel bounce buffer is used.
2463 *
2464 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2465 * still in process context.
2466 *
2467 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2468 * before being submitted to the device, as pages mapped may be out of
2469 * reach. It's the callers responsibility to make sure this happens. The
2470 * original bio must be passed back in to blk_rq_unmap_user() for proper
2471 * unmapping.
2472 */
2473 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2474 struct sg_iovec *iov, int iov_count, unsigned int len)
2475 {
2476 struct bio *bio;
2477
2478 if (!iov || iov_count <= 0)
2479 return -EINVAL;
2480
2481 /* we don't allow misaligned data like bio_map_user() does. If the
2482 * user is using sg, they're expected to know the alignment constraints
2483 * and respect them accordingly */
2484 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2485 if (IS_ERR(bio))
2486 return PTR_ERR(bio);
2487
2488 if (bio->bi_size != len) {
2489 bio_endio(bio, bio->bi_size, 0);
2490 bio_unmap_user(bio);
2491 return -EINVAL;
2492 }
2493
2494 bio_get(bio);
2495 blk_rq_bio_prep(q, rq, bio);
2496 rq->buffer = rq->data = NULL;
2497 return 0;
2498 }
2499
2500 EXPORT_SYMBOL(blk_rq_map_user_iov);
2501
2502 /**
2503 * blk_rq_unmap_user - unmap a request with user data
2504 * @bio: start of bio list
2505 *
2506 * Description:
2507 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2508 * supply the original rq->bio from the blk_rq_map_user() return, since
2509 * the io completion may have changed rq->bio.
2510 */
2511 int blk_rq_unmap_user(struct bio *bio)
2512 {
2513 struct bio *mapped_bio;
2514 int ret = 0, ret2;
2515
2516 while (bio) {
2517 mapped_bio = bio;
2518 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2519 mapped_bio = bio->bi_private;
2520
2521 ret2 = __blk_rq_unmap_user(mapped_bio);
2522 if (ret2 && !ret)
2523 ret = ret2;
2524
2525 mapped_bio = bio;
2526 bio = bio->bi_next;
2527 bio_put(mapped_bio);
2528 }
2529
2530 return ret;
2531 }
2532
2533 EXPORT_SYMBOL(blk_rq_unmap_user);
2534
2535 /**
2536 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2537 * @q: request queue where request should be inserted
2538 * @rq: request to fill
2539 * @kbuf: the kernel buffer
2540 * @len: length of user data
2541 * @gfp_mask: memory allocation flags
2542 */
2543 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2544 unsigned int len, gfp_t gfp_mask)
2545 {
2546 struct bio *bio;
2547
2548 if (len > (q->max_hw_sectors << 9))
2549 return -EINVAL;
2550 if (!len || !kbuf)
2551 return -EINVAL;
2552
2553 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2554 if (IS_ERR(bio))
2555 return PTR_ERR(bio);
2556
2557 if (rq_data_dir(rq) == WRITE)
2558 bio->bi_rw |= (1 << BIO_RW);
2559
2560 blk_rq_bio_prep(q, rq, bio);
2561 blk_queue_bounce(q, &rq->bio);
2562 rq->buffer = rq->data = NULL;
2563 return 0;
2564 }
2565
2566 EXPORT_SYMBOL(blk_rq_map_kern);
2567
2568 /**
2569 * blk_execute_rq_nowait - insert a request into queue for execution
2570 * @q: queue to insert the request in
2571 * @bd_disk: matching gendisk
2572 * @rq: request to insert
2573 * @at_head: insert request at head or tail of queue
2574 * @done: I/O completion handler
2575 *
2576 * Description:
2577 * Insert a fully prepared request at the back of the io scheduler queue
2578 * for execution. Don't wait for completion.
2579 */
2580 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2581 struct request *rq, int at_head,
2582 rq_end_io_fn *done)
2583 {
2584 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2585
2586 rq->rq_disk = bd_disk;
2587 rq->cmd_flags |= REQ_NOMERGE;
2588 rq->end_io = done;
2589 WARN_ON(irqs_disabled());
2590 spin_lock_irq(q->queue_lock);
2591 __elv_add_request(q, rq, where, 1);
2592 __generic_unplug_device(q);
2593 spin_unlock_irq(q->queue_lock);
2594 }
2595 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2596
2597 /**
2598 * blk_execute_rq - insert a request into queue for execution
2599 * @q: queue to insert the request in
2600 * @bd_disk: matching gendisk
2601 * @rq: request to insert
2602 * @at_head: insert request at head or tail of queue
2603 *
2604 * Description:
2605 * Insert a fully prepared request at the back of the io scheduler queue
2606 * for execution and wait for completion.
2607 */
2608 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2609 struct request *rq, int at_head)
2610 {
2611 DECLARE_COMPLETION_ONSTACK(wait);
2612 char sense[SCSI_SENSE_BUFFERSIZE];
2613 int err = 0;
2614
2615 /*
2616 * we need an extra reference to the request, so we can look at
2617 * it after io completion
2618 */
2619 rq->ref_count++;
2620
2621 if (!rq->sense) {
2622 memset(sense, 0, sizeof(sense));
2623 rq->sense = sense;
2624 rq->sense_len = 0;
2625 }
2626
2627 rq->end_io_data = &wait;
2628 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2629 wait_for_completion(&wait);
2630
2631 if (rq->errors)
2632 err = -EIO;
2633
2634 return err;
2635 }
2636
2637 EXPORT_SYMBOL(blk_execute_rq);
2638
2639 /**
2640 * blkdev_issue_flush - queue a flush
2641 * @bdev: blockdev to issue flush for
2642 * @error_sector: error sector
2643 *
2644 * Description:
2645 * Issue a flush for the block device in question. Caller can supply
2646 * room for storing the error offset in case of a flush error, if they
2647 * wish to. Caller must run wait_for_completion() on its own.
2648 */
2649 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2650 {
2651 request_queue_t *q;
2652
2653 if (bdev->bd_disk == NULL)
2654 return -ENXIO;
2655
2656 q = bdev_get_queue(bdev);
2657 if (!q)
2658 return -ENXIO;
2659 if (!q->issue_flush_fn)
2660 return -EOPNOTSUPP;
2661
2662 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2663 }
2664
2665 EXPORT_SYMBOL(blkdev_issue_flush);
2666
2667 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2668 {
2669 int rw = rq_data_dir(rq);
2670
2671 if (!blk_fs_request(rq) || !rq->rq_disk)
2672 return;
2673
2674 if (!new_io) {
2675 __disk_stat_inc(rq->rq_disk, merges[rw]);
2676 } else {
2677 disk_round_stats(rq->rq_disk);
2678 rq->rq_disk->in_flight++;
2679 }
2680 }
2681
2682 /*
2683 * add-request adds a request to the linked list.
2684 * queue lock is held and interrupts disabled, as we muck with the
2685 * request queue list.
2686 */
2687 static inline void add_request(request_queue_t * q, struct request * req)
2688 {
2689 drive_stat_acct(req, req->nr_sectors, 1);
2690
2691 /*
2692 * elevator indicated where it wants this request to be
2693 * inserted at elevator_merge time
2694 */
2695 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2696 }
2697
2698 /*
2699 * disk_round_stats() - Round off the performance stats on a struct
2700 * disk_stats.
2701 *
2702 * The average IO queue length and utilisation statistics are maintained
2703 * by observing the current state of the queue length and the amount of
2704 * time it has been in this state for.
2705 *
2706 * Normally, that accounting is done on IO completion, but that can result
2707 * in more than a second's worth of IO being accounted for within any one
2708 * second, leading to >100% utilisation. To deal with that, we call this
2709 * function to do a round-off before returning the results when reading
2710 * /proc/diskstats. This accounts immediately for all queue usage up to
2711 * the current jiffies and restarts the counters again.
2712 */
2713 void disk_round_stats(struct gendisk *disk)
2714 {
2715 unsigned long now = jiffies;
2716
2717 if (now == disk->stamp)
2718 return;
2719
2720 if (disk->in_flight) {
2721 __disk_stat_add(disk, time_in_queue,
2722 disk->in_flight * (now - disk->stamp));
2723 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2724 }
2725 disk->stamp = now;
2726 }
2727
2728 EXPORT_SYMBOL_GPL(disk_round_stats);
2729
2730 /*
2731 * queue lock must be held
2732 */
2733 void __blk_put_request(request_queue_t *q, struct request *req)
2734 {
2735 if (unlikely(!q))
2736 return;
2737 if (unlikely(--req->ref_count))
2738 return;
2739
2740 elv_completed_request(q, req);
2741
2742 /*
2743 * Request may not have originated from ll_rw_blk. if not,
2744 * it didn't come out of our reserved rq pools
2745 */
2746 if (req->cmd_flags & REQ_ALLOCED) {
2747 int rw = rq_data_dir(req);
2748 int priv = req->cmd_flags & REQ_ELVPRIV;
2749
2750 BUG_ON(!list_empty(&req->queuelist));
2751 BUG_ON(!hlist_unhashed(&req->hash));
2752
2753 blk_free_request(q, req);
2754 freed_request(q, rw, priv);
2755 }
2756 }
2757
2758 EXPORT_SYMBOL_GPL(__blk_put_request);
2759
2760 void blk_put_request(struct request *req)
2761 {
2762 unsigned long flags;
2763 request_queue_t *q = req->q;
2764
2765 /*
2766 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2767 * following if (q) test.
2768 */
2769 if (q) {
2770 spin_lock_irqsave(q->queue_lock, flags);
2771 __blk_put_request(q, req);
2772 spin_unlock_irqrestore(q->queue_lock, flags);
2773 }
2774 }
2775
2776 EXPORT_SYMBOL(blk_put_request);
2777
2778 /**
2779 * blk_end_sync_rq - executes a completion event on a request
2780 * @rq: request to complete
2781 * @error: end io status of the request
2782 */
2783 void blk_end_sync_rq(struct request *rq, int error)
2784 {
2785 struct completion *waiting = rq->end_io_data;
2786
2787 rq->end_io_data = NULL;
2788 __blk_put_request(rq->q, rq);
2789
2790 /*
2791 * complete last, if this is a stack request the process (and thus
2792 * the rq pointer) could be invalid right after this complete()
2793 */
2794 complete(waiting);
2795 }
2796 EXPORT_SYMBOL(blk_end_sync_rq);
2797
2798 /*
2799 * Has to be called with the request spinlock acquired
2800 */
2801 static int attempt_merge(request_queue_t *q, struct request *req,
2802 struct request *next)
2803 {
2804 if (!rq_mergeable(req) || !rq_mergeable(next))
2805 return 0;
2806
2807 /*
2808 * not contiguous
2809 */
2810 if (req->sector + req->nr_sectors != next->sector)
2811 return 0;
2812
2813 if (rq_data_dir(req) != rq_data_dir(next)
2814 || req->rq_disk != next->rq_disk
2815 || next->special)
2816 return 0;
2817
2818 /*
2819 * If we are allowed to merge, then append bio list
2820 * from next to rq and release next. merge_requests_fn
2821 * will have updated segment counts, update sector
2822 * counts here.
2823 */
2824 if (!ll_merge_requests_fn(q, req, next))
2825 return 0;
2826
2827 /*
2828 * At this point we have either done a back merge
2829 * or front merge. We need the smaller start_time of
2830 * the merged requests to be the current request
2831 * for accounting purposes.
2832 */
2833 if (time_after(req->start_time, next->start_time))
2834 req->start_time = next->start_time;
2835
2836 req->biotail->bi_next = next->bio;
2837 req->biotail = next->biotail;
2838
2839 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2840
2841 elv_merge_requests(q, req, next);
2842
2843 if (req->rq_disk) {
2844 disk_round_stats(req->rq_disk);
2845 req->rq_disk->in_flight--;
2846 }
2847
2848 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2849
2850 __blk_put_request(q, next);
2851 return 1;
2852 }
2853
2854 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2855 {
2856 struct request *next = elv_latter_request(q, rq);
2857
2858 if (next)
2859 return attempt_merge(q, rq, next);
2860
2861 return 0;
2862 }
2863
2864 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2865 {
2866 struct request *prev = elv_former_request(q, rq);
2867
2868 if (prev)
2869 return attempt_merge(q, prev, rq);
2870
2871 return 0;
2872 }
2873
2874 static void init_request_from_bio(struct request *req, struct bio *bio)
2875 {
2876 req->cmd_type = REQ_TYPE_FS;
2877
2878 /*
2879 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2880 */
2881 if (bio_rw_ahead(bio) || bio_failfast(bio))
2882 req->cmd_flags |= REQ_FAILFAST;
2883
2884 /*
2885 * REQ_BARRIER implies no merging, but lets make it explicit
2886 */
2887 if (unlikely(bio_barrier(bio)))
2888 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2889
2890 if (bio_sync(bio))
2891 req->cmd_flags |= REQ_RW_SYNC;
2892 if (bio_rw_meta(bio))
2893 req->cmd_flags |= REQ_RW_META;
2894
2895 req->errors = 0;
2896 req->hard_sector = req->sector = bio->bi_sector;
2897 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2898 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2899 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2900 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2901 req->buffer = bio_data(bio); /* see ->buffer comment above */
2902 req->bio = req->biotail = bio;
2903 req->ioprio = bio_prio(bio);
2904 req->rq_disk = bio->bi_bdev->bd_disk;
2905 req->start_time = jiffies;
2906 }
2907
2908 static int __make_request(request_queue_t *q, struct bio *bio)
2909 {
2910 struct request *req;
2911 int el_ret, nr_sectors, barrier, err;
2912 const unsigned short prio = bio_prio(bio);
2913 const int sync = bio_sync(bio);
2914 int rw_flags;
2915
2916 nr_sectors = bio_sectors(bio);
2917
2918 /*
2919 * low level driver can indicate that it wants pages above a
2920 * certain limit bounced to low memory (ie for highmem, or even
2921 * ISA dma in theory)
2922 */
2923 blk_queue_bounce(q, &bio);
2924
2925 barrier = bio_barrier(bio);
2926 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2927 err = -EOPNOTSUPP;
2928 goto end_io;
2929 }
2930
2931 spin_lock_irq(q->queue_lock);
2932
2933 if (unlikely(barrier) || elv_queue_empty(q))
2934 goto get_rq;
2935
2936 el_ret = elv_merge(q, &req, bio);
2937 switch (el_ret) {
2938 case ELEVATOR_BACK_MERGE:
2939 BUG_ON(!rq_mergeable(req));
2940
2941 if (!ll_back_merge_fn(q, req, bio))
2942 break;
2943
2944 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2945
2946 req->biotail->bi_next = bio;
2947 req->biotail = bio;
2948 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2949 req->ioprio = ioprio_best(req->ioprio, prio);
2950 drive_stat_acct(req, nr_sectors, 0);
2951 if (!attempt_back_merge(q, req))
2952 elv_merged_request(q, req, el_ret);
2953 goto out;
2954
2955 case ELEVATOR_FRONT_MERGE:
2956 BUG_ON(!rq_mergeable(req));
2957
2958 if (!ll_front_merge_fn(q, req, bio))
2959 break;
2960
2961 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2962
2963 bio->bi_next = req->bio;
2964 req->bio = bio;
2965
2966 /*
2967 * may not be valid. if the low level driver said
2968 * it didn't need a bounce buffer then it better
2969 * not touch req->buffer either...
2970 */
2971 req->buffer = bio_data(bio);
2972 req->current_nr_sectors = bio_cur_sectors(bio);
2973 req->hard_cur_sectors = req->current_nr_sectors;
2974 req->sector = req->hard_sector = bio->bi_sector;
2975 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2976 req->ioprio = ioprio_best(req->ioprio, prio);
2977 drive_stat_acct(req, nr_sectors, 0);
2978 if (!attempt_front_merge(q, req))
2979 elv_merged_request(q, req, el_ret);
2980 goto out;
2981
2982 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2983 default:
2984 ;
2985 }
2986
2987 get_rq:
2988 /*
2989 * This sync check and mask will be re-done in init_request_from_bio(),
2990 * but we need to set it earlier to expose the sync flag to the
2991 * rq allocator and io schedulers.
2992 */
2993 rw_flags = bio_data_dir(bio);
2994 if (sync)
2995 rw_flags |= REQ_RW_SYNC;
2996
2997 /*
2998 * Grab a free request. This is might sleep but can not fail.
2999 * Returns with the queue unlocked.
3000 */
3001 req = get_request_wait(q, rw_flags, bio);
3002
3003 /*
3004 * After dropping the lock and possibly sleeping here, our request
3005 * may now be mergeable after it had proven unmergeable (above).
3006 * We don't worry about that case for efficiency. It won't happen
3007 * often, and the elevators are able to handle it.
3008 */
3009 init_request_from_bio(req, bio);
3010
3011 spin_lock_irq(q->queue_lock);
3012 if (elv_queue_empty(q))
3013 blk_plug_device(q);
3014 add_request(q, req);
3015 out:
3016 if (sync)
3017 __generic_unplug_device(q);
3018
3019 spin_unlock_irq(q->queue_lock);
3020 return 0;
3021
3022 end_io:
3023 bio_endio(bio, nr_sectors << 9, err);
3024 return 0;
3025 }
3026
3027 /*
3028 * If bio->bi_dev is a partition, remap the location
3029 */
3030 static inline void blk_partition_remap(struct bio *bio)
3031 {
3032 struct block_device *bdev = bio->bi_bdev;
3033
3034 if (bdev != bdev->bd_contains) {
3035 struct hd_struct *p = bdev->bd_part;
3036 const int rw = bio_data_dir(bio);
3037
3038 p->sectors[rw] += bio_sectors(bio);
3039 p->ios[rw]++;
3040
3041 bio->bi_sector += p->start_sect;
3042 bio->bi_bdev = bdev->bd_contains;
3043 }
3044 }
3045
3046 static void handle_bad_sector(struct bio *bio)
3047 {
3048 char b[BDEVNAME_SIZE];
3049
3050 printk(KERN_INFO "attempt to access beyond end of device\n");
3051 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3052 bdevname(bio->bi_bdev, b),
3053 bio->bi_rw,
3054 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3055 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3056
3057 set_bit(BIO_EOF, &bio->bi_flags);
3058 }
3059
3060 #ifdef CONFIG_FAIL_MAKE_REQUEST
3061
3062 static DECLARE_FAULT_ATTR(fail_make_request);
3063
3064 static int __init setup_fail_make_request(char *str)
3065 {
3066 return setup_fault_attr(&fail_make_request, str);
3067 }
3068 __setup("fail_make_request=", setup_fail_make_request);
3069
3070 static int should_fail_request(struct bio *bio)
3071 {
3072 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3073 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3074 return should_fail(&fail_make_request, bio->bi_size);
3075
3076 return 0;
3077 }
3078
3079 static int __init fail_make_request_debugfs(void)
3080 {
3081 return init_fault_attr_dentries(&fail_make_request,
3082 "fail_make_request");
3083 }
3084
3085 late_initcall(fail_make_request_debugfs);
3086
3087 #else /* CONFIG_FAIL_MAKE_REQUEST */
3088
3089 static inline int should_fail_request(struct bio *bio)
3090 {
3091 return 0;
3092 }
3093
3094 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3095
3096 /**
3097 * generic_make_request: hand a buffer to its device driver for I/O
3098 * @bio: The bio describing the location in memory and on the device.
3099 *
3100 * generic_make_request() is used to make I/O requests of block
3101 * devices. It is passed a &struct bio, which describes the I/O that needs
3102 * to be done.
3103 *
3104 * generic_make_request() does not return any status. The
3105 * success/failure status of the request, along with notification of
3106 * completion, is delivered asynchronously through the bio->bi_end_io
3107 * function described (one day) else where.
3108 *
3109 * The caller of generic_make_request must make sure that bi_io_vec
3110 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3111 * set to describe the device address, and the
3112 * bi_end_io and optionally bi_private are set to describe how
3113 * completion notification should be signaled.
3114 *
3115 * generic_make_request and the drivers it calls may use bi_next if this
3116 * bio happens to be merged with someone else, and may change bi_dev and
3117 * bi_sector for remaps as it sees fit. So the values of these fields
3118 * should NOT be depended on after the call to generic_make_request.
3119 */
3120 static inline void __generic_make_request(struct bio *bio)
3121 {
3122 request_queue_t *q;
3123 sector_t maxsector;
3124 sector_t old_sector;
3125 int ret, nr_sectors = bio_sectors(bio);
3126 dev_t old_dev;
3127
3128 might_sleep();
3129 /* Test device or partition size, when known. */
3130 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3131 if (maxsector) {
3132 sector_t sector = bio->bi_sector;
3133
3134 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3135 /*
3136 * This may well happen - the kernel calls bread()
3137 * without checking the size of the device, e.g., when
3138 * mounting a device.
3139 */
3140 handle_bad_sector(bio);
3141 goto end_io;
3142 }
3143 }
3144
3145 /*
3146 * Resolve the mapping until finished. (drivers are
3147 * still free to implement/resolve their own stacking
3148 * by explicitly returning 0)
3149 *
3150 * NOTE: we don't repeat the blk_size check for each new device.
3151 * Stacking drivers are expected to know what they are doing.
3152 */
3153 old_sector = -1;
3154 old_dev = 0;
3155 do {
3156 char b[BDEVNAME_SIZE];
3157
3158 q = bdev_get_queue(bio->bi_bdev);
3159 if (!q) {
3160 printk(KERN_ERR
3161 "generic_make_request: Trying to access "
3162 "nonexistent block-device %s (%Lu)\n",
3163 bdevname(bio->bi_bdev, b),
3164 (long long) bio->bi_sector);
3165 end_io:
3166 bio_endio(bio, bio->bi_size, -EIO);
3167 break;
3168 }
3169
3170 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3171 printk("bio too big device %s (%u > %u)\n",
3172 bdevname(bio->bi_bdev, b),
3173 bio_sectors(bio),
3174 q->max_hw_sectors);
3175 goto end_io;
3176 }
3177
3178 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3179 goto end_io;
3180
3181 if (should_fail_request(bio))
3182 goto end_io;
3183
3184 /*
3185 * If this device has partitions, remap block n
3186 * of partition p to block n+start(p) of the disk.
3187 */
3188 blk_partition_remap(bio);
3189
3190 if (old_sector != -1)
3191 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3192 old_sector);
3193
3194 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3195
3196 old_sector = bio->bi_sector;
3197 old_dev = bio->bi_bdev->bd_dev;
3198
3199 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3200 if (maxsector) {
3201 sector_t sector = bio->bi_sector;
3202
3203 if (maxsector < nr_sectors ||
3204 maxsector - nr_sectors < sector) {
3205 /*
3206 * This may well happen - partitions are not
3207 * checked to make sure they are within the size
3208 * of the whole device.
3209 */
3210 handle_bad_sector(bio);
3211 goto end_io;
3212 }
3213 }
3214
3215 ret = q->make_request_fn(q, bio);
3216 } while (ret);
3217 }
3218
3219 /*
3220 * We only want one ->make_request_fn to be active at a time,
3221 * else stack usage with stacked devices could be a problem.
3222 * So use current->bio_{list,tail} to keep a list of requests
3223 * submited by a make_request_fn function.
3224 * current->bio_tail is also used as a flag to say if
3225 * generic_make_request is currently active in this task or not.
3226 * If it is NULL, then no make_request is active. If it is non-NULL,
3227 * then a make_request is active, and new requests should be added
3228 * at the tail
3229 */
3230 void generic_make_request(struct bio *bio)
3231 {
3232 if (current->bio_tail) {
3233 /* make_request is active */
3234 *(current->bio_tail) = bio;
3235 bio->bi_next = NULL;
3236 current->bio_tail = &bio->bi_next;
3237 return;
3238 }
3239 /* following loop may be a bit non-obvious, and so deserves some
3240 * explanation.
3241 * Before entering the loop, bio->bi_next is NULL (as all callers
3242 * ensure that) so we have a list with a single bio.
3243 * We pretend that we have just taken it off a longer list, so
3244 * we assign bio_list to the next (which is NULL) and bio_tail
3245 * to &bio_list, thus initialising the bio_list of new bios to be
3246 * added. __generic_make_request may indeed add some more bios
3247 * through a recursive call to generic_make_request. If it
3248 * did, we find a non-NULL value in bio_list and re-enter the loop
3249 * from the top. In this case we really did just take the bio
3250 * of the top of the list (no pretending) and so fixup bio_list and
3251 * bio_tail or bi_next, and call into __generic_make_request again.
3252 *
3253 * The loop was structured like this to make only one call to
3254 * __generic_make_request (which is important as it is large and
3255 * inlined) and to keep the structure simple.
3256 */
3257 BUG_ON(bio->bi_next);
3258 do {
3259 current->bio_list = bio->bi_next;
3260 if (bio->bi_next == NULL)
3261 current->bio_tail = &current->bio_list;
3262 else
3263 bio->bi_next = NULL;
3264 __generic_make_request(bio);
3265 bio = current->bio_list;
3266 } while (bio);
3267 current->bio_tail = NULL; /* deactivate */
3268 }
3269
3270 EXPORT_SYMBOL(generic_make_request);
3271
3272 /**
3273 * submit_bio: submit a bio to the block device layer for I/O
3274 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3275 * @bio: The &struct bio which describes the I/O
3276 *
3277 * submit_bio() is very similar in purpose to generic_make_request(), and
3278 * uses that function to do most of the work. Both are fairly rough
3279 * interfaces, @bio must be presetup and ready for I/O.
3280 *
3281 */
3282 void submit_bio(int rw, struct bio *bio)
3283 {
3284 int count = bio_sectors(bio);
3285
3286 BIO_BUG_ON(!bio->bi_size);
3287 BIO_BUG_ON(!bio->bi_io_vec);
3288 bio->bi_rw |= rw;
3289 if (rw & WRITE) {
3290 count_vm_events(PGPGOUT, count);
3291 } else {
3292 task_io_account_read(bio->bi_size);
3293 count_vm_events(PGPGIN, count);
3294 }
3295
3296 if (unlikely(block_dump)) {
3297 char b[BDEVNAME_SIZE];
3298 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3299 current->comm, current->pid,
3300 (rw & WRITE) ? "WRITE" : "READ",
3301 (unsigned long long)bio->bi_sector,
3302 bdevname(bio->bi_bdev,b));
3303 }
3304
3305 generic_make_request(bio);
3306 }
3307
3308 EXPORT_SYMBOL(submit_bio);
3309
3310 static void blk_recalc_rq_segments(struct request *rq)
3311 {
3312 struct bio *bio, *prevbio = NULL;
3313 int nr_phys_segs, nr_hw_segs;
3314 unsigned int phys_size, hw_size;
3315 request_queue_t *q = rq->q;
3316
3317 if (!rq->bio)
3318 return;
3319
3320 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3321 rq_for_each_bio(bio, rq) {
3322 /* Force bio hw/phys segs to be recalculated. */
3323 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3324
3325 nr_phys_segs += bio_phys_segments(q, bio);
3326 nr_hw_segs += bio_hw_segments(q, bio);
3327 if (prevbio) {
3328 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3329 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3330
3331 if (blk_phys_contig_segment(q, prevbio, bio) &&
3332 pseg <= q->max_segment_size) {
3333 nr_phys_segs--;
3334 phys_size += prevbio->bi_size + bio->bi_size;
3335 } else
3336 phys_size = 0;
3337
3338 if (blk_hw_contig_segment(q, prevbio, bio) &&
3339 hseg <= q->max_segment_size) {
3340 nr_hw_segs--;
3341 hw_size += prevbio->bi_size + bio->bi_size;
3342 } else
3343 hw_size = 0;
3344 }
3345 prevbio = bio;
3346 }
3347
3348 rq->nr_phys_segments = nr_phys_segs;
3349 rq->nr_hw_segments = nr_hw_segs;
3350 }
3351
3352 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3353 {
3354 if (blk_fs_request(rq)) {
3355 rq->hard_sector += nsect;
3356 rq->hard_nr_sectors -= nsect;
3357
3358 /*
3359 * Move the I/O submission pointers ahead if required.
3360 */
3361 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3362 (rq->sector <= rq->hard_sector)) {
3363 rq->sector = rq->hard_sector;
3364 rq->nr_sectors = rq->hard_nr_sectors;
3365 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3366 rq->current_nr_sectors = rq->hard_cur_sectors;
3367 rq->buffer = bio_data(rq->bio);
3368 }
3369
3370 /*
3371 * if total number of sectors is less than the first segment
3372 * size, something has gone terribly wrong
3373 */
3374 if (rq->nr_sectors < rq->current_nr_sectors) {
3375 printk("blk: request botched\n");
3376 rq->nr_sectors = rq->current_nr_sectors;
3377 }
3378 }
3379 }
3380
3381 static int __end_that_request_first(struct request *req, int uptodate,
3382 int nr_bytes)
3383 {
3384 int total_bytes, bio_nbytes, error, next_idx = 0;
3385 struct bio *bio;
3386
3387 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3388
3389 /*
3390 * extend uptodate bool to allow < 0 value to be direct io error
3391 */
3392 error = 0;
3393 if (end_io_error(uptodate))
3394 error = !uptodate ? -EIO : uptodate;
3395
3396 /*
3397 * for a REQ_BLOCK_PC request, we want to carry any eventual
3398 * sense key with us all the way through
3399 */
3400 if (!blk_pc_request(req))
3401 req->errors = 0;
3402
3403 if (!uptodate) {
3404 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3405 printk("end_request: I/O error, dev %s, sector %llu\n",
3406 req->rq_disk ? req->rq_disk->disk_name : "?",
3407 (unsigned long long)req->sector);
3408 }
3409
3410 if (blk_fs_request(req) && req->rq_disk) {
3411 const int rw = rq_data_dir(req);
3412
3413 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3414 }
3415
3416 total_bytes = bio_nbytes = 0;
3417 while ((bio = req->bio) != NULL) {
3418 int nbytes;
3419
3420 if (nr_bytes >= bio->bi_size) {
3421 req->bio = bio->bi_next;
3422 nbytes = bio->bi_size;
3423 if (!ordered_bio_endio(req, bio, nbytes, error))
3424 bio_endio(bio, nbytes, error);
3425 next_idx = 0;
3426 bio_nbytes = 0;
3427 } else {
3428 int idx = bio->bi_idx + next_idx;
3429
3430 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3431 blk_dump_rq_flags(req, "__end_that");
3432 printk("%s: bio idx %d >= vcnt %d\n",
3433 __FUNCTION__,
3434 bio->bi_idx, bio->bi_vcnt);
3435 break;
3436 }
3437
3438 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3439 BIO_BUG_ON(nbytes > bio->bi_size);
3440
3441 /*
3442 * not a complete bvec done
3443 */
3444 if (unlikely(nbytes > nr_bytes)) {
3445 bio_nbytes += nr_bytes;
3446 total_bytes += nr_bytes;
3447 break;
3448 }
3449
3450 /*
3451 * advance to the next vector
3452 */
3453 next_idx++;
3454 bio_nbytes += nbytes;
3455 }
3456
3457 total_bytes += nbytes;
3458 nr_bytes -= nbytes;
3459
3460 if ((bio = req->bio)) {
3461 /*
3462 * end more in this run, or just return 'not-done'
3463 */
3464 if (unlikely(nr_bytes <= 0))
3465 break;
3466 }
3467 }
3468
3469 /*
3470 * completely done
3471 */
3472 if (!req->bio)
3473 return 0;
3474
3475 /*
3476 * if the request wasn't completed, update state
3477 */
3478 if (bio_nbytes) {
3479 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3480 bio_endio(bio, bio_nbytes, error);
3481 bio->bi_idx += next_idx;
3482 bio_iovec(bio)->bv_offset += nr_bytes;
3483 bio_iovec(bio)->bv_len -= nr_bytes;
3484 }
3485
3486 blk_recalc_rq_sectors(req, total_bytes >> 9);
3487 blk_recalc_rq_segments(req);
3488 return 1;
3489 }
3490
3491 /**
3492 * end_that_request_first - end I/O on a request
3493 * @req: the request being processed
3494 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3495 * @nr_sectors: number of sectors to end I/O on
3496 *
3497 * Description:
3498 * Ends I/O on a number of sectors attached to @req, and sets it up
3499 * for the next range of segments (if any) in the cluster.
3500 *
3501 * Return:
3502 * 0 - we are done with this request, call end_that_request_last()
3503 * 1 - still buffers pending for this request
3504 **/
3505 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3506 {
3507 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3508 }
3509
3510 EXPORT_SYMBOL(end_that_request_first);
3511
3512 /**
3513 * end_that_request_chunk - end I/O on a request
3514 * @req: the request being processed
3515 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3516 * @nr_bytes: number of bytes to complete
3517 *
3518 * Description:
3519 * Ends I/O on a number of bytes attached to @req, and sets it up
3520 * for the next range of segments (if any). Like end_that_request_first(),
3521 * but deals with bytes instead of sectors.
3522 *
3523 * Return:
3524 * 0 - we are done with this request, call end_that_request_last()
3525 * 1 - still buffers pending for this request
3526 **/
3527 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3528 {
3529 return __end_that_request_first(req, uptodate, nr_bytes);
3530 }
3531
3532 EXPORT_SYMBOL(end_that_request_chunk);
3533
3534 /*
3535 * splice the completion data to a local structure and hand off to
3536 * process_completion_queue() to complete the requests
3537 */
3538 static void blk_done_softirq(struct softirq_action *h)
3539 {
3540 struct list_head *cpu_list, local_list;
3541
3542 local_irq_disable();
3543 cpu_list = &__get_cpu_var(blk_cpu_done);
3544 list_replace_init(cpu_list, &local_list);
3545 local_irq_enable();
3546
3547 while (!list_empty(&local_list)) {
3548 struct request *rq = list_entry(local_list.next, struct request, donelist);
3549
3550 list_del_init(&rq->donelist);
3551 rq->q->softirq_done_fn(rq);
3552 }
3553 }
3554
3555 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3556 void *hcpu)
3557 {
3558 /*
3559 * If a CPU goes away, splice its entries to the current CPU
3560 * and trigger a run of the softirq
3561 */
3562 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3563 int cpu = (unsigned long) hcpu;
3564
3565 local_irq_disable();
3566 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3567 &__get_cpu_var(blk_cpu_done));
3568 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3569 local_irq_enable();
3570 }
3571
3572 return NOTIFY_OK;
3573 }
3574
3575
3576 static struct notifier_block __devinitdata blk_cpu_notifier = {
3577 .notifier_call = blk_cpu_notify,
3578 };
3579
3580 /**
3581 * blk_complete_request - end I/O on a request
3582 * @req: the request being processed
3583 *
3584 * Description:
3585 * Ends all I/O on a request. It does not handle partial completions,
3586 * unless the driver actually implements this in its completion callback
3587 * through requeueing. Theh actual completion happens out-of-order,
3588 * through a softirq handler. The user must have registered a completion
3589 * callback through blk_queue_softirq_done().
3590 **/
3591
3592 void blk_complete_request(struct request *req)
3593 {
3594 struct list_head *cpu_list;
3595 unsigned long flags;
3596
3597 BUG_ON(!req->q->softirq_done_fn);
3598
3599 local_irq_save(flags);
3600
3601 cpu_list = &__get_cpu_var(blk_cpu_done);
3602 list_add_tail(&req->donelist, cpu_list);
3603 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3604
3605 local_irq_restore(flags);
3606 }
3607
3608 EXPORT_SYMBOL(blk_complete_request);
3609
3610 /*
3611 * queue lock must be held
3612 */
3613 void end_that_request_last(struct request *req, int uptodate)
3614 {
3615 struct gendisk *disk = req->rq_disk;
3616 int error;
3617
3618 /*
3619 * extend uptodate bool to allow < 0 value to be direct io error
3620 */
3621 error = 0;
3622 if (end_io_error(uptodate))
3623 error = !uptodate ? -EIO : uptodate;
3624
3625 if (unlikely(laptop_mode) && blk_fs_request(req))
3626 laptop_io_completion();
3627
3628 /*
3629 * Account IO completion. bar_rq isn't accounted as a normal
3630 * IO on queueing nor completion. Accounting the containing
3631 * request is enough.
3632 */
3633 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3634 unsigned long duration = jiffies - req->start_time;
3635 const int rw = rq_data_dir(req);
3636
3637 __disk_stat_inc(disk, ios[rw]);
3638 __disk_stat_add(disk, ticks[rw], duration);
3639 disk_round_stats(disk);
3640 disk->in_flight--;
3641 }
3642 if (req->end_io)
3643 req->end_io(req, error);
3644 else
3645 __blk_put_request(req->q, req);
3646 }
3647
3648 EXPORT_SYMBOL(end_that_request_last);
3649
3650 void end_request(struct request *req, int uptodate)
3651 {
3652 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3653 add_disk_randomness(req->rq_disk);
3654 blkdev_dequeue_request(req);
3655 end_that_request_last(req, uptodate);
3656 }
3657 }
3658
3659 EXPORT_SYMBOL(end_request);
3660
3661 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3662 {
3663 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3664 rq->cmd_flags |= (bio->bi_rw & 3);
3665
3666 rq->nr_phys_segments = bio_phys_segments(q, bio);
3667 rq->nr_hw_segments = bio_hw_segments(q, bio);
3668 rq->current_nr_sectors = bio_cur_sectors(bio);
3669 rq->hard_cur_sectors = rq->current_nr_sectors;
3670 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3671 rq->buffer = bio_data(bio);
3672 rq->data_len = bio->bi_size;
3673
3674 rq->bio = rq->biotail = bio;
3675 }
3676
3677 EXPORT_SYMBOL(blk_rq_bio_prep);
3678
3679 int kblockd_schedule_work(struct work_struct *work)
3680 {
3681 return queue_work(kblockd_workqueue, work);
3682 }
3683
3684 EXPORT_SYMBOL(kblockd_schedule_work);
3685
3686 void kblockd_flush_work(struct work_struct *work)
3687 {
3688 cancel_work_sync(work);
3689 }
3690 EXPORT_SYMBOL(kblockd_flush_work);
3691
3692 int __init blk_dev_init(void)
3693 {
3694 int i;
3695
3696 kblockd_workqueue = create_workqueue("kblockd");
3697 if (!kblockd_workqueue)
3698 panic("Failed to create kblockd\n");
3699
3700 request_cachep = kmem_cache_create("blkdev_requests",
3701 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3702
3703 requestq_cachep = kmem_cache_create("blkdev_queue",
3704 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3705
3706 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3707 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3708
3709 for_each_possible_cpu(i)
3710 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3711
3712 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3713 register_hotcpu_notifier(&blk_cpu_notifier);
3714
3715 blk_max_low_pfn = max_low_pfn - 1;
3716 blk_max_pfn = max_pfn - 1;
3717
3718 return 0;
3719 }
3720
3721 /*
3722 * IO Context helper functions
3723 */
3724 void put_io_context(struct io_context *ioc)
3725 {
3726 if (ioc == NULL)
3727 return;
3728
3729 BUG_ON(atomic_read(&ioc->refcount) == 0);
3730
3731 if (atomic_dec_and_test(&ioc->refcount)) {
3732 struct cfq_io_context *cic;
3733
3734 rcu_read_lock();
3735 if (ioc->aic && ioc->aic->dtor)
3736 ioc->aic->dtor(ioc->aic);
3737 if (ioc->cic_root.rb_node != NULL) {
3738 struct rb_node *n = rb_first(&ioc->cic_root);
3739
3740 cic = rb_entry(n, struct cfq_io_context, rb_node);
3741 cic->dtor(ioc);
3742 }
3743 rcu_read_unlock();
3744
3745 kmem_cache_free(iocontext_cachep, ioc);
3746 }
3747 }
3748 EXPORT_SYMBOL(put_io_context);
3749
3750 /* Called by the exitting task */
3751 void exit_io_context(void)
3752 {
3753 struct io_context *ioc;
3754 struct cfq_io_context *cic;
3755
3756 task_lock(current);
3757 ioc = current->io_context;
3758 current->io_context = NULL;
3759 task_unlock(current);
3760
3761 ioc->task = NULL;
3762 if (ioc->aic && ioc->aic->exit)
3763 ioc->aic->exit(ioc->aic);
3764 if (ioc->cic_root.rb_node != NULL) {
3765 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3766 cic->exit(ioc);
3767 }
3768
3769 put_io_context(ioc);
3770 }
3771
3772 /*
3773 * If the current task has no IO context then create one and initialise it.
3774 * Otherwise, return its existing IO context.
3775 *
3776 * This returned IO context doesn't have a specifically elevated refcount,
3777 * but since the current task itself holds a reference, the context can be
3778 * used in general code, so long as it stays within `current` context.
3779 */
3780 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3781 {
3782 struct task_struct *tsk = current;
3783 struct io_context *ret;
3784
3785 ret = tsk->io_context;
3786 if (likely(ret))
3787 return ret;
3788
3789 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3790 if (ret) {
3791 atomic_set(&ret->refcount, 1);
3792 ret->task = current;
3793 ret->ioprio_changed = 0;
3794 ret->last_waited = jiffies; /* doesn't matter... */
3795 ret->nr_batch_requests = 0; /* because this is 0 */
3796 ret->aic = NULL;
3797 ret->cic_root.rb_node = NULL;
3798 ret->ioc_data = NULL;
3799 /* make sure set_task_ioprio() sees the settings above */
3800 smp_wmb();
3801 tsk->io_context = ret;
3802 }
3803
3804 return ret;
3805 }
3806
3807 /*
3808 * If the current task has no IO context then create one and initialise it.
3809 * If it does have a context, take a ref on it.
3810 *
3811 * This is always called in the context of the task which submitted the I/O.
3812 */
3813 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3814 {
3815 struct io_context *ret;
3816 ret = current_io_context(gfp_flags, node);
3817 if (likely(ret))
3818 atomic_inc(&ret->refcount);
3819 return ret;
3820 }
3821 EXPORT_SYMBOL(get_io_context);
3822
3823 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3824 {
3825 struct io_context *src = *psrc;
3826 struct io_context *dst = *pdst;
3827
3828 if (src) {
3829 BUG_ON(atomic_read(&src->refcount) == 0);
3830 atomic_inc(&src->refcount);
3831 put_io_context(dst);
3832 *pdst = src;
3833 }
3834 }
3835 EXPORT_SYMBOL(copy_io_context);
3836
3837 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3838 {
3839 struct io_context *temp;
3840 temp = *ioc1;
3841 *ioc1 = *ioc2;
3842 *ioc2 = temp;
3843 }
3844 EXPORT_SYMBOL(swap_io_context);
3845
3846 /*
3847 * sysfs parts below
3848 */
3849 struct queue_sysfs_entry {
3850 struct attribute attr;
3851 ssize_t (*show)(struct request_queue *, char *);
3852 ssize_t (*store)(struct request_queue *, const char *, size_t);
3853 };
3854
3855 static ssize_t
3856 queue_var_show(unsigned int var, char *page)
3857 {
3858 return sprintf(page, "%d\n", var);
3859 }
3860
3861 static ssize_t
3862 queue_var_store(unsigned long *var, const char *page, size_t count)
3863 {
3864 char *p = (char *) page;
3865
3866 *var = simple_strtoul(p, &p, 10);
3867 return count;
3868 }
3869
3870 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3871 {
3872 return queue_var_show(q->nr_requests, (page));
3873 }
3874
3875 static ssize_t
3876 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3877 {
3878 struct request_list *rl = &q->rq;
3879 unsigned long nr;
3880 int ret = queue_var_store(&nr, page, count);
3881 if (nr < BLKDEV_MIN_RQ)
3882 nr = BLKDEV_MIN_RQ;
3883
3884 spin_lock_irq(q->queue_lock);
3885 q->nr_requests = nr;
3886 blk_queue_congestion_threshold(q);
3887
3888 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3889 blk_set_queue_congested(q, READ);
3890 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3891 blk_clear_queue_congested(q, READ);
3892
3893 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3894 blk_set_queue_congested(q, WRITE);
3895 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3896 blk_clear_queue_congested(q, WRITE);
3897
3898 if (rl->count[READ] >= q->nr_requests) {
3899 blk_set_queue_full(q, READ);
3900 } else if (rl->count[READ]+1 <= q->nr_requests) {
3901 blk_clear_queue_full(q, READ);
3902 wake_up(&rl->wait[READ]);
3903 }
3904
3905 if (rl->count[WRITE] >= q->nr_requests) {
3906 blk_set_queue_full(q, WRITE);
3907 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3908 blk_clear_queue_full(q, WRITE);
3909 wake_up(&rl->wait[WRITE]);
3910 }
3911 spin_unlock_irq(q->queue_lock);
3912 return ret;
3913 }
3914
3915 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3916 {
3917 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3918
3919 return queue_var_show(ra_kb, (page));
3920 }
3921
3922 static ssize_t
3923 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3924 {
3925 unsigned long ra_kb;
3926 ssize_t ret = queue_var_store(&ra_kb, page, count);
3927
3928 spin_lock_irq(q->queue_lock);
3929 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3930 spin_unlock_irq(q->queue_lock);
3931
3932 return ret;
3933 }
3934
3935 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3936 {
3937 int max_sectors_kb = q->max_sectors >> 1;
3938
3939 return queue_var_show(max_sectors_kb, (page));
3940 }
3941
3942 static ssize_t
3943 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3944 {
3945 unsigned long max_sectors_kb,
3946 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3947 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3948 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3949 int ra_kb;
3950
3951 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3952 return -EINVAL;
3953 /*
3954 * Take the queue lock to update the readahead and max_sectors
3955 * values synchronously:
3956 */
3957 spin_lock_irq(q->queue_lock);
3958 /*
3959 * Trim readahead window as well, if necessary:
3960 */
3961 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3962 if (ra_kb > max_sectors_kb)
3963 q->backing_dev_info.ra_pages =
3964 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3965
3966 q->max_sectors = max_sectors_kb << 1;
3967 spin_unlock_irq(q->queue_lock);
3968
3969 return ret;
3970 }
3971
3972 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3973 {
3974 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3975
3976 return queue_var_show(max_hw_sectors_kb, (page));
3977 }
3978
3979
3980 static struct queue_sysfs_entry queue_requests_entry = {
3981 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3982 .show = queue_requests_show,
3983 .store = queue_requests_store,
3984 };
3985
3986 static struct queue_sysfs_entry queue_ra_entry = {
3987 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3988 .show = queue_ra_show,
3989 .store = queue_ra_store,
3990 };
3991
3992 static struct queue_sysfs_entry queue_max_sectors_entry = {
3993 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3994 .show = queue_max_sectors_show,
3995 .store = queue_max_sectors_store,
3996 };
3997
3998 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3999 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4000 .show = queue_max_hw_sectors_show,
4001 };
4002
4003 static struct queue_sysfs_entry queue_iosched_entry = {
4004 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4005 .show = elv_iosched_show,
4006 .store = elv_iosched_store,
4007 };
4008
4009 static struct attribute *default_attrs[] = {
4010 &queue_requests_entry.attr,
4011 &queue_ra_entry.attr,
4012 &queue_max_hw_sectors_entry.attr,
4013 &queue_max_sectors_entry.attr,
4014 &queue_iosched_entry.attr,
4015 NULL,
4016 };
4017
4018 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4019
4020 static ssize_t
4021 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4022 {
4023 struct queue_sysfs_entry *entry = to_queue(attr);
4024 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4025 ssize_t res;
4026
4027 if (!entry->show)
4028 return -EIO;
4029 mutex_lock(&q->sysfs_lock);
4030 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4031 mutex_unlock(&q->sysfs_lock);
4032 return -ENOENT;
4033 }
4034 res = entry->show(q, page);
4035 mutex_unlock(&q->sysfs_lock);
4036 return res;
4037 }
4038
4039 static ssize_t
4040 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4041 const char *page, size_t length)
4042 {
4043 struct queue_sysfs_entry *entry = to_queue(attr);
4044 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4045
4046 ssize_t res;
4047
4048 if (!entry->store)
4049 return -EIO;
4050 mutex_lock(&q->sysfs_lock);
4051 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4052 mutex_unlock(&q->sysfs_lock);
4053 return -ENOENT;
4054 }
4055 res = entry->store(q, page, length);
4056 mutex_unlock(&q->sysfs_lock);
4057 return res;
4058 }
4059
4060 static struct sysfs_ops queue_sysfs_ops = {
4061 .show = queue_attr_show,
4062 .store = queue_attr_store,
4063 };
4064
4065 static struct kobj_type queue_ktype = {
4066 .sysfs_ops = &queue_sysfs_ops,
4067 .default_attrs = default_attrs,
4068 .release = blk_release_queue,
4069 };
4070
4071 int blk_register_queue(struct gendisk *disk)
4072 {
4073 int ret;
4074
4075 request_queue_t *q = disk->queue;
4076
4077 if (!q || !q->request_fn)
4078 return -ENXIO;
4079
4080 q->kobj.parent = kobject_get(&disk->kobj);
4081
4082 ret = kobject_add(&q->kobj);
4083 if (ret < 0)
4084 return ret;
4085
4086 kobject_uevent(&q->kobj, KOBJ_ADD);
4087
4088 ret = elv_register_queue(q);
4089 if (ret) {
4090 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4091 kobject_del(&q->kobj);
4092 return ret;
4093 }
4094
4095 return 0;
4096 }
4097
4098 void blk_unregister_queue(struct gendisk *disk)
4099 {
4100 request_queue_t *q = disk->queue;
4101
4102 if (q && q->request_fn) {
4103 elv_unregister_queue(q);
4104
4105 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4106 kobject_del(&q->kobj);
4107 kobject_put(&disk->kobj);
4108 }
4109 }