]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/ll_rw_blk.c
ll_rw_blk: blk_cpu_notifier should be __cpuinitdata
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 /*
35 * for max sense size
36 */
37 #include <scsi/scsi_cmnd.h>
38
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 static void blk_recalc_rq_segments(struct request *rq);
46 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
47 struct bio *bio);
48
49 /*
50 * For the allocated request tables
51 */
52 static struct kmem_cache *request_cachep;
53
54 /*
55 * For queue allocation
56 */
57 static struct kmem_cache *requestq_cachep;
58
59 /*
60 * For io context allocations
61 */
62 static struct kmem_cache *iocontext_cachep;
63
64 /*
65 * Controlling structure to kblockd
66 */
67 static struct workqueue_struct *kblockd_workqueue;
68
69 unsigned long blk_max_low_pfn, blk_max_pfn;
70
71 EXPORT_SYMBOL(blk_max_low_pfn);
72 EXPORT_SYMBOL(blk_max_pfn);
73
74 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
78
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
81
82 /*
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
86 */
87 static inline int queue_congestion_on_threshold(struct request_queue *q)
88 {
89 return q->nr_congestion_on;
90 }
91
92 /*
93 * The threshold at which a queue is considered to be uncongested
94 */
95 static inline int queue_congestion_off_threshold(struct request_queue *q)
96 {
97 return q->nr_congestion_off;
98 }
99
100 static void blk_queue_congestion_threshold(struct request_queue *q)
101 {
102 int nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
108
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
113 }
114
115 /**
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * @bdev: device
118 *
119 * Locates the passed device's request queue and returns the address of its
120 * backing_dev_info
121 *
122 * Will return NULL if the request queue cannot be located.
123 */
124 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
125 {
126 struct backing_dev_info *ret = NULL;
127 struct request_queue *q = bdev_get_queue(bdev);
128
129 if (q)
130 ret = &q->backing_dev_info;
131 return ret;
132 }
133 EXPORT_SYMBOL(blk_get_backing_dev_info);
134
135 /**
136 * blk_queue_prep_rq - set a prepare_request function for queue
137 * @q: queue
138 * @pfn: prepare_request function
139 *
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
144 *
145 */
146 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
147 {
148 q->prep_rq_fn = pfn;
149 }
150
151 EXPORT_SYMBOL(blk_queue_prep_rq);
152
153 /**
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
155 * @q: queue
156 * @mbfn: merge_bvec_fn
157 *
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 * honored.
168 */
169 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
170 {
171 q->merge_bvec_fn = mbfn;
172 }
173
174 EXPORT_SYMBOL(blk_queue_merge_bvec);
175
176 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
177 {
178 q->softirq_done_fn = fn;
179 }
180
181 EXPORT_SYMBOL(blk_queue_softirq_done);
182
183 /**
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
187 *
188 * Description:
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
198 *
199 * Caveat:
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
204 **/
205 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
206 {
207 /*
208 * set defaults
209 */
210 q->nr_requests = BLKDEV_MAX_RQ;
211 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
212 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
213 q->make_request_fn = mfn;
214 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
215 q->backing_dev_info.state = 0;
216 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
217 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
218 blk_queue_hardsect_size(q, 512);
219 blk_queue_dma_alignment(q, 511);
220 blk_queue_congestion_threshold(q);
221 q->nr_batching = BLK_BATCH_REQ;
222
223 q->unplug_thresh = 4; /* hmm */
224 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
225 if (q->unplug_delay == 0)
226 q->unplug_delay = 1;
227
228 INIT_WORK(&q->unplug_work, blk_unplug_work);
229
230 q->unplug_timer.function = blk_unplug_timeout;
231 q->unplug_timer.data = (unsigned long)q;
232
233 /*
234 * by default assume old behaviour and bounce for any highmem page
235 */
236 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
237 }
238
239 EXPORT_SYMBOL(blk_queue_make_request);
240
241 static void rq_init(struct request_queue *q, struct request *rq)
242 {
243 INIT_LIST_HEAD(&rq->queuelist);
244 INIT_LIST_HEAD(&rq->donelist);
245
246 rq->errors = 0;
247 rq->bio = rq->biotail = NULL;
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
250 rq->ioprio = 0;
251 rq->buffer = NULL;
252 rq->ref_count = 1;
253 rq->q = q;
254 rq->special = NULL;
255 rq->data_len = 0;
256 rq->data = NULL;
257 rq->nr_phys_segments = 0;
258 rq->sense = NULL;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->completion_data = NULL;
262 rq->next_rq = NULL;
263 }
264
265 /**
266 * blk_queue_ordered - does this queue support ordered writes
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
270 *
271 * Description:
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
276 *
277 **/
278 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
279 prepare_flush_fn *prepare_flush_fn)
280 {
281 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
282 prepare_flush_fn == NULL) {
283 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 return -EINVAL;
285 }
286
287 if (ordered != QUEUE_ORDERED_NONE &&
288 ordered != QUEUE_ORDERED_DRAIN &&
289 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
290 ordered != QUEUE_ORDERED_DRAIN_FUA &&
291 ordered != QUEUE_ORDERED_TAG &&
292 ordered != QUEUE_ORDERED_TAG_FLUSH &&
293 ordered != QUEUE_ORDERED_TAG_FUA) {
294 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 return -EINVAL;
296 }
297
298 q->ordered = ordered;
299 q->next_ordered = ordered;
300 q->prepare_flush_fn = prepare_flush_fn;
301
302 return 0;
303 }
304
305 EXPORT_SYMBOL(blk_queue_ordered);
306
307 /**
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
311 *
312 * Description:
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
315 *
316 **/
317 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
318 {
319 q->issue_flush_fn = iff;
320 }
321
322 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
323
324 /*
325 * Cache flushing for ordered writes handling
326 */
327 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
328 {
329 if (!q->ordseq)
330 return 0;
331 return 1 << ffz(q->ordseq);
332 }
333
334 unsigned blk_ordered_req_seq(struct request *rq)
335 {
336 struct request_queue *q = rq->q;
337
338 BUG_ON(q->ordseq == 0);
339
340 if (rq == &q->pre_flush_rq)
341 return QUEUE_ORDSEQ_PREFLUSH;
342 if (rq == &q->bar_rq)
343 return QUEUE_ORDSEQ_BAR;
344 if (rq == &q->post_flush_rq)
345 return QUEUE_ORDSEQ_POSTFLUSH;
346
347 /*
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
350 *
351 * http://thread.gmane.org/gmane.linux.kernel/537473
352 */
353 if (!blk_fs_request(rq))
354 return QUEUE_ORDSEQ_DRAIN;
355
356 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
357 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
358 return QUEUE_ORDSEQ_DRAIN;
359 else
360 return QUEUE_ORDSEQ_DONE;
361 }
362
363 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
364 {
365 struct request *rq;
366 int uptodate;
367
368 if (error && !q->orderr)
369 q->orderr = error;
370
371 BUG_ON(q->ordseq & seq);
372 q->ordseq |= seq;
373
374 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
375 return;
376
377 /*
378 * Okay, sequence complete.
379 */
380 rq = q->orig_bar_rq;
381 uptodate = q->orderr ? q->orderr : 1;
382
383 q->ordseq = 0;
384
385 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
386 end_that_request_last(rq, uptodate);
387 }
388
389 static void pre_flush_end_io(struct request *rq, int error)
390 {
391 elv_completed_request(rq->q, rq);
392 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
393 }
394
395 static void bar_end_io(struct request *rq, int error)
396 {
397 elv_completed_request(rq->q, rq);
398 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
399 }
400
401 static void post_flush_end_io(struct request *rq, int error)
402 {
403 elv_completed_request(rq->q, rq);
404 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
405 }
406
407 static void queue_flush(struct request_queue *q, unsigned which)
408 {
409 struct request *rq;
410 rq_end_io_fn *end_io;
411
412 if (which == QUEUE_ORDERED_PREFLUSH) {
413 rq = &q->pre_flush_rq;
414 end_io = pre_flush_end_io;
415 } else {
416 rq = &q->post_flush_rq;
417 end_io = post_flush_end_io;
418 }
419
420 rq->cmd_flags = REQ_HARDBARRIER;
421 rq_init(q, rq);
422 rq->elevator_private = NULL;
423 rq->elevator_private2 = NULL;
424 rq->rq_disk = q->bar_rq.rq_disk;
425 rq->end_io = end_io;
426 q->prepare_flush_fn(q, rq);
427
428 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
429 }
430
431 static inline struct request *start_ordered(struct request_queue *q,
432 struct request *rq)
433 {
434 q->bi_size = 0;
435 q->orderr = 0;
436 q->ordered = q->next_ordered;
437 q->ordseq |= QUEUE_ORDSEQ_STARTED;
438
439 /*
440 * Prep proxy barrier request.
441 */
442 blkdev_dequeue_request(rq);
443 q->orig_bar_rq = rq;
444 rq = &q->bar_rq;
445 rq->cmd_flags = 0;
446 rq_init(q, rq);
447 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
448 rq->cmd_flags |= REQ_RW;
449 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
450 rq->elevator_private = NULL;
451 rq->elevator_private2 = NULL;
452 init_request_from_bio(rq, q->orig_bar_rq->bio);
453 rq->end_io = bar_end_io;
454
455 /*
456 * Queue ordered sequence. As we stack them at the head, we
457 * need to queue in reverse order. Note that we rely on that
458 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
459 * request gets inbetween ordered sequence.
460 */
461 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
462 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
463 else
464 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
465
466 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
467
468 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
469 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
470 rq = &q->pre_flush_rq;
471 } else
472 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
473
474 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
475 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
476 else
477 rq = NULL;
478
479 return rq;
480 }
481
482 int blk_do_ordered(struct request_queue *q, struct request **rqp)
483 {
484 struct request *rq = *rqp;
485 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
486
487 if (!q->ordseq) {
488 if (!is_barrier)
489 return 1;
490
491 if (q->next_ordered != QUEUE_ORDERED_NONE) {
492 *rqp = start_ordered(q, rq);
493 return 1;
494 } else {
495 /*
496 * This can happen when the queue switches to
497 * ORDERED_NONE while this request is on it.
498 */
499 blkdev_dequeue_request(rq);
500 end_that_request_first(rq, -EOPNOTSUPP,
501 rq->hard_nr_sectors);
502 end_that_request_last(rq, -EOPNOTSUPP);
503 *rqp = NULL;
504 return 0;
505 }
506 }
507
508 /*
509 * Ordered sequence in progress
510 */
511
512 /* Special requests are not subject to ordering rules. */
513 if (!blk_fs_request(rq) &&
514 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
515 return 1;
516
517 if (q->ordered & QUEUE_ORDERED_TAG) {
518 /* Ordered by tag. Blocking the next barrier is enough. */
519 if (is_barrier && rq != &q->bar_rq)
520 *rqp = NULL;
521 } else {
522 /* Ordered by draining. Wait for turn. */
523 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
524 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
525 *rqp = NULL;
526 }
527
528 return 1;
529 }
530
531 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
532 {
533 struct request_queue *q = bio->bi_private;
534
535 /*
536 * This is dry run, restore bio_sector and size. We'll finish
537 * this request again with the original bi_end_io after an
538 * error occurs or post flush is complete.
539 */
540 q->bi_size += bytes;
541
542 if (bio->bi_size)
543 return 1;
544
545 /* Reset bio */
546 set_bit(BIO_UPTODATE, &bio->bi_flags);
547 bio->bi_size = q->bi_size;
548 bio->bi_sector -= (q->bi_size >> 9);
549 q->bi_size = 0;
550
551 return 0;
552 }
553
554 static int ordered_bio_endio(struct request *rq, struct bio *bio,
555 unsigned int nbytes, int error)
556 {
557 struct request_queue *q = rq->q;
558 bio_end_io_t *endio;
559 void *private;
560
561 if (&q->bar_rq != rq)
562 return 0;
563
564 /*
565 * Okay, this is the barrier request in progress, dry finish it.
566 */
567 if (error && !q->orderr)
568 q->orderr = error;
569
570 endio = bio->bi_end_io;
571 private = bio->bi_private;
572 bio->bi_end_io = flush_dry_bio_endio;
573 bio->bi_private = q;
574
575 bio_endio(bio, nbytes, error);
576
577 bio->bi_end_io = endio;
578 bio->bi_private = private;
579
580 return 1;
581 }
582
583 /**
584 * blk_queue_bounce_limit - set bounce buffer limit for queue
585 * @q: the request queue for the device
586 * @dma_addr: bus address limit
587 *
588 * Description:
589 * Different hardware can have different requirements as to what pages
590 * it can do I/O directly to. A low level driver can call
591 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
592 * buffers for doing I/O to pages residing above @page.
593 **/
594 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
595 {
596 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
597 int dma = 0;
598
599 q->bounce_gfp = GFP_NOIO;
600 #if BITS_PER_LONG == 64
601 /* Assume anything <= 4GB can be handled by IOMMU.
602 Actually some IOMMUs can handle everything, but I don't
603 know of a way to test this here. */
604 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
605 dma = 1;
606 q->bounce_pfn = max_low_pfn;
607 #else
608 if (bounce_pfn < blk_max_low_pfn)
609 dma = 1;
610 q->bounce_pfn = bounce_pfn;
611 #endif
612 if (dma) {
613 init_emergency_isa_pool();
614 q->bounce_gfp = GFP_NOIO | GFP_DMA;
615 q->bounce_pfn = bounce_pfn;
616 }
617 }
618
619 EXPORT_SYMBOL(blk_queue_bounce_limit);
620
621 /**
622 * blk_queue_max_sectors - set max sectors for a request for this queue
623 * @q: the request queue for the device
624 * @max_sectors: max sectors in the usual 512b unit
625 *
626 * Description:
627 * Enables a low level driver to set an upper limit on the size of
628 * received requests.
629 **/
630 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
631 {
632 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
633 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
634 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
635 }
636
637 if (BLK_DEF_MAX_SECTORS > max_sectors)
638 q->max_hw_sectors = q->max_sectors = max_sectors;
639 else {
640 q->max_sectors = BLK_DEF_MAX_SECTORS;
641 q->max_hw_sectors = max_sectors;
642 }
643 }
644
645 EXPORT_SYMBOL(blk_queue_max_sectors);
646
647 /**
648 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
649 * @q: the request queue for the device
650 * @max_segments: max number of segments
651 *
652 * Description:
653 * Enables a low level driver to set an upper limit on the number of
654 * physical data segments in a request. This would be the largest sized
655 * scatter list the driver could handle.
656 **/
657 void blk_queue_max_phys_segments(struct request_queue *q,
658 unsigned short max_segments)
659 {
660 if (!max_segments) {
661 max_segments = 1;
662 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
663 }
664
665 q->max_phys_segments = max_segments;
666 }
667
668 EXPORT_SYMBOL(blk_queue_max_phys_segments);
669
670 /**
671 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
672 * @q: the request queue for the device
673 * @max_segments: max number of segments
674 *
675 * Description:
676 * Enables a low level driver to set an upper limit on the number of
677 * hw data segments in a request. This would be the largest number of
678 * address/length pairs the host adapter can actually give as once
679 * to the device.
680 **/
681 void blk_queue_max_hw_segments(struct request_queue *q,
682 unsigned short max_segments)
683 {
684 if (!max_segments) {
685 max_segments = 1;
686 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
687 }
688
689 q->max_hw_segments = max_segments;
690 }
691
692 EXPORT_SYMBOL(blk_queue_max_hw_segments);
693
694 /**
695 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
696 * @q: the request queue for the device
697 * @max_size: max size of segment in bytes
698 *
699 * Description:
700 * Enables a low level driver to set an upper limit on the size of a
701 * coalesced segment
702 **/
703 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
704 {
705 if (max_size < PAGE_CACHE_SIZE) {
706 max_size = PAGE_CACHE_SIZE;
707 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
708 }
709
710 q->max_segment_size = max_size;
711 }
712
713 EXPORT_SYMBOL(blk_queue_max_segment_size);
714
715 /**
716 * blk_queue_hardsect_size - set hardware sector size for the queue
717 * @q: the request queue for the device
718 * @size: the hardware sector size, in bytes
719 *
720 * Description:
721 * This should typically be set to the lowest possible sector size
722 * that the hardware can operate on (possible without reverting to
723 * even internal read-modify-write operations). Usually the default
724 * of 512 covers most hardware.
725 **/
726 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
727 {
728 q->hardsect_size = size;
729 }
730
731 EXPORT_SYMBOL(blk_queue_hardsect_size);
732
733 /*
734 * Returns the minimum that is _not_ zero, unless both are zero.
735 */
736 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
737
738 /**
739 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
740 * @t: the stacking driver (top)
741 * @b: the underlying device (bottom)
742 **/
743 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
744 {
745 /* zero is "infinity" */
746 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
747 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
748
749 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
750 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
751 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
752 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
753 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
754 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
755 }
756
757 EXPORT_SYMBOL(blk_queue_stack_limits);
758
759 /**
760 * blk_queue_segment_boundary - set boundary rules for segment merging
761 * @q: the request queue for the device
762 * @mask: the memory boundary mask
763 **/
764 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
765 {
766 if (mask < PAGE_CACHE_SIZE - 1) {
767 mask = PAGE_CACHE_SIZE - 1;
768 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
769 }
770
771 q->seg_boundary_mask = mask;
772 }
773
774 EXPORT_SYMBOL(blk_queue_segment_boundary);
775
776 /**
777 * blk_queue_dma_alignment - set dma length and memory alignment
778 * @q: the request queue for the device
779 * @mask: alignment mask
780 *
781 * description:
782 * set required memory and length aligment for direct dma transactions.
783 * this is used when buiding direct io requests for the queue.
784 *
785 **/
786 void blk_queue_dma_alignment(struct request_queue *q, int mask)
787 {
788 q->dma_alignment = mask;
789 }
790
791 EXPORT_SYMBOL(blk_queue_dma_alignment);
792
793 /**
794 * blk_queue_find_tag - find a request by its tag and queue
795 * @q: The request queue for the device
796 * @tag: The tag of the request
797 *
798 * Notes:
799 * Should be used when a device returns a tag and you want to match
800 * it with a request.
801 *
802 * no locks need be held.
803 **/
804 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
805 {
806 return blk_map_queue_find_tag(q->queue_tags, tag);
807 }
808
809 EXPORT_SYMBOL(blk_queue_find_tag);
810
811 /**
812 * __blk_free_tags - release a given set of tag maintenance info
813 * @bqt: the tag map to free
814 *
815 * Tries to free the specified @bqt@. Returns true if it was
816 * actually freed and false if there are still references using it
817 */
818 static int __blk_free_tags(struct blk_queue_tag *bqt)
819 {
820 int retval;
821
822 retval = atomic_dec_and_test(&bqt->refcnt);
823 if (retval) {
824 BUG_ON(bqt->busy);
825 BUG_ON(!list_empty(&bqt->busy_list));
826
827 kfree(bqt->tag_index);
828 bqt->tag_index = NULL;
829
830 kfree(bqt->tag_map);
831 bqt->tag_map = NULL;
832
833 kfree(bqt);
834
835 }
836
837 return retval;
838 }
839
840 /**
841 * __blk_queue_free_tags - release tag maintenance info
842 * @q: the request queue for the device
843 *
844 * Notes:
845 * blk_cleanup_queue() will take care of calling this function, if tagging
846 * has been used. So there's no need to call this directly.
847 **/
848 static void __blk_queue_free_tags(struct request_queue *q)
849 {
850 struct blk_queue_tag *bqt = q->queue_tags;
851
852 if (!bqt)
853 return;
854
855 __blk_free_tags(bqt);
856
857 q->queue_tags = NULL;
858 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
859 }
860
861
862 /**
863 * blk_free_tags - release a given set of tag maintenance info
864 * @bqt: the tag map to free
865 *
866 * For externally managed @bqt@ frees the map. Callers of this
867 * function must guarantee to have released all the queues that
868 * might have been using this tag map.
869 */
870 void blk_free_tags(struct blk_queue_tag *bqt)
871 {
872 if (unlikely(!__blk_free_tags(bqt)))
873 BUG();
874 }
875 EXPORT_SYMBOL(blk_free_tags);
876
877 /**
878 * blk_queue_free_tags - release tag maintenance info
879 * @q: the request queue for the device
880 *
881 * Notes:
882 * This is used to disabled tagged queuing to a device, yet leave
883 * queue in function.
884 **/
885 void blk_queue_free_tags(struct request_queue *q)
886 {
887 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
888 }
889
890 EXPORT_SYMBOL(blk_queue_free_tags);
891
892 static int
893 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
894 {
895 struct request **tag_index;
896 unsigned long *tag_map;
897 int nr_ulongs;
898
899 if (q && depth > q->nr_requests * 2) {
900 depth = q->nr_requests * 2;
901 printk(KERN_ERR "%s: adjusted depth to %d\n",
902 __FUNCTION__, depth);
903 }
904
905 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
906 if (!tag_index)
907 goto fail;
908
909 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
910 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
911 if (!tag_map)
912 goto fail;
913
914 tags->real_max_depth = depth;
915 tags->max_depth = depth;
916 tags->tag_index = tag_index;
917 tags->tag_map = tag_map;
918
919 return 0;
920 fail:
921 kfree(tag_index);
922 return -ENOMEM;
923 }
924
925 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
926 int depth)
927 {
928 struct blk_queue_tag *tags;
929
930 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
931 if (!tags)
932 goto fail;
933
934 if (init_tag_map(q, tags, depth))
935 goto fail;
936
937 INIT_LIST_HEAD(&tags->busy_list);
938 tags->busy = 0;
939 atomic_set(&tags->refcnt, 1);
940 return tags;
941 fail:
942 kfree(tags);
943 return NULL;
944 }
945
946 /**
947 * blk_init_tags - initialize the tag info for an external tag map
948 * @depth: the maximum queue depth supported
949 * @tags: the tag to use
950 **/
951 struct blk_queue_tag *blk_init_tags(int depth)
952 {
953 return __blk_queue_init_tags(NULL, depth);
954 }
955 EXPORT_SYMBOL(blk_init_tags);
956
957 /**
958 * blk_queue_init_tags - initialize the queue tag info
959 * @q: the request queue for the device
960 * @depth: the maximum queue depth supported
961 * @tags: the tag to use
962 **/
963 int blk_queue_init_tags(struct request_queue *q, int depth,
964 struct blk_queue_tag *tags)
965 {
966 int rc;
967
968 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
969
970 if (!tags && !q->queue_tags) {
971 tags = __blk_queue_init_tags(q, depth);
972
973 if (!tags)
974 goto fail;
975 } else if (q->queue_tags) {
976 if ((rc = blk_queue_resize_tags(q, depth)))
977 return rc;
978 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
979 return 0;
980 } else
981 atomic_inc(&tags->refcnt);
982
983 /*
984 * assign it, all done
985 */
986 q->queue_tags = tags;
987 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
988 return 0;
989 fail:
990 kfree(tags);
991 return -ENOMEM;
992 }
993
994 EXPORT_SYMBOL(blk_queue_init_tags);
995
996 /**
997 * blk_queue_resize_tags - change the queueing depth
998 * @q: the request queue for the device
999 * @new_depth: the new max command queueing depth
1000 *
1001 * Notes:
1002 * Must be called with the queue lock held.
1003 **/
1004 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1005 {
1006 struct blk_queue_tag *bqt = q->queue_tags;
1007 struct request **tag_index;
1008 unsigned long *tag_map;
1009 int max_depth, nr_ulongs;
1010
1011 if (!bqt)
1012 return -ENXIO;
1013
1014 /*
1015 * if we already have large enough real_max_depth. just
1016 * adjust max_depth. *NOTE* as requests with tag value
1017 * between new_depth and real_max_depth can be in-flight, tag
1018 * map can not be shrunk blindly here.
1019 */
1020 if (new_depth <= bqt->real_max_depth) {
1021 bqt->max_depth = new_depth;
1022 return 0;
1023 }
1024
1025 /*
1026 * Currently cannot replace a shared tag map with a new
1027 * one, so error out if this is the case
1028 */
1029 if (atomic_read(&bqt->refcnt) != 1)
1030 return -EBUSY;
1031
1032 /*
1033 * save the old state info, so we can copy it back
1034 */
1035 tag_index = bqt->tag_index;
1036 tag_map = bqt->tag_map;
1037 max_depth = bqt->real_max_depth;
1038
1039 if (init_tag_map(q, bqt, new_depth))
1040 return -ENOMEM;
1041
1042 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1043 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1044 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1045
1046 kfree(tag_index);
1047 kfree(tag_map);
1048 return 0;
1049 }
1050
1051 EXPORT_SYMBOL(blk_queue_resize_tags);
1052
1053 /**
1054 * blk_queue_end_tag - end tag operations for a request
1055 * @q: the request queue for the device
1056 * @rq: the request that has completed
1057 *
1058 * Description:
1059 * Typically called when end_that_request_first() returns 0, meaning
1060 * all transfers have been done for a request. It's important to call
1061 * this function before end_that_request_last(), as that will put the
1062 * request back on the free list thus corrupting the internal tag list.
1063 *
1064 * Notes:
1065 * queue lock must be held.
1066 **/
1067 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1068 {
1069 struct blk_queue_tag *bqt = q->queue_tags;
1070 int tag = rq->tag;
1071
1072 BUG_ON(tag == -1);
1073
1074 if (unlikely(tag >= bqt->real_max_depth))
1075 /*
1076 * This can happen after tag depth has been reduced.
1077 * FIXME: how about a warning or info message here?
1078 */
1079 return;
1080
1081 list_del_init(&rq->queuelist);
1082 rq->cmd_flags &= ~REQ_QUEUED;
1083 rq->tag = -1;
1084
1085 if (unlikely(bqt->tag_index[tag] == NULL))
1086 printk(KERN_ERR "%s: tag %d is missing\n",
1087 __FUNCTION__, tag);
1088
1089 bqt->tag_index[tag] = NULL;
1090
1091 /*
1092 * We use test_and_clear_bit's memory ordering properties here.
1093 * The tag_map bit acts as a lock for tag_index[bit], so we need
1094 * a barrer before clearing the bit (precisely: release semantics).
1095 * Could use clear_bit_unlock when it is merged.
1096 */
1097 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1098 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1099 __FUNCTION__, tag);
1100 return;
1101 }
1102
1103 bqt->busy--;
1104 }
1105
1106 EXPORT_SYMBOL(blk_queue_end_tag);
1107
1108 /**
1109 * blk_queue_start_tag - find a free tag and assign it
1110 * @q: the request queue for the device
1111 * @rq: the block request that needs tagging
1112 *
1113 * Description:
1114 * This can either be used as a stand-alone helper, or possibly be
1115 * assigned as the queue &prep_rq_fn (in which case &struct request
1116 * automagically gets a tag assigned). Note that this function
1117 * assumes that any type of request can be queued! if this is not
1118 * true for your device, you must check the request type before
1119 * calling this function. The request will also be removed from
1120 * the request queue, so it's the drivers responsibility to readd
1121 * it if it should need to be restarted for some reason.
1122 *
1123 * Notes:
1124 * queue lock must be held.
1125 **/
1126 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1127 {
1128 struct blk_queue_tag *bqt = q->queue_tags;
1129 int tag;
1130
1131 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1132 printk(KERN_ERR
1133 "%s: request %p for device [%s] already tagged %d",
1134 __FUNCTION__, rq,
1135 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1136 BUG();
1137 }
1138
1139 /*
1140 * Protect against shared tag maps, as we may not have exclusive
1141 * access to the tag map.
1142 */
1143 do {
1144 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1145 if (tag >= bqt->max_depth)
1146 return 1;
1147
1148 } while (test_and_set_bit(tag, bqt->tag_map));
1149 /*
1150 * We rely on test_and_set_bit providing lock memory ordering semantics
1151 * (could use test_and_set_bit_lock when it is merged).
1152 */
1153
1154 rq->cmd_flags |= REQ_QUEUED;
1155 rq->tag = tag;
1156 bqt->tag_index[tag] = rq;
1157 blkdev_dequeue_request(rq);
1158 list_add(&rq->queuelist, &bqt->busy_list);
1159 bqt->busy++;
1160 return 0;
1161 }
1162
1163 EXPORT_SYMBOL(blk_queue_start_tag);
1164
1165 /**
1166 * blk_queue_invalidate_tags - invalidate all pending tags
1167 * @q: the request queue for the device
1168 *
1169 * Description:
1170 * Hardware conditions may dictate a need to stop all pending requests.
1171 * In this case, we will safely clear the block side of the tag queue and
1172 * readd all requests to the request queue in the right order.
1173 *
1174 * Notes:
1175 * queue lock must be held.
1176 **/
1177 void blk_queue_invalidate_tags(struct request_queue *q)
1178 {
1179 struct blk_queue_tag *bqt = q->queue_tags;
1180 struct list_head *tmp, *n;
1181 struct request *rq;
1182
1183 list_for_each_safe(tmp, n, &bqt->busy_list) {
1184 rq = list_entry_rq(tmp);
1185
1186 if (rq->tag == -1) {
1187 printk(KERN_ERR
1188 "%s: bad tag found on list\n", __FUNCTION__);
1189 list_del_init(&rq->queuelist);
1190 rq->cmd_flags &= ~REQ_QUEUED;
1191 } else
1192 blk_queue_end_tag(q, rq);
1193
1194 rq->cmd_flags &= ~REQ_STARTED;
1195 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1196 }
1197 }
1198
1199 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1200
1201 void blk_dump_rq_flags(struct request *rq, char *msg)
1202 {
1203 int bit;
1204
1205 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1206 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1207 rq->cmd_flags);
1208
1209 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1210 rq->nr_sectors,
1211 rq->current_nr_sectors);
1212 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1213
1214 if (blk_pc_request(rq)) {
1215 printk("cdb: ");
1216 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1217 printk("%02x ", rq->cmd[bit]);
1218 printk("\n");
1219 }
1220 }
1221
1222 EXPORT_SYMBOL(blk_dump_rq_flags);
1223
1224 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1225 {
1226 struct request rq;
1227 struct bio *nxt = bio->bi_next;
1228 rq.q = q;
1229 rq.bio = rq.biotail = bio;
1230 bio->bi_next = NULL;
1231 blk_recalc_rq_segments(&rq);
1232 bio->bi_next = nxt;
1233 bio->bi_phys_segments = rq.nr_phys_segments;
1234 bio->bi_hw_segments = rq.nr_hw_segments;
1235 bio->bi_flags |= (1 << BIO_SEG_VALID);
1236 }
1237 EXPORT_SYMBOL(blk_recount_segments);
1238
1239 static void blk_recalc_rq_segments(struct request *rq)
1240 {
1241 int nr_phys_segs;
1242 int nr_hw_segs;
1243 unsigned int phys_size;
1244 unsigned int hw_size;
1245 struct bio_vec *bv, *bvprv = NULL;
1246 int seg_size;
1247 int hw_seg_size;
1248 int cluster;
1249 struct req_iterator iter;
1250 int high, highprv = 1;
1251 struct request_queue *q = rq->q;
1252
1253 if (!rq->bio)
1254 return;
1255
1256 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1257 hw_seg_size = seg_size = 0;
1258 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1259 rq_for_each_segment(bv, rq, iter) {
1260 /*
1261 * the trick here is making sure that a high page is never
1262 * considered part of another segment, since that might
1263 * change with the bounce page.
1264 */
1265 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1266 if (high || highprv)
1267 goto new_hw_segment;
1268 if (cluster) {
1269 if (seg_size + bv->bv_len > q->max_segment_size)
1270 goto new_segment;
1271 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1272 goto new_segment;
1273 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1274 goto new_segment;
1275 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1276 goto new_hw_segment;
1277
1278 seg_size += bv->bv_len;
1279 hw_seg_size += bv->bv_len;
1280 bvprv = bv;
1281 continue;
1282 }
1283 new_segment:
1284 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1285 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1286 hw_seg_size += bv->bv_len;
1287 else {
1288 new_hw_segment:
1289 if (nr_hw_segs == 1 &&
1290 hw_seg_size > rq->bio->bi_hw_front_size)
1291 rq->bio->bi_hw_front_size = hw_seg_size;
1292 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1293 nr_hw_segs++;
1294 }
1295
1296 nr_phys_segs++;
1297 bvprv = bv;
1298 seg_size = bv->bv_len;
1299 highprv = high;
1300 }
1301
1302 if (nr_hw_segs == 1 &&
1303 hw_seg_size > rq->bio->bi_hw_front_size)
1304 rq->bio->bi_hw_front_size = hw_seg_size;
1305 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1306 rq->biotail->bi_hw_back_size = hw_seg_size;
1307 rq->nr_phys_segments = nr_phys_segs;
1308 rq->nr_hw_segments = nr_hw_segs;
1309 }
1310
1311 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1312 struct bio *nxt)
1313 {
1314 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1315 return 0;
1316
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1318 return 0;
1319 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1320 return 0;
1321
1322 /*
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1325 */
1326 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1327 return 1;
1328
1329 return 0;
1330 }
1331
1332 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1333 struct bio *nxt)
1334 {
1335 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1336 blk_recount_segments(q, bio);
1337 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1338 blk_recount_segments(q, nxt);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1340 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1341 return 0;
1342 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1343 return 0;
1344
1345 return 1;
1346 }
1347
1348 /*
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1351 */
1352 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1353 struct scatterlist *sg)
1354 {
1355 struct bio_vec *bvec, *bvprv;
1356 struct req_iterator iter;
1357 int nsegs, cluster;
1358
1359 nsegs = 0;
1360 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1361
1362 /*
1363 * for each bio in rq
1364 */
1365 bvprv = NULL;
1366 rq_for_each_segment(bvec, rq, iter) {
1367 int nbytes = bvec->bv_len;
1368
1369 if (bvprv && cluster) {
1370 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1371 goto new_segment;
1372
1373 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1374 goto new_segment;
1375 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1376 goto new_segment;
1377
1378 sg[nsegs - 1].length += nbytes;
1379 } else {
1380 new_segment:
1381 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1382 sg[nsegs].page = bvec->bv_page;
1383 sg[nsegs].length = nbytes;
1384 sg[nsegs].offset = bvec->bv_offset;
1385
1386 nsegs++;
1387 }
1388 bvprv = bvec;
1389 } /* segments in rq */
1390
1391 return nsegs;
1392 }
1393
1394 EXPORT_SYMBOL(blk_rq_map_sg);
1395
1396 /*
1397 * the standard queue merge functions, can be overridden with device
1398 * specific ones if so desired
1399 */
1400
1401 static inline int ll_new_mergeable(struct request_queue *q,
1402 struct request *req,
1403 struct bio *bio)
1404 {
1405 int nr_phys_segs = bio_phys_segments(q, bio);
1406
1407 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1408 req->cmd_flags |= REQ_NOMERGE;
1409 if (req == q->last_merge)
1410 q->last_merge = NULL;
1411 return 0;
1412 }
1413
1414 /*
1415 * A hw segment is just getting larger, bump just the phys
1416 * counter.
1417 */
1418 req->nr_phys_segments += nr_phys_segs;
1419 return 1;
1420 }
1421
1422 static inline int ll_new_hw_segment(struct request_queue *q,
1423 struct request *req,
1424 struct bio *bio)
1425 {
1426 int nr_hw_segs = bio_hw_segments(q, bio);
1427 int nr_phys_segs = bio_phys_segments(q, bio);
1428
1429 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1430 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1431 req->cmd_flags |= REQ_NOMERGE;
1432 if (req == q->last_merge)
1433 q->last_merge = NULL;
1434 return 0;
1435 }
1436
1437 /*
1438 * This will form the start of a new hw segment. Bump both
1439 * counters.
1440 */
1441 req->nr_hw_segments += nr_hw_segs;
1442 req->nr_phys_segments += nr_phys_segs;
1443 return 1;
1444 }
1445
1446 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1447 struct bio *bio)
1448 {
1449 unsigned short max_sectors;
1450 int len;
1451
1452 if (unlikely(blk_pc_request(req)))
1453 max_sectors = q->max_hw_sectors;
1454 else
1455 max_sectors = q->max_sectors;
1456
1457 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1458 req->cmd_flags |= REQ_NOMERGE;
1459 if (req == q->last_merge)
1460 q->last_merge = NULL;
1461 return 0;
1462 }
1463 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1464 blk_recount_segments(q, req->biotail);
1465 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1466 blk_recount_segments(q, bio);
1467 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1468 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1469 !BIOVEC_VIRT_OVERSIZE(len)) {
1470 int mergeable = ll_new_mergeable(q, req, bio);
1471
1472 if (mergeable) {
1473 if (req->nr_hw_segments == 1)
1474 req->bio->bi_hw_front_size = len;
1475 if (bio->bi_hw_segments == 1)
1476 bio->bi_hw_back_size = len;
1477 }
1478 return mergeable;
1479 }
1480
1481 return ll_new_hw_segment(q, req, bio);
1482 }
1483
1484 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1485 struct bio *bio)
1486 {
1487 unsigned short max_sectors;
1488 int len;
1489
1490 if (unlikely(blk_pc_request(req)))
1491 max_sectors = q->max_hw_sectors;
1492 else
1493 max_sectors = q->max_sectors;
1494
1495
1496 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1497 req->cmd_flags |= REQ_NOMERGE;
1498 if (req == q->last_merge)
1499 q->last_merge = NULL;
1500 return 0;
1501 }
1502 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1503 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1504 blk_recount_segments(q, bio);
1505 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1506 blk_recount_segments(q, req->bio);
1507 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1508 !BIOVEC_VIRT_OVERSIZE(len)) {
1509 int mergeable = ll_new_mergeable(q, req, bio);
1510
1511 if (mergeable) {
1512 if (bio->bi_hw_segments == 1)
1513 bio->bi_hw_front_size = len;
1514 if (req->nr_hw_segments == 1)
1515 req->biotail->bi_hw_back_size = len;
1516 }
1517 return mergeable;
1518 }
1519
1520 return ll_new_hw_segment(q, req, bio);
1521 }
1522
1523 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1524 struct request *next)
1525 {
1526 int total_phys_segments;
1527 int total_hw_segments;
1528
1529 /*
1530 * First check if the either of the requests are re-queued
1531 * requests. Can't merge them if they are.
1532 */
1533 if (req->special || next->special)
1534 return 0;
1535
1536 /*
1537 * Will it become too large?
1538 */
1539 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1540 return 0;
1541
1542 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1543 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1544 total_phys_segments--;
1545
1546 if (total_phys_segments > q->max_phys_segments)
1547 return 0;
1548
1549 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1550 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1551 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1552 /*
1553 * propagate the combined length to the end of the requests
1554 */
1555 if (req->nr_hw_segments == 1)
1556 req->bio->bi_hw_front_size = len;
1557 if (next->nr_hw_segments == 1)
1558 next->biotail->bi_hw_back_size = len;
1559 total_hw_segments--;
1560 }
1561
1562 if (total_hw_segments > q->max_hw_segments)
1563 return 0;
1564
1565 /* Merge is OK... */
1566 req->nr_phys_segments = total_phys_segments;
1567 req->nr_hw_segments = total_hw_segments;
1568 return 1;
1569 }
1570
1571 /*
1572 * "plug" the device if there are no outstanding requests: this will
1573 * force the transfer to start only after we have put all the requests
1574 * on the list.
1575 *
1576 * This is called with interrupts off and no requests on the queue and
1577 * with the queue lock held.
1578 */
1579 void blk_plug_device(struct request_queue *q)
1580 {
1581 WARN_ON(!irqs_disabled());
1582
1583 /*
1584 * don't plug a stopped queue, it must be paired with blk_start_queue()
1585 * which will restart the queueing
1586 */
1587 if (blk_queue_stopped(q))
1588 return;
1589
1590 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1591 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1592 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1593 }
1594 }
1595
1596 EXPORT_SYMBOL(blk_plug_device);
1597
1598 /*
1599 * remove the queue from the plugged list, if present. called with
1600 * queue lock held and interrupts disabled.
1601 */
1602 int blk_remove_plug(struct request_queue *q)
1603 {
1604 WARN_ON(!irqs_disabled());
1605
1606 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1607 return 0;
1608
1609 del_timer(&q->unplug_timer);
1610 return 1;
1611 }
1612
1613 EXPORT_SYMBOL(blk_remove_plug);
1614
1615 /*
1616 * remove the plug and let it rip..
1617 */
1618 void __generic_unplug_device(struct request_queue *q)
1619 {
1620 if (unlikely(blk_queue_stopped(q)))
1621 return;
1622
1623 if (!blk_remove_plug(q))
1624 return;
1625
1626 q->request_fn(q);
1627 }
1628 EXPORT_SYMBOL(__generic_unplug_device);
1629
1630 /**
1631 * generic_unplug_device - fire a request queue
1632 * @q: The &struct request_queue in question
1633 *
1634 * Description:
1635 * Linux uses plugging to build bigger requests queues before letting
1636 * the device have at them. If a queue is plugged, the I/O scheduler
1637 * is still adding and merging requests on the queue. Once the queue
1638 * gets unplugged, the request_fn defined for the queue is invoked and
1639 * transfers started.
1640 **/
1641 void generic_unplug_device(struct request_queue *q)
1642 {
1643 spin_lock_irq(q->queue_lock);
1644 __generic_unplug_device(q);
1645 spin_unlock_irq(q->queue_lock);
1646 }
1647 EXPORT_SYMBOL(generic_unplug_device);
1648
1649 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1650 struct page *page)
1651 {
1652 struct request_queue *q = bdi->unplug_io_data;
1653
1654 /*
1655 * devices don't necessarily have an ->unplug_fn defined
1656 */
1657 if (q->unplug_fn) {
1658 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1659 q->rq.count[READ] + q->rq.count[WRITE]);
1660
1661 q->unplug_fn(q);
1662 }
1663 }
1664
1665 static void blk_unplug_work(struct work_struct *work)
1666 {
1667 struct request_queue *q =
1668 container_of(work, struct request_queue, unplug_work);
1669
1670 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1671 q->rq.count[READ] + q->rq.count[WRITE]);
1672
1673 q->unplug_fn(q);
1674 }
1675
1676 static void blk_unplug_timeout(unsigned long data)
1677 {
1678 struct request_queue *q = (struct request_queue *)data;
1679
1680 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1681 q->rq.count[READ] + q->rq.count[WRITE]);
1682
1683 kblockd_schedule_work(&q->unplug_work);
1684 }
1685
1686 /**
1687 * blk_start_queue - restart a previously stopped queue
1688 * @q: The &struct request_queue in question
1689 *
1690 * Description:
1691 * blk_start_queue() will clear the stop flag on the queue, and call
1692 * the request_fn for the queue if it was in a stopped state when
1693 * entered. Also see blk_stop_queue(). Queue lock must be held.
1694 **/
1695 void blk_start_queue(struct request_queue *q)
1696 {
1697 WARN_ON(!irqs_disabled());
1698
1699 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1700
1701 /*
1702 * one level of recursion is ok and is much faster than kicking
1703 * the unplug handling
1704 */
1705 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1706 q->request_fn(q);
1707 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1708 } else {
1709 blk_plug_device(q);
1710 kblockd_schedule_work(&q->unplug_work);
1711 }
1712 }
1713
1714 EXPORT_SYMBOL(blk_start_queue);
1715
1716 /**
1717 * blk_stop_queue - stop a queue
1718 * @q: The &struct request_queue in question
1719 *
1720 * Description:
1721 * The Linux block layer assumes that a block driver will consume all
1722 * entries on the request queue when the request_fn strategy is called.
1723 * Often this will not happen, because of hardware limitations (queue
1724 * depth settings). If a device driver gets a 'queue full' response,
1725 * or if it simply chooses not to queue more I/O at one point, it can
1726 * call this function to prevent the request_fn from being called until
1727 * the driver has signalled it's ready to go again. This happens by calling
1728 * blk_start_queue() to restart queue operations. Queue lock must be held.
1729 **/
1730 void blk_stop_queue(struct request_queue *q)
1731 {
1732 blk_remove_plug(q);
1733 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1734 }
1735 EXPORT_SYMBOL(blk_stop_queue);
1736
1737 /**
1738 * blk_sync_queue - cancel any pending callbacks on a queue
1739 * @q: the queue
1740 *
1741 * Description:
1742 * The block layer may perform asynchronous callback activity
1743 * on a queue, such as calling the unplug function after a timeout.
1744 * A block device may call blk_sync_queue to ensure that any
1745 * such activity is cancelled, thus allowing it to release resources
1746 * that the callbacks might use. The caller must already have made sure
1747 * that its ->make_request_fn will not re-add plugging prior to calling
1748 * this function.
1749 *
1750 */
1751 void blk_sync_queue(struct request_queue *q)
1752 {
1753 del_timer_sync(&q->unplug_timer);
1754 }
1755 EXPORT_SYMBOL(blk_sync_queue);
1756
1757 /**
1758 * blk_run_queue - run a single device queue
1759 * @q: The queue to run
1760 */
1761 void blk_run_queue(struct request_queue *q)
1762 {
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(q->queue_lock, flags);
1766 blk_remove_plug(q);
1767
1768 /*
1769 * Only recurse once to avoid overrunning the stack, let the unplug
1770 * handling reinvoke the handler shortly if we already got there.
1771 */
1772 if (!elv_queue_empty(q)) {
1773 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1774 q->request_fn(q);
1775 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1776 } else {
1777 blk_plug_device(q);
1778 kblockd_schedule_work(&q->unplug_work);
1779 }
1780 }
1781
1782 spin_unlock_irqrestore(q->queue_lock, flags);
1783 }
1784 EXPORT_SYMBOL(blk_run_queue);
1785
1786 /**
1787 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1788 * @kobj: the kobj belonging of the request queue to be released
1789 *
1790 * Description:
1791 * blk_cleanup_queue is the pair to blk_init_queue() or
1792 * blk_queue_make_request(). It should be called when a request queue is
1793 * being released; typically when a block device is being de-registered.
1794 * Currently, its primary task it to free all the &struct request
1795 * structures that were allocated to the queue and the queue itself.
1796 *
1797 * Caveat:
1798 * Hopefully the low level driver will have finished any
1799 * outstanding requests first...
1800 **/
1801 static void blk_release_queue(struct kobject *kobj)
1802 {
1803 struct request_queue *q =
1804 container_of(kobj, struct request_queue, kobj);
1805 struct request_list *rl = &q->rq;
1806
1807 blk_sync_queue(q);
1808
1809 if (rl->rq_pool)
1810 mempool_destroy(rl->rq_pool);
1811
1812 if (q->queue_tags)
1813 __blk_queue_free_tags(q);
1814
1815 blk_trace_shutdown(q);
1816
1817 kmem_cache_free(requestq_cachep, q);
1818 }
1819
1820 void blk_put_queue(struct request_queue *q)
1821 {
1822 kobject_put(&q->kobj);
1823 }
1824 EXPORT_SYMBOL(blk_put_queue);
1825
1826 void blk_cleanup_queue(struct request_queue * q)
1827 {
1828 mutex_lock(&q->sysfs_lock);
1829 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1830 mutex_unlock(&q->sysfs_lock);
1831
1832 if (q->elevator)
1833 elevator_exit(q->elevator);
1834
1835 blk_put_queue(q);
1836 }
1837
1838 EXPORT_SYMBOL(blk_cleanup_queue);
1839
1840 static int blk_init_free_list(struct request_queue *q)
1841 {
1842 struct request_list *rl = &q->rq;
1843
1844 rl->count[READ] = rl->count[WRITE] = 0;
1845 rl->starved[READ] = rl->starved[WRITE] = 0;
1846 rl->elvpriv = 0;
1847 init_waitqueue_head(&rl->wait[READ]);
1848 init_waitqueue_head(&rl->wait[WRITE]);
1849
1850 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1851 mempool_free_slab, request_cachep, q->node);
1852
1853 if (!rl->rq_pool)
1854 return -ENOMEM;
1855
1856 return 0;
1857 }
1858
1859 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1860 {
1861 return blk_alloc_queue_node(gfp_mask, -1);
1862 }
1863 EXPORT_SYMBOL(blk_alloc_queue);
1864
1865 static struct kobj_type queue_ktype;
1866
1867 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1868 {
1869 struct request_queue *q;
1870
1871 q = kmem_cache_alloc_node(requestq_cachep,
1872 gfp_mask | __GFP_ZERO, node_id);
1873 if (!q)
1874 return NULL;
1875
1876 init_timer(&q->unplug_timer);
1877
1878 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1879 q->kobj.ktype = &queue_ktype;
1880 kobject_init(&q->kobj);
1881
1882 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1883 q->backing_dev_info.unplug_io_data = q;
1884
1885 mutex_init(&q->sysfs_lock);
1886
1887 return q;
1888 }
1889 EXPORT_SYMBOL(blk_alloc_queue_node);
1890
1891 /**
1892 * blk_init_queue - prepare a request queue for use with a block device
1893 * @rfn: The function to be called to process requests that have been
1894 * placed on the queue.
1895 * @lock: Request queue spin lock
1896 *
1897 * Description:
1898 * If a block device wishes to use the standard request handling procedures,
1899 * which sorts requests and coalesces adjacent requests, then it must
1900 * call blk_init_queue(). The function @rfn will be called when there
1901 * are requests on the queue that need to be processed. If the device
1902 * supports plugging, then @rfn may not be called immediately when requests
1903 * are available on the queue, but may be called at some time later instead.
1904 * Plugged queues are generally unplugged when a buffer belonging to one
1905 * of the requests on the queue is needed, or due to memory pressure.
1906 *
1907 * @rfn is not required, or even expected, to remove all requests off the
1908 * queue, but only as many as it can handle at a time. If it does leave
1909 * requests on the queue, it is responsible for arranging that the requests
1910 * get dealt with eventually.
1911 *
1912 * The queue spin lock must be held while manipulating the requests on the
1913 * request queue; this lock will be taken also from interrupt context, so irq
1914 * disabling is needed for it.
1915 *
1916 * Function returns a pointer to the initialized request queue, or NULL if
1917 * it didn't succeed.
1918 *
1919 * Note:
1920 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1921 * when the block device is deactivated (such as at module unload).
1922 **/
1923
1924 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1925 {
1926 return blk_init_queue_node(rfn, lock, -1);
1927 }
1928 EXPORT_SYMBOL(blk_init_queue);
1929
1930 struct request_queue *
1931 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1932 {
1933 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1934
1935 if (!q)
1936 return NULL;
1937
1938 q->node = node_id;
1939 if (blk_init_free_list(q)) {
1940 kmem_cache_free(requestq_cachep, q);
1941 return NULL;
1942 }
1943
1944 /*
1945 * if caller didn't supply a lock, they get per-queue locking with
1946 * our embedded lock
1947 */
1948 if (!lock) {
1949 spin_lock_init(&q->__queue_lock);
1950 lock = &q->__queue_lock;
1951 }
1952
1953 q->request_fn = rfn;
1954 q->prep_rq_fn = NULL;
1955 q->unplug_fn = generic_unplug_device;
1956 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1957 q->queue_lock = lock;
1958
1959 blk_queue_segment_boundary(q, 0xffffffff);
1960
1961 blk_queue_make_request(q, __make_request);
1962 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1963
1964 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1965 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1966
1967 q->sg_reserved_size = INT_MAX;
1968
1969 /*
1970 * all done
1971 */
1972 if (!elevator_init(q, NULL)) {
1973 blk_queue_congestion_threshold(q);
1974 return q;
1975 }
1976
1977 blk_put_queue(q);
1978 return NULL;
1979 }
1980 EXPORT_SYMBOL(blk_init_queue_node);
1981
1982 int blk_get_queue(struct request_queue *q)
1983 {
1984 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1985 kobject_get(&q->kobj);
1986 return 0;
1987 }
1988
1989 return 1;
1990 }
1991
1992 EXPORT_SYMBOL(blk_get_queue);
1993
1994 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1995 {
1996 if (rq->cmd_flags & REQ_ELVPRIV)
1997 elv_put_request(q, rq);
1998 mempool_free(rq, q->rq.rq_pool);
1999 }
2000
2001 static struct request *
2002 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
2003 {
2004 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2005
2006 if (!rq)
2007 return NULL;
2008
2009 /*
2010 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2011 * see bio.h and blkdev.h
2012 */
2013 rq->cmd_flags = rw | REQ_ALLOCED;
2014
2015 if (priv) {
2016 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2017 mempool_free(rq, q->rq.rq_pool);
2018 return NULL;
2019 }
2020 rq->cmd_flags |= REQ_ELVPRIV;
2021 }
2022
2023 return rq;
2024 }
2025
2026 /*
2027 * ioc_batching returns true if the ioc is a valid batching request and
2028 * should be given priority access to a request.
2029 */
2030 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2031 {
2032 if (!ioc)
2033 return 0;
2034
2035 /*
2036 * Make sure the process is able to allocate at least 1 request
2037 * even if the batch times out, otherwise we could theoretically
2038 * lose wakeups.
2039 */
2040 return ioc->nr_batch_requests == q->nr_batching ||
2041 (ioc->nr_batch_requests > 0
2042 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2043 }
2044
2045 /*
2046 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2047 * will cause the process to be a "batcher" on all queues in the system. This
2048 * is the behaviour we want though - once it gets a wakeup it should be given
2049 * a nice run.
2050 */
2051 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2052 {
2053 if (!ioc || ioc_batching(q, ioc))
2054 return;
2055
2056 ioc->nr_batch_requests = q->nr_batching;
2057 ioc->last_waited = jiffies;
2058 }
2059
2060 static void __freed_request(struct request_queue *q, int rw)
2061 {
2062 struct request_list *rl = &q->rq;
2063
2064 if (rl->count[rw] < queue_congestion_off_threshold(q))
2065 blk_clear_queue_congested(q, rw);
2066
2067 if (rl->count[rw] + 1 <= q->nr_requests) {
2068 if (waitqueue_active(&rl->wait[rw]))
2069 wake_up(&rl->wait[rw]);
2070
2071 blk_clear_queue_full(q, rw);
2072 }
2073 }
2074
2075 /*
2076 * A request has just been released. Account for it, update the full and
2077 * congestion status, wake up any waiters. Called under q->queue_lock.
2078 */
2079 static void freed_request(struct request_queue *q, int rw, int priv)
2080 {
2081 struct request_list *rl = &q->rq;
2082
2083 rl->count[rw]--;
2084 if (priv)
2085 rl->elvpriv--;
2086
2087 __freed_request(q, rw);
2088
2089 if (unlikely(rl->starved[rw ^ 1]))
2090 __freed_request(q, rw ^ 1);
2091 }
2092
2093 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2094 /*
2095 * Get a free request, queue_lock must be held.
2096 * Returns NULL on failure, with queue_lock held.
2097 * Returns !NULL on success, with queue_lock *not held*.
2098 */
2099 static struct request *get_request(struct request_queue *q, int rw_flags,
2100 struct bio *bio, gfp_t gfp_mask)
2101 {
2102 struct request *rq = NULL;
2103 struct request_list *rl = &q->rq;
2104 struct io_context *ioc = NULL;
2105 const int rw = rw_flags & 0x01;
2106 int may_queue, priv;
2107
2108 may_queue = elv_may_queue(q, rw_flags);
2109 if (may_queue == ELV_MQUEUE_NO)
2110 goto rq_starved;
2111
2112 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2113 if (rl->count[rw]+1 >= q->nr_requests) {
2114 ioc = current_io_context(GFP_ATOMIC, q->node);
2115 /*
2116 * The queue will fill after this allocation, so set
2117 * it as full, and mark this process as "batching".
2118 * This process will be allowed to complete a batch of
2119 * requests, others will be blocked.
2120 */
2121 if (!blk_queue_full(q, rw)) {
2122 ioc_set_batching(q, ioc);
2123 blk_set_queue_full(q, rw);
2124 } else {
2125 if (may_queue != ELV_MQUEUE_MUST
2126 && !ioc_batching(q, ioc)) {
2127 /*
2128 * The queue is full and the allocating
2129 * process is not a "batcher", and not
2130 * exempted by the IO scheduler
2131 */
2132 goto out;
2133 }
2134 }
2135 }
2136 blk_set_queue_congested(q, rw);
2137 }
2138
2139 /*
2140 * Only allow batching queuers to allocate up to 50% over the defined
2141 * limit of requests, otherwise we could have thousands of requests
2142 * allocated with any setting of ->nr_requests
2143 */
2144 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2145 goto out;
2146
2147 rl->count[rw]++;
2148 rl->starved[rw] = 0;
2149
2150 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2151 if (priv)
2152 rl->elvpriv++;
2153
2154 spin_unlock_irq(q->queue_lock);
2155
2156 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2157 if (unlikely(!rq)) {
2158 /*
2159 * Allocation failed presumably due to memory. Undo anything
2160 * we might have messed up.
2161 *
2162 * Allocating task should really be put onto the front of the
2163 * wait queue, but this is pretty rare.
2164 */
2165 spin_lock_irq(q->queue_lock);
2166 freed_request(q, rw, priv);
2167
2168 /*
2169 * in the very unlikely event that allocation failed and no
2170 * requests for this direction was pending, mark us starved
2171 * so that freeing of a request in the other direction will
2172 * notice us. another possible fix would be to split the
2173 * rq mempool into READ and WRITE
2174 */
2175 rq_starved:
2176 if (unlikely(rl->count[rw] == 0))
2177 rl->starved[rw] = 1;
2178
2179 goto out;
2180 }
2181
2182 /*
2183 * ioc may be NULL here, and ioc_batching will be false. That's
2184 * OK, if the queue is under the request limit then requests need
2185 * not count toward the nr_batch_requests limit. There will always
2186 * be some limit enforced by BLK_BATCH_TIME.
2187 */
2188 if (ioc_batching(q, ioc))
2189 ioc->nr_batch_requests--;
2190
2191 rq_init(q, rq);
2192
2193 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2194 out:
2195 return rq;
2196 }
2197
2198 /*
2199 * No available requests for this queue, unplug the device and wait for some
2200 * requests to become available.
2201 *
2202 * Called with q->queue_lock held, and returns with it unlocked.
2203 */
2204 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2205 struct bio *bio)
2206 {
2207 const int rw = rw_flags & 0x01;
2208 struct request *rq;
2209
2210 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2211 while (!rq) {
2212 DEFINE_WAIT(wait);
2213 struct request_list *rl = &q->rq;
2214
2215 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2216 TASK_UNINTERRUPTIBLE);
2217
2218 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2219
2220 if (!rq) {
2221 struct io_context *ioc;
2222
2223 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2224
2225 __generic_unplug_device(q);
2226 spin_unlock_irq(q->queue_lock);
2227 io_schedule();
2228
2229 /*
2230 * After sleeping, we become a "batching" process and
2231 * will be able to allocate at least one request, and
2232 * up to a big batch of them for a small period time.
2233 * See ioc_batching, ioc_set_batching
2234 */
2235 ioc = current_io_context(GFP_NOIO, q->node);
2236 ioc_set_batching(q, ioc);
2237
2238 spin_lock_irq(q->queue_lock);
2239 }
2240 finish_wait(&rl->wait[rw], &wait);
2241 }
2242
2243 return rq;
2244 }
2245
2246 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2247 {
2248 struct request *rq;
2249
2250 BUG_ON(rw != READ && rw != WRITE);
2251
2252 spin_lock_irq(q->queue_lock);
2253 if (gfp_mask & __GFP_WAIT) {
2254 rq = get_request_wait(q, rw, NULL);
2255 } else {
2256 rq = get_request(q, rw, NULL, gfp_mask);
2257 if (!rq)
2258 spin_unlock_irq(q->queue_lock);
2259 }
2260 /* q->queue_lock is unlocked at this point */
2261
2262 return rq;
2263 }
2264 EXPORT_SYMBOL(blk_get_request);
2265
2266 /**
2267 * blk_start_queueing - initiate dispatch of requests to device
2268 * @q: request queue to kick into gear
2269 *
2270 * This is basically a helper to remove the need to know whether a queue
2271 * is plugged or not if someone just wants to initiate dispatch of requests
2272 * for this queue.
2273 *
2274 * The queue lock must be held with interrupts disabled.
2275 */
2276 void blk_start_queueing(struct request_queue *q)
2277 {
2278 if (!blk_queue_plugged(q))
2279 q->request_fn(q);
2280 else
2281 __generic_unplug_device(q);
2282 }
2283 EXPORT_SYMBOL(blk_start_queueing);
2284
2285 /**
2286 * blk_requeue_request - put a request back on queue
2287 * @q: request queue where request should be inserted
2288 * @rq: request to be inserted
2289 *
2290 * Description:
2291 * Drivers often keep queueing requests until the hardware cannot accept
2292 * more, when that condition happens we need to put the request back
2293 * on the queue. Must be called with queue lock held.
2294 */
2295 void blk_requeue_request(struct request_queue *q, struct request *rq)
2296 {
2297 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2298
2299 if (blk_rq_tagged(rq))
2300 blk_queue_end_tag(q, rq);
2301
2302 elv_requeue_request(q, rq);
2303 }
2304
2305 EXPORT_SYMBOL(blk_requeue_request);
2306
2307 /**
2308 * blk_insert_request - insert a special request in to a request queue
2309 * @q: request queue where request should be inserted
2310 * @rq: request to be inserted
2311 * @at_head: insert request at head or tail of queue
2312 * @data: private data
2313 *
2314 * Description:
2315 * Many block devices need to execute commands asynchronously, so they don't
2316 * block the whole kernel from preemption during request execution. This is
2317 * accomplished normally by inserting aritficial requests tagged as
2318 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2319 * scheduled for actual execution by the request queue.
2320 *
2321 * We have the option of inserting the head or the tail of the queue.
2322 * Typically we use the tail for new ioctls and so forth. We use the head
2323 * of the queue for things like a QUEUE_FULL message from a device, or a
2324 * host that is unable to accept a particular command.
2325 */
2326 void blk_insert_request(struct request_queue *q, struct request *rq,
2327 int at_head, void *data)
2328 {
2329 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2330 unsigned long flags;
2331
2332 /*
2333 * tell I/O scheduler that this isn't a regular read/write (ie it
2334 * must not attempt merges on this) and that it acts as a soft
2335 * barrier
2336 */
2337 rq->cmd_type = REQ_TYPE_SPECIAL;
2338 rq->cmd_flags |= REQ_SOFTBARRIER;
2339
2340 rq->special = data;
2341
2342 spin_lock_irqsave(q->queue_lock, flags);
2343
2344 /*
2345 * If command is tagged, release the tag
2346 */
2347 if (blk_rq_tagged(rq))
2348 blk_queue_end_tag(q, rq);
2349
2350 drive_stat_acct(rq, rq->nr_sectors, 1);
2351 __elv_add_request(q, rq, where, 0);
2352 blk_start_queueing(q);
2353 spin_unlock_irqrestore(q->queue_lock, flags);
2354 }
2355
2356 EXPORT_SYMBOL(blk_insert_request);
2357
2358 static int __blk_rq_unmap_user(struct bio *bio)
2359 {
2360 int ret = 0;
2361
2362 if (bio) {
2363 if (bio_flagged(bio, BIO_USER_MAPPED))
2364 bio_unmap_user(bio);
2365 else
2366 ret = bio_uncopy_user(bio);
2367 }
2368
2369 return ret;
2370 }
2371
2372 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2373 struct bio *bio)
2374 {
2375 if (!rq->bio)
2376 blk_rq_bio_prep(q, rq, bio);
2377 else if (!ll_back_merge_fn(q, rq, bio))
2378 return -EINVAL;
2379 else {
2380 rq->biotail->bi_next = bio;
2381 rq->biotail = bio;
2382
2383 rq->data_len += bio->bi_size;
2384 }
2385 return 0;
2386 }
2387 EXPORT_SYMBOL(blk_rq_append_bio);
2388
2389 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2390 void __user *ubuf, unsigned int len)
2391 {
2392 unsigned long uaddr;
2393 struct bio *bio, *orig_bio;
2394 int reading, ret;
2395
2396 reading = rq_data_dir(rq) == READ;
2397
2398 /*
2399 * if alignment requirement is satisfied, map in user pages for
2400 * direct dma. else, set up kernel bounce buffers
2401 */
2402 uaddr = (unsigned long) ubuf;
2403 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2404 bio = bio_map_user(q, NULL, uaddr, len, reading);
2405 else
2406 bio = bio_copy_user(q, uaddr, len, reading);
2407
2408 if (IS_ERR(bio))
2409 return PTR_ERR(bio);
2410
2411 orig_bio = bio;
2412 blk_queue_bounce(q, &bio);
2413
2414 /*
2415 * We link the bounce buffer in and could have to traverse it
2416 * later so we have to get a ref to prevent it from being freed
2417 */
2418 bio_get(bio);
2419
2420 ret = blk_rq_append_bio(q, rq, bio);
2421 if (!ret)
2422 return bio->bi_size;
2423
2424 /* if it was boucned we must call the end io function */
2425 bio_endio(bio, bio->bi_size, 0);
2426 __blk_rq_unmap_user(orig_bio);
2427 bio_put(bio);
2428 return ret;
2429 }
2430
2431 /**
2432 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2433 * @q: request queue where request should be inserted
2434 * @rq: request structure to fill
2435 * @ubuf: the user buffer
2436 * @len: length of user data
2437 *
2438 * Description:
2439 * Data will be mapped directly for zero copy io, if possible. Otherwise
2440 * a kernel bounce buffer is used.
2441 *
2442 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2443 * still in process context.
2444 *
2445 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2446 * before being submitted to the device, as pages mapped may be out of
2447 * reach. It's the callers responsibility to make sure this happens. The
2448 * original bio must be passed back in to blk_rq_unmap_user() for proper
2449 * unmapping.
2450 */
2451 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2452 void __user *ubuf, unsigned long len)
2453 {
2454 unsigned long bytes_read = 0;
2455 struct bio *bio = NULL;
2456 int ret;
2457
2458 if (len > (q->max_hw_sectors << 9))
2459 return -EINVAL;
2460 if (!len || !ubuf)
2461 return -EINVAL;
2462
2463 while (bytes_read != len) {
2464 unsigned long map_len, end, start;
2465
2466 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2467 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2468 >> PAGE_SHIFT;
2469 start = (unsigned long)ubuf >> PAGE_SHIFT;
2470
2471 /*
2472 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2473 * pages. If this happens we just lower the requested
2474 * mapping len by a page so that we can fit
2475 */
2476 if (end - start > BIO_MAX_PAGES)
2477 map_len -= PAGE_SIZE;
2478
2479 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2480 if (ret < 0)
2481 goto unmap_rq;
2482 if (!bio)
2483 bio = rq->bio;
2484 bytes_read += ret;
2485 ubuf += ret;
2486 }
2487
2488 rq->buffer = rq->data = NULL;
2489 return 0;
2490 unmap_rq:
2491 blk_rq_unmap_user(bio);
2492 return ret;
2493 }
2494
2495 EXPORT_SYMBOL(blk_rq_map_user);
2496
2497 /**
2498 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2499 * @q: request queue where request should be inserted
2500 * @rq: request to map data to
2501 * @iov: pointer to the iovec
2502 * @iov_count: number of elements in the iovec
2503 * @len: I/O byte count
2504 *
2505 * Description:
2506 * Data will be mapped directly for zero copy io, if possible. Otherwise
2507 * a kernel bounce buffer is used.
2508 *
2509 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2510 * still in process context.
2511 *
2512 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2513 * before being submitted to the device, as pages mapped may be out of
2514 * reach. It's the callers responsibility to make sure this happens. The
2515 * original bio must be passed back in to blk_rq_unmap_user() for proper
2516 * unmapping.
2517 */
2518 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2519 struct sg_iovec *iov, int iov_count, unsigned int len)
2520 {
2521 struct bio *bio;
2522
2523 if (!iov || iov_count <= 0)
2524 return -EINVAL;
2525
2526 /* we don't allow misaligned data like bio_map_user() does. If the
2527 * user is using sg, they're expected to know the alignment constraints
2528 * and respect them accordingly */
2529 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2530 if (IS_ERR(bio))
2531 return PTR_ERR(bio);
2532
2533 if (bio->bi_size != len) {
2534 bio_endio(bio, bio->bi_size, 0);
2535 bio_unmap_user(bio);
2536 return -EINVAL;
2537 }
2538
2539 bio_get(bio);
2540 blk_rq_bio_prep(q, rq, bio);
2541 rq->buffer = rq->data = NULL;
2542 return 0;
2543 }
2544
2545 EXPORT_SYMBOL(blk_rq_map_user_iov);
2546
2547 /**
2548 * blk_rq_unmap_user - unmap a request with user data
2549 * @bio: start of bio list
2550 *
2551 * Description:
2552 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2553 * supply the original rq->bio from the blk_rq_map_user() return, since
2554 * the io completion may have changed rq->bio.
2555 */
2556 int blk_rq_unmap_user(struct bio *bio)
2557 {
2558 struct bio *mapped_bio;
2559 int ret = 0, ret2;
2560
2561 while (bio) {
2562 mapped_bio = bio;
2563 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2564 mapped_bio = bio->bi_private;
2565
2566 ret2 = __blk_rq_unmap_user(mapped_bio);
2567 if (ret2 && !ret)
2568 ret = ret2;
2569
2570 mapped_bio = bio;
2571 bio = bio->bi_next;
2572 bio_put(mapped_bio);
2573 }
2574
2575 return ret;
2576 }
2577
2578 EXPORT_SYMBOL(blk_rq_unmap_user);
2579
2580 /**
2581 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2582 * @q: request queue where request should be inserted
2583 * @rq: request to fill
2584 * @kbuf: the kernel buffer
2585 * @len: length of user data
2586 * @gfp_mask: memory allocation flags
2587 */
2588 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2589 unsigned int len, gfp_t gfp_mask)
2590 {
2591 struct bio *bio;
2592
2593 if (len > (q->max_hw_sectors << 9))
2594 return -EINVAL;
2595 if (!len || !kbuf)
2596 return -EINVAL;
2597
2598 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2599 if (IS_ERR(bio))
2600 return PTR_ERR(bio);
2601
2602 if (rq_data_dir(rq) == WRITE)
2603 bio->bi_rw |= (1 << BIO_RW);
2604
2605 blk_rq_bio_prep(q, rq, bio);
2606 blk_queue_bounce(q, &rq->bio);
2607 rq->buffer = rq->data = NULL;
2608 return 0;
2609 }
2610
2611 EXPORT_SYMBOL(blk_rq_map_kern);
2612
2613 /**
2614 * blk_execute_rq_nowait - insert a request into queue for execution
2615 * @q: queue to insert the request in
2616 * @bd_disk: matching gendisk
2617 * @rq: request to insert
2618 * @at_head: insert request at head or tail of queue
2619 * @done: I/O completion handler
2620 *
2621 * Description:
2622 * Insert a fully prepared request at the back of the io scheduler queue
2623 * for execution. Don't wait for completion.
2624 */
2625 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2626 struct request *rq, int at_head,
2627 rq_end_io_fn *done)
2628 {
2629 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2630
2631 rq->rq_disk = bd_disk;
2632 rq->cmd_flags |= REQ_NOMERGE;
2633 rq->end_io = done;
2634 WARN_ON(irqs_disabled());
2635 spin_lock_irq(q->queue_lock);
2636 __elv_add_request(q, rq, where, 1);
2637 __generic_unplug_device(q);
2638 spin_unlock_irq(q->queue_lock);
2639 }
2640 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2641
2642 /**
2643 * blk_execute_rq - insert a request into queue for execution
2644 * @q: queue to insert the request in
2645 * @bd_disk: matching gendisk
2646 * @rq: request to insert
2647 * @at_head: insert request at head or tail of queue
2648 *
2649 * Description:
2650 * Insert a fully prepared request at the back of the io scheduler queue
2651 * for execution and wait for completion.
2652 */
2653 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2654 struct request *rq, int at_head)
2655 {
2656 DECLARE_COMPLETION_ONSTACK(wait);
2657 char sense[SCSI_SENSE_BUFFERSIZE];
2658 int err = 0;
2659
2660 /*
2661 * we need an extra reference to the request, so we can look at
2662 * it after io completion
2663 */
2664 rq->ref_count++;
2665
2666 if (!rq->sense) {
2667 memset(sense, 0, sizeof(sense));
2668 rq->sense = sense;
2669 rq->sense_len = 0;
2670 }
2671
2672 rq->end_io_data = &wait;
2673 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2674 wait_for_completion(&wait);
2675
2676 if (rq->errors)
2677 err = -EIO;
2678
2679 return err;
2680 }
2681
2682 EXPORT_SYMBOL(blk_execute_rq);
2683
2684 /**
2685 * blkdev_issue_flush - queue a flush
2686 * @bdev: blockdev to issue flush for
2687 * @error_sector: error sector
2688 *
2689 * Description:
2690 * Issue a flush for the block device in question. Caller can supply
2691 * room for storing the error offset in case of a flush error, if they
2692 * wish to. Caller must run wait_for_completion() on its own.
2693 */
2694 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2695 {
2696 struct request_queue *q;
2697
2698 if (bdev->bd_disk == NULL)
2699 return -ENXIO;
2700
2701 q = bdev_get_queue(bdev);
2702 if (!q)
2703 return -ENXIO;
2704 if (!q->issue_flush_fn)
2705 return -EOPNOTSUPP;
2706
2707 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2708 }
2709
2710 EXPORT_SYMBOL(blkdev_issue_flush);
2711
2712 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2713 {
2714 int rw = rq_data_dir(rq);
2715
2716 if (!blk_fs_request(rq) || !rq->rq_disk)
2717 return;
2718
2719 if (!new_io) {
2720 __disk_stat_inc(rq->rq_disk, merges[rw]);
2721 } else {
2722 disk_round_stats(rq->rq_disk);
2723 rq->rq_disk->in_flight++;
2724 }
2725 }
2726
2727 /*
2728 * add-request adds a request to the linked list.
2729 * queue lock is held and interrupts disabled, as we muck with the
2730 * request queue list.
2731 */
2732 static inline void add_request(struct request_queue * q, struct request * req)
2733 {
2734 drive_stat_acct(req, req->nr_sectors, 1);
2735
2736 /*
2737 * elevator indicated where it wants this request to be
2738 * inserted at elevator_merge time
2739 */
2740 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2741 }
2742
2743 /*
2744 * disk_round_stats() - Round off the performance stats on a struct
2745 * disk_stats.
2746 *
2747 * The average IO queue length and utilisation statistics are maintained
2748 * by observing the current state of the queue length and the amount of
2749 * time it has been in this state for.
2750 *
2751 * Normally, that accounting is done on IO completion, but that can result
2752 * in more than a second's worth of IO being accounted for within any one
2753 * second, leading to >100% utilisation. To deal with that, we call this
2754 * function to do a round-off before returning the results when reading
2755 * /proc/diskstats. This accounts immediately for all queue usage up to
2756 * the current jiffies and restarts the counters again.
2757 */
2758 void disk_round_stats(struct gendisk *disk)
2759 {
2760 unsigned long now = jiffies;
2761
2762 if (now == disk->stamp)
2763 return;
2764
2765 if (disk->in_flight) {
2766 __disk_stat_add(disk, time_in_queue,
2767 disk->in_flight * (now - disk->stamp));
2768 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2769 }
2770 disk->stamp = now;
2771 }
2772
2773 EXPORT_SYMBOL_GPL(disk_round_stats);
2774
2775 /*
2776 * queue lock must be held
2777 */
2778 void __blk_put_request(struct request_queue *q, struct request *req)
2779 {
2780 if (unlikely(!q))
2781 return;
2782 if (unlikely(--req->ref_count))
2783 return;
2784
2785 elv_completed_request(q, req);
2786
2787 /*
2788 * Request may not have originated from ll_rw_blk. if not,
2789 * it didn't come out of our reserved rq pools
2790 */
2791 if (req->cmd_flags & REQ_ALLOCED) {
2792 int rw = rq_data_dir(req);
2793 int priv = req->cmd_flags & REQ_ELVPRIV;
2794
2795 BUG_ON(!list_empty(&req->queuelist));
2796 BUG_ON(!hlist_unhashed(&req->hash));
2797
2798 blk_free_request(q, req);
2799 freed_request(q, rw, priv);
2800 }
2801 }
2802
2803 EXPORT_SYMBOL_GPL(__blk_put_request);
2804
2805 void blk_put_request(struct request *req)
2806 {
2807 unsigned long flags;
2808 struct request_queue *q = req->q;
2809
2810 /*
2811 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2812 * following if (q) test.
2813 */
2814 if (q) {
2815 spin_lock_irqsave(q->queue_lock, flags);
2816 __blk_put_request(q, req);
2817 spin_unlock_irqrestore(q->queue_lock, flags);
2818 }
2819 }
2820
2821 EXPORT_SYMBOL(blk_put_request);
2822
2823 /**
2824 * blk_end_sync_rq - executes a completion event on a request
2825 * @rq: request to complete
2826 * @error: end io status of the request
2827 */
2828 void blk_end_sync_rq(struct request *rq, int error)
2829 {
2830 struct completion *waiting = rq->end_io_data;
2831
2832 rq->end_io_data = NULL;
2833 __blk_put_request(rq->q, rq);
2834
2835 /*
2836 * complete last, if this is a stack request the process (and thus
2837 * the rq pointer) could be invalid right after this complete()
2838 */
2839 complete(waiting);
2840 }
2841 EXPORT_SYMBOL(blk_end_sync_rq);
2842
2843 /*
2844 * Has to be called with the request spinlock acquired
2845 */
2846 static int attempt_merge(struct request_queue *q, struct request *req,
2847 struct request *next)
2848 {
2849 if (!rq_mergeable(req) || !rq_mergeable(next))
2850 return 0;
2851
2852 /*
2853 * not contiguous
2854 */
2855 if (req->sector + req->nr_sectors != next->sector)
2856 return 0;
2857
2858 if (rq_data_dir(req) != rq_data_dir(next)
2859 || req->rq_disk != next->rq_disk
2860 || next->special)
2861 return 0;
2862
2863 /*
2864 * If we are allowed to merge, then append bio list
2865 * from next to rq and release next. merge_requests_fn
2866 * will have updated segment counts, update sector
2867 * counts here.
2868 */
2869 if (!ll_merge_requests_fn(q, req, next))
2870 return 0;
2871
2872 /*
2873 * At this point we have either done a back merge
2874 * or front merge. We need the smaller start_time of
2875 * the merged requests to be the current request
2876 * for accounting purposes.
2877 */
2878 if (time_after(req->start_time, next->start_time))
2879 req->start_time = next->start_time;
2880
2881 req->biotail->bi_next = next->bio;
2882 req->biotail = next->biotail;
2883
2884 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2885
2886 elv_merge_requests(q, req, next);
2887
2888 if (req->rq_disk) {
2889 disk_round_stats(req->rq_disk);
2890 req->rq_disk->in_flight--;
2891 }
2892
2893 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2894
2895 __blk_put_request(q, next);
2896 return 1;
2897 }
2898
2899 static inline int attempt_back_merge(struct request_queue *q,
2900 struct request *rq)
2901 {
2902 struct request *next = elv_latter_request(q, rq);
2903
2904 if (next)
2905 return attempt_merge(q, rq, next);
2906
2907 return 0;
2908 }
2909
2910 static inline int attempt_front_merge(struct request_queue *q,
2911 struct request *rq)
2912 {
2913 struct request *prev = elv_former_request(q, rq);
2914
2915 if (prev)
2916 return attempt_merge(q, prev, rq);
2917
2918 return 0;
2919 }
2920
2921 static void init_request_from_bio(struct request *req, struct bio *bio)
2922 {
2923 req->cmd_type = REQ_TYPE_FS;
2924
2925 /*
2926 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2927 */
2928 if (bio_rw_ahead(bio) || bio_failfast(bio))
2929 req->cmd_flags |= REQ_FAILFAST;
2930
2931 /*
2932 * REQ_BARRIER implies no merging, but lets make it explicit
2933 */
2934 if (unlikely(bio_barrier(bio)))
2935 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2936
2937 if (bio_sync(bio))
2938 req->cmd_flags |= REQ_RW_SYNC;
2939 if (bio_rw_meta(bio))
2940 req->cmd_flags |= REQ_RW_META;
2941
2942 req->errors = 0;
2943 req->hard_sector = req->sector = bio->bi_sector;
2944 req->ioprio = bio_prio(bio);
2945 req->start_time = jiffies;
2946 blk_rq_bio_prep(req->q, req, bio);
2947 }
2948
2949 static int __make_request(struct request_queue *q, struct bio *bio)
2950 {
2951 struct request *req;
2952 int el_ret, nr_sectors, barrier, err;
2953 const unsigned short prio = bio_prio(bio);
2954 const int sync = bio_sync(bio);
2955 int rw_flags;
2956
2957 nr_sectors = bio_sectors(bio);
2958
2959 /*
2960 * low level driver can indicate that it wants pages above a
2961 * certain limit bounced to low memory (ie for highmem, or even
2962 * ISA dma in theory)
2963 */
2964 blk_queue_bounce(q, &bio);
2965
2966 barrier = bio_barrier(bio);
2967 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2968 err = -EOPNOTSUPP;
2969 goto end_io;
2970 }
2971
2972 spin_lock_irq(q->queue_lock);
2973
2974 if (unlikely(barrier) || elv_queue_empty(q))
2975 goto get_rq;
2976
2977 el_ret = elv_merge(q, &req, bio);
2978 switch (el_ret) {
2979 case ELEVATOR_BACK_MERGE:
2980 BUG_ON(!rq_mergeable(req));
2981
2982 if (!ll_back_merge_fn(q, req, bio))
2983 break;
2984
2985 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2986
2987 req->biotail->bi_next = bio;
2988 req->biotail = bio;
2989 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2990 req->ioprio = ioprio_best(req->ioprio, prio);
2991 drive_stat_acct(req, nr_sectors, 0);
2992 if (!attempt_back_merge(q, req))
2993 elv_merged_request(q, req, el_ret);
2994 goto out;
2995
2996 case ELEVATOR_FRONT_MERGE:
2997 BUG_ON(!rq_mergeable(req));
2998
2999 if (!ll_front_merge_fn(q, req, bio))
3000 break;
3001
3002 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3003
3004 bio->bi_next = req->bio;
3005 req->bio = bio;
3006
3007 /*
3008 * may not be valid. if the low level driver said
3009 * it didn't need a bounce buffer then it better
3010 * not touch req->buffer either...
3011 */
3012 req->buffer = bio_data(bio);
3013 req->current_nr_sectors = bio_cur_sectors(bio);
3014 req->hard_cur_sectors = req->current_nr_sectors;
3015 req->sector = req->hard_sector = bio->bi_sector;
3016 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
3017 req->ioprio = ioprio_best(req->ioprio, prio);
3018 drive_stat_acct(req, nr_sectors, 0);
3019 if (!attempt_front_merge(q, req))
3020 elv_merged_request(q, req, el_ret);
3021 goto out;
3022
3023 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3024 default:
3025 ;
3026 }
3027
3028 get_rq:
3029 /*
3030 * This sync check and mask will be re-done in init_request_from_bio(),
3031 * but we need to set it earlier to expose the sync flag to the
3032 * rq allocator and io schedulers.
3033 */
3034 rw_flags = bio_data_dir(bio);
3035 if (sync)
3036 rw_flags |= REQ_RW_SYNC;
3037
3038 /*
3039 * Grab a free request. This is might sleep but can not fail.
3040 * Returns with the queue unlocked.
3041 */
3042 req = get_request_wait(q, rw_flags, bio);
3043
3044 /*
3045 * After dropping the lock and possibly sleeping here, our request
3046 * may now be mergeable after it had proven unmergeable (above).
3047 * We don't worry about that case for efficiency. It won't happen
3048 * often, and the elevators are able to handle it.
3049 */
3050 init_request_from_bio(req, bio);
3051
3052 spin_lock_irq(q->queue_lock);
3053 if (elv_queue_empty(q))
3054 blk_plug_device(q);
3055 add_request(q, req);
3056 out:
3057 if (sync)
3058 __generic_unplug_device(q);
3059
3060 spin_unlock_irq(q->queue_lock);
3061 return 0;
3062
3063 end_io:
3064 bio_endio(bio, nr_sectors << 9, err);
3065 return 0;
3066 }
3067
3068 /*
3069 * If bio->bi_dev is a partition, remap the location
3070 */
3071 static inline void blk_partition_remap(struct bio *bio)
3072 {
3073 struct block_device *bdev = bio->bi_bdev;
3074
3075 if (bdev != bdev->bd_contains) {
3076 struct hd_struct *p = bdev->bd_part;
3077 const int rw = bio_data_dir(bio);
3078
3079 p->sectors[rw] += bio_sectors(bio);
3080 p->ios[rw]++;
3081
3082 bio->bi_sector += p->start_sect;
3083 bio->bi_bdev = bdev->bd_contains;
3084
3085 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3086 bdev->bd_dev, bio->bi_sector,
3087 bio->bi_sector - p->start_sect);
3088 }
3089 }
3090
3091 static void handle_bad_sector(struct bio *bio)
3092 {
3093 char b[BDEVNAME_SIZE];
3094
3095 printk(KERN_INFO "attempt to access beyond end of device\n");
3096 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3097 bdevname(bio->bi_bdev, b),
3098 bio->bi_rw,
3099 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3100 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3101
3102 set_bit(BIO_EOF, &bio->bi_flags);
3103 }
3104
3105 #ifdef CONFIG_FAIL_MAKE_REQUEST
3106
3107 static DECLARE_FAULT_ATTR(fail_make_request);
3108
3109 static int __init setup_fail_make_request(char *str)
3110 {
3111 return setup_fault_attr(&fail_make_request, str);
3112 }
3113 __setup("fail_make_request=", setup_fail_make_request);
3114
3115 static int should_fail_request(struct bio *bio)
3116 {
3117 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3118 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3119 return should_fail(&fail_make_request, bio->bi_size);
3120
3121 return 0;
3122 }
3123
3124 static int __init fail_make_request_debugfs(void)
3125 {
3126 return init_fault_attr_dentries(&fail_make_request,
3127 "fail_make_request");
3128 }
3129
3130 late_initcall(fail_make_request_debugfs);
3131
3132 #else /* CONFIG_FAIL_MAKE_REQUEST */
3133
3134 static inline int should_fail_request(struct bio *bio)
3135 {
3136 return 0;
3137 }
3138
3139 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3140
3141 /**
3142 * generic_make_request: hand a buffer to its device driver for I/O
3143 * @bio: The bio describing the location in memory and on the device.
3144 *
3145 * generic_make_request() is used to make I/O requests of block
3146 * devices. It is passed a &struct bio, which describes the I/O that needs
3147 * to be done.
3148 *
3149 * generic_make_request() does not return any status. The
3150 * success/failure status of the request, along with notification of
3151 * completion, is delivered asynchronously through the bio->bi_end_io
3152 * function described (one day) else where.
3153 *
3154 * The caller of generic_make_request must make sure that bi_io_vec
3155 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3156 * set to describe the device address, and the
3157 * bi_end_io and optionally bi_private are set to describe how
3158 * completion notification should be signaled.
3159 *
3160 * generic_make_request and the drivers it calls may use bi_next if this
3161 * bio happens to be merged with someone else, and may change bi_dev and
3162 * bi_sector for remaps as it sees fit. So the values of these fields
3163 * should NOT be depended on after the call to generic_make_request.
3164 */
3165 static inline void __generic_make_request(struct bio *bio)
3166 {
3167 struct request_queue *q;
3168 sector_t maxsector;
3169 sector_t old_sector;
3170 int ret, nr_sectors = bio_sectors(bio);
3171 dev_t old_dev;
3172
3173 might_sleep();
3174 /* Test device or partition size, when known. */
3175 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3176 if (maxsector) {
3177 sector_t sector = bio->bi_sector;
3178
3179 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3180 /*
3181 * This may well happen - the kernel calls bread()
3182 * without checking the size of the device, e.g., when
3183 * mounting a device.
3184 */
3185 handle_bad_sector(bio);
3186 goto end_io;
3187 }
3188 }
3189
3190 /*
3191 * Resolve the mapping until finished. (drivers are
3192 * still free to implement/resolve their own stacking
3193 * by explicitly returning 0)
3194 *
3195 * NOTE: we don't repeat the blk_size check for each new device.
3196 * Stacking drivers are expected to know what they are doing.
3197 */
3198 old_sector = -1;
3199 old_dev = 0;
3200 do {
3201 char b[BDEVNAME_SIZE];
3202
3203 q = bdev_get_queue(bio->bi_bdev);
3204 if (!q) {
3205 printk(KERN_ERR
3206 "generic_make_request: Trying to access "
3207 "nonexistent block-device %s (%Lu)\n",
3208 bdevname(bio->bi_bdev, b),
3209 (long long) bio->bi_sector);
3210 end_io:
3211 bio_endio(bio, bio->bi_size, -EIO);
3212 break;
3213 }
3214
3215 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3216 printk("bio too big device %s (%u > %u)\n",
3217 bdevname(bio->bi_bdev, b),
3218 bio_sectors(bio),
3219 q->max_hw_sectors);
3220 goto end_io;
3221 }
3222
3223 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3224 goto end_io;
3225
3226 if (should_fail_request(bio))
3227 goto end_io;
3228
3229 /*
3230 * If this device has partitions, remap block n
3231 * of partition p to block n+start(p) of the disk.
3232 */
3233 blk_partition_remap(bio);
3234
3235 if (old_sector != -1)
3236 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3237 old_sector);
3238
3239 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3240
3241 old_sector = bio->bi_sector;
3242 old_dev = bio->bi_bdev->bd_dev;
3243
3244 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3245 if (maxsector) {
3246 sector_t sector = bio->bi_sector;
3247
3248 if (maxsector < nr_sectors ||
3249 maxsector - nr_sectors < sector) {
3250 /*
3251 * This may well happen - partitions are not
3252 * checked to make sure they are within the size
3253 * of the whole device.
3254 */
3255 handle_bad_sector(bio);
3256 goto end_io;
3257 }
3258 }
3259
3260 ret = q->make_request_fn(q, bio);
3261 } while (ret);
3262 }
3263
3264 /*
3265 * We only want one ->make_request_fn to be active at a time,
3266 * else stack usage with stacked devices could be a problem.
3267 * So use current->bio_{list,tail} to keep a list of requests
3268 * submited by a make_request_fn function.
3269 * current->bio_tail is also used as a flag to say if
3270 * generic_make_request is currently active in this task or not.
3271 * If it is NULL, then no make_request is active. If it is non-NULL,
3272 * then a make_request is active, and new requests should be added
3273 * at the tail
3274 */
3275 void generic_make_request(struct bio *bio)
3276 {
3277 if (current->bio_tail) {
3278 /* make_request is active */
3279 *(current->bio_tail) = bio;
3280 bio->bi_next = NULL;
3281 current->bio_tail = &bio->bi_next;
3282 return;
3283 }
3284 /* following loop may be a bit non-obvious, and so deserves some
3285 * explanation.
3286 * Before entering the loop, bio->bi_next is NULL (as all callers
3287 * ensure that) so we have a list with a single bio.
3288 * We pretend that we have just taken it off a longer list, so
3289 * we assign bio_list to the next (which is NULL) and bio_tail
3290 * to &bio_list, thus initialising the bio_list of new bios to be
3291 * added. __generic_make_request may indeed add some more bios
3292 * through a recursive call to generic_make_request. If it
3293 * did, we find a non-NULL value in bio_list and re-enter the loop
3294 * from the top. In this case we really did just take the bio
3295 * of the top of the list (no pretending) and so fixup bio_list and
3296 * bio_tail or bi_next, and call into __generic_make_request again.
3297 *
3298 * The loop was structured like this to make only one call to
3299 * __generic_make_request (which is important as it is large and
3300 * inlined) and to keep the structure simple.
3301 */
3302 BUG_ON(bio->bi_next);
3303 do {
3304 current->bio_list = bio->bi_next;
3305 if (bio->bi_next == NULL)
3306 current->bio_tail = &current->bio_list;
3307 else
3308 bio->bi_next = NULL;
3309 __generic_make_request(bio);
3310 bio = current->bio_list;
3311 } while (bio);
3312 current->bio_tail = NULL; /* deactivate */
3313 }
3314
3315 EXPORT_SYMBOL(generic_make_request);
3316
3317 /**
3318 * submit_bio: submit a bio to the block device layer for I/O
3319 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3320 * @bio: The &struct bio which describes the I/O
3321 *
3322 * submit_bio() is very similar in purpose to generic_make_request(), and
3323 * uses that function to do most of the work. Both are fairly rough
3324 * interfaces, @bio must be presetup and ready for I/O.
3325 *
3326 */
3327 void submit_bio(int rw, struct bio *bio)
3328 {
3329 int count = bio_sectors(bio);
3330
3331 BIO_BUG_ON(!bio->bi_size);
3332 BIO_BUG_ON(!bio->bi_io_vec);
3333 bio->bi_rw |= rw;
3334 if (rw & WRITE) {
3335 count_vm_events(PGPGOUT, count);
3336 } else {
3337 task_io_account_read(bio->bi_size);
3338 count_vm_events(PGPGIN, count);
3339 }
3340
3341 if (unlikely(block_dump)) {
3342 char b[BDEVNAME_SIZE];
3343 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3344 current->comm, current->pid,
3345 (rw & WRITE) ? "WRITE" : "READ",
3346 (unsigned long long)bio->bi_sector,
3347 bdevname(bio->bi_bdev,b));
3348 }
3349
3350 generic_make_request(bio);
3351 }
3352
3353 EXPORT_SYMBOL(submit_bio);
3354
3355 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3356 {
3357 if (blk_fs_request(rq)) {
3358 rq->hard_sector += nsect;
3359 rq->hard_nr_sectors -= nsect;
3360
3361 /*
3362 * Move the I/O submission pointers ahead if required.
3363 */
3364 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3365 (rq->sector <= rq->hard_sector)) {
3366 rq->sector = rq->hard_sector;
3367 rq->nr_sectors = rq->hard_nr_sectors;
3368 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3369 rq->current_nr_sectors = rq->hard_cur_sectors;
3370 rq->buffer = bio_data(rq->bio);
3371 }
3372
3373 /*
3374 * if total number of sectors is less than the first segment
3375 * size, something has gone terribly wrong
3376 */
3377 if (rq->nr_sectors < rq->current_nr_sectors) {
3378 printk("blk: request botched\n");
3379 rq->nr_sectors = rq->current_nr_sectors;
3380 }
3381 }
3382 }
3383
3384 static int __end_that_request_first(struct request *req, int uptodate,
3385 int nr_bytes)
3386 {
3387 int total_bytes, bio_nbytes, error, next_idx = 0;
3388 struct bio *bio;
3389
3390 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3391
3392 /*
3393 * extend uptodate bool to allow < 0 value to be direct io error
3394 */
3395 error = 0;
3396 if (end_io_error(uptodate))
3397 error = !uptodate ? -EIO : uptodate;
3398
3399 /*
3400 * for a REQ_BLOCK_PC request, we want to carry any eventual
3401 * sense key with us all the way through
3402 */
3403 if (!blk_pc_request(req))
3404 req->errors = 0;
3405
3406 if (!uptodate) {
3407 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3408 printk("end_request: I/O error, dev %s, sector %llu\n",
3409 req->rq_disk ? req->rq_disk->disk_name : "?",
3410 (unsigned long long)req->sector);
3411 }
3412
3413 if (blk_fs_request(req) && req->rq_disk) {
3414 const int rw = rq_data_dir(req);
3415
3416 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3417 }
3418
3419 total_bytes = bio_nbytes = 0;
3420 while ((bio = req->bio) != NULL) {
3421 int nbytes;
3422
3423 if (nr_bytes >= bio->bi_size) {
3424 req->bio = bio->bi_next;
3425 nbytes = bio->bi_size;
3426 if (!ordered_bio_endio(req, bio, nbytes, error))
3427 bio_endio(bio, nbytes, error);
3428 next_idx = 0;
3429 bio_nbytes = 0;
3430 } else {
3431 int idx = bio->bi_idx + next_idx;
3432
3433 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3434 blk_dump_rq_flags(req, "__end_that");
3435 printk("%s: bio idx %d >= vcnt %d\n",
3436 __FUNCTION__,
3437 bio->bi_idx, bio->bi_vcnt);
3438 break;
3439 }
3440
3441 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3442 BIO_BUG_ON(nbytes > bio->bi_size);
3443
3444 /*
3445 * not a complete bvec done
3446 */
3447 if (unlikely(nbytes > nr_bytes)) {
3448 bio_nbytes += nr_bytes;
3449 total_bytes += nr_bytes;
3450 break;
3451 }
3452
3453 /*
3454 * advance to the next vector
3455 */
3456 next_idx++;
3457 bio_nbytes += nbytes;
3458 }
3459
3460 total_bytes += nbytes;
3461 nr_bytes -= nbytes;
3462
3463 if ((bio = req->bio)) {
3464 /*
3465 * end more in this run, or just return 'not-done'
3466 */
3467 if (unlikely(nr_bytes <= 0))
3468 break;
3469 }
3470 }
3471
3472 /*
3473 * completely done
3474 */
3475 if (!req->bio)
3476 return 0;
3477
3478 /*
3479 * if the request wasn't completed, update state
3480 */
3481 if (bio_nbytes) {
3482 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3483 bio_endio(bio, bio_nbytes, error);
3484 bio->bi_idx += next_idx;
3485 bio_iovec(bio)->bv_offset += nr_bytes;
3486 bio_iovec(bio)->bv_len -= nr_bytes;
3487 }
3488
3489 blk_recalc_rq_sectors(req, total_bytes >> 9);
3490 blk_recalc_rq_segments(req);
3491 return 1;
3492 }
3493
3494 /**
3495 * end_that_request_first - end I/O on a request
3496 * @req: the request being processed
3497 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3498 * @nr_sectors: number of sectors to end I/O on
3499 *
3500 * Description:
3501 * Ends I/O on a number of sectors attached to @req, and sets it up
3502 * for the next range of segments (if any) in the cluster.
3503 *
3504 * Return:
3505 * 0 - we are done with this request, call end_that_request_last()
3506 * 1 - still buffers pending for this request
3507 **/
3508 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3509 {
3510 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3511 }
3512
3513 EXPORT_SYMBOL(end_that_request_first);
3514
3515 /**
3516 * end_that_request_chunk - end I/O on a request
3517 * @req: the request being processed
3518 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3519 * @nr_bytes: number of bytes to complete
3520 *
3521 * Description:
3522 * Ends I/O on a number of bytes attached to @req, and sets it up
3523 * for the next range of segments (if any). Like end_that_request_first(),
3524 * but deals with bytes instead of sectors.
3525 *
3526 * Return:
3527 * 0 - we are done with this request, call end_that_request_last()
3528 * 1 - still buffers pending for this request
3529 **/
3530 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3531 {
3532 return __end_that_request_first(req, uptodate, nr_bytes);
3533 }
3534
3535 EXPORT_SYMBOL(end_that_request_chunk);
3536
3537 /*
3538 * splice the completion data to a local structure and hand off to
3539 * process_completion_queue() to complete the requests
3540 */
3541 static void blk_done_softirq(struct softirq_action *h)
3542 {
3543 struct list_head *cpu_list, local_list;
3544
3545 local_irq_disable();
3546 cpu_list = &__get_cpu_var(blk_cpu_done);
3547 list_replace_init(cpu_list, &local_list);
3548 local_irq_enable();
3549
3550 while (!list_empty(&local_list)) {
3551 struct request *rq = list_entry(local_list.next, struct request, donelist);
3552
3553 list_del_init(&rq->donelist);
3554 rq->q->softirq_done_fn(rq);
3555 }
3556 }
3557
3558 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3559 void *hcpu)
3560 {
3561 /*
3562 * If a CPU goes away, splice its entries to the current CPU
3563 * and trigger a run of the softirq
3564 */
3565 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3566 int cpu = (unsigned long) hcpu;
3567
3568 local_irq_disable();
3569 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3570 &__get_cpu_var(blk_cpu_done));
3571 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3572 local_irq_enable();
3573 }
3574
3575 return NOTIFY_OK;
3576 }
3577
3578
3579 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3580 .notifier_call = blk_cpu_notify,
3581 };
3582
3583 /**
3584 * blk_complete_request - end I/O on a request
3585 * @req: the request being processed
3586 *
3587 * Description:
3588 * Ends all I/O on a request. It does not handle partial completions,
3589 * unless the driver actually implements this in its completion callback
3590 * through requeueing. Theh actual completion happens out-of-order,
3591 * through a softirq handler. The user must have registered a completion
3592 * callback through blk_queue_softirq_done().
3593 **/
3594
3595 void blk_complete_request(struct request *req)
3596 {
3597 struct list_head *cpu_list;
3598 unsigned long flags;
3599
3600 BUG_ON(!req->q->softirq_done_fn);
3601
3602 local_irq_save(flags);
3603
3604 cpu_list = &__get_cpu_var(blk_cpu_done);
3605 list_add_tail(&req->donelist, cpu_list);
3606 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3607
3608 local_irq_restore(flags);
3609 }
3610
3611 EXPORT_SYMBOL(blk_complete_request);
3612
3613 /*
3614 * queue lock must be held
3615 */
3616 void end_that_request_last(struct request *req, int uptodate)
3617 {
3618 struct gendisk *disk = req->rq_disk;
3619 int error;
3620
3621 /*
3622 * extend uptodate bool to allow < 0 value to be direct io error
3623 */
3624 error = 0;
3625 if (end_io_error(uptodate))
3626 error = !uptodate ? -EIO : uptodate;
3627
3628 if (unlikely(laptop_mode) && blk_fs_request(req))
3629 laptop_io_completion();
3630
3631 /*
3632 * Account IO completion. bar_rq isn't accounted as a normal
3633 * IO on queueing nor completion. Accounting the containing
3634 * request is enough.
3635 */
3636 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3637 unsigned long duration = jiffies - req->start_time;
3638 const int rw = rq_data_dir(req);
3639
3640 __disk_stat_inc(disk, ios[rw]);
3641 __disk_stat_add(disk, ticks[rw], duration);
3642 disk_round_stats(disk);
3643 disk->in_flight--;
3644 }
3645 if (req->end_io)
3646 req->end_io(req, error);
3647 else
3648 __blk_put_request(req->q, req);
3649 }
3650
3651 EXPORT_SYMBOL(end_that_request_last);
3652
3653 void end_request(struct request *req, int uptodate)
3654 {
3655 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3656 add_disk_randomness(req->rq_disk);
3657 blkdev_dequeue_request(req);
3658 end_that_request_last(req, uptodate);
3659 }
3660 }
3661
3662 EXPORT_SYMBOL(end_request);
3663
3664 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3665 struct bio *bio)
3666 {
3667 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3668 rq->cmd_flags |= (bio->bi_rw & 3);
3669
3670 rq->nr_phys_segments = bio_phys_segments(q, bio);
3671 rq->nr_hw_segments = bio_hw_segments(q, bio);
3672 rq->current_nr_sectors = bio_cur_sectors(bio);
3673 rq->hard_cur_sectors = rq->current_nr_sectors;
3674 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3675 rq->buffer = bio_data(bio);
3676 rq->data_len = bio->bi_size;
3677
3678 rq->bio = rq->biotail = bio;
3679
3680 if (bio->bi_bdev)
3681 rq->rq_disk = bio->bi_bdev->bd_disk;
3682 }
3683
3684 int kblockd_schedule_work(struct work_struct *work)
3685 {
3686 return queue_work(kblockd_workqueue, work);
3687 }
3688
3689 EXPORT_SYMBOL(kblockd_schedule_work);
3690
3691 void kblockd_flush_work(struct work_struct *work)
3692 {
3693 cancel_work_sync(work);
3694 }
3695 EXPORT_SYMBOL(kblockd_flush_work);
3696
3697 int __init blk_dev_init(void)
3698 {
3699 int i;
3700
3701 kblockd_workqueue = create_workqueue("kblockd");
3702 if (!kblockd_workqueue)
3703 panic("Failed to create kblockd\n");
3704
3705 request_cachep = kmem_cache_create("blkdev_requests",
3706 sizeof(struct request), 0, SLAB_PANIC, NULL);
3707
3708 requestq_cachep = kmem_cache_create("blkdev_queue",
3709 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3710
3711 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3712 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3713
3714 for_each_possible_cpu(i)
3715 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3716
3717 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3718 register_hotcpu_notifier(&blk_cpu_notifier);
3719
3720 blk_max_low_pfn = max_low_pfn - 1;
3721 blk_max_pfn = max_pfn - 1;
3722
3723 return 0;
3724 }
3725
3726 /*
3727 * IO Context helper functions
3728 */
3729 void put_io_context(struct io_context *ioc)
3730 {
3731 if (ioc == NULL)
3732 return;
3733
3734 BUG_ON(atomic_read(&ioc->refcount) == 0);
3735
3736 if (atomic_dec_and_test(&ioc->refcount)) {
3737 struct cfq_io_context *cic;
3738
3739 rcu_read_lock();
3740 if (ioc->aic && ioc->aic->dtor)
3741 ioc->aic->dtor(ioc->aic);
3742 if (ioc->cic_root.rb_node != NULL) {
3743 struct rb_node *n = rb_first(&ioc->cic_root);
3744
3745 cic = rb_entry(n, struct cfq_io_context, rb_node);
3746 cic->dtor(ioc);
3747 }
3748 rcu_read_unlock();
3749
3750 kmem_cache_free(iocontext_cachep, ioc);
3751 }
3752 }
3753 EXPORT_SYMBOL(put_io_context);
3754
3755 /* Called by the exitting task */
3756 void exit_io_context(void)
3757 {
3758 struct io_context *ioc;
3759 struct cfq_io_context *cic;
3760
3761 task_lock(current);
3762 ioc = current->io_context;
3763 current->io_context = NULL;
3764 task_unlock(current);
3765
3766 ioc->task = NULL;
3767 if (ioc->aic && ioc->aic->exit)
3768 ioc->aic->exit(ioc->aic);
3769 if (ioc->cic_root.rb_node != NULL) {
3770 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3771 cic->exit(ioc);
3772 }
3773
3774 put_io_context(ioc);
3775 }
3776
3777 /*
3778 * If the current task has no IO context then create one and initialise it.
3779 * Otherwise, return its existing IO context.
3780 *
3781 * This returned IO context doesn't have a specifically elevated refcount,
3782 * but since the current task itself holds a reference, the context can be
3783 * used in general code, so long as it stays within `current` context.
3784 */
3785 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3786 {
3787 struct task_struct *tsk = current;
3788 struct io_context *ret;
3789
3790 ret = tsk->io_context;
3791 if (likely(ret))
3792 return ret;
3793
3794 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3795 if (ret) {
3796 atomic_set(&ret->refcount, 1);
3797 ret->task = current;
3798 ret->ioprio_changed = 0;
3799 ret->last_waited = jiffies; /* doesn't matter... */
3800 ret->nr_batch_requests = 0; /* because this is 0 */
3801 ret->aic = NULL;
3802 ret->cic_root.rb_node = NULL;
3803 ret->ioc_data = NULL;
3804 /* make sure set_task_ioprio() sees the settings above */
3805 smp_wmb();
3806 tsk->io_context = ret;
3807 }
3808
3809 return ret;
3810 }
3811
3812 /*
3813 * If the current task has no IO context then create one and initialise it.
3814 * If it does have a context, take a ref on it.
3815 *
3816 * This is always called in the context of the task which submitted the I/O.
3817 */
3818 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3819 {
3820 struct io_context *ret;
3821 ret = current_io_context(gfp_flags, node);
3822 if (likely(ret))
3823 atomic_inc(&ret->refcount);
3824 return ret;
3825 }
3826 EXPORT_SYMBOL(get_io_context);
3827
3828 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3829 {
3830 struct io_context *src = *psrc;
3831 struct io_context *dst = *pdst;
3832
3833 if (src) {
3834 BUG_ON(atomic_read(&src->refcount) == 0);
3835 atomic_inc(&src->refcount);
3836 put_io_context(dst);
3837 *pdst = src;
3838 }
3839 }
3840 EXPORT_SYMBOL(copy_io_context);
3841
3842 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3843 {
3844 struct io_context *temp;
3845 temp = *ioc1;
3846 *ioc1 = *ioc2;
3847 *ioc2 = temp;
3848 }
3849 EXPORT_SYMBOL(swap_io_context);
3850
3851 /*
3852 * sysfs parts below
3853 */
3854 struct queue_sysfs_entry {
3855 struct attribute attr;
3856 ssize_t (*show)(struct request_queue *, char *);
3857 ssize_t (*store)(struct request_queue *, const char *, size_t);
3858 };
3859
3860 static ssize_t
3861 queue_var_show(unsigned int var, char *page)
3862 {
3863 return sprintf(page, "%d\n", var);
3864 }
3865
3866 static ssize_t
3867 queue_var_store(unsigned long *var, const char *page, size_t count)
3868 {
3869 char *p = (char *) page;
3870
3871 *var = simple_strtoul(p, &p, 10);
3872 return count;
3873 }
3874
3875 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3876 {
3877 return queue_var_show(q->nr_requests, (page));
3878 }
3879
3880 static ssize_t
3881 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3882 {
3883 struct request_list *rl = &q->rq;
3884 unsigned long nr;
3885 int ret = queue_var_store(&nr, page, count);
3886 if (nr < BLKDEV_MIN_RQ)
3887 nr = BLKDEV_MIN_RQ;
3888
3889 spin_lock_irq(q->queue_lock);
3890 q->nr_requests = nr;
3891 blk_queue_congestion_threshold(q);
3892
3893 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3894 blk_set_queue_congested(q, READ);
3895 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3896 blk_clear_queue_congested(q, READ);
3897
3898 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3899 blk_set_queue_congested(q, WRITE);
3900 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3901 blk_clear_queue_congested(q, WRITE);
3902
3903 if (rl->count[READ] >= q->nr_requests) {
3904 blk_set_queue_full(q, READ);
3905 } else if (rl->count[READ]+1 <= q->nr_requests) {
3906 blk_clear_queue_full(q, READ);
3907 wake_up(&rl->wait[READ]);
3908 }
3909
3910 if (rl->count[WRITE] >= q->nr_requests) {
3911 blk_set_queue_full(q, WRITE);
3912 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3913 blk_clear_queue_full(q, WRITE);
3914 wake_up(&rl->wait[WRITE]);
3915 }
3916 spin_unlock_irq(q->queue_lock);
3917 return ret;
3918 }
3919
3920 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3921 {
3922 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3923
3924 return queue_var_show(ra_kb, (page));
3925 }
3926
3927 static ssize_t
3928 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3929 {
3930 unsigned long ra_kb;
3931 ssize_t ret = queue_var_store(&ra_kb, page, count);
3932
3933 spin_lock_irq(q->queue_lock);
3934 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3935 spin_unlock_irq(q->queue_lock);
3936
3937 return ret;
3938 }
3939
3940 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3941 {
3942 int max_sectors_kb = q->max_sectors >> 1;
3943
3944 return queue_var_show(max_sectors_kb, (page));
3945 }
3946
3947 static ssize_t
3948 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3949 {
3950 unsigned long max_sectors_kb,
3951 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3952 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3953 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3954 int ra_kb;
3955
3956 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3957 return -EINVAL;
3958 /*
3959 * Take the queue lock to update the readahead and max_sectors
3960 * values synchronously:
3961 */
3962 spin_lock_irq(q->queue_lock);
3963 /*
3964 * Trim readahead window as well, if necessary:
3965 */
3966 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3967 if (ra_kb > max_sectors_kb)
3968 q->backing_dev_info.ra_pages =
3969 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3970
3971 q->max_sectors = max_sectors_kb << 1;
3972 spin_unlock_irq(q->queue_lock);
3973
3974 return ret;
3975 }
3976
3977 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3978 {
3979 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3980
3981 return queue_var_show(max_hw_sectors_kb, (page));
3982 }
3983
3984
3985 static struct queue_sysfs_entry queue_requests_entry = {
3986 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3987 .show = queue_requests_show,
3988 .store = queue_requests_store,
3989 };
3990
3991 static struct queue_sysfs_entry queue_ra_entry = {
3992 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3993 .show = queue_ra_show,
3994 .store = queue_ra_store,
3995 };
3996
3997 static struct queue_sysfs_entry queue_max_sectors_entry = {
3998 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3999 .show = queue_max_sectors_show,
4000 .store = queue_max_sectors_store,
4001 };
4002
4003 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4004 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4005 .show = queue_max_hw_sectors_show,
4006 };
4007
4008 static struct queue_sysfs_entry queue_iosched_entry = {
4009 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4010 .show = elv_iosched_show,
4011 .store = elv_iosched_store,
4012 };
4013
4014 static struct attribute *default_attrs[] = {
4015 &queue_requests_entry.attr,
4016 &queue_ra_entry.attr,
4017 &queue_max_hw_sectors_entry.attr,
4018 &queue_max_sectors_entry.attr,
4019 &queue_iosched_entry.attr,
4020 NULL,
4021 };
4022
4023 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4024
4025 static ssize_t
4026 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4027 {
4028 struct queue_sysfs_entry *entry = to_queue(attr);
4029 struct request_queue *q =
4030 container_of(kobj, struct request_queue, kobj);
4031 ssize_t res;
4032
4033 if (!entry->show)
4034 return -EIO;
4035 mutex_lock(&q->sysfs_lock);
4036 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4037 mutex_unlock(&q->sysfs_lock);
4038 return -ENOENT;
4039 }
4040 res = entry->show(q, page);
4041 mutex_unlock(&q->sysfs_lock);
4042 return res;
4043 }
4044
4045 static ssize_t
4046 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4047 const char *page, size_t length)
4048 {
4049 struct queue_sysfs_entry *entry = to_queue(attr);
4050 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4051
4052 ssize_t res;
4053
4054 if (!entry->store)
4055 return -EIO;
4056 mutex_lock(&q->sysfs_lock);
4057 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4058 mutex_unlock(&q->sysfs_lock);
4059 return -ENOENT;
4060 }
4061 res = entry->store(q, page, length);
4062 mutex_unlock(&q->sysfs_lock);
4063 return res;
4064 }
4065
4066 static struct sysfs_ops queue_sysfs_ops = {
4067 .show = queue_attr_show,
4068 .store = queue_attr_store,
4069 };
4070
4071 static struct kobj_type queue_ktype = {
4072 .sysfs_ops = &queue_sysfs_ops,
4073 .default_attrs = default_attrs,
4074 .release = blk_release_queue,
4075 };
4076
4077 int blk_register_queue(struct gendisk *disk)
4078 {
4079 int ret;
4080
4081 struct request_queue *q = disk->queue;
4082
4083 if (!q || !q->request_fn)
4084 return -ENXIO;
4085
4086 q->kobj.parent = kobject_get(&disk->kobj);
4087
4088 ret = kobject_add(&q->kobj);
4089 if (ret < 0)
4090 return ret;
4091
4092 kobject_uevent(&q->kobj, KOBJ_ADD);
4093
4094 ret = elv_register_queue(q);
4095 if (ret) {
4096 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4097 kobject_del(&q->kobj);
4098 return ret;
4099 }
4100
4101 return 0;
4102 }
4103
4104 void blk_unregister_queue(struct gendisk *disk)
4105 {
4106 struct request_queue *q = disk->queue;
4107
4108 if (q && q->request_fn) {
4109 elv_unregister_queue(q);
4110
4111 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4112 kobject_del(&q->kobj);
4113 kobject_put(&disk->kobj);
4114 }
4115 }