]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/ll_rw_blk.c
[BLOCK] ll_rw_blk: separate out bio init part from __make_request
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
30
31 /*
32 * for max sense size
33 */
34 #include <scsi/scsi_cmnd.h>
35
36 static void blk_unplug_work(void *data);
37 static void blk_unplug_timeout(unsigned long data);
38 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
39 static void init_request_from_bio(struct request *req, struct bio *bio);
40 static int __make_request(request_queue_t *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static kmem_cache_t *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 static kmem_cache_t *requestq_cachep;
51
52 /*
53 * For io context allocations
54 */
55 static kmem_cache_t *iocontext_cachep;
56
57 static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 unsigned long blk_max_low_pfn, blk_max_pfn;
68
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
71
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
74
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
77
78 /*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
84 {
85 return q->nr_congestion_on;
86 }
87
88 /*
89 * The threshold at which a queue is considered to be uncongested
90 */
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
92 {
93 return q->nr_congestion_off;
94 }
95
96 static void blk_queue_congestion_threshold(struct request_queue *q)
97 {
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109 }
110
111 /*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116 static void clear_queue_congested(request_queue_t *q, int rw)
117 {
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126 }
127
128 /*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132 static void set_queue_congested(request_queue_t *q, int rw)
133 {
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138 }
139
140 /**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150 {
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157 }
158
159 EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162 {
163 q->activity_fn = fn;
164 q->activity_data = data;
165 }
166
167 EXPORT_SYMBOL(blk_queue_activity_fn);
168
169 /**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181 {
182 q->prep_rq_fn = pfn;
183 }
184
185 EXPORT_SYMBOL(blk_queue_prep_rq);
186
187 /**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204 {
205 q->merge_bvec_fn = mbfn;
206 }
207
208 EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210 /**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233 {
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
238 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
239 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266 }
267
268 EXPORT_SYMBOL(blk_queue_make_request);
269
270 static inline void rq_init(request_queue_t *q, struct request *rq)
271 {
272 INIT_LIST_HEAD(&rq->queuelist);
273
274 rq->errors = 0;
275 rq->rq_status = RQ_ACTIVE;
276 rq->bio = rq->biotail = NULL;
277 rq->ioprio = 0;
278 rq->buffer = NULL;
279 rq->ref_count = 1;
280 rq->q = q;
281 rq->waiting = NULL;
282 rq->special = NULL;
283 rq->data_len = 0;
284 rq->data = NULL;
285 rq->nr_phys_segments = 0;
286 rq->sense = NULL;
287 rq->end_io = NULL;
288 rq->end_io_data = NULL;
289 }
290
291 /**
292 * blk_queue_ordered - does this queue support ordered writes
293 * @q: the request queue
294 * @flag: see below
295 *
296 * Description:
297 * For journalled file systems, doing ordered writes on a commit
298 * block instead of explicitly doing wait_on_buffer (which is bad
299 * for performance) can be a big win. Block drivers supporting this
300 * feature should call this function and indicate so.
301 *
302 **/
303 void blk_queue_ordered(request_queue_t *q, int flag)
304 {
305 switch (flag) {
306 case QUEUE_ORDERED_NONE:
307 if (q->flush_rq)
308 kmem_cache_free(request_cachep, q->flush_rq);
309 q->flush_rq = NULL;
310 q->ordered = flag;
311 break;
312 case QUEUE_ORDERED_TAG:
313 q->ordered = flag;
314 break;
315 case QUEUE_ORDERED_FLUSH:
316 q->ordered = flag;
317 if (!q->flush_rq)
318 q->flush_rq = kmem_cache_alloc(request_cachep,
319 GFP_KERNEL);
320 break;
321 default:
322 printk("blk_queue_ordered: bad value %d\n", flag);
323 break;
324 }
325 }
326
327 EXPORT_SYMBOL(blk_queue_ordered);
328
329 /**
330 * blk_queue_issue_flush_fn - set function for issuing a flush
331 * @q: the request queue
332 * @iff: the function to be called issuing the flush
333 *
334 * Description:
335 * If a driver supports issuing a flush command, the support is notified
336 * to the block layer by defining it through this call.
337 *
338 **/
339 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
340 {
341 q->issue_flush_fn = iff;
342 }
343
344 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
345
346 /*
347 * Cache flushing for ordered writes handling
348 */
349 static void blk_pre_flush_end_io(struct request *flush_rq, int error)
350 {
351 struct request *rq = flush_rq->end_io_data;
352 request_queue_t *q = rq->q;
353
354 elv_completed_request(q, flush_rq);
355
356 rq->flags |= REQ_BAR_PREFLUSH;
357
358 if (!flush_rq->errors)
359 elv_requeue_request(q, rq);
360 else {
361 q->end_flush_fn(q, flush_rq);
362 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
363 q->request_fn(q);
364 }
365 }
366
367 static void blk_post_flush_end_io(struct request *flush_rq, int error)
368 {
369 struct request *rq = flush_rq->end_io_data;
370 request_queue_t *q = rq->q;
371
372 elv_completed_request(q, flush_rq);
373
374 rq->flags |= REQ_BAR_POSTFLUSH;
375
376 q->end_flush_fn(q, flush_rq);
377 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
378 q->request_fn(q);
379 }
380
381 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
382 {
383 struct request *flush_rq = q->flush_rq;
384
385 BUG_ON(!blk_barrier_rq(rq));
386
387 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
388 return NULL;
389
390 rq_init(q, flush_rq);
391 flush_rq->elevator_private = NULL;
392 flush_rq->flags = REQ_BAR_FLUSH;
393 flush_rq->rq_disk = rq->rq_disk;
394 flush_rq->rl = NULL;
395
396 /*
397 * prepare_flush returns 0 if no flush is needed, just mark both
398 * pre and post flush as done in that case
399 */
400 if (!q->prepare_flush_fn(q, flush_rq)) {
401 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
402 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
403 return rq;
404 }
405
406 /*
407 * some drivers dequeue requests right away, some only after io
408 * completion. make sure the request is dequeued.
409 */
410 if (!list_empty(&rq->queuelist))
411 blkdev_dequeue_request(rq);
412
413 flush_rq->end_io_data = rq;
414 flush_rq->end_io = blk_pre_flush_end_io;
415
416 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
417 return flush_rq;
418 }
419
420 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
421 {
422 struct request *flush_rq = q->flush_rq;
423
424 BUG_ON(!blk_barrier_rq(rq));
425
426 rq_init(q, flush_rq);
427 flush_rq->elevator_private = NULL;
428 flush_rq->flags = REQ_BAR_FLUSH;
429 flush_rq->rq_disk = rq->rq_disk;
430 flush_rq->rl = NULL;
431
432 if (q->prepare_flush_fn(q, flush_rq)) {
433 flush_rq->end_io_data = rq;
434 flush_rq->end_io = blk_post_flush_end_io;
435
436 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
437 q->request_fn(q);
438 }
439 }
440
441 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
442 int sectors)
443 {
444 if (sectors > rq->nr_sectors)
445 sectors = rq->nr_sectors;
446
447 rq->nr_sectors -= sectors;
448 return rq->nr_sectors;
449 }
450
451 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
452 int sectors, int queue_locked)
453 {
454 if (q->ordered != QUEUE_ORDERED_FLUSH)
455 return 0;
456 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
457 return 0;
458 if (blk_barrier_postflush(rq))
459 return 0;
460
461 if (!blk_check_end_barrier(q, rq, sectors)) {
462 unsigned long flags = 0;
463
464 if (!queue_locked)
465 spin_lock_irqsave(q->queue_lock, flags);
466
467 blk_start_post_flush(q, rq);
468
469 if (!queue_locked)
470 spin_unlock_irqrestore(q->queue_lock, flags);
471 }
472
473 return 1;
474 }
475
476 /**
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
479 * @rq: the request
480 * @sectors: number of sectors to complete
481 *
482 * Description:
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
486 * queue lock.
487 **/
488 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
489 {
490 return __blk_complete_barrier_rq(q, rq, sectors, 0);
491 }
492 EXPORT_SYMBOL(blk_complete_barrier_rq);
493
494 /**
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
497 * @rq: the request
498 * @sectors: number of sectors to complete
499 *
500 * Description:
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
503 **/
504 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
505 int sectors)
506 {
507 return __blk_complete_barrier_rq(q, rq, sectors, 1);
508 }
509 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
510
511 /**
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
515 *
516 * Description:
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
522 **/
523 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
524 {
525 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
526
527 /*
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
531 */
532 if (bounce_pfn < blk_max_low_pfn) {
533 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
534 init_emergency_isa_pool();
535 q->bounce_gfp = GFP_NOIO | GFP_DMA;
536 } else
537 q->bounce_gfp = GFP_NOIO;
538
539 q->bounce_pfn = bounce_pfn;
540 }
541
542 EXPORT_SYMBOL(blk_queue_bounce_limit);
543
544 /**
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
548 *
549 * Description:
550 * Enables a low level driver to set an upper limit on the size of
551 * received requests.
552 **/
553 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
554 {
555 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
556 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
558 }
559
560 if (BLK_DEF_MAX_SECTORS > max_sectors)
561 q->max_hw_sectors = q->max_sectors = max_sectors;
562 else {
563 q->max_sectors = BLK_DEF_MAX_SECTORS;
564 q->max_hw_sectors = max_sectors;
565 }
566 }
567
568 EXPORT_SYMBOL(blk_queue_max_sectors);
569
570 /**
571 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
572 * @q: the request queue for the device
573 * @max_segments: max number of segments
574 *
575 * Description:
576 * Enables a low level driver to set an upper limit on the number of
577 * physical data segments in a request. This would be the largest sized
578 * scatter list the driver could handle.
579 **/
580 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
581 {
582 if (!max_segments) {
583 max_segments = 1;
584 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
585 }
586
587 q->max_phys_segments = max_segments;
588 }
589
590 EXPORT_SYMBOL(blk_queue_max_phys_segments);
591
592 /**
593 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
594 * @q: the request queue for the device
595 * @max_segments: max number of segments
596 *
597 * Description:
598 * Enables a low level driver to set an upper limit on the number of
599 * hw data segments in a request. This would be the largest number of
600 * address/length pairs the host adapter can actually give as once
601 * to the device.
602 **/
603 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
604 {
605 if (!max_segments) {
606 max_segments = 1;
607 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
608 }
609
610 q->max_hw_segments = max_segments;
611 }
612
613 EXPORT_SYMBOL(blk_queue_max_hw_segments);
614
615 /**
616 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
617 * @q: the request queue for the device
618 * @max_size: max size of segment in bytes
619 *
620 * Description:
621 * Enables a low level driver to set an upper limit on the size of a
622 * coalesced segment
623 **/
624 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
625 {
626 if (max_size < PAGE_CACHE_SIZE) {
627 max_size = PAGE_CACHE_SIZE;
628 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
629 }
630
631 q->max_segment_size = max_size;
632 }
633
634 EXPORT_SYMBOL(blk_queue_max_segment_size);
635
636 /**
637 * blk_queue_hardsect_size - set hardware sector size for the queue
638 * @q: the request queue for the device
639 * @size: the hardware sector size, in bytes
640 *
641 * Description:
642 * This should typically be set to the lowest possible sector size
643 * that the hardware can operate on (possible without reverting to
644 * even internal read-modify-write operations). Usually the default
645 * of 512 covers most hardware.
646 **/
647 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
648 {
649 q->hardsect_size = size;
650 }
651
652 EXPORT_SYMBOL(blk_queue_hardsect_size);
653
654 /*
655 * Returns the minimum that is _not_ zero, unless both are zero.
656 */
657 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
658
659 /**
660 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
661 * @t: the stacking driver (top)
662 * @b: the underlying device (bottom)
663 **/
664 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
665 {
666 /* zero is "infinity" */
667 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
668 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
669
670 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
671 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
672 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
673 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
674 }
675
676 EXPORT_SYMBOL(blk_queue_stack_limits);
677
678 /**
679 * blk_queue_segment_boundary - set boundary rules for segment merging
680 * @q: the request queue for the device
681 * @mask: the memory boundary mask
682 **/
683 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
684 {
685 if (mask < PAGE_CACHE_SIZE - 1) {
686 mask = PAGE_CACHE_SIZE - 1;
687 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
688 }
689
690 q->seg_boundary_mask = mask;
691 }
692
693 EXPORT_SYMBOL(blk_queue_segment_boundary);
694
695 /**
696 * blk_queue_dma_alignment - set dma length and memory alignment
697 * @q: the request queue for the device
698 * @mask: alignment mask
699 *
700 * description:
701 * set required memory and length aligment for direct dma transactions.
702 * this is used when buiding direct io requests for the queue.
703 *
704 **/
705 void blk_queue_dma_alignment(request_queue_t *q, int mask)
706 {
707 q->dma_alignment = mask;
708 }
709
710 EXPORT_SYMBOL(blk_queue_dma_alignment);
711
712 /**
713 * blk_queue_find_tag - find a request by its tag and queue
714 * @q: The request queue for the device
715 * @tag: The tag of the request
716 *
717 * Notes:
718 * Should be used when a device returns a tag and you want to match
719 * it with a request.
720 *
721 * no locks need be held.
722 **/
723 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
724 {
725 struct blk_queue_tag *bqt = q->queue_tags;
726
727 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
728 return NULL;
729
730 return bqt->tag_index[tag];
731 }
732
733 EXPORT_SYMBOL(blk_queue_find_tag);
734
735 /**
736 * __blk_queue_free_tags - release tag maintenance info
737 * @q: the request queue for the device
738 *
739 * Notes:
740 * blk_cleanup_queue() will take care of calling this function, if tagging
741 * has been used. So there's no need to call this directly.
742 **/
743 static void __blk_queue_free_tags(request_queue_t *q)
744 {
745 struct blk_queue_tag *bqt = q->queue_tags;
746
747 if (!bqt)
748 return;
749
750 if (atomic_dec_and_test(&bqt->refcnt)) {
751 BUG_ON(bqt->busy);
752 BUG_ON(!list_empty(&bqt->busy_list));
753
754 kfree(bqt->tag_index);
755 bqt->tag_index = NULL;
756
757 kfree(bqt->tag_map);
758 bqt->tag_map = NULL;
759
760 kfree(bqt);
761 }
762
763 q->queue_tags = NULL;
764 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
765 }
766
767 /**
768 * blk_queue_free_tags - release tag maintenance info
769 * @q: the request queue for the device
770 *
771 * Notes:
772 * This is used to disabled tagged queuing to a device, yet leave
773 * queue in function.
774 **/
775 void blk_queue_free_tags(request_queue_t *q)
776 {
777 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
778 }
779
780 EXPORT_SYMBOL(blk_queue_free_tags);
781
782 static int
783 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
784 {
785 struct request **tag_index;
786 unsigned long *tag_map;
787 int nr_ulongs;
788
789 if (depth > q->nr_requests * 2) {
790 depth = q->nr_requests * 2;
791 printk(KERN_ERR "%s: adjusted depth to %d\n",
792 __FUNCTION__, depth);
793 }
794
795 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
796 if (!tag_index)
797 goto fail;
798
799 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
800 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
801 if (!tag_map)
802 goto fail;
803
804 memset(tag_index, 0, depth * sizeof(struct request *));
805 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
806 tags->real_max_depth = depth;
807 tags->max_depth = depth;
808 tags->tag_index = tag_index;
809 tags->tag_map = tag_map;
810
811 return 0;
812 fail:
813 kfree(tag_index);
814 return -ENOMEM;
815 }
816
817 /**
818 * blk_queue_init_tags - initialize the queue tag info
819 * @q: the request queue for the device
820 * @depth: the maximum queue depth supported
821 * @tags: the tag to use
822 **/
823 int blk_queue_init_tags(request_queue_t *q, int depth,
824 struct blk_queue_tag *tags)
825 {
826 int rc;
827
828 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
829
830 if (!tags && !q->queue_tags) {
831 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
832 if (!tags)
833 goto fail;
834
835 if (init_tag_map(q, tags, depth))
836 goto fail;
837
838 INIT_LIST_HEAD(&tags->busy_list);
839 tags->busy = 0;
840 atomic_set(&tags->refcnt, 1);
841 } else if (q->queue_tags) {
842 if ((rc = blk_queue_resize_tags(q, depth)))
843 return rc;
844 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
845 return 0;
846 } else
847 atomic_inc(&tags->refcnt);
848
849 /*
850 * assign it, all done
851 */
852 q->queue_tags = tags;
853 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
854 return 0;
855 fail:
856 kfree(tags);
857 return -ENOMEM;
858 }
859
860 EXPORT_SYMBOL(blk_queue_init_tags);
861
862 /**
863 * blk_queue_resize_tags - change the queueing depth
864 * @q: the request queue for the device
865 * @new_depth: the new max command queueing depth
866 *
867 * Notes:
868 * Must be called with the queue lock held.
869 **/
870 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
871 {
872 struct blk_queue_tag *bqt = q->queue_tags;
873 struct request **tag_index;
874 unsigned long *tag_map;
875 int max_depth, nr_ulongs;
876
877 if (!bqt)
878 return -ENXIO;
879
880 /*
881 * if we already have large enough real_max_depth. just
882 * adjust max_depth. *NOTE* as requests with tag value
883 * between new_depth and real_max_depth can be in-flight, tag
884 * map can not be shrunk blindly here.
885 */
886 if (new_depth <= bqt->real_max_depth) {
887 bqt->max_depth = new_depth;
888 return 0;
889 }
890
891 /*
892 * save the old state info, so we can copy it back
893 */
894 tag_index = bqt->tag_index;
895 tag_map = bqt->tag_map;
896 max_depth = bqt->real_max_depth;
897
898 if (init_tag_map(q, bqt, new_depth))
899 return -ENOMEM;
900
901 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
902 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
903 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
904
905 kfree(tag_index);
906 kfree(tag_map);
907 return 0;
908 }
909
910 EXPORT_SYMBOL(blk_queue_resize_tags);
911
912 /**
913 * blk_queue_end_tag - end tag operations for a request
914 * @q: the request queue for the device
915 * @rq: the request that has completed
916 *
917 * Description:
918 * Typically called when end_that_request_first() returns 0, meaning
919 * all transfers have been done for a request. It's important to call
920 * this function before end_that_request_last(), as that will put the
921 * request back on the free list thus corrupting the internal tag list.
922 *
923 * Notes:
924 * queue lock must be held.
925 **/
926 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
927 {
928 struct blk_queue_tag *bqt = q->queue_tags;
929 int tag = rq->tag;
930
931 BUG_ON(tag == -1);
932
933 if (unlikely(tag >= bqt->real_max_depth))
934 /*
935 * This can happen after tag depth has been reduced.
936 * FIXME: how about a warning or info message here?
937 */
938 return;
939
940 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
941 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
942 __FUNCTION__, tag);
943 return;
944 }
945
946 list_del_init(&rq->queuelist);
947 rq->flags &= ~REQ_QUEUED;
948 rq->tag = -1;
949
950 if (unlikely(bqt->tag_index[tag] == NULL))
951 printk(KERN_ERR "%s: tag %d is missing\n",
952 __FUNCTION__, tag);
953
954 bqt->tag_index[tag] = NULL;
955 bqt->busy--;
956 }
957
958 EXPORT_SYMBOL(blk_queue_end_tag);
959
960 /**
961 * blk_queue_start_tag - find a free tag and assign it
962 * @q: the request queue for the device
963 * @rq: the block request that needs tagging
964 *
965 * Description:
966 * This can either be used as a stand-alone helper, or possibly be
967 * assigned as the queue &prep_rq_fn (in which case &struct request
968 * automagically gets a tag assigned). Note that this function
969 * assumes that any type of request can be queued! if this is not
970 * true for your device, you must check the request type before
971 * calling this function. The request will also be removed from
972 * the request queue, so it's the drivers responsibility to readd
973 * it if it should need to be restarted for some reason.
974 *
975 * Notes:
976 * queue lock must be held.
977 **/
978 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
979 {
980 struct blk_queue_tag *bqt = q->queue_tags;
981 int tag;
982
983 if (unlikely((rq->flags & REQ_QUEUED))) {
984 printk(KERN_ERR
985 "%s: request %p for device [%s] already tagged %d",
986 __FUNCTION__, rq,
987 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
988 BUG();
989 }
990
991 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
992 if (tag >= bqt->max_depth)
993 return 1;
994
995 __set_bit(tag, bqt->tag_map);
996
997 rq->flags |= REQ_QUEUED;
998 rq->tag = tag;
999 bqt->tag_index[tag] = rq;
1000 blkdev_dequeue_request(rq);
1001 list_add(&rq->queuelist, &bqt->busy_list);
1002 bqt->busy++;
1003 return 0;
1004 }
1005
1006 EXPORT_SYMBOL(blk_queue_start_tag);
1007
1008 /**
1009 * blk_queue_invalidate_tags - invalidate all pending tags
1010 * @q: the request queue for the device
1011 *
1012 * Description:
1013 * Hardware conditions may dictate a need to stop all pending requests.
1014 * In this case, we will safely clear the block side of the tag queue and
1015 * readd all requests to the request queue in the right order.
1016 *
1017 * Notes:
1018 * queue lock must be held.
1019 **/
1020 void blk_queue_invalidate_tags(request_queue_t *q)
1021 {
1022 struct blk_queue_tag *bqt = q->queue_tags;
1023 struct list_head *tmp, *n;
1024 struct request *rq;
1025
1026 list_for_each_safe(tmp, n, &bqt->busy_list) {
1027 rq = list_entry_rq(tmp);
1028
1029 if (rq->tag == -1) {
1030 printk(KERN_ERR
1031 "%s: bad tag found on list\n", __FUNCTION__);
1032 list_del_init(&rq->queuelist);
1033 rq->flags &= ~REQ_QUEUED;
1034 } else
1035 blk_queue_end_tag(q, rq);
1036
1037 rq->flags &= ~REQ_STARTED;
1038 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1039 }
1040 }
1041
1042 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1043
1044 static const char * const rq_flags[] = {
1045 "REQ_RW",
1046 "REQ_FAILFAST",
1047 "REQ_SORTED",
1048 "REQ_SOFTBARRIER",
1049 "REQ_HARDBARRIER",
1050 "REQ_CMD",
1051 "REQ_NOMERGE",
1052 "REQ_STARTED",
1053 "REQ_DONTPREP",
1054 "REQ_QUEUED",
1055 "REQ_ELVPRIV",
1056 "REQ_PC",
1057 "REQ_BLOCK_PC",
1058 "REQ_SENSE",
1059 "REQ_FAILED",
1060 "REQ_QUIET",
1061 "REQ_SPECIAL",
1062 "REQ_DRIVE_CMD",
1063 "REQ_DRIVE_TASK",
1064 "REQ_DRIVE_TASKFILE",
1065 "REQ_PREEMPT",
1066 "REQ_PM_SUSPEND",
1067 "REQ_PM_RESUME",
1068 "REQ_PM_SHUTDOWN",
1069 };
1070
1071 void blk_dump_rq_flags(struct request *rq, char *msg)
1072 {
1073 int bit;
1074
1075 printk("%s: dev %s: flags = ", msg,
1076 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1077 bit = 0;
1078 do {
1079 if (rq->flags & (1 << bit))
1080 printk("%s ", rq_flags[bit]);
1081 bit++;
1082 } while (bit < __REQ_NR_BITS);
1083
1084 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1085 rq->nr_sectors,
1086 rq->current_nr_sectors);
1087 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1088
1089 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1090 printk("cdb: ");
1091 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1092 printk("%02x ", rq->cmd[bit]);
1093 printk("\n");
1094 }
1095 }
1096
1097 EXPORT_SYMBOL(blk_dump_rq_flags);
1098
1099 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1100 {
1101 struct bio_vec *bv, *bvprv = NULL;
1102 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1103 int high, highprv = 1;
1104
1105 if (unlikely(!bio->bi_io_vec))
1106 return;
1107
1108 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1109 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1110 bio_for_each_segment(bv, bio, i) {
1111 /*
1112 * the trick here is making sure that a high page is never
1113 * considered part of another segment, since that might
1114 * change with the bounce page.
1115 */
1116 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1117 if (high || highprv)
1118 goto new_hw_segment;
1119 if (cluster) {
1120 if (seg_size + bv->bv_len > q->max_segment_size)
1121 goto new_segment;
1122 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1123 goto new_segment;
1124 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1125 goto new_segment;
1126 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1127 goto new_hw_segment;
1128
1129 seg_size += bv->bv_len;
1130 hw_seg_size += bv->bv_len;
1131 bvprv = bv;
1132 continue;
1133 }
1134 new_segment:
1135 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1136 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1137 hw_seg_size += bv->bv_len;
1138 } else {
1139 new_hw_segment:
1140 if (hw_seg_size > bio->bi_hw_front_size)
1141 bio->bi_hw_front_size = hw_seg_size;
1142 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1143 nr_hw_segs++;
1144 }
1145
1146 nr_phys_segs++;
1147 bvprv = bv;
1148 seg_size = bv->bv_len;
1149 highprv = high;
1150 }
1151 if (hw_seg_size > bio->bi_hw_back_size)
1152 bio->bi_hw_back_size = hw_seg_size;
1153 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1154 bio->bi_hw_front_size = hw_seg_size;
1155 bio->bi_phys_segments = nr_phys_segs;
1156 bio->bi_hw_segments = nr_hw_segs;
1157 bio->bi_flags |= (1 << BIO_SEG_VALID);
1158 }
1159
1160
1161 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1162 struct bio *nxt)
1163 {
1164 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1165 return 0;
1166
1167 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1168 return 0;
1169 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1170 return 0;
1171
1172 /*
1173 * bio and nxt are contigous in memory, check if the queue allows
1174 * these two to be merged into one
1175 */
1176 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1177 return 1;
1178
1179 return 0;
1180 }
1181
1182 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1183 struct bio *nxt)
1184 {
1185 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1186 blk_recount_segments(q, bio);
1187 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1188 blk_recount_segments(q, nxt);
1189 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1190 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1191 return 0;
1192 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1193 return 0;
1194
1195 return 1;
1196 }
1197
1198 /*
1199 * map a request to scatterlist, return number of sg entries setup. Caller
1200 * must make sure sg can hold rq->nr_phys_segments entries
1201 */
1202 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1203 {
1204 struct bio_vec *bvec, *bvprv;
1205 struct bio *bio;
1206 int nsegs, i, cluster;
1207
1208 nsegs = 0;
1209 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1210
1211 /*
1212 * for each bio in rq
1213 */
1214 bvprv = NULL;
1215 rq_for_each_bio(bio, rq) {
1216 /*
1217 * for each segment in bio
1218 */
1219 bio_for_each_segment(bvec, bio, i) {
1220 int nbytes = bvec->bv_len;
1221
1222 if (bvprv && cluster) {
1223 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1224 goto new_segment;
1225
1226 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1227 goto new_segment;
1228 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1229 goto new_segment;
1230
1231 sg[nsegs - 1].length += nbytes;
1232 } else {
1233 new_segment:
1234 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1235 sg[nsegs].page = bvec->bv_page;
1236 sg[nsegs].length = nbytes;
1237 sg[nsegs].offset = bvec->bv_offset;
1238
1239 nsegs++;
1240 }
1241 bvprv = bvec;
1242 } /* segments in bio */
1243 } /* bios in rq */
1244
1245 return nsegs;
1246 }
1247
1248 EXPORT_SYMBOL(blk_rq_map_sg);
1249
1250 /*
1251 * the standard queue merge functions, can be overridden with device
1252 * specific ones if so desired
1253 */
1254
1255 static inline int ll_new_mergeable(request_queue_t *q,
1256 struct request *req,
1257 struct bio *bio)
1258 {
1259 int nr_phys_segs = bio_phys_segments(q, bio);
1260
1261 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1262 req->flags |= REQ_NOMERGE;
1263 if (req == q->last_merge)
1264 q->last_merge = NULL;
1265 return 0;
1266 }
1267
1268 /*
1269 * A hw segment is just getting larger, bump just the phys
1270 * counter.
1271 */
1272 req->nr_phys_segments += nr_phys_segs;
1273 return 1;
1274 }
1275
1276 static inline int ll_new_hw_segment(request_queue_t *q,
1277 struct request *req,
1278 struct bio *bio)
1279 {
1280 int nr_hw_segs = bio_hw_segments(q, bio);
1281 int nr_phys_segs = bio_phys_segments(q, bio);
1282
1283 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1284 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1285 req->flags |= REQ_NOMERGE;
1286 if (req == q->last_merge)
1287 q->last_merge = NULL;
1288 return 0;
1289 }
1290
1291 /*
1292 * This will form the start of a new hw segment. Bump both
1293 * counters.
1294 */
1295 req->nr_hw_segments += nr_hw_segs;
1296 req->nr_phys_segments += nr_phys_segs;
1297 return 1;
1298 }
1299
1300 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1301 struct bio *bio)
1302 {
1303 unsigned short max_sectors;
1304 int len;
1305
1306 if (unlikely(blk_pc_request(req)))
1307 max_sectors = q->max_hw_sectors;
1308 else
1309 max_sectors = q->max_sectors;
1310
1311 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1312 req->flags |= REQ_NOMERGE;
1313 if (req == q->last_merge)
1314 q->last_merge = NULL;
1315 return 0;
1316 }
1317 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1318 blk_recount_segments(q, req->biotail);
1319 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1320 blk_recount_segments(q, bio);
1321 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1322 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1323 !BIOVEC_VIRT_OVERSIZE(len)) {
1324 int mergeable = ll_new_mergeable(q, req, bio);
1325
1326 if (mergeable) {
1327 if (req->nr_hw_segments == 1)
1328 req->bio->bi_hw_front_size = len;
1329 if (bio->bi_hw_segments == 1)
1330 bio->bi_hw_back_size = len;
1331 }
1332 return mergeable;
1333 }
1334
1335 return ll_new_hw_segment(q, req, bio);
1336 }
1337
1338 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1339 struct bio *bio)
1340 {
1341 unsigned short max_sectors;
1342 int len;
1343
1344 if (unlikely(blk_pc_request(req)))
1345 max_sectors = q->max_hw_sectors;
1346 else
1347 max_sectors = q->max_sectors;
1348
1349
1350 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1351 req->flags |= REQ_NOMERGE;
1352 if (req == q->last_merge)
1353 q->last_merge = NULL;
1354 return 0;
1355 }
1356 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1357 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1358 blk_recount_segments(q, bio);
1359 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1360 blk_recount_segments(q, req->bio);
1361 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1362 !BIOVEC_VIRT_OVERSIZE(len)) {
1363 int mergeable = ll_new_mergeable(q, req, bio);
1364
1365 if (mergeable) {
1366 if (bio->bi_hw_segments == 1)
1367 bio->bi_hw_front_size = len;
1368 if (req->nr_hw_segments == 1)
1369 req->biotail->bi_hw_back_size = len;
1370 }
1371 return mergeable;
1372 }
1373
1374 return ll_new_hw_segment(q, req, bio);
1375 }
1376
1377 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1378 struct request *next)
1379 {
1380 int total_phys_segments;
1381 int total_hw_segments;
1382
1383 /*
1384 * First check if the either of the requests are re-queued
1385 * requests. Can't merge them if they are.
1386 */
1387 if (req->special || next->special)
1388 return 0;
1389
1390 /*
1391 * Will it become too large?
1392 */
1393 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1394 return 0;
1395
1396 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1397 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1398 total_phys_segments--;
1399
1400 if (total_phys_segments > q->max_phys_segments)
1401 return 0;
1402
1403 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1404 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1405 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1406 /*
1407 * propagate the combined length to the end of the requests
1408 */
1409 if (req->nr_hw_segments == 1)
1410 req->bio->bi_hw_front_size = len;
1411 if (next->nr_hw_segments == 1)
1412 next->biotail->bi_hw_back_size = len;
1413 total_hw_segments--;
1414 }
1415
1416 if (total_hw_segments > q->max_hw_segments)
1417 return 0;
1418
1419 /* Merge is OK... */
1420 req->nr_phys_segments = total_phys_segments;
1421 req->nr_hw_segments = total_hw_segments;
1422 return 1;
1423 }
1424
1425 /*
1426 * "plug" the device if there are no outstanding requests: this will
1427 * force the transfer to start only after we have put all the requests
1428 * on the list.
1429 *
1430 * This is called with interrupts off and no requests on the queue and
1431 * with the queue lock held.
1432 */
1433 void blk_plug_device(request_queue_t *q)
1434 {
1435 WARN_ON(!irqs_disabled());
1436
1437 /*
1438 * don't plug a stopped queue, it must be paired with blk_start_queue()
1439 * which will restart the queueing
1440 */
1441 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1442 return;
1443
1444 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1445 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1446 }
1447
1448 EXPORT_SYMBOL(blk_plug_device);
1449
1450 /*
1451 * remove the queue from the plugged list, if present. called with
1452 * queue lock held and interrupts disabled.
1453 */
1454 int blk_remove_plug(request_queue_t *q)
1455 {
1456 WARN_ON(!irqs_disabled());
1457
1458 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1459 return 0;
1460
1461 del_timer(&q->unplug_timer);
1462 return 1;
1463 }
1464
1465 EXPORT_SYMBOL(blk_remove_plug);
1466
1467 /*
1468 * remove the plug and let it rip..
1469 */
1470 void __generic_unplug_device(request_queue_t *q)
1471 {
1472 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1473 return;
1474
1475 if (!blk_remove_plug(q))
1476 return;
1477
1478 q->request_fn(q);
1479 }
1480 EXPORT_SYMBOL(__generic_unplug_device);
1481
1482 /**
1483 * generic_unplug_device - fire a request queue
1484 * @q: The &request_queue_t in question
1485 *
1486 * Description:
1487 * Linux uses plugging to build bigger requests queues before letting
1488 * the device have at them. If a queue is plugged, the I/O scheduler
1489 * is still adding and merging requests on the queue. Once the queue
1490 * gets unplugged, the request_fn defined for the queue is invoked and
1491 * transfers started.
1492 **/
1493 void generic_unplug_device(request_queue_t *q)
1494 {
1495 spin_lock_irq(q->queue_lock);
1496 __generic_unplug_device(q);
1497 spin_unlock_irq(q->queue_lock);
1498 }
1499 EXPORT_SYMBOL(generic_unplug_device);
1500
1501 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1502 struct page *page)
1503 {
1504 request_queue_t *q = bdi->unplug_io_data;
1505
1506 /*
1507 * devices don't necessarily have an ->unplug_fn defined
1508 */
1509 if (q->unplug_fn)
1510 q->unplug_fn(q);
1511 }
1512
1513 static void blk_unplug_work(void *data)
1514 {
1515 request_queue_t *q = data;
1516
1517 q->unplug_fn(q);
1518 }
1519
1520 static void blk_unplug_timeout(unsigned long data)
1521 {
1522 request_queue_t *q = (request_queue_t *)data;
1523
1524 kblockd_schedule_work(&q->unplug_work);
1525 }
1526
1527 /**
1528 * blk_start_queue - restart a previously stopped queue
1529 * @q: The &request_queue_t in question
1530 *
1531 * Description:
1532 * blk_start_queue() will clear the stop flag on the queue, and call
1533 * the request_fn for the queue if it was in a stopped state when
1534 * entered. Also see blk_stop_queue(). Queue lock must be held.
1535 **/
1536 void blk_start_queue(request_queue_t *q)
1537 {
1538 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1539
1540 /*
1541 * one level of recursion is ok and is much faster than kicking
1542 * the unplug handling
1543 */
1544 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1545 q->request_fn(q);
1546 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1547 } else {
1548 blk_plug_device(q);
1549 kblockd_schedule_work(&q->unplug_work);
1550 }
1551 }
1552
1553 EXPORT_SYMBOL(blk_start_queue);
1554
1555 /**
1556 * blk_stop_queue - stop a queue
1557 * @q: The &request_queue_t in question
1558 *
1559 * Description:
1560 * The Linux block layer assumes that a block driver will consume all
1561 * entries on the request queue when the request_fn strategy is called.
1562 * Often this will not happen, because of hardware limitations (queue
1563 * depth settings). If a device driver gets a 'queue full' response,
1564 * or if it simply chooses not to queue more I/O at one point, it can
1565 * call this function to prevent the request_fn from being called until
1566 * the driver has signalled it's ready to go again. This happens by calling
1567 * blk_start_queue() to restart queue operations. Queue lock must be held.
1568 **/
1569 void blk_stop_queue(request_queue_t *q)
1570 {
1571 blk_remove_plug(q);
1572 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1573 }
1574 EXPORT_SYMBOL(blk_stop_queue);
1575
1576 /**
1577 * blk_sync_queue - cancel any pending callbacks on a queue
1578 * @q: the queue
1579 *
1580 * Description:
1581 * The block layer may perform asynchronous callback activity
1582 * on a queue, such as calling the unplug function after a timeout.
1583 * A block device may call blk_sync_queue to ensure that any
1584 * such activity is cancelled, thus allowing it to release resources
1585 * the the callbacks might use. The caller must already have made sure
1586 * that its ->make_request_fn will not re-add plugging prior to calling
1587 * this function.
1588 *
1589 */
1590 void blk_sync_queue(struct request_queue *q)
1591 {
1592 del_timer_sync(&q->unplug_timer);
1593 kblockd_flush();
1594 }
1595 EXPORT_SYMBOL(blk_sync_queue);
1596
1597 /**
1598 * blk_run_queue - run a single device queue
1599 * @q: The queue to run
1600 */
1601 void blk_run_queue(struct request_queue *q)
1602 {
1603 unsigned long flags;
1604
1605 spin_lock_irqsave(q->queue_lock, flags);
1606 blk_remove_plug(q);
1607 if (!elv_queue_empty(q))
1608 q->request_fn(q);
1609 spin_unlock_irqrestore(q->queue_lock, flags);
1610 }
1611 EXPORT_SYMBOL(blk_run_queue);
1612
1613 /**
1614 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1615 * @q: the request queue to be released
1616 *
1617 * Description:
1618 * blk_cleanup_queue is the pair to blk_init_queue() or
1619 * blk_queue_make_request(). It should be called when a request queue is
1620 * being released; typically when a block device is being de-registered.
1621 * Currently, its primary task it to free all the &struct request
1622 * structures that were allocated to the queue and the queue itself.
1623 *
1624 * Caveat:
1625 * Hopefully the low level driver will have finished any
1626 * outstanding requests first...
1627 **/
1628 void blk_cleanup_queue(request_queue_t * q)
1629 {
1630 struct request_list *rl = &q->rq;
1631
1632 if (!atomic_dec_and_test(&q->refcnt))
1633 return;
1634
1635 if (q->elevator)
1636 elevator_exit(q->elevator);
1637
1638 blk_sync_queue(q);
1639
1640 if (rl->rq_pool)
1641 mempool_destroy(rl->rq_pool);
1642
1643 if (q->queue_tags)
1644 __blk_queue_free_tags(q);
1645
1646 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1647
1648 kmem_cache_free(requestq_cachep, q);
1649 }
1650
1651 EXPORT_SYMBOL(blk_cleanup_queue);
1652
1653 static int blk_init_free_list(request_queue_t *q)
1654 {
1655 struct request_list *rl = &q->rq;
1656
1657 rl->count[READ] = rl->count[WRITE] = 0;
1658 rl->starved[READ] = rl->starved[WRITE] = 0;
1659 rl->elvpriv = 0;
1660 init_waitqueue_head(&rl->wait[READ]);
1661 init_waitqueue_head(&rl->wait[WRITE]);
1662
1663 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1664 mempool_free_slab, request_cachep, q->node);
1665
1666 if (!rl->rq_pool)
1667 return -ENOMEM;
1668
1669 return 0;
1670 }
1671
1672 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1673 {
1674 return blk_alloc_queue_node(gfp_mask, -1);
1675 }
1676 EXPORT_SYMBOL(blk_alloc_queue);
1677
1678 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1679 {
1680 request_queue_t *q;
1681
1682 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1683 if (!q)
1684 return NULL;
1685
1686 memset(q, 0, sizeof(*q));
1687 init_timer(&q->unplug_timer);
1688 atomic_set(&q->refcnt, 1);
1689
1690 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1691 q->backing_dev_info.unplug_io_data = q;
1692
1693 return q;
1694 }
1695 EXPORT_SYMBOL(blk_alloc_queue_node);
1696
1697 /**
1698 * blk_init_queue - prepare a request queue for use with a block device
1699 * @rfn: The function to be called to process requests that have been
1700 * placed on the queue.
1701 * @lock: Request queue spin lock
1702 *
1703 * Description:
1704 * If a block device wishes to use the standard request handling procedures,
1705 * which sorts requests and coalesces adjacent requests, then it must
1706 * call blk_init_queue(). The function @rfn will be called when there
1707 * are requests on the queue that need to be processed. If the device
1708 * supports plugging, then @rfn may not be called immediately when requests
1709 * are available on the queue, but may be called at some time later instead.
1710 * Plugged queues are generally unplugged when a buffer belonging to one
1711 * of the requests on the queue is needed, or due to memory pressure.
1712 *
1713 * @rfn is not required, or even expected, to remove all requests off the
1714 * queue, but only as many as it can handle at a time. If it does leave
1715 * requests on the queue, it is responsible for arranging that the requests
1716 * get dealt with eventually.
1717 *
1718 * The queue spin lock must be held while manipulating the requests on the
1719 * request queue.
1720 *
1721 * Function returns a pointer to the initialized request queue, or NULL if
1722 * it didn't succeed.
1723 *
1724 * Note:
1725 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1726 * when the block device is deactivated (such as at module unload).
1727 **/
1728
1729 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1730 {
1731 return blk_init_queue_node(rfn, lock, -1);
1732 }
1733 EXPORT_SYMBOL(blk_init_queue);
1734
1735 request_queue_t *
1736 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1737 {
1738 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1739
1740 if (!q)
1741 return NULL;
1742
1743 q->node = node_id;
1744 if (blk_init_free_list(q))
1745 goto out_init;
1746
1747 /*
1748 * if caller didn't supply a lock, they get per-queue locking with
1749 * our embedded lock
1750 */
1751 if (!lock) {
1752 spin_lock_init(&q->__queue_lock);
1753 lock = &q->__queue_lock;
1754 }
1755
1756 q->request_fn = rfn;
1757 q->back_merge_fn = ll_back_merge_fn;
1758 q->front_merge_fn = ll_front_merge_fn;
1759 q->merge_requests_fn = ll_merge_requests_fn;
1760 q->prep_rq_fn = NULL;
1761 q->unplug_fn = generic_unplug_device;
1762 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1763 q->queue_lock = lock;
1764
1765 blk_queue_segment_boundary(q, 0xffffffff);
1766
1767 blk_queue_make_request(q, __make_request);
1768 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1769
1770 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1771 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1772
1773 /*
1774 * all done
1775 */
1776 if (!elevator_init(q, NULL)) {
1777 blk_queue_congestion_threshold(q);
1778 return q;
1779 }
1780
1781 blk_cleanup_queue(q);
1782 out_init:
1783 kmem_cache_free(requestq_cachep, q);
1784 return NULL;
1785 }
1786 EXPORT_SYMBOL(blk_init_queue_node);
1787
1788 int blk_get_queue(request_queue_t *q)
1789 {
1790 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1791 atomic_inc(&q->refcnt);
1792 return 0;
1793 }
1794
1795 return 1;
1796 }
1797
1798 EXPORT_SYMBOL(blk_get_queue);
1799
1800 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1801 {
1802 if (rq->flags & REQ_ELVPRIV)
1803 elv_put_request(q, rq);
1804 mempool_free(rq, q->rq.rq_pool);
1805 }
1806
1807 static inline struct request *
1808 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
1809 int priv, gfp_t gfp_mask)
1810 {
1811 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1812
1813 if (!rq)
1814 return NULL;
1815
1816 /*
1817 * first three bits are identical in rq->flags and bio->bi_rw,
1818 * see bio.h and blkdev.h
1819 */
1820 rq->flags = rw;
1821
1822 if (priv) {
1823 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
1824 mempool_free(rq, q->rq.rq_pool);
1825 return NULL;
1826 }
1827 rq->flags |= REQ_ELVPRIV;
1828 }
1829
1830 return rq;
1831 }
1832
1833 /*
1834 * ioc_batching returns true if the ioc is a valid batching request and
1835 * should be given priority access to a request.
1836 */
1837 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1838 {
1839 if (!ioc)
1840 return 0;
1841
1842 /*
1843 * Make sure the process is able to allocate at least 1 request
1844 * even if the batch times out, otherwise we could theoretically
1845 * lose wakeups.
1846 */
1847 return ioc->nr_batch_requests == q->nr_batching ||
1848 (ioc->nr_batch_requests > 0
1849 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1850 }
1851
1852 /*
1853 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1854 * will cause the process to be a "batcher" on all queues in the system. This
1855 * is the behaviour we want though - once it gets a wakeup it should be given
1856 * a nice run.
1857 */
1858 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1859 {
1860 if (!ioc || ioc_batching(q, ioc))
1861 return;
1862
1863 ioc->nr_batch_requests = q->nr_batching;
1864 ioc->last_waited = jiffies;
1865 }
1866
1867 static void __freed_request(request_queue_t *q, int rw)
1868 {
1869 struct request_list *rl = &q->rq;
1870
1871 if (rl->count[rw] < queue_congestion_off_threshold(q))
1872 clear_queue_congested(q, rw);
1873
1874 if (rl->count[rw] + 1 <= q->nr_requests) {
1875 if (waitqueue_active(&rl->wait[rw]))
1876 wake_up(&rl->wait[rw]);
1877
1878 blk_clear_queue_full(q, rw);
1879 }
1880 }
1881
1882 /*
1883 * A request has just been released. Account for it, update the full and
1884 * congestion status, wake up any waiters. Called under q->queue_lock.
1885 */
1886 static void freed_request(request_queue_t *q, int rw, int priv)
1887 {
1888 struct request_list *rl = &q->rq;
1889
1890 rl->count[rw]--;
1891 if (priv)
1892 rl->elvpriv--;
1893
1894 __freed_request(q, rw);
1895
1896 if (unlikely(rl->starved[rw ^ 1]))
1897 __freed_request(q, rw ^ 1);
1898 }
1899
1900 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1901 /*
1902 * Get a free request, queue_lock must be held.
1903 * Returns NULL on failure, with queue_lock held.
1904 * Returns !NULL on success, with queue_lock *not held*.
1905 */
1906 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1907 gfp_t gfp_mask)
1908 {
1909 struct request *rq = NULL;
1910 struct request_list *rl = &q->rq;
1911 struct io_context *ioc = NULL;
1912 int may_queue, priv;
1913
1914 may_queue = elv_may_queue(q, rw, bio);
1915 if (may_queue == ELV_MQUEUE_NO)
1916 goto rq_starved;
1917
1918 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
1919 if (rl->count[rw]+1 >= q->nr_requests) {
1920 ioc = current_io_context(GFP_ATOMIC);
1921 /*
1922 * The queue will fill after this allocation, so set
1923 * it as full, and mark this process as "batching".
1924 * This process will be allowed to complete a batch of
1925 * requests, others will be blocked.
1926 */
1927 if (!blk_queue_full(q, rw)) {
1928 ioc_set_batching(q, ioc);
1929 blk_set_queue_full(q, rw);
1930 } else {
1931 if (may_queue != ELV_MQUEUE_MUST
1932 && !ioc_batching(q, ioc)) {
1933 /*
1934 * The queue is full and the allocating
1935 * process is not a "batcher", and not
1936 * exempted by the IO scheduler
1937 */
1938 goto out;
1939 }
1940 }
1941 }
1942 set_queue_congested(q, rw);
1943 }
1944
1945 /*
1946 * Only allow batching queuers to allocate up to 50% over the defined
1947 * limit of requests, otherwise we could have thousands of requests
1948 * allocated with any setting of ->nr_requests
1949 */
1950 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1951 goto out;
1952
1953 rl->count[rw]++;
1954 rl->starved[rw] = 0;
1955
1956 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1957 if (priv)
1958 rl->elvpriv++;
1959
1960 spin_unlock_irq(q->queue_lock);
1961
1962 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
1963 if (unlikely(!rq)) {
1964 /*
1965 * Allocation failed presumably due to memory. Undo anything
1966 * we might have messed up.
1967 *
1968 * Allocating task should really be put onto the front of the
1969 * wait queue, but this is pretty rare.
1970 */
1971 spin_lock_irq(q->queue_lock);
1972 freed_request(q, rw, priv);
1973
1974 /*
1975 * in the very unlikely event that allocation failed and no
1976 * requests for this direction was pending, mark us starved
1977 * so that freeing of a request in the other direction will
1978 * notice us. another possible fix would be to split the
1979 * rq mempool into READ and WRITE
1980 */
1981 rq_starved:
1982 if (unlikely(rl->count[rw] == 0))
1983 rl->starved[rw] = 1;
1984
1985 goto out;
1986 }
1987
1988 /*
1989 * ioc may be NULL here, and ioc_batching will be false. That's
1990 * OK, if the queue is under the request limit then requests need
1991 * not count toward the nr_batch_requests limit. There will always
1992 * be some limit enforced by BLK_BATCH_TIME.
1993 */
1994 if (ioc_batching(q, ioc))
1995 ioc->nr_batch_requests--;
1996
1997 rq_init(q, rq);
1998 rq->rl = rl;
1999 out:
2000 return rq;
2001 }
2002
2003 /*
2004 * No available requests for this queue, unplug the device and wait for some
2005 * requests to become available.
2006 *
2007 * Called with q->queue_lock held, and returns with it unlocked.
2008 */
2009 static struct request *get_request_wait(request_queue_t *q, int rw,
2010 struct bio *bio)
2011 {
2012 struct request *rq;
2013
2014 rq = get_request(q, rw, bio, GFP_NOIO);
2015 while (!rq) {
2016 DEFINE_WAIT(wait);
2017 struct request_list *rl = &q->rq;
2018
2019 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2020 TASK_UNINTERRUPTIBLE);
2021
2022 rq = get_request(q, rw, bio, GFP_NOIO);
2023
2024 if (!rq) {
2025 struct io_context *ioc;
2026
2027 __generic_unplug_device(q);
2028 spin_unlock_irq(q->queue_lock);
2029 io_schedule();
2030
2031 /*
2032 * After sleeping, we become a "batching" process and
2033 * will be able to allocate at least one request, and
2034 * up to a big batch of them for a small period time.
2035 * See ioc_batching, ioc_set_batching
2036 */
2037 ioc = current_io_context(GFP_NOIO);
2038 ioc_set_batching(q, ioc);
2039
2040 spin_lock_irq(q->queue_lock);
2041 }
2042 finish_wait(&rl->wait[rw], &wait);
2043 }
2044
2045 return rq;
2046 }
2047
2048 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2049 {
2050 struct request *rq;
2051
2052 BUG_ON(rw != READ && rw != WRITE);
2053
2054 spin_lock_irq(q->queue_lock);
2055 if (gfp_mask & __GFP_WAIT) {
2056 rq = get_request_wait(q, rw, NULL);
2057 } else {
2058 rq = get_request(q, rw, NULL, gfp_mask);
2059 if (!rq)
2060 spin_unlock_irq(q->queue_lock);
2061 }
2062 /* q->queue_lock is unlocked at this point */
2063
2064 return rq;
2065 }
2066 EXPORT_SYMBOL(blk_get_request);
2067
2068 /**
2069 * blk_requeue_request - put a request back on queue
2070 * @q: request queue where request should be inserted
2071 * @rq: request to be inserted
2072 *
2073 * Description:
2074 * Drivers often keep queueing requests until the hardware cannot accept
2075 * more, when that condition happens we need to put the request back
2076 * on the queue. Must be called with queue lock held.
2077 */
2078 void blk_requeue_request(request_queue_t *q, struct request *rq)
2079 {
2080 if (blk_rq_tagged(rq))
2081 blk_queue_end_tag(q, rq);
2082
2083 elv_requeue_request(q, rq);
2084 }
2085
2086 EXPORT_SYMBOL(blk_requeue_request);
2087
2088 /**
2089 * blk_insert_request - insert a special request in to a request queue
2090 * @q: request queue where request should be inserted
2091 * @rq: request to be inserted
2092 * @at_head: insert request at head or tail of queue
2093 * @data: private data
2094 *
2095 * Description:
2096 * Many block devices need to execute commands asynchronously, so they don't
2097 * block the whole kernel from preemption during request execution. This is
2098 * accomplished normally by inserting aritficial requests tagged as
2099 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2100 * scheduled for actual execution by the request queue.
2101 *
2102 * We have the option of inserting the head or the tail of the queue.
2103 * Typically we use the tail for new ioctls and so forth. We use the head
2104 * of the queue for things like a QUEUE_FULL message from a device, or a
2105 * host that is unable to accept a particular command.
2106 */
2107 void blk_insert_request(request_queue_t *q, struct request *rq,
2108 int at_head, void *data)
2109 {
2110 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2111 unsigned long flags;
2112
2113 /*
2114 * tell I/O scheduler that this isn't a regular read/write (ie it
2115 * must not attempt merges on this) and that it acts as a soft
2116 * barrier
2117 */
2118 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2119
2120 rq->special = data;
2121
2122 spin_lock_irqsave(q->queue_lock, flags);
2123
2124 /*
2125 * If command is tagged, release the tag
2126 */
2127 if (blk_rq_tagged(rq))
2128 blk_queue_end_tag(q, rq);
2129
2130 drive_stat_acct(rq, rq->nr_sectors, 1);
2131 __elv_add_request(q, rq, where, 0);
2132
2133 if (blk_queue_plugged(q))
2134 __generic_unplug_device(q);
2135 else
2136 q->request_fn(q);
2137 spin_unlock_irqrestore(q->queue_lock, flags);
2138 }
2139
2140 EXPORT_SYMBOL(blk_insert_request);
2141
2142 /**
2143 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2144 * @q: request queue where request should be inserted
2145 * @rq: request structure to fill
2146 * @ubuf: the user buffer
2147 * @len: length of user data
2148 *
2149 * Description:
2150 * Data will be mapped directly for zero copy io, if possible. Otherwise
2151 * a kernel bounce buffer is used.
2152 *
2153 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2154 * still in process context.
2155 *
2156 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2157 * before being submitted to the device, as pages mapped may be out of
2158 * reach. It's the callers responsibility to make sure this happens. The
2159 * original bio must be passed back in to blk_rq_unmap_user() for proper
2160 * unmapping.
2161 */
2162 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2163 unsigned int len)
2164 {
2165 unsigned long uaddr;
2166 struct bio *bio;
2167 int reading;
2168
2169 if (len > (q->max_hw_sectors << 9))
2170 return -EINVAL;
2171 if (!len || !ubuf)
2172 return -EINVAL;
2173
2174 reading = rq_data_dir(rq) == READ;
2175
2176 /*
2177 * if alignment requirement is satisfied, map in user pages for
2178 * direct dma. else, set up kernel bounce buffers
2179 */
2180 uaddr = (unsigned long) ubuf;
2181 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2182 bio = bio_map_user(q, NULL, uaddr, len, reading);
2183 else
2184 bio = bio_copy_user(q, uaddr, len, reading);
2185
2186 if (!IS_ERR(bio)) {
2187 rq->bio = rq->biotail = bio;
2188 blk_rq_bio_prep(q, rq, bio);
2189
2190 rq->buffer = rq->data = NULL;
2191 rq->data_len = len;
2192 return 0;
2193 }
2194
2195 /*
2196 * bio is the err-ptr
2197 */
2198 return PTR_ERR(bio);
2199 }
2200
2201 EXPORT_SYMBOL(blk_rq_map_user);
2202
2203 /**
2204 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2205 * @q: request queue where request should be inserted
2206 * @rq: request to map data to
2207 * @iov: pointer to the iovec
2208 * @iov_count: number of elements in the iovec
2209 *
2210 * Description:
2211 * Data will be mapped directly for zero copy io, if possible. Otherwise
2212 * a kernel bounce buffer is used.
2213 *
2214 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2215 * still in process context.
2216 *
2217 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2218 * before being submitted to the device, as pages mapped may be out of
2219 * reach. It's the callers responsibility to make sure this happens. The
2220 * original bio must be passed back in to blk_rq_unmap_user() for proper
2221 * unmapping.
2222 */
2223 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2224 struct sg_iovec *iov, int iov_count)
2225 {
2226 struct bio *bio;
2227
2228 if (!iov || iov_count <= 0)
2229 return -EINVAL;
2230
2231 /* we don't allow misaligned data like bio_map_user() does. If the
2232 * user is using sg, they're expected to know the alignment constraints
2233 * and respect them accordingly */
2234 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2235 if (IS_ERR(bio))
2236 return PTR_ERR(bio);
2237
2238 rq->bio = rq->biotail = bio;
2239 blk_rq_bio_prep(q, rq, bio);
2240 rq->buffer = rq->data = NULL;
2241 rq->data_len = bio->bi_size;
2242 return 0;
2243 }
2244
2245 EXPORT_SYMBOL(blk_rq_map_user_iov);
2246
2247 /**
2248 * blk_rq_unmap_user - unmap a request with user data
2249 * @bio: bio to be unmapped
2250 * @ulen: length of user buffer
2251 *
2252 * Description:
2253 * Unmap a bio previously mapped by blk_rq_map_user().
2254 */
2255 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2256 {
2257 int ret = 0;
2258
2259 if (bio) {
2260 if (bio_flagged(bio, BIO_USER_MAPPED))
2261 bio_unmap_user(bio);
2262 else
2263 ret = bio_uncopy_user(bio);
2264 }
2265
2266 return 0;
2267 }
2268
2269 EXPORT_SYMBOL(blk_rq_unmap_user);
2270
2271 /**
2272 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2273 * @q: request queue where request should be inserted
2274 * @rq: request to fill
2275 * @kbuf: the kernel buffer
2276 * @len: length of user data
2277 * @gfp_mask: memory allocation flags
2278 */
2279 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2280 unsigned int len, gfp_t gfp_mask)
2281 {
2282 struct bio *bio;
2283
2284 if (len > (q->max_hw_sectors << 9))
2285 return -EINVAL;
2286 if (!len || !kbuf)
2287 return -EINVAL;
2288
2289 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2290 if (IS_ERR(bio))
2291 return PTR_ERR(bio);
2292
2293 if (rq_data_dir(rq) == WRITE)
2294 bio->bi_rw |= (1 << BIO_RW);
2295
2296 rq->bio = rq->biotail = bio;
2297 blk_rq_bio_prep(q, rq, bio);
2298
2299 rq->buffer = rq->data = NULL;
2300 rq->data_len = len;
2301 return 0;
2302 }
2303
2304 EXPORT_SYMBOL(blk_rq_map_kern);
2305
2306 /**
2307 * blk_execute_rq_nowait - insert a request into queue for execution
2308 * @q: queue to insert the request in
2309 * @bd_disk: matching gendisk
2310 * @rq: request to insert
2311 * @at_head: insert request at head or tail of queue
2312 * @done: I/O completion handler
2313 *
2314 * Description:
2315 * Insert a fully prepared request at the back of the io scheduler queue
2316 * for execution. Don't wait for completion.
2317 */
2318 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2319 struct request *rq, int at_head,
2320 rq_end_io_fn *done)
2321 {
2322 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2323
2324 rq->rq_disk = bd_disk;
2325 rq->flags |= REQ_NOMERGE;
2326 rq->end_io = done;
2327 elv_add_request(q, rq, where, 1);
2328 generic_unplug_device(q);
2329 }
2330
2331 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2332
2333 /**
2334 * blk_execute_rq - insert a request into queue for execution
2335 * @q: queue to insert the request in
2336 * @bd_disk: matching gendisk
2337 * @rq: request to insert
2338 * @at_head: insert request at head or tail of queue
2339 *
2340 * Description:
2341 * Insert a fully prepared request at the back of the io scheduler queue
2342 * for execution and wait for completion.
2343 */
2344 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2345 struct request *rq, int at_head)
2346 {
2347 DECLARE_COMPLETION(wait);
2348 char sense[SCSI_SENSE_BUFFERSIZE];
2349 int err = 0;
2350
2351 /*
2352 * we need an extra reference to the request, so we can look at
2353 * it after io completion
2354 */
2355 rq->ref_count++;
2356
2357 if (!rq->sense) {
2358 memset(sense, 0, sizeof(sense));
2359 rq->sense = sense;
2360 rq->sense_len = 0;
2361 }
2362
2363 rq->waiting = &wait;
2364 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2365 wait_for_completion(&wait);
2366 rq->waiting = NULL;
2367
2368 if (rq->errors)
2369 err = -EIO;
2370
2371 return err;
2372 }
2373
2374 EXPORT_SYMBOL(blk_execute_rq);
2375
2376 /**
2377 * blkdev_issue_flush - queue a flush
2378 * @bdev: blockdev to issue flush for
2379 * @error_sector: error sector
2380 *
2381 * Description:
2382 * Issue a flush for the block device in question. Caller can supply
2383 * room for storing the error offset in case of a flush error, if they
2384 * wish to. Caller must run wait_for_completion() on its own.
2385 */
2386 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2387 {
2388 request_queue_t *q;
2389
2390 if (bdev->bd_disk == NULL)
2391 return -ENXIO;
2392
2393 q = bdev_get_queue(bdev);
2394 if (!q)
2395 return -ENXIO;
2396 if (!q->issue_flush_fn)
2397 return -EOPNOTSUPP;
2398
2399 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2400 }
2401
2402 EXPORT_SYMBOL(blkdev_issue_flush);
2403
2404 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2405 {
2406 int rw = rq_data_dir(rq);
2407
2408 if (!blk_fs_request(rq) || !rq->rq_disk)
2409 return;
2410
2411 if (!new_io) {
2412 __disk_stat_inc(rq->rq_disk, merges[rw]);
2413 } else {
2414 disk_round_stats(rq->rq_disk);
2415 rq->rq_disk->in_flight++;
2416 }
2417 }
2418
2419 /*
2420 * add-request adds a request to the linked list.
2421 * queue lock is held and interrupts disabled, as we muck with the
2422 * request queue list.
2423 */
2424 static inline void add_request(request_queue_t * q, struct request * req)
2425 {
2426 drive_stat_acct(req, req->nr_sectors, 1);
2427
2428 if (q->activity_fn)
2429 q->activity_fn(q->activity_data, rq_data_dir(req));
2430
2431 /*
2432 * elevator indicated where it wants this request to be
2433 * inserted at elevator_merge time
2434 */
2435 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2436 }
2437
2438 /*
2439 * disk_round_stats() - Round off the performance stats on a struct
2440 * disk_stats.
2441 *
2442 * The average IO queue length and utilisation statistics are maintained
2443 * by observing the current state of the queue length and the amount of
2444 * time it has been in this state for.
2445 *
2446 * Normally, that accounting is done on IO completion, but that can result
2447 * in more than a second's worth of IO being accounted for within any one
2448 * second, leading to >100% utilisation. To deal with that, we call this
2449 * function to do a round-off before returning the results when reading
2450 * /proc/diskstats. This accounts immediately for all queue usage up to
2451 * the current jiffies and restarts the counters again.
2452 */
2453 void disk_round_stats(struct gendisk *disk)
2454 {
2455 unsigned long now = jiffies;
2456
2457 if (now == disk->stamp)
2458 return;
2459
2460 if (disk->in_flight) {
2461 __disk_stat_add(disk, time_in_queue,
2462 disk->in_flight * (now - disk->stamp));
2463 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2464 }
2465 disk->stamp = now;
2466 }
2467
2468 /*
2469 * queue lock must be held
2470 */
2471 void __blk_put_request(request_queue_t *q, struct request *req)
2472 {
2473 struct request_list *rl = req->rl;
2474
2475 if (unlikely(!q))
2476 return;
2477 if (unlikely(--req->ref_count))
2478 return;
2479
2480 elv_completed_request(q, req);
2481
2482 req->rq_status = RQ_INACTIVE;
2483 req->rl = NULL;
2484
2485 /*
2486 * Request may not have originated from ll_rw_blk. if not,
2487 * it didn't come out of our reserved rq pools
2488 */
2489 if (rl) {
2490 int rw = rq_data_dir(req);
2491 int priv = req->flags & REQ_ELVPRIV;
2492
2493 BUG_ON(!list_empty(&req->queuelist));
2494
2495 blk_free_request(q, req);
2496 freed_request(q, rw, priv);
2497 }
2498 }
2499
2500 EXPORT_SYMBOL_GPL(__blk_put_request);
2501
2502 void blk_put_request(struct request *req)
2503 {
2504 unsigned long flags;
2505 request_queue_t *q = req->q;
2506
2507 /*
2508 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2509 * following if (q) test.
2510 */
2511 if (q) {
2512 spin_lock_irqsave(q->queue_lock, flags);
2513 __blk_put_request(q, req);
2514 spin_unlock_irqrestore(q->queue_lock, flags);
2515 }
2516 }
2517
2518 EXPORT_SYMBOL(blk_put_request);
2519
2520 /**
2521 * blk_end_sync_rq - executes a completion event on a request
2522 * @rq: request to complete
2523 */
2524 void blk_end_sync_rq(struct request *rq, int error)
2525 {
2526 struct completion *waiting = rq->waiting;
2527
2528 rq->waiting = NULL;
2529 __blk_put_request(rq->q, rq);
2530
2531 /*
2532 * complete last, if this is a stack request the process (and thus
2533 * the rq pointer) could be invalid right after this complete()
2534 */
2535 complete(waiting);
2536 }
2537 EXPORT_SYMBOL(blk_end_sync_rq);
2538
2539 /**
2540 * blk_congestion_wait - wait for a queue to become uncongested
2541 * @rw: READ or WRITE
2542 * @timeout: timeout in jiffies
2543 *
2544 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2545 * If no queues are congested then just wait for the next request to be
2546 * returned.
2547 */
2548 long blk_congestion_wait(int rw, long timeout)
2549 {
2550 long ret;
2551 DEFINE_WAIT(wait);
2552 wait_queue_head_t *wqh = &congestion_wqh[rw];
2553
2554 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2555 ret = io_schedule_timeout(timeout);
2556 finish_wait(wqh, &wait);
2557 return ret;
2558 }
2559
2560 EXPORT_SYMBOL(blk_congestion_wait);
2561
2562 /*
2563 * Has to be called with the request spinlock acquired
2564 */
2565 static int attempt_merge(request_queue_t *q, struct request *req,
2566 struct request *next)
2567 {
2568 if (!rq_mergeable(req) || !rq_mergeable(next))
2569 return 0;
2570
2571 /*
2572 * not contigious
2573 */
2574 if (req->sector + req->nr_sectors != next->sector)
2575 return 0;
2576
2577 if (rq_data_dir(req) != rq_data_dir(next)
2578 || req->rq_disk != next->rq_disk
2579 || next->waiting || next->special)
2580 return 0;
2581
2582 /*
2583 * If we are allowed to merge, then append bio list
2584 * from next to rq and release next. merge_requests_fn
2585 * will have updated segment counts, update sector
2586 * counts here.
2587 */
2588 if (!q->merge_requests_fn(q, req, next))
2589 return 0;
2590
2591 /*
2592 * At this point we have either done a back merge
2593 * or front merge. We need the smaller start_time of
2594 * the merged requests to be the current request
2595 * for accounting purposes.
2596 */
2597 if (time_after(req->start_time, next->start_time))
2598 req->start_time = next->start_time;
2599
2600 req->biotail->bi_next = next->bio;
2601 req->biotail = next->biotail;
2602
2603 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2604
2605 elv_merge_requests(q, req, next);
2606
2607 if (req->rq_disk) {
2608 disk_round_stats(req->rq_disk);
2609 req->rq_disk->in_flight--;
2610 }
2611
2612 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2613
2614 __blk_put_request(q, next);
2615 return 1;
2616 }
2617
2618 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2619 {
2620 struct request *next = elv_latter_request(q, rq);
2621
2622 if (next)
2623 return attempt_merge(q, rq, next);
2624
2625 return 0;
2626 }
2627
2628 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2629 {
2630 struct request *prev = elv_former_request(q, rq);
2631
2632 if (prev)
2633 return attempt_merge(q, prev, rq);
2634
2635 return 0;
2636 }
2637
2638 /**
2639 * blk_attempt_remerge - attempt to remerge active head with next request
2640 * @q: The &request_queue_t belonging to the device
2641 * @rq: The head request (usually)
2642 *
2643 * Description:
2644 * For head-active devices, the queue can easily be unplugged so quickly
2645 * that proper merging is not done on the front request. This may hurt
2646 * performance greatly for some devices. The block layer cannot safely
2647 * do merging on that first request for these queues, but the driver can
2648 * call this function and make it happen any way. Only the driver knows
2649 * when it is safe to do so.
2650 **/
2651 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2652 {
2653 unsigned long flags;
2654
2655 spin_lock_irqsave(q->queue_lock, flags);
2656 attempt_back_merge(q, rq);
2657 spin_unlock_irqrestore(q->queue_lock, flags);
2658 }
2659
2660 EXPORT_SYMBOL(blk_attempt_remerge);
2661
2662 static void init_request_from_bio(struct request *req, struct bio *bio)
2663 {
2664 req->flags |= REQ_CMD;
2665
2666 /*
2667 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2668 */
2669 if (bio_rw_ahead(bio) || bio_failfast(bio))
2670 req->flags |= REQ_FAILFAST;
2671
2672 /*
2673 * REQ_BARRIER implies no merging, but lets make it explicit
2674 */
2675 if (unlikely(bio_barrier(bio)))
2676 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2677
2678 req->errors = 0;
2679 req->hard_sector = req->sector = bio->bi_sector;
2680 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2681 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2682 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2683 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2684 req->buffer = bio_data(bio); /* see ->buffer comment above */
2685 req->waiting = NULL;
2686 req->bio = req->biotail = bio;
2687 req->ioprio = bio_prio(bio);
2688 req->rq_disk = bio->bi_bdev->bd_disk;
2689 req->start_time = jiffies;
2690 }
2691
2692 static int __make_request(request_queue_t *q, struct bio *bio)
2693 {
2694 struct request *req;
2695 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2696 unsigned short prio;
2697 sector_t sector;
2698
2699 sector = bio->bi_sector;
2700 nr_sectors = bio_sectors(bio);
2701 cur_nr_sectors = bio_cur_sectors(bio);
2702 prio = bio_prio(bio);
2703
2704 rw = bio_data_dir(bio);
2705 sync = bio_sync(bio);
2706
2707 /*
2708 * low level driver can indicate that it wants pages above a
2709 * certain limit bounced to low memory (ie for highmem, or even
2710 * ISA dma in theory)
2711 */
2712 blk_queue_bounce(q, &bio);
2713
2714 spin_lock_prefetch(q->queue_lock);
2715
2716 barrier = bio_barrier(bio);
2717 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2718 err = -EOPNOTSUPP;
2719 goto end_io;
2720 }
2721
2722 spin_lock_irq(q->queue_lock);
2723
2724 if (unlikely(barrier) || elv_queue_empty(q))
2725 goto get_rq;
2726
2727 el_ret = elv_merge(q, &req, bio);
2728 switch (el_ret) {
2729 case ELEVATOR_BACK_MERGE:
2730 BUG_ON(!rq_mergeable(req));
2731
2732 if (!q->back_merge_fn(q, req, bio))
2733 break;
2734
2735 req->biotail->bi_next = bio;
2736 req->biotail = bio;
2737 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2738 req->ioprio = ioprio_best(req->ioprio, prio);
2739 drive_stat_acct(req, nr_sectors, 0);
2740 if (!attempt_back_merge(q, req))
2741 elv_merged_request(q, req);
2742 goto out;
2743
2744 case ELEVATOR_FRONT_MERGE:
2745 BUG_ON(!rq_mergeable(req));
2746
2747 if (!q->front_merge_fn(q, req, bio))
2748 break;
2749
2750 bio->bi_next = req->bio;
2751 req->bio = bio;
2752
2753 /*
2754 * may not be valid. if the low level driver said
2755 * it didn't need a bounce buffer then it better
2756 * not touch req->buffer either...
2757 */
2758 req->buffer = bio_data(bio);
2759 req->current_nr_sectors = cur_nr_sectors;
2760 req->hard_cur_sectors = cur_nr_sectors;
2761 req->sector = req->hard_sector = sector;
2762 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2763 req->ioprio = ioprio_best(req->ioprio, prio);
2764 drive_stat_acct(req, nr_sectors, 0);
2765 if (!attempt_front_merge(q, req))
2766 elv_merged_request(q, req);
2767 goto out;
2768
2769 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2770 default:
2771 ;
2772 }
2773
2774 get_rq:
2775 /*
2776 * Grab a free request. This is might sleep but can not fail.
2777 * Returns with the queue unlocked.
2778 */
2779 req = get_request_wait(q, rw, bio);
2780
2781 /*
2782 * After dropping the lock and possibly sleeping here, our request
2783 * may now be mergeable after it had proven unmergeable (above).
2784 * We don't worry about that case for efficiency. It won't happen
2785 * often, and the elevators are able to handle it.
2786 */
2787 init_request_from_bio(req, bio);
2788
2789 spin_lock_irq(q->queue_lock);
2790 if (elv_queue_empty(q))
2791 blk_plug_device(q);
2792 add_request(q, req);
2793 out:
2794 if (sync)
2795 __generic_unplug_device(q);
2796
2797 spin_unlock_irq(q->queue_lock);
2798 return 0;
2799
2800 end_io:
2801 bio_endio(bio, nr_sectors << 9, err);
2802 return 0;
2803 }
2804
2805 /*
2806 * If bio->bi_dev is a partition, remap the location
2807 */
2808 static inline void blk_partition_remap(struct bio *bio)
2809 {
2810 struct block_device *bdev = bio->bi_bdev;
2811
2812 if (bdev != bdev->bd_contains) {
2813 struct hd_struct *p = bdev->bd_part;
2814 const int rw = bio_data_dir(bio);
2815
2816 p->sectors[rw] += bio_sectors(bio);
2817 p->ios[rw]++;
2818
2819 bio->bi_sector += p->start_sect;
2820 bio->bi_bdev = bdev->bd_contains;
2821 }
2822 }
2823
2824 static void handle_bad_sector(struct bio *bio)
2825 {
2826 char b[BDEVNAME_SIZE];
2827
2828 printk(KERN_INFO "attempt to access beyond end of device\n");
2829 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2830 bdevname(bio->bi_bdev, b),
2831 bio->bi_rw,
2832 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2833 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2834
2835 set_bit(BIO_EOF, &bio->bi_flags);
2836 }
2837
2838 /**
2839 * generic_make_request: hand a buffer to its device driver for I/O
2840 * @bio: The bio describing the location in memory and on the device.
2841 *
2842 * generic_make_request() is used to make I/O requests of block
2843 * devices. It is passed a &struct bio, which describes the I/O that needs
2844 * to be done.
2845 *
2846 * generic_make_request() does not return any status. The
2847 * success/failure status of the request, along with notification of
2848 * completion, is delivered asynchronously through the bio->bi_end_io
2849 * function described (one day) else where.
2850 *
2851 * The caller of generic_make_request must make sure that bi_io_vec
2852 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2853 * set to describe the device address, and the
2854 * bi_end_io and optionally bi_private are set to describe how
2855 * completion notification should be signaled.
2856 *
2857 * generic_make_request and the drivers it calls may use bi_next if this
2858 * bio happens to be merged with someone else, and may change bi_dev and
2859 * bi_sector for remaps as it sees fit. So the values of these fields
2860 * should NOT be depended on after the call to generic_make_request.
2861 */
2862 void generic_make_request(struct bio *bio)
2863 {
2864 request_queue_t *q;
2865 sector_t maxsector;
2866 int ret, nr_sectors = bio_sectors(bio);
2867
2868 might_sleep();
2869 /* Test device or partition size, when known. */
2870 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2871 if (maxsector) {
2872 sector_t sector = bio->bi_sector;
2873
2874 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2875 /*
2876 * This may well happen - the kernel calls bread()
2877 * without checking the size of the device, e.g., when
2878 * mounting a device.
2879 */
2880 handle_bad_sector(bio);
2881 goto end_io;
2882 }
2883 }
2884
2885 /*
2886 * Resolve the mapping until finished. (drivers are
2887 * still free to implement/resolve their own stacking
2888 * by explicitly returning 0)
2889 *
2890 * NOTE: we don't repeat the blk_size check for each new device.
2891 * Stacking drivers are expected to know what they are doing.
2892 */
2893 do {
2894 char b[BDEVNAME_SIZE];
2895
2896 q = bdev_get_queue(bio->bi_bdev);
2897 if (!q) {
2898 printk(KERN_ERR
2899 "generic_make_request: Trying to access "
2900 "nonexistent block-device %s (%Lu)\n",
2901 bdevname(bio->bi_bdev, b),
2902 (long long) bio->bi_sector);
2903 end_io:
2904 bio_endio(bio, bio->bi_size, -EIO);
2905 break;
2906 }
2907
2908 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2909 printk("bio too big device %s (%u > %u)\n",
2910 bdevname(bio->bi_bdev, b),
2911 bio_sectors(bio),
2912 q->max_hw_sectors);
2913 goto end_io;
2914 }
2915
2916 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2917 goto end_io;
2918
2919 /*
2920 * If this device has partitions, remap block n
2921 * of partition p to block n+start(p) of the disk.
2922 */
2923 blk_partition_remap(bio);
2924
2925 ret = q->make_request_fn(q, bio);
2926 } while (ret);
2927 }
2928
2929 EXPORT_SYMBOL(generic_make_request);
2930
2931 /**
2932 * submit_bio: submit a bio to the block device layer for I/O
2933 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2934 * @bio: The &struct bio which describes the I/O
2935 *
2936 * submit_bio() is very similar in purpose to generic_make_request(), and
2937 * uses that function to do most of the work. Both are fairly rough
2938 * interfaces, @bio must be presetup and ready for I/O.
2939 *
2940 */
2941 void submit_bio(int rw, struct bio *bio)
2942 {
2943 int count = bio_sectors(bio);
2944
2945 BIO_BUG_ON(!bio->bi_size);
2946 BIO_BUG_ON(!bio->bi_io_vec);
2947 bio->bi_rw |= rw;
2948 if (rw & WRITE)
2949 mod_page_state(pgpgout, count);
2950 else
2951 mod_page_state(pgpgin, count);
2952
2953 if (unlikely(block_dump)) {
2954 char b[BDEVNAME_SIZE];
2955 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2956 current->comm, current->pid,
2957 (rw & WRITE) ? "WRITE" : "READ",
2958 (unsigned long long)bio->bi_sector,
2959 bdevname(bio->bi_bdev,b));
2960 }
2961
2962 generic_make_request(bio);
2963 }
2964
2965 EXPORT_SYMBOL(submit_bio);
2966
2967 static void blk_recalc_rq_segments(struct request *rq)
2968 {
2969 struct bio *bio, *prevbio = NULL;
2970 int nr_phys_segs, nr_hw_segs;
2971 unsigned int phys_size, hw_size;
2972 request_queue_t *q = rq->q;
2973
2974 if (!rq->bio)
2975 return;
2976
2977 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2978 rq_for_each_bio(bio, rq) {
2979 /* Force bio hw/phys segs to be recalculated. */
2980 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2981
2982 nr_phys_segs += bio_phys_segments(q, bio);
2983 nr_hw_segs += bio_hw_segments(q, bio);
2984 if (prevbio) {
2985 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2986 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2987
2988 if (blk_phys_contig_segment(q, prevbio, bio) &&
2989 pseg <= q->max_segment_size) {
2990 nr_phys_segs--;
2991 phys_size += prevbio->bi_size + bio->bi_size;
2992 } else
2993 phys_size = 0;
2994
2995 if (blk_hw_contig_segment(q, prevbio, bio) &&
2996 hseg <= q->max_segment_size) {
2997 nr_hw_segs--;
2998 hw_size += prevbio->bi_size + bio->bi_size;
2999 } else
3000 hw_size = 0;
3001 }
3002 prevbio = bio;
3003 }
3004
3005 rq->nr_phys_segments = nr_phys_segs;
3006 rq->nr_hw_segments = nr_hw_segs;
3007 }
3008
3009 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3010 {
3011 if (blk_fs_request(rq)) {
3012 rq->hard_sector += nsect;
3013 rq->hard_nr_sectors -= nsect;
3014
3015 /*
3016 * Move the I/O submission pointers ahead if required.
3017 */
3018 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3019 (rq->sector <= rq->hard_sector)) {
3020 rq->sector = rq->hard_sector;
3021 rq->nr_sectors = rq->hard_nr_sectors;
3022 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3023 rq->current_nr_sectors = rq->hard_cur_sectors;
3024 rq->buffer = bio_data(rq->bio);
3025 }
3026
3027 /*
3028 * if total number of sectors is less than the first segment
3029 * size, something has gone terribly wrong
3030 */
3031 if (rq->nr_sectors < rq->current_nr_sectors) {
3032 printk("blk: request botched\n");
3033 rq->nr_sectors = rq->current_nr_sectors;
3034 }
3035 }
3036 }
3037
3038 static int __end_that_request_first(struct request *req, int uptodate,
3039 int nr_bytes)
3040 {
3041 int total_bytes, bio_nbytes, error, next_idx = 0;
3042 struct bio *bio;
3043
3044 /*
3045 * extend uptodate bool to allow < 0 value to be direct io error
3046 */
3047 error = 0;
3048 if (end_io_error(uptodate))
3049 error = !uptodate ? -EIO : uptodate;
3050
3051 /*
3052 * for a REQ_BLOCK_PC request, we want to carry any eventual
3053 * sense key with us all the way through
3054 */
3055 if (!blk_pc_request(req))
3056 req->errors = 0;
3057
3058 if (!uptodate) {
3059 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3060 printk("end_request: I/O error, dev %s, sector %llu\n",
3061 req->rq_disk ? req->rq_disk->disk_name : "?",
3062 (unsigned long long)req->sector);
3063 }
3064
3065 if (blk_fs_request(req) && req->rq_disk) {
3066 const int rw = rq_data_dir(req);
3067
3068 __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3069 }
3070
3071 total_bytes = bio_nbytes = 0;
3072 while ((bio = req->bio) != NULL) {
3073 int nbytes;
3074
3075 if (nr_bytes >= bio->bi_size) {
3076 req->bio = bio->bi_next;
3077 nbytes = bio->bi_size;
3078 bio_endio(bio, nbytes, error);
3079 next_idx = 0;
3080 bio_nbytes = 0;
3081 } else {
3082 int idx = bio->bi_idx + next_idx;
3083
3084 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3085 blk_dump_rq_flags(req, "__end_that");
3086 printk("%s: bio idx %d >= vcnt %d\n",
3087 __FUNCTION__,
3088 bio->bi_idx, bio->bi_vcnt);
3089 break;
3090 }
3091
3092 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3093 BIO_BUG_ON(nbytes > bio->bi_size);
3094
3095 /*
3096 * not a complete bvec done
3097 */
3098 if (unlikely(nbytes > nr_bytes)) {
3099 bio_nbytes += nr_bytes;
3100 total_bytes += nr_bytes;
3101 break;
3102 }
3103
3104 /*
3105 * advance to the next vector
3106 */
3107 next_idx++;
3108 bio_nbytes += nbytes;
3109 }
3110
3111 total_bytes += nbytes;
3112 nr_bytes -= nbytes;
3113
3114 if ((bio = req->bio)) {
3115 /*
3116 * end more in this run, or just return 'not-done'
3117 */
3118 if (unlikely(nr_bytes <= 0))
3119 break;
3120 }
3121 }
3122
3123 /*
3124 * completely done
3125 */
3126 if (!req->bio)
3127 return 0;
3128
3129 /*
3130 * if the request wasn't completed, update state
3131 */
3132 if (bio_nbytes) {
3133 bio_endio(bio, bio_nbytes, error);
3134 bio->bi_idx += next_idx;
3135 bio_iovec(bio)->bv_offset += nr_bytes;
3136 bio_iovec(bio)->bv_len -= nr_bytes;
3137 }
3138
3139 blk_recalc_rq_sectors(req, total_bytes >> 9);
3140 blk_recalc_rq_segments(req);
3141 return 1;
3142 }
3143
3144 /**
3145 * end_that_request_first - end I/O on a request
3146 * @req: the request being processed
3147 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3148 * @nr_sectors: number of sectors to end I/O on
3149 *
3150 * Description:
3151 * Ends I/O on a number of sectors attached to @req, and sets it up
3152 * for the next range of segments (if any) in the cluster.
3153 *
3154 * Return:
3155 * 0 - we are done with this request, call end_that_request_last()
3156 * 1 - still buffers pending for this request
3157 **/
3158 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3159 {
3160 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3161 }
3162
3163 EXPORT_SYMBOL(end_that_request_first);
3164
3165 /**
3166 * end_that_request_chunk - end I/O on a request
3167 * @req: the request being processed
3168 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3169 * @nr_bytes: number of bytes to complete
3170 *
3171 * Description:
3172 * Ends I/O on a number of bytes attached to @req, and sets it up
3173 * for the next range of segments (if any). Like end_that_request_first(),
3174 * but deals with bytes instead of sectors.
3175 *
3176 * Return:
3177 * 0 - we are done with this request, call end_that_request_last()
3178 * 1 - still buffers pending for this request
3179 **/
3180 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3181 {
3182 return __end_that_request_first(req, uptodate, nr_bytes);
3183 }
3184
3185 EXPORT_SYMBOL(end_that_request_chunk);
3186
3187 /*
3188 * queue lock must be held
3189 */
3190 void end_that_request_last(struct request *req, int uptodate)
3191 {
3192 struct gendisk *disk = req->rq_disk;
3193 int error;
3194
3195 /*
3196 * extend uptodate bool to allow < 0 value to be direct io error
3197 */
3198 error = 0;
3199 if (end_io_error(uptodate))
3200 error = !uptodate ? -EIO : uptodate;
3201
3202 if (unlikely(laptop_mode) && blk_fs_request(req))
3203 laptop_io_completion();
3204
3205 if (disk && blk_fs_request(req)) {
3206 unsigned long duration = jiffies - req->start_time;
3207 const int rw = rq_data_dir(req);
3208
3209 __disk_stat_inc(disk, ios[rw]);
3210 __disk_stat_add(disk, ticks[rw], duration);
3211 disk_round_stats(disk);
3212 disk->in_flight--;
3213 }
3214 if (req->end_io)
3215 req->end_io(req, error);
3216 else
3217 __blk_put_request(req->q, req);
3218 }
3219
3220 EXPORT_SYMBOL(end_that_request_last);
3221
3222 void end_request(struct request *req, int uptodate)
3223 {
3224 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3225 add_disk_randomness(req->rq_disk);
3226 blkdev_dequeue_request(req);
3227 end_that_request_last(req, uptodate);
3228 }
3229 }
3230
3231 EXPORT_SYMBOL(end_request);
3232
3233 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3234 {
3235 /* first three bits are identical in rq->flags and bio->bi_rw */
3236 rq->flags |= (bio->bi_rw & 7);
3237
3238 rq->nr_phys_segments = bio_phys_segments(q, bio);
3239 rq->nr_hw_segments = bio_hw_segments(q, bio);
3240 rq->current_nr_sectors = bio_cur_sectors(bio);
3241 rq->hard_cur_sectors = rq->current_nr_sectors;
3242 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3243 rq->buffer = bio_data(bio);
3244
3245 rq->bio = rq->biotail = bio;
3246 }
3247
3248 EXPORT_SYMBOL(blk_rq_bio_prep);
3249
3250 int kblockd_schedule_work(struct work_struct *work)
3251 {
3252 return queue_work(kblockd_workqueue, work);
3253 }
3254
3255 EXPORT_SYMBOL(kblockd_schedule_work);
3256
3257 void kblockd_flush(void)
3258 {
3259 flush_workqueue(kblockd_workqueue);
3260 }
3261 EXPORT_SYMBOL(kblockd_flush);
3262
3263 int __init blk_dev_init(void)
3264 {
3265 kblockd_workqueue = create_workqueue("kblockd");
3266 if (!kblockd_workqueue)
3267 panic("Failed to create kblockd\n");
3268
3269 request_cachep = kmem_cache_create("blkdev_requests",
3270 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3271
3272 requestq_cachep = kmem_cache_create("blkdev_queue",
3273 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3274
3275 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3276 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3277
3278 blk_max_low_pfn = max_low_pfn;
3279 blk_max_pfn = max_pfn;
3280
3281 return 0;
3282 }
3283
3284 /*
3285 * IO Context helper functions
3286 */
3287 void put_io_context(struct io_context *ioc)
3288 {
3289 if (ioc == NULL)
3290 return;
3291
3292 BUG_ON(atomic_read(&ioc->refcount) == 0);
3293
3294 if (atomic_dec_and_test(&ioc->refcount)) {
3295 if (ioc->aic && ioc->aic->dtor)
3296 ioc->aic->dtor(ioc->aic);
3297 if (ioc->cic && ioc->cic->dtor)
3298 ioc->cic->dtor(ioc->cic);
3299
3300 kmem_cache_free(iocontext_cachep, ioc);
3301 }
3302 }
3303 EXPORT_SYMBOL(put_io_context);
3304
3305 /* Called by the exitting task */
3306 void exit_io_context(void)
3307 {
3308 unsigned long flags;
3309 struct io_context *ioc;
3310
3311 local_irq_save(flags);
3312 task_lock(current);
3313 ioc = current->io_context;
3314 current->io_context = NULL;
3315 ioc->task = NULL;
3316 task_unlock(current);
3317 local_irq_restore(flags);
3318
3319 if (ioc->aic && ioc->aic->exit)
3320 ioc->aic->exit(ioc->aic);
3321 if (ioc->cic && ioc->cic->exit)
3322 ioc->cic->exit(ioc->cic);
3323
3324 put_io_context(ioc);
3325 }
3326
3327 /*
3328 * If the current task has no IO context then create one and initialise it.
3329 * Otherwise, return its existing IO context.
3330 *
3331 * This returned IO context doesn't have a specifically elevated refcount,
3332 * but since the current task itself holds a reference, the context can be
3333 * used in general code, so long as it stays within `current` context.
3334 */
3335 struct io_context *current_io_context(gfp_t gfp_flags)
3336 {
3337 struct task_struct *tsk = current;
3338 struct io_context *ret;
3339
3340 ret = tsk->io_context;
3341 if (likely(ret))
3342 return ret;
3343
3344 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3345 if (ret) {
3346 atomic_set(&ret->refcount, 1);
3347 ret->task = current;
3348 ret->set_ioprio = NULL;
3349 ret->last_waited = jiffies; /* doesn't matter... */
3350 ret->nr_batch_requests = 0; /* because this is 0 */
3351 ret->aic = NULL;
3352 ret->cic = NULL;
3353 tsk->io_context = ret;
3354 }
3355
3356 return ret;
3357 }
3358 EXPORT_SYMBOL(current_io_context);
3359
3360 /*
3361 * If the current task has no IO context then create one and initialise it.
3362 * If it does have a context, take a ref on it.
3363 *
3364 * This is always called in the context of the task which submitted the I/O.
3365 */
3366 struct io_context *get_io_context(gfp_t gfp_flags)
3367 {
3368 struct io_context *ret;
3369 ret = current_io_context(gfp_flags);
3370 if (likely(ret))
3371 atomic_inc(&ret->refcount);
3372 return ret;
3373 }
3374 EXPORT_SYMBOL(get_io_context);
3375
3376 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3377 {
3378 struct io_context *src = *psrc;
3379 struct io_context *dst = *pdst;
3380
3381 if (src) {
3382 BUG_ON(atomic_read(&src->refcount) == 0);
3383 atomic_inc(&src->refcount);
3384 put_io_context(dst);
3385 *pdst = src;
3386 }
3387 }
3388 EXPORT_SYMBOL(copy_io_context);
3389
3390 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3391 {
3392 struct io_context *temp;
3393 temp = *ioc1;
3394 *ioc1 = *ioc2;
3395 *ioc2 = temp;
3396 }
3397 EXPORT_SYMBOL(swap_io_context);
3398
3399 /*
3400 * sysfs parts below
3401 */
3402 struct queue_sysfs_entry {
3403 struct attribute attr;
3404 ssize_t (*show)(struct request_queue *, char *);
3405 ssize_t (*store)(struct request_queue *, const char *, size_t);
3406 };
3407
3408 static ssize_t
3409 queue_var_show(unsigned int var, char *page)
3410 {
3411 return sprintf(page, "%d\n", var);
3412 }
3413
3414 static ssize_t
3415 queue_var_store(unsigned long *var, const char *page, size_t count)
3416 {
3417 char *p = (char *) page;
3418
3419 *var = simple_strtoul(p, &p, 10);
3420 return count;
3421 }
3422
3423 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3424 {
3425 return queue_var_show(q->nr_requests, (page));
3426 }
3427
3428 static ssize_t
3429 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3430 {
3431 struct request_list *rl = &q->rq;
3432
3433 int ret = queue_var_store(&q->nr_requests, page, count);
3434 if (q->nr_requests < BLKDEV_MIN_RQ)
3435 q->nr_requests = BLKDEV_MIN_RQ;
3436 blk_queue_congestion_threshold(q);
3437
3438 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3439 set_queue_congested(q, READ);
3440 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3441 clear_queue_congested(q, READ);
3442
3443 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3444 set_queue_congested(q, WRITE);
3445 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3446 clear_queue_congested(q, WRITE);
3447
3448 if (rl->count[READ] >= q->nr_requests) {
3449 blk_set_queue_full(q, READ);
3450 } else if (rl->count[READ]+1 <= q->nr_requests) {
3451 blk_clear_queue_full(q, READ);
3452 wake_up(&rl->wait[READ]);
3453 }
3454
3455 if (rl->count[WRITE] >= q->nr_requests) {
3456 blk_set_queue_full(q, WRITE);
3457 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3458 blk_clear_queue_full(q, WRITE);
3459 wake_up(&rl->wait[WRITE]);
3460 }
3461 return ret;
3462 }
3463
3464 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3465 {
3466 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3467
3468 return queue_var_show(ra_kb, (page));
3469 }
3470
3471 static ssize_t
3472 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3473 {
3474 unsigned long ra_kb;
3475 ssize_t ret = queue_var_store(&ra_kb, page, count);
3476
3477 spin_lock_irq(q->queue_lock);
3478 if (ra_kb > (q->max_sectors >> 1))
3479 ra_kb = (q->max_sectors >> 1);
3480
3481 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3482 spin_unlock_irq(q->queue_lock);
3483
3484 return ret;
3485 }
3486
3487 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3488 {
3489 int max_sectors_kb = q->max_sectors >> 1;
3490
3491 return queue_var_show(max_sectors_kb, (page));
3492 }
3493
3494 static ssize_t
3495 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3496 {
3497 unsigned long max_sectors_kb,
3498 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3499 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3500 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3501 int ra_kb;
3502
3503 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3504 return -EINVAL;
3505 /*
3506 * Take the queue lock to update the readahead and max_sectors
3507 * values synchronously:
3508 */
3509 spin_lock_irq(q->queue_lock);
3510 /*
3511 * Trim readahead window as well, if necessary:
3512 */
3513 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3514 if (ra_kb > max_sectors_kb)
3515 q->backing_dev_info.ra_pages =
3516 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3517
3518 q->max_sectors = max_sectors_kb << 1;
3519 spin_unlock_irq(q->queue_lock);
3520
3521 return ret;
3522 }
3523
3524 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3525 {
3526 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3527
3528 return queue_var_show(max_hw_sectors_kb, (page));
3529 }
3530
3531
3532 static struct queue_sysfs_entry queue_requests_entry = {
3533 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3534 .show = queue_requests_show,
3535 .store = queue_requests_store,
3536 };
3537
3538 static struct queue_sysfs_entry queue_ra_entry = {
3539 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3540 .show = queue_ra_show,
3541 .store = queue_ra_store,
3542 };
3543
3544 static struct queue_sysfs_entry queue_max_sectors_entry = {
3545 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3546 .show = queue_max_sectors_show,
3547 .store = queue_max_sectors_store,
3548 };
3549
3550 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3551 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3552 .show = queue_max_hw_sectors_show,
3553 };
3554
3555 static struct queue_sysfs_entry queue_iosched_entry = {
3556 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3557 .show = elv_iosched_show,
3558 .store = elv_iosched_store,
3559 };
3560
3561 static struct attribute *default_attrs[] = {
3562 &queue_requests_entry.attr,
3563 &queue_ra_entry.attr,
3564 &queue_max_hw_sectors_entry.attr,
3565 &queue_max_sectors_entry.attr,
3566 &queue_iosched_entry.attr,
3567 NULL,
3568 };
3569
3570 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3571
3572 static ssize_t
3573 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3574 {
3575 struct queue_sysfs_entry *entry = to_queue(attr);
3576 struct request_queue *q;
3577
3578 q = container_of(kobj, struct request_queue, kobj);
3579 if (!entry->show)
3580 return -EIO;
3581
3582 return entry->show(q, page);
3583 }
3584
3585 static ssize_t
3586 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3587 const char *page, size_t length)
3588 {
3589 struct queue_sysfs_entry *entry = to_queue(attr);
3590 struct request_queue *q;
3591
3592 q = container_of(kobj, struct request_queue, kobj);
3593 if (!entry->store)
3594 return -EIO;
3595
3596 return entry->store(q, page, length);
3597 }
3598
3599 static struct sysfs_ops queue_sysfs_ops = {
3600 .show = queue_attr_show,
3601 .store = queue_attr_store,
3602 };
3603
3604 static struct kobj_type queue_ktype = {
3605 .sysfs_ops = &queue_sysfs_ops,
3606 .default_attrs = default_attrs,
3607 };
3608
3609 int blk_register_queue(struct gendisk *disk)
3610 {
3611 int ret;
3612
3613 request_queue_t *q = disk->queue;
3614
3615 if (!q || !q->request_fn)
3616 return -ENXIO;
3617
3618 q->kobj.parent = kobject_get(&disk->kobj);
3619 if (!q->kobj.parent)
3620 return -EBUSY;
3621
3622 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3623 q->kobj.ktype = &queue_ktype;
3624
3625 ret = kobject_register(&q->kobj);
3626 if (ret < 0)
3627 return ret;
3628
3629 ret = elv_register_queue(q);
3630 if (ret) {
3631 kobject_unregister(&q->kobj);
3632 return ret;
3633 }
3634
3635 return 0;
3636 }
3637
3638 void blk_unregister_queue(struct gendisk *disk)
3639 {
3640 request_queue_t *q = disk->queue;
3641
3642 if (q && q->request_fn) {
3643 elv_unregister_queue(q);
3644
3645 kobject_unregister(&q->kobj);
3646 kobject_put(&disk->kobj);
3647 }
3648 }