]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/ll_rw_blk.c
WorkStruct: Pass the work_struct pointer instead of context data
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
31
32 /*
33 * for max sense size
34 */
35 #include <scsi/scsi_cmnd.h>
36
37 static void blk_unplug_work(struct work_struct *work);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
42 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
43
44 /*
45 * For the allocated request tables
46 */
47 static kmem_cache_t *request_cachep;
48
49 /*
50 * For queue allocation
51 */
52 static kmem_cache_t *requestq_cachep;
53
54 /*
55 * For io context allocations
56 */
57 static kmem_cache_t *iocontext_cachep;
58
59 /*
60 * Controlling structure to kblockd
61 */
62 static struct workqueue_struct *kblockd_workqueue;
63
64 unsigned long blk_max_low_pfn, blk_max_pfn;
65
66 EXPORT_SYMBOL(blk_max_low_pfn);
67 EXPORT_SYMBOL(blk_max_pfn);
68
69 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
70
71 /* Amount of time in which a process may batch requests */
72 #define BLK_BATCH_TIME (HZ/50UL)
73
74 /* Number of requests a "batching" process may submit */
75 #define BLK_BATCH_REQ 32
76
77 /*
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
81 */
82 static inline int queue_congestion_on_threshold(struct request_queue *q)
83 {
84 return q->nr_congestion_on;
85 }
86
87 /*
88 * The threshold at which a queue is considered to be uncongested
89 */
90 static inline int queue_congestion_off_threshold(struct request_queue *q)
91 {
92 return q->nr_congestion_off;
93 }
94
95 static void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108 }
109
110 /**
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112 * @bdev: device
113 *
114 * Locates the passed device's request queue and returns the address of its
115 * backing_dev_info
116 *
117 * Will return NULL if the request queue cannot be located.
118 */
119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 struct backing_dev_info *ret = NULL;
122 request_queue_t *q = bdev_get_queue(bdev);
123
124 if (q)
125 ret = &q->backing_dev_info;
126 return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129
130 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
131 {
132 q->activity_fn = fn;
133 q->activity_data = data;
134 }
135 EXPORT_SYMBOL(blk_queue_activity_fn);
136
137 /**
138 * blk_queue_prep_rq - set a prepare_request function for queue
139 * @q: queue
140 * @pfn: prepare_request function
141 *
142 * It's possible for a queue to register a prepare_request callback which
143 * is invoked before the request is handed to the request_fn. The goal of
144 * the function is to prepare a request for I/O, it can be used to build a
145 * cdb from the request data for instance.
146 *
147 */
148 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
149 {
150 q->prep_rq_fn = pfn;
151 }
152
153 EXPORT_SYMBOL(blk_queue_prep_rq);
154
155 /**
156 * blk_queue_merge_bvec - set a merge_bvec function for queue
157 * @q: queue
158 * @mbfn: merge_bvec_fn
159 *
160 * Usually queues have static limitations on the max sectors or segments that
161 * we can put in a request. Stacking drivers may have some settings that
162 * are dynamic, and thus we have to query the queue whether it is ok to
163 * add a new bio_vec to a bio at a given offset or not. If the block device
164 * has such limitations, it needs to register a merge_bvec_fn to control
165 * the size of bio's sent to it. Note that a block device *must* allow a
166 * single page to be added to an empty bio. The block device driver may want
167 * to use the bio_split() function to deal with these bio's. By default
168 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
169 * honored.
170 */
171 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
172 {
173 q->merge_bvec_fn = mbfn;
174 }
175
176 EXPORT_SYMBOL(blk_queue_merge_bvec);
177
178 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
179 {
180 q->softirq_done_fn = fn;
181 }
182
183 EXPORT_SYMBOL(blk_queue_softirq_done);
184
185 /**
186 * blk_queue_make_request - define an alternate make_request function for a device
187 * @q: the request queue for the device to be affected
188 * @mfn: the alternate make_request function
189 *
190 * Description:
191 * The normal way for &struct bios to be passed to a device
192 * driver is for them to be collected into requests on a request
193 * queue, and then to allow the device driver to select requests
194 * off that queue when it is ready. This works well for many block
195 * devices. However some block devices (typically virtual devices
196 * such as md or lvm) do not benefit from the processing on the
197 * request queue, and are served best by having the requests passed
198 * directly to them. This can be achieved by providing a function
199 * to blk_queue_make_request().
200 *
201 * Caveat:
202 * The driver that does this *must* be able to deal appropriately
203 * with buffers in "highmemory". This can be accomplished by either calling
204 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
205 * blk_queue_bounce() to create a buffer in normal memory.
206 **/
207 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
208 {
209 /*
210 * set defaults
211 */
212 q->nr_requests = BLKDEV_MAX_RQ;
213 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
214 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
215 q->make_request_fn = mfn;
216 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
217 q->backing_dev_info.state = 0;
218 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
219 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
220 blk_queue_hardsect_size(q, 512);
221 blk_queue_dma_alignment(q, 511);
222 blk_queue_congestion_threshold(q);
223 q->nr_batching = BLK_BATCH_REQ;
224
225 q->unplug_thresh = 4; /* hmm */
226 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
227 if (q->unplug_delay == 0)
228 q->unplug_delay = 1;
229
230 INIT_WORK(&q->unplug_work, blk_unplug_work);
231
232 q->unplug_timer.function = blk_unplug_timeout;
233 q->unplug_timer.data = (unsigned long)q;
234
235 /*
236 * by default assume old behaviour and bounce for any highmem page
237 */
238 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
239
240 blk_queue_activity_fn(q, NULL, NULL);
241 }
242
243 EXPORT_SYMBOL(blk_queue_make_request);
244
245 static void rq_init(request_queue_t *q, struct request *rq)
246 {
247 INIT_LIST_HEAD(&rq->queuelist);
248 INIT_LIST_HEAD(&rq->donelist);
249
250 rq->errors = 0;
251 rq->bio = rq->biotail = NULL;
252 INIT_HLIST_NODE(&rq->hash);
253 RB_CLEAR_NODE(&rq->rb_node);
254 rq->ioprio = 0;
255 rq->buffer = NULL;
256 rq->ref_count = 1;
257 rq->q = q;
258 rq->special = NULL;
259 rq->data_len = 0;
260 rq->data = NULL;
261 rq->nr_phys_segments = 0;
262 rq->sense = NULL;
263 rq->end_io = NULL;
264 rq->end_io_data = NULL;
265 rq->completion_data = NULL;
266 }
267
268 /**
269 * blk_queue_ordered - does this queue support ordered writes
270 * @q: the request queue
271 * @ordered: one of QUEUE_ORDERED_*
272 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
273 *
274 * Description:
275 * For journalled file systems, doing ordered writes on a commit
276 * block instead of explicitly doing wait_on_buffer (which is bad
277 * for performance) can be a big win. Block drivers supporting this
278 * feature should call this function and indicate so.
279 *
280 **/
281 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
282 prepare_flush_fn *prepare_flush_fn)
283 {
284 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
285 prepare_flush_fn == NULL) {
286 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
287 return -EINVAL;
288 }
289
290 if (ordered != QUEUE_ORDERED_NONE &&
291 ordered != QUEUE_ORDERED_DRAIN &&
292 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
293 ordered != QUEUE_ORDERED_DRAIN_FUA &&
294 ordered != QUEUE_ORDERED_TAG &&
295 ordered != QUEUE_ORDERED_TAG_FLUSH &&
296 ordered != QUEUE_ORDERED_TAG_FUA) {
297 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
298 return -EINVAL;
299 }
300
301 q->ordered = ordered;
302 q->next_ordered = ordered;
303 q->prepare_flush_fn = prepare_flush_fn;
304
305 return 0;
306 }
307
308 EXPORT_SYMBOL(blk_queue_ordered);
309
310 /**
311 * blk_queue_issue_flush_fn - set function for issuing a flush
312 * @q: the request queue
313 * @iff: the function to be called issuing the flush
314 *
315 * Description:
316 * If a driver supports issuing a flush command, the support is notified
317 * to the block layer by defining it through this call.
318 *
319 **/
320 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
321 {
322 q->issue_flush_fn = iff;
323 }
324
325 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
326
327 /*
328 * Cache flushing for ordered writes handling
329 */
330 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
331 {
332 if (!q->ordseq)
333 return 0;
334 return 1 << ffz(q->ordseq);
335 }
336
337 unsigned blk_ordered_req_seq(struct request *rq)
338 {
339 request_queue_t *q = rq->q;
340
341 BUG_ON(q->ordseq == 0);
342
343 if (rq == &q->pre_flush_rq)
344 return QUEUE_ORDSEQ_PREFLUSH;
345 if (rq == &q->bar_rq)
346 return QUEUE_ORDSEQ_BAR;
347 if (rq == &q->post_flush_rq)
348 return QUEUE_ORDSEQ_POSTFLUSH;
349
350 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
351 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
352 return QUEUE_ORDSEQ_DRAIN;
353 else
354 return QUEUE_ORDSEQ_DONE;
355 }
356
357 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
358 {
359 struct request *rq;
360 int uptodate;
361
362 if (error && !q->orderr)
363 q->orderr = error;
364
365 BUG_ON(q->ordseq & seq);
366 q->ordseq |= seq;
367
368 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
369 return;
370
371 /*
372 * Okay, sequence complete.
373 */
374 rq = q->orig_bar_rq;
375 uptodate = q->orderr ? q->orderr : 1;
376
377 q->ordseq = 0;
378
379 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
380 end_that_request_last(rq, uptodate);
381 }
382
383 static void pre_flush_end_io(struct request *rq, int error)
384 {
385 elv_completed_request(rq->q, rq);
386 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
387 }
388
389 static void bar_end_io(struct request *rq, int error)
390 {
391 elv_completed_request(rq->q, rq);
392 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
393 }
394
395 static void post_flush_end_io(struct request *rq, int error)
396 {
397 elv_completed_request(rq->q, rq);
398 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
399 }
400
401 static void queue_flush(request_queue_t *q, unsigned which)
402 {
403 struct request *rq;
404 rq_end_io_fn *end_io;
405
406 if (which == QUEUE_ORDERED_PREFLUSH) {
407 rq = &q->pre_flush_rq;
408 end_io = pre_flush_end_io;
409 } else {
410 rq = &q->post_flush_rq;
411 end_io = post_flush_end_io;
412 }
413
414 rq->cmd_flags = REQ_HARDBARRIER;
415 rq_init(q, rq);
416 rq->elevator_private = NULL;
417 rq->elevator_private2 = NULL;
418 rq->rq_disk = q->bar_rq.rq_disk;
419 rq->end_io = end_io;
420 q->prepare_flush_fn(q, rq);
421
422 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
423 }
424
425 static inline struct request *start_ordered(request_queue_t *q,
426 struct request *rq)
427 {
428 q->bi_size = 0;
429 q->orderr = 0;
430 q->ordered = q->next_ordered;
431 q->ordseq |= QUEUE_ORDSEQ_STARTED;
432
433 /*
434 * Prep proxy barrier request.
435 */
436 blkdev_dequeue_request(rq);
437 q->orig_bar_rq = rq;
438 rq = &q->bar_rq;
439 rq->cmd_flags = 0;
440 rq_init(q, rq);
441 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
442 rq->cmd_flags |= REQ_RW;
443 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
444 rq->elevator_private = NULL;
445 rq->elevator_private2 = NULL;
446 init_request_from_bio(rq, q->orig_bar_rq->bio);
447 rq->end_io = bar_end_io;
448
449 /*
450 * Queue ordered sequence. As we stack them at the head, we
451 * need to queue in reverse order. Note that we rely on that
452 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
453 * request gets inbetween ordered sequence.
454 */
455 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
456 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
457 else
458 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
459
460 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
461
462 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
463 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
464 rq = &q->pre_flush_rq;
465 } else
466 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
467
468 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
469 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
470 else
471 rq = NULL;
472
473 return rq;
474 }
475
476 int blk_do_ordered(request_queue_t *q, struct request **rqp)
477 {
478 struct request *rq = *rqp;
479 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
480
481 if (!q->ordseq) {
482 if (!is_barrier)
483 return 1;
484
485 if (q->next_ordered != QUEUE_ORDERED_NONE) {
486 *rqp = start_ordered(q, rq);
487 return 1;
488 } else {
489 /*
490 * This can happen when the queue switches to
491 * ORDERED_NONE while this request is on it.
492 */
493 blkdev_dequeue_request(rq);
494 end_that_request_first(rq, -EOPNOTSUPP,
495 rq->hard_nr_sectors);
496 end_that_request_last(rq, -EOPNOTSUPP);
497 *rqp = NULL;
498 return 0;
499 }
500 }
501
502 /*
503 * Ordered sequence in progress
504 */
505
506 /* Special requests are not subject to ordering rules. */
507 if (!blk_fs_request(rq) &&
508 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
509 return 1;
510
511 if (q->ordered & QUEUE_ORDERED_TAG) {
512 /* Ordered by tag. Blocking the next barrier is enough. */
513 if (is_barrier && rq != &q->bar_rq)
514 *rqp = NULL;
515 } else {
516 /* Ordered by draining. Wait for turn. */
517 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
518 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
519 *rqp = NULL;
520 }
521
522 return 1;
523 }
524
525 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
526 {
527 request_queue_t *q = bio->bi_private;
528 struct bio_vec *bvec;
529 int i;
530
531 /*
532 * This is dry run, restore bio_sector and size. We'll finish
533 * this request again with the original bi_end_io after an
534 * error occurs or post flush is complete.
535 */
536 q->bi_size += bytes;
537
538 if (bio->bi_size)
539 return 1;
540
541 /* Rewind bvec's */
542 bio->bi_idx = 0;
543 bio_for_each_segment(bvec, bio, i) {
544 bvec->bv_len += bvec->bv_offset;
545 bvec->bv_offset = 0;
546 }
547
548 /* Reset bio */
549 set_bit(BIO_UPTODATE, &bio->bi_flags);
550 bio->bi_size = q->bi_size;
551 bio->bi_sector -= (q->bi_size >> 9);
552 q->bi_size = 0;
553
554 return 0;
555 }
556
557 static int ordered_bio_endio(struct request *rq, struct bio *bio,
558 unsigned int nbytes, int error)
559 {
560 request_queue_t *q = rq->q;
561 bio_end_io_t *endio;
562 void *private;
563
564 if (&q->bar_rq != rq)
565 return 0;
566
567 /*
568 * Okay, this is the barrier request in progress, dry finish it.
569 */
570 if (error && !q->orderr)
571 q->orderr = error;
572
573 endio = bio->bi_end_io;
574 private = bio->bi_private;
575 bio->bi_end_io = flush_dry_bio_endio;
576 bio->bi_private = q;
577
578 bio_endio(bio, nbytes, error);
579
580 bio->bi_end_io = endio;
581 bio->bi_private = private;
582
583 return 1;
584 }
585
586 /**
587 * blk_queue_bounce_limit - set bounce buffer limit for queue
588 * @q: the request queue for the device
589 * @dma_addr: bus address limit
590 *
591 * Description:
592 * Different hardware can have different requirements as to what pages
593 * it can do I/O directly to. A low level driver can call
594 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
595 * buffers for doing I/O to pages residing above @page.
596 **/
597 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
598 {
599 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
600 int dma = 0;
601
602 q->bounce_gfp = GFP_NOIO;
603 #if BITS_PER_LONG == 64
604 /* Assume anything <= 4GB can be handled by IOMMU.
605 Actually some IOMMUs can handle everything, but I don't
606 know of a way to test this here. */
607 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
608 dma = 1;
609 q->bounce_pfn = max_low_pfn;
610 #else
611 if (bounce_pfn < blk_max_low_pfn)
612 dma = 1;
613 q->bounce_pfn = bounce_pfn;
614 #endif
615 if (dma) {
616 init_emergency_isa_pool();
617 q->bounce_gfp = GFP_NOIO | GFP_DMA;
618 q->bounce_pfn = bounce_pfn;
619 }
620 }
621
622 EXPORT_SYMBOL(blk_queue_bounce_limit);
623
624 /**
625 * blk_queue_max_sectors - set max sectors for a request for this queue
626 * @q: the request queue for the device
627 * @max_sectors: max sectors in the usual 512b unit
628 *
629 * Description:
630 * Enables a low level driver to set an upper limit on the size of
631 * received requests.
632 **/
633 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
634 {
635 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
636 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
637 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
638 }
639
640 if (BLK_DEF_MAX_SECTORS > max_sectors)
641 q->max_hw_sectors = q->max_sectors = max_sectors;
642 else {
643 q->max_sectors = BLK_DEF_MAX_SECTORS;
644 q->max_hw_sectors = max_sectors;
645 }
646 }
647
648 EXPORT_SYMBOL(blk_queue_max_sectors);
649
650 /**
651 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
652 * @q: the request queue for the device
653 * @max_segments: max number of segments
654 *
655 * Description:
656 * Enables a low level driver to set an upper limit on the number of
657 * physical data segments in a request. This would be the largest sized
658 * scatter list the driver could handle.
659 **/
660 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
661 {
662 if (!max_segments) {
663 max_segments = 1;
664 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
665 }
666
667 q->max_phys_segments = max_segments;
668 }
669
670 EXPORT_SYMBOL(blk_queue_max_phys_segments);
671
672 /**
673 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
674 * @q: the request queue for the device
675 * @max_segments: max number of segments
676 *
677 * Description:
678 * Enables a low level driver to set an upper limit on the number of
679 * hw data segments in a request. This would be the largest number of
680 * address/length pairs the host adapter can actually give as once
681 * to the device.
682 **/
683 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
684 {
685 if (!max_segments) {
686 max_segments = 1;
687 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
688 }
689
690 q->max_hw_segments = max_segments;
691 }
692
693 EXPORT_SYMBOL(blk_queue_max_hw_segments);
694
695 /**
696 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
697 * @q: the request queue for the device
698 * @max_size: max size of segment in bytes
699 *
700 * Description:
701 * Enables a low level driver to set an upper limit on the size of a
702 * coalesced segment
703 **/
704 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
705 {
706 if (max_size < PAGE_CACHE_SIZE) {
707 max_size = PAGE_CACHE_SIZE;
708 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
709 }
710
711 q->max_segment_size = max_size;
712 }
713
714 EXPORT_SYMBOL(blk_queue_max_segment_size);
715
716 /**
717 * blk_queue_hardsect_size - set hardware sector size for the queue
718 * @q: the request queue for the device
719 * @size: the hardware sector size, in bytes
720 *
721 * Description:
722 * This should typically be set to the lowest possible sector size
723 * that the hardware can operate on (possible without reverting to
724 * even internal read-modify-write operations). Usually the default
725 * of 512 covers most hardware.
726 **/
727 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
728 {
729 q->hardsect_size = size;
730 }
731
732 EXPORT_SYMBOL(blk_queue_hardsect_size);
733
734 /*
735 * Returns the minimum that is _not_ zero, unless both are zero.
736 */
737 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
738
739 /**
740 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
741 * @t: the stacking driver (top)
742 * @b: the underlying device (bottom)
743 **/
744 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
745 {
746 /* zero is "infinity" */
747 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
748 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
749
750 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
751 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
752 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
753 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
754 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
755 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
756 }
757
758 EXPORT_SYMBOL(blk_queue_stack_limits);
759
760 /**
761 * blk_queue_segment_boundary - set boundary rules for segment merging
762 * @q: the request queue for the device
763 * @mask: the memory boundary mask
764 **/
765 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
766 {
767 if (mask < PAGE_CACHE_SIZE - 1) {
768 mask = PAGE_CACHE_SIZE - 1;
769 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
770 }
771
772 q->seg_boundary_mask = mask;
773 }
774
775 EXPORT_SYMBOL(blk_queue_segment_boundary);
776
777 /**
778 * blk_queue_dma_alignment - set dma length and memory alignment
779 * @q: the request queue for the device
780 * @mask: alignment mask
781 *
782 * description:
783 * set required memory and length aligment for direct dma transactions.
784 * this is used when buiding direct io requests for the queue.
785 *
786 **/
787 void blk_queue_dma_alignment(request_queue_t *q, int mask)
788 {
789 q->dma_alignment = mask;
790 }
791
792 EXPORT_SYMBOL(blk_queue_dma_alignment);
793
794 /**
795 * blk_queue_find_tag - find a request by its tag and queue
796 * @q: The request queue for the device
797 * @tag: The tag of the request
798 *
799 * Notes:
800 * Should be used when a device returns a tag and you want to match
801 * it with a request.
802 *
803 * no locks need be held.
804 **/
805 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
806 {
807 return blk_map_queue_find_tag(q->queue_tags, tag);
808 }
809
810 EXPORT_SYMBOL(blk_queue_find_tag);
811
812 /**
813 * __blk_free_tags - release a given set of tag maintenance info
814 * @bqt: the tag map to free
815 *
816 * Tries to free the specified @bqt@. Returns true if it was
817 * actually freed and false if there are still references using it
818 */
819 static int __blk_free_tags(struct blk_queue_tag *bqt)
820 {
821 int retval;
822
823 retval = atomic_dec_and_test(&bqt->refcnt);
824 if (retval) {
825 BUG_ON(bqt->busy);
826 BUG_ON(!list_empty(&bqt->busy_list));
827
828 kfree(bqt->tag_index);
829 bqt->tag_index = NULL;
830
831 kfree(bqt->tag_map);
832 bqt->tag_map = NULL;
833
834 kfree(bqt);
835
836 }
837
838 return retval;
839 }
840
841 /**
842 * __blk_queue_free_tags - release tag maintenance info
843 * @q: the request queue for the device
844 *
845 * Notes:
846 * blk_cleanup_queue() will take care of calling this function, if tagging
847 * has been used. So there's no need to call this directly.
848 **/
849 static void __blk_queue_free_tags(request_queue_t *q)
850 {
851 struct blk_queue_tag *bqt = q->queue_tags;
852
853 if (!bqt)
854 return;
855
856 __blk_free_tags(bqt);
857
858 q->queue_tags = NULL;
859 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
860 }
861
862
863 /**
864 * blk_free_tags - release a given set of tag maintenance info
865 * @bqt: the tag map to free
866 *
867 * For externally managed @bqt@ frees the map. Callers of this
868 * function must guarantee to have released all the queues that
869 * might have been using this tag map.
870 */
871 void blk_free_tags(struct blk_queue_tag *bqt)
872 {
873 if (unlikely(!__blk_free_tags(bqt)))
874 BUG();
875 }
876 EXPORT_SYMBOL(blk_free_tags);
877
878 /**
879 * blk_queue_free_tags - release tag maintenance info
880 * @q: the request queue for the device
881 *
882 * Notes:
883 * This is used to disabled tagged queuing to a device, yet leave
884 * queue in function.
885 **/
886 void blk_queue_free_tags(request_queue_t *q)
887 {
888 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
889 }
890
891 EXPORT_SYMBOL(blk_queue_free_tags);
892
893 static int
894 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
895 {
896 struct request **tag_index;
897 unsigned long *tag_map;
898 int nr_ulongs;
899
900 if (q && depth > q->nr_requests * 2) {
901 depth = q->nr_requests * 2;
902 printk(KERN_ERR "%s: adjusted depth to %d\n",
903 __FUNCTION__, depth);
904 }
905
906 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
907 if (!tag_index)
908 goto fail;
909
910 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
911 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
912 if (!tag_map)
913 goto fail;
914
915 tags->real_max_depth = depth;
916 tags->max_depth = depth;
917 tags->tag_index = tag_index;
918 tags->tag_map = tag_map;
919
920 return 0;
921 fail:
922 kfree(tag_index);
923 return -ENOMEM;
924 }
925
926 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
927 int depth)
928 {
929 struct blk_queue_tag *tags;
930
931 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
932 if (!tags)
933 goto fail;
934
935 if (init_tag_map(q, tags, depth))
936 goto fail;
937
938 INIT_LIST_HEAD(&tags->busy_list);
939 tags->busy = 0;
940 atomic_set(&tags->refcnt, 1);
941 return tags;
942 fail:
943 kfree(tags);
944 return NULL;
945 }
946
947 /**
948 * blk_init_tags - initialize the tag info for an external tag map
949 * @depth: the maximum queue depth supported
950 * @tags: the tag to use
951 **/
952 struct blk_queue_tag *blk_init_tags(int depth)
953 {
954 return __blk_queue_init_tags(NULL, depth);
955 }
956 EXPORT_SYMBOL(blk_init_tags);
957
958 /**
959 * blk_queue_init_tags - initialize the queue tag info
960 * @q: the request queue for the device
961 * @depth: the maximum queue depth supported
962 * @tags: the tag to use
963 **/
964 int blk_queue_init_tags(request_queue_t *q, int depth,
965 struct blk_queue_tag *tags)
966 {
967 int rc;
968
969 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
970
971 if (!tags && !q->queue_tags) {
972 tags = __blk_queue_init_tags(q, depth);
973
974 if (!tags)
975 goto fail;
976 } else if (q->queue_tags) {
977 if ((rc = blk_queue_resize_tags(q, depth)))
978 return rc;
979 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
980 return 0;
981 } else
982 atomic_inc(&tags->refcnt);
983
984 /*
985 * assign it, all done
986 */
987 q->queue_tags = tags;
988 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
989 return 0;
990 fail:
991 kfree(tags);
992 return -ENOMEM;
993 }
994
995 EXPORT_SYMBOL(blk_queue_init_tags);
996
997 /**
998 * blk_queue_resize_tags - change the queueing depth
999 * @q: the request queue for the device
1000 * @new_depth: the new max command queueing depth
1001 *
1002 * Notes:
1003 * Must be called with the queue lock held.
1004 **/
1005 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1006 {
1007 struct blk_queue_tag *bqt = q->queue_tags;
1008 struct request **tag_index;
1009 unsigned long *tag_map;
1010 int max_depth, nr_ulongs;
1011
1012 if (!bqt)
1013 return -ENXIO;
1014
1015 /*
1016 * if we already have large enough real_max_depth. just
1017 * adjust max_depth. *NOTE* as requests with tag value
1018 * between new_depth and real_max_depth can be in-flight, tag
1019 * map can not be shrunk blindly here.
1020 */
1021 if (new_depth <= bqt->real_max_depth) {
1022 bqt->max_depth = new_depth;
1023 return 0;
1024 }
1025
1026 /*
1027 * Currently cannot replace a shared tag map with a new
1028 * one, so error out if this is the case
1029 */
1030 if (atomic_read(&bqt->refcnt) != 1)
1031 return -EBUSY;
1032
1033 /*
1034 * save the old state info, so we can copy it back
1035 */
1036 tag_index = bqt->tag_index;
1037 tag_map = bqt->tag_map;
1038 max_depth = bqt->real_max_depth;
1039
1040 if (init_tag_map(q, bqt, new_depth))
1041 return -ENOMEM;
1042
1043 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1044 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1045 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1046
1047 kfree(tag_index);
1048 kfree(tag_map);
1049 return 0;
1050 }
1051
1052 EXPORT_SYMBOL(blk_queue_resize_tags);
1053
1054 /**
1055 * blk_queue_end_tag - end tag operations for a request
1056 * @q: the request queue for the device
1057 * @rq: the request that has completed
1058 *
1059 * Description:
1060 * Typically called when end_that_request_first() returns 0, meaning
1061 * all transfers have been done for a request. It's important to call
1062 * this function before end_that_request_last(), as that will put the
1063 * request back on the free list thus corrupting the internal tag list.
1064 *
1065 * Notes:
1066 * queue lock must be held.
1067 **/
1068 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1069 {
1070 struct blk_queue_tag *bqt = q->queue_tags;
1071 int tag = rq->tag;
1072
1073 BUG_ON(tag == -1);
1074
1075 if (unlikely(tag >= bqt->real_max_depth))
1076 /*
1077 * This can happen after tag depth has been reduced.
1078 * FIXME: how about a warning or info message here?
1079 */
1080 return;
1081
1082 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1083 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1084 __FUNCTION__, tag);
1085 return;
1086 }
1087
1088 list_del_init(&rq->queuelist);
1089 rq->cmd_flags &= ~REQ_QUEUED;
1090 rq->tag = -1;
1091
1092 if (unlikely(bqt->tag_index[tag] == NULL))
1093 printk(KERN_ERR "%s: tag %d is missing\n",
1094 __FUNCTION__, tag);
1095
1096 bqt->tag_index[tag] = NULL;
1097 bqt->busy--;
1098 }
1099
1100 EXPORT_SYMBOL(blk_queue_end_tag);
1101
1102 /**
1103 * blk_queue_start_tag - find a free tag and assign it
1104 * @q: the request queue for the device
1105 * @rq: the block request that needs tagging
1106 *
1107 * Description:
1108 * This can either be used as a stand-alone helper, or possibly be
1109 * assigned as the queue &prep_rq_fn (in which case &struct request
1110 * automagically gets a tag assigned). Note that this function
1111 * assumes that any type of request can be queued! if this is not
1112 * true for your device, you must check the request type before
1113 * calling this function. The request will also be removed from
1114 * the request queue, so it's the drivers responsibility to readd
1115 * it if it should need to be restarted for some reason.
1116 *
1117 * Notes:
1118 * queue lock must be held.
1119 **/
1120 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1121 {
1122 struct blk_queue_tag *bqt = q->queue_tags;
1123 int tag;
1124
1125 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1126 printk(KERN_ERR
1127 "%s: request %p for device [%s] already tagged %d",
1128 __FUNCTION__, rq,
1129 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1130 BUG();
1131 }
1132
1133 /*
1134 * Protect against shared tag maps, as we may not have exclusive
1135 * access to the tag map.
1136 */
1137 do {
1138 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1139 if (tag >= bqt->max_depth)
1140 return 1;
1141
1142 } while (test_and_set_bit(tag, bqt->tag_map));
1143
1144 rq->cmd_flags |= REQ_QUEUED;
1145 rq->tag = tag;
1146 bqt->tag_index[tag] = rq;
1147 blkdev_dequeue_request(rq);
1148 list_add(&rq->queuelist, &bqt->busy_list);
1149 bqt->busy++;
1150 return 0;
1151 }
1152
1153 EXPORT_SYMBOL(blk_queue_start_tag);
1154
1155 /**
1156 * blk_queue_invalidate_tags - invalidate all pending tags
1157 * @q: the request queue for the device
1158 *
1159 * Description:
1160 * Hardware conditions may dictate a need to stop all pending requests.
1161 * In this case, we will safely clear the block side of the tag queue and
1162 * readd all requests to the request queue in the right order.
1163 *
1164 * Notes:
1165 * queue lock must be held.
1166 **/
1167 void blk_queue_invalidate_tags(request_queue_t *q)
1168 {
1169 struct blk_queue_tag *bqt = q->queue_tags;
1170 struct list_head *tmp, *n;
1171 struct request *rq;
1172
1173 list_for_each_safe(tmp, n, &bqt->busy_list) {
1174 rq = list_entry_rq(tmp);
1175
1176 if (rq->tag == -1) {
1177 printk(KERN_ERR
1178 "%s: bad tag found on list\n", __FUNCTION__);
1179 list_del_init(&rq->queuelist);
1180 rq->cmd_flags &= ~REQ_QUEUED;
1181 } else
1182 blk_queue_end_tag(q, rq);
1183
1184 rq->cmd_flags &= ~REQ_STARTED;
1185 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1186 }
1187 }
1188
1189 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1190
1191 void blk_dump_rq_flags(struct request *rq, char *msg)
1192 {
1193 int bit;
1194
1195 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1196 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1197 rq->cmd_flags);
1198
1199 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1200 rq->nr_sectors,
1201 rq->current_nr_sectors);
1202 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1203
1204 if (blk_pc_request(rq)) {
1205 printk("cdb: ");
1206 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1207 printk("%02x ", rq->cmd[bit]);
1208 printk("\n");
1209 }
1210 }
1211
1212 EXPORT_SYMBOL(blk_dump_rq_flags);
1213
1214 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1215 {
1216 struct bio_vec *bv, *bvprv = NULL;
1217 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1218 int high, highprv = 1;
1219
1220 if (unlikely(!bio->bi_io_vec))
1221 return;
1222
1223 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1224 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1225 bio_for_each_segment(bv, bio, i) {
1226 /*
1227 * the trick here is making sure that a high page is never
1228 * considered part of another segment, since that might
1229 * change with the bounce page.
1230 */
1231 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1232 if (high || highprv)
1233 goto new_hw_segment;
1234 if (cluster) {
1235 if (seg_size + bv->bv_len > q->max_segment_size)
1236 goto new_segment;
1237 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1238 goto new_segment;
1239 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1240 goto new_segment;
1241 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1242 goto new_hw_segment;
1243
1244 seg_size += bv->bv_len;
1245 hw_seg_size += bv->bv_len;
1246 bvprv = bv;
1247 continue;
1248 }
1249 new_segment:
1250 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1251 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1252 hw_seg_size += bv->bv_len;
1253 } else {
1254 new_hw_segment:
1255 if (hw_seg_size > bio->bi_hw_front_size)
1256 bio->bi_hw_front_size = hw_seg_size;
1257 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1258 nr_hw_segs++;
1259 }
1260
1261 nr_phys_segs++;
1262 bvprv = bv;
1263 seg_size = bv->bv_len;
1264 highprv = high;
1265 }
1266 if (hw_seg_size > bio->bi_hw_back_size)
1267 bio->bi_hw_back_size = hw_seg_size;
1268 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1269 bio->bi_hw_front_size = hw_seg_size;
1270 bio->bi_phys_segments = nr_phys_segs;
1271 bio->bi_hw_segments = nr_hw_segs;
1272 bio->bi_flags |= (1 << BIO_SEG_VALID);
1273 }
1274
1275
1276 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1277 struct bio *nxt)
1278 {
1279 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1280 return 0;
1281
1282 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1283 return 0;
1284 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1285 return 0;
1286
1287 /*
1288 * bio and nxt are contigous in memory, check if the queue allows
1289 * these two to be merged into one
1290 */
1291 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1292 return 1;
1293
1294 return 0;
1295 }
1296
1297 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1298 struct bio *nxt)
1299 {
1300 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1301 blk_recount_segments(q, bio);
1302 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1303 blk_recount_segments(q, nxt);
1304 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1305 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1306 return 0;
1307 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1308 return 0;
1309
1310 return 1;
1311 }
1312
1313 /*
1314 * map a request to scatterlist, return number of sg entries setup. Caller
1315 * must make sure sg can hold rq->nr_phys_segments entries
1316 */
1317 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1318 {
1319 struct bio_vec *bvec, *bvprv;
1320 struct bio *bio;
1321 int nsegs, i, cluster;
1322
1323 nsegs = 0;
1324 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1325
1326 /*
1327 * for each bio in rq
1328 */
1329 bvprv = NULL;
1330 rq_for_each_bio(bio, rq) {
1331 /*
1332 * for each segment in bio
1333 */
1334 bio_for_each_segment(bvec, bio, i) {
1335 int nbytes = bvec->bv_len;
1336
1337 if (bvprv && cluster) {
1338 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1339 goto new_segment;
1340
1341 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1342 goto new_segment;
1343 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1344 goto new_segment;
1345
1346 sg[nsegs - 1].length += nbytes;
1347 } else {
1348 new_segment:
1349 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1350 sg[nsegs].page = bvec->bv_page;
1351 sg[nsegs].length = nbytes;
1352 sg[nsegs].offset = bvec->bv_offset;
1353
1354 nsegs++;
1355 }
1356 bvprv = bvec;
1357 } /* segments in bio */
1358 } /* bios in rq */
1359
1360 return nsegs;
1361 }
1362
1363 EXPORT_SYMBOL(blk_rq_map_sg);
1364
1365 /*
1366 * the standard queue merge functions, can be overridden with device
1367 * specific ones if so desired
1368 */
1369
1370 static inline int ll_new_mergeable(request_queue_t *q,
1371 struct request *req,
1372 struct bio *bio)
1373 {
1374 int nr_phys_segs = bio_phys_segments(q, bio);
1375
1376 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1377 req->cmd_flags |= REQ_NOMERGE;
1378 if (req == q->last_merge)
1379 q->last_merge = NULL;
1380 return 0;
1381 }
1382
1383 /*
1384 * A hw segment is just getting larger, bump just the phys
1385 * counter.
1386 */
1387 req->nr_phys_segments += nr_phys_segs;
1388 return 1;
1389 }
1390
1391 static inline int ll_new_hw_segment(request_queue_t *q,
1392 struct request *req,
1393 struct bio *bio)
1394 {
1395 int nr_hw_segs = bio_hw_segments(q, bio);
1396 int nr_phys_segs = bio_phys_segments(q, bio);
1397
1398 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1399 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1400 req->cmd_flags |= REQ_NOMERGE;
1401 if (req == q->last_merge)
1402 q->last_merge = NULL;
1403 return 0;
1404 }
1405
1406 /*
1407 * This will form the start of a new hw segment. Bump both
1408 * counters.
1409 */
1410 req->nr_hw_segments += nr_hw_segs;
1411 req->nr_phys_segments += nr_phys_segs;
1412 return 1;
1413 }
1414
1415 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1416 struct bio *bio)
1417 {
1418 unsigned short max_sectors;
1419 int len;
1420
1421 if (unlikely(blk_pc_request(req)))
1422 max_sectors = q->max_hw_sectors;
1423 else
1424 max_sectors = q->max_sectors;
1425
1426 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1427 req->cmd_flags |= REQ_NOMERGE;
1428 if (req == q->last_merge)
1429 q->last_merge = NULL;
1430 return 0;
1431 }
1432 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1433 blk_recount_segments(q, req->biotail);
1434 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1435 blk_recount_segments(q, bio);
1436 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1437 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1438 !BIOVEC_VIRT_OVERSIZE(len)) {
1439 int mergeable = ll_new_mergeable(q, req, bio);
1440
1441 if (mergeable) {
1442 if (req->nr_hw_segments == 1)
1443 req->bio->bi_hw_front_size = len;
1444 if (bio->bi_hw_segments == 1)
1445 bio->bi_hw_back_size = len;
1446 }
1447 return mergeable;
1448 }
1449
1450 return ll_new_hw_segment(q, req, bio);
1451 }
1452
1453 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1454 struct bio *bio)
1455 {
1456 unsigned short max_sectors;
1457 int len;
1458
1459 if (unlikely(blk_pc_request(req)))
1460 max_sectors = q->max_hw_sectors;
1461 else
1462 max_sectors = q->max_sectors;
1463
1464
1465 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1466 req->cmd_flags |= REQ_NOMERGE;
1467 if (req == q->last_merge)
1468 q->last_merge = NULL;
1469 return 0;
1470 }
1471 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1472 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1473 blk_recount_segments(q, bio);
1474 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1475 blk_recount_segments(q, req->bio);
1476 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1477 !BIOVEC_VIRT_OVERSIZE(len)) {
1478 int mergeable = ll_new_mergeable(q, req, bio);
1479
1480 if (mergeable) {
1481 if (bio->bi_hw_segments == 1)
1482 bio->bi_hw_front_size = len;
1483 if (req->nr_hw_segments == 1)
1484 req->biotail->bi_hw_back_size = len;
1485 }
1486 return mergeable;
1487 }
1488
1489 return ll_new_hw_segment(q, req, bio);
1490 }
1491
1492 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1493 struct request *next)
1494 {
1495 int total_phys_segments;
1496 int total_hw_segments;
1497
1498 /*
1499 * First check if the either of the requests are re-queued
1500 * requests. Can't merge them if they are.
1501 */
1502 if (req->special || next->special)
1503 return 0;
1504
1505 /*
1506 * Will it become too large?
1507 */
1508 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1509 return 0;
1510
1511 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1512 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1513 total_phys_segments--;
1514
1515 if (total_phys_segments > q->max_phys_segments)
1516 return 0;
1517
1518 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1519 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1520 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1521 /*
1522 * propagate the combined length to the end of the requests
1523 */
1524 if (req->nr_hw_segments == 1)
1525 req->bio->bi_hw_front_size = len;
1526 if (next->nr_hw_segments == 1)
1527 next->biotail->bi_hw_back_size = len;
1528 total_hw_segments--;
1529 }
1530
1531 if (total_hw_segments > q->max_hw_segments)
1532 return 0;
1533
1534 /* Merge is OK... */
1535 req->nr_phys_segments = total_phys_segments;
1536 req->nr_hw_segments = total_hw_segments;
1537 return 1;
1538 }
1539
1540 /*
1541 * "plug" the device if there are no outstanding requests: this will
1542 * force the transfer to start only after we have put all the requests
1543 * on the list.
1544 *
1545 * This is called with interrupts off and no requests on the queue and
1546 * with the queue lock held.
1547 */
1548 void blk_plug_device(request_queue_t *q)
1549 {
1550 WARN_ON(!irqs_disabled());
1551
1552 /*
1553 * don't plug a stopped queue, it must be paired with blk_start_queue()
1554 * which will restart the queueing
1555 */
1556 if (blk_queue_stopped(q))
1557 return;
1558
1559 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1560 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1561 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1562 }
1563 }
1564
1565 EXPORT_SYMBOL(blk_plug_device);
1566
1567 /*
1568 * remove the queue from the plugged list, if present. called with
1569 * queue lock held and interrupts disabled.
1570 */
1571 int blk_remove_plug(request_queue_t *q)
1572 {
1573 WARN_ON(!irqs_disabled());
1574
1575 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1576 return 0;
1577
1578 del_timer(&q->unplug_timer);
1579 return 1;
1580 }
1581
1582 EXPORT_SYMBOL(blk_remove_plug);
1583
1584 /*
1585 * remove the plug and let it rip..
1586 */
1587 void __generic_unplug_device(request_queue_t *q)
1588 {
1589 if (unlikely(blk_queue_stopped(q)))
1590 return;
1591
1592 if (!blk_remove_plug(q))
1593 return;
1594
1595 q->request_fn(q);
1596 }
1597 EXPORT_SYMBOL(__generic_unplug_device);
1598
1599 /**
1600 * generic_unplug_device - fire a request queue
1601 * @q: The &request_queue_t in question
1602 *
1603 * Description:
1604 * Linux uses plugging to build bigger requests queues before letting
1605 * the device have at them. If a queue is plugged, the I/O scheduler
1606 * is still adding and merging requests on the queue. Once the queue
1607 * gets unplugged, the request_fn defined for the queue is invoked and
1608 * transfers started.
1609 **/
1610 void generic_unplug_device(request_queue_t *q)
1611 {
1612 spin_lock_irq(q->queue_lock);
1613 __generic_unplug_device(q);
1614 spin_unlock_irq(q->queue_lock);
1615 }
1616 EXPORT_SYMBOL(generic_unplug_device);
1617
1618 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1619 struct page *page)
1620 {
1621 request_queue_t *q = bdi->unplug_io_data;
1622
1623 /*
1624 * devices don't necessarily have an ->unplug_fn defined
1625 */
1626 if (q->unplug_fn) {
1627 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1628 q->rq.count[READ] + q->rq.count[WRITE]);
1629
1630 q->unplug_fn(q);
1631 }
1632 }
1633
1634 static void blk_unplug_work(struct work_struct *work)
1635 {
1636 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1637
1638 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1639 q->rq.count[READ] + q->rq.count[WRITE]);
1640
1641 q->unplug_fn(q);
1642 }
1643
1644 static void blk_unplug_timeout(unsigned long data)
1645 {
1646 request_queue_t *q = (request_queue_t *)data;
1647
1648 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1649 q->rq.count[READ] + q->rq.count[WRITE]);
1650
1651 kblockd_schedule_work(&q->unplug_work);
1652 }
1653
1654 /**
1655 * blk_start_queue - restart a previously stopped queue
1656 * @q: The &request_queue_t in question
1657 *
1658 * Description:
1659 * blk_start_queue() will clear the stop flag on the queue, and call
1660 * the request_fn for the queue if it was in a stopped state when
1661 * entered. Also see blk_stop_queue(). Queue lock must be held.
1662 **/
1663 void blk_start_queue(request_queue_t *q)
1664 {
1665 WARN_ON(!irqs_disabled());
1666
1667 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1668
1669 /*
1670 * one level of recursion is ok and is much faster than kicking
1671 * the unplug handling
1672 */
1673 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1674 q->request_fn(q);
1675 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1676 } else {
1677 blk_plug_device(q);
1678 kblockd_schedule_work(&q->unplug_work);
1679 }
1680 }
1681
1682 EXPORT_SYMBOL(blk_start_queue);
1683
1684 /**
1685 * blk_stop_queue - stop a queue
1686 * @q: The &request_queue_t in question
1687 *
1688 * Description:
1689 * The Linux block layer assumes that a block driver will consume all
1690 * entries on the request queue when the request_fn strategy is called.
1691 * Often this will not happen, because of hardware limitations (queue
1692 * depth settings). If a device driver gets a 'queue full' response,
1693 * or if it simply chooses not to queue more I/O at one point, it can
1694 * call this function to prevent the request_fn from being called until
1695 * the driver has signalled it's ready to go again. This happens by calling
1696 * blk_start_queue() to restart queue operations. Queue lock must be held.
1697 **/
1698 void blk_stop_queue(request_queue_t *q)
1699 {
1700 blk_remove_plug(q);
1701 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1702 }
1703 EXPORT_SYMBOL(blk_stop_queue);
1704
1705 /**
1706 * blk_sync_queue - cancel any pending callbacks on a queue
1707 * @q: the queue
1708 *
1709 * Description:
1710 * The block layer may perform asynchronous callback activity
1711 * on a queue, such as calling the unplug function after a timeout.
1712 * A block device may call blk_sync_queue to ensure that any
1713 * such activity is cancelled, thus allowing it to release resources
1714 * the the callbacks might use. The caller must already have made sure
1715 * that its ->make_request_fn will not re-add plugging prior to calling
1716 * this function.
1717 *
1718 */
1719 void blk_sync_queue(struct request_queue *q)
1720 {
1721 del_timer_sync(&q->unplug_timer);
1722 kblockd_flush();
1723 }
1724 EXPORT_SYMBOL(blk_sync_queue);
1725
1726 /**
1727 * blk_run_queue - run a single device queue
1728 * @q: The queue to run
1729 */
1730 void blk_run_queue(struct request_queue *q)
1731 {
1732 unsigned long flags;
1733
1734 spin_lock_irqsave(q->queue_lock, flags);
1735 blk_remove_plug(q);
1736
1737 /*
1738 * Only recurse once to avoid overrunning the stack, let the unplug
1739 * handling reinvoke the handler shortly if we already got there.
1740 */
1741 if (!elv_queue_empty(q)) {
1742 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1743 q->request_fn(q);
1744 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1745 } else {
1746 blk_plug_device(q);
1747 kblockd_schedule_work(&q->unplug_work);
1748 }
1749 }
1750
1751 spin_unlock_irqrestore(q->queue_lock, flags);
1752 }
1753 EXPORT_SYMBOL(blk_run_queue);
1754
1755 /**
1756 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1757 * @kobj: the kobj belonging of the request queue to be released
1758 *
1759 * Description:
1760 * blk_cleanup_queue is the pair to blk_init_queue() or
1761 * blk_queue_make_request(). It should be called when a request queue is
1762 * being released; typically when a block device is being de-registered.
1763 * Currently, its primary task it to free all the &struct request
1764 * structures that were allocated to the queue and the queue itself.
1765 *
1766 * Caveat:
1767 * Hopefully the low level driver will have finished any
1768 * outstanding requests first...
1769 **/
1770 static void blk_release_queue(struct kobject *kobj)
1771 {
1772 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1773 struct request_list *rl = &q->rq;
1774
1775 blk_sync_queue(q);
1776
1777 if (rl->rq_pool)
1778 mempool_destroy(rl->rq_pool);
1779
1780 if (q->queue_tags)
1781 __blk_queue_free_tags(q);
1782
1783 blk_trace_shutdown(q);
1784
1785 kmem_cache_free(requestq_cachep, q);
1786 }
1787
1788 void blk_put_queue(request_queue_t *q)
1789 {
1790 kobject_put(&q->kobj);
1791 }
1792 EXPORT_SYMBOL(blk_put_queue);
1793
1794 void blk_cleanup_queue(request_queue_t * q)
1795 {
1796 mutex_lock(&q->sysfs_lock);
1797 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1798 mutex_unlock(&q->sysfs_lock);
1799
1800 if (q->elevator)
1801 elevator_exit(q->elevator);
1802
1803 blk_put_queue(q);
1804 }
1805
1806 EXPORT_SYMBOL(blk_cleanup_queue);
1807
1808 static int blk_init_free_list(request_queue_t *q)
1809 {
1810 struct request_list *rl = &q->rq;
1811
1812 rl->count[READ] = rl->count[WRITE] = 0;
1813 rl->starved[READ] = rl->starved[WRITE] = 0;
1814 rl->elvpriv = 0;
1815 init_waitqueue_head(&rl->wait[READ]);
1816 init_waitqueue_head(&rl->wait[WRITE]);
1817
1818 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1819 mempool_free_slab, request_cachep, q->node);
1820
1821 if (!rl->rq_pool)
1822 return -ENOMEM;
1823
1824 return 0;
1825 }
1826
1827 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1828 {
1829 return blk_alloc_queue_node(gfp_mask, -1);
1830 }
1831 EXPORT_SYMBOL(blk_alloc_queue);
1832
1833 static struct kobj_type queue_ktype;
1834
1835 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1836 {
1837 request_queue_t *q;
1838
1839 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1840 if (!q)
1841 return NULL;
1842
1843 memset(q, 0, sizeof(*q));
1844 init_timer(&q->unplug_timer);
1845
1846 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1847 q->kobj.ktype = &queue_ktype;
1848 kobject_init(&q->kobj);
1849
1850 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1851 q->backing_dev_info.unplug_io_data = q;
1852
1853 mutex_init(&q->sysfs_lock);
1854
1855 return q;
1856 }
1857 EXPORT_SYMBOL(blk_alloc_queue_node);
1858
1859 /**
1860 * blk_init_queue - prepare a request queue for use with a block device
1861 * @rfn: The function to be called to process requests that have been
1862 * placed on the queue.
1863 * @lock: Request queue spin lock
1864 *
1865 * Description:
1866 * If a block device wishes to use the standard request handling procedures,
1867 * which sorts requests and coalesces adjacent requests, then it must
1868 * call blk_init_queue(). The function @rfn will be called when there
1869 * are requests on the queue that need to be processed. If the device
1870 * supports plugging, then @rfn may not be called immediately when requests
1871 * are available on the queue, but may be called at some time later instead.
1872 * Plugged queues are generally unplugged when a buffer belonging to one
1873 * of the requests on the queue is needed, or due to memory pressure.
1874 *
1875 * @rfn is not required, or even expected, to remove all requests off the
1876 * queue, but only as many as it can handle at a time. If it does leave
1877 * requests on the queue, it is responsible for arranging that the requests
1878 * get dealt with eventually.
1879 *
1880 * The queue spin lock must be held while manipulating the requests on the
1881 * request queue; this lock will be taken also from interrupt context, so irq
1882 * disabling is needed for it.
1883 *
1884 * Function returns a pointer to the initialized request queue, or NULL if
1885 * it didn't succeed.
1886 *
1887 * Note:
1888 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1889 * when the block device is deactivated (such as at module unload).
1890 **/
1891
1892 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1893 {
1894 return blk_init_queue_node(rfn, lock, -1);
1895 }
1896 EXPORT_SYMBOL(blk_init_queue);
1897
1898 request_queue_t *
1899 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1900 {
1901 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1902
1903 if (!q)
1904 return NULL;
1905
1906 q->node = node_id;
1907 if (blk_init_free_list(q)) {
1908 kmem_cache_free(requestq_cachep, q);
1909 return NULL;
1910 }
1911
1912 /*
1913 * if caller didn't supply a lock, they get per-queue locking with
1914 * our embedded lock
1915 */
1916 if (!lock) {
1917 spin_lock_init(&q->__queue_lock);
1918 lock = &q->__queue_lock;
1919 }
1920
1921 q->request_fn = rfn;
1922 q->back_merge_fn = ll_back_merge_fn;
1923 q->front_merge_fn = ll_front_merge_fn;
1924 q->merge_requests_fn = ll_merge_requests_fn;
1925 q->prep_rq_fn = NULL;
1926 q->unplug_fn = generic_unplug_device;
1927 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1928 q->queue_lock = lock;
1929
1930 blk_queue_segment_boundary(q, 0xffffffff);
1931
1932 blk_queue_make_request(q, __make_request);
1933 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1934
1935 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1936 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1937
1938 /*
1939 * all done
1940 */
1941 if (!elevator_init(q, NULL)) {
1942 blk_queue_congestion_threshold(q);
1943 return q;
1944 }
1945
1946 blk_put_queue(q);
1947 return NULL;
1948 }
1949 EXPORT_SYMBOL(blk_init_queue_node);
1950
1951 int blk_get_queue(request_queue_t *q)
1952 {
1953 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1954 kobject_get(&q->kobj);
1955 return 0;
1956 }
1957
1958 return 1;
1959 }
1960
1961 EXPORT_SYMBOL(blk_get_queue);
1962
1963 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1964 {
1965 if (rq->cmd_flags & REQ_ELVPRIV)
1966 elv_put_request(q, rq);
1967 mempool_free(rq, q->rq.rq_pool);
1968 }
1969
1970 static struct request *
1971 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1972 {
1973 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1974
1975 if (!rq)
1976 return NULL;
1977
1978 /*
1979 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1980 * see bio.h and blkdev.h
1981 */
1982 rq->cmd_flags = rw | REQ_ALLOCED;
1983
1984 if (priv) {
1985 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1986 mempool_free(rq, q->rq.rq_pool);
1987 return NULL;
1988 }
1989 rq->cmd_flags |= REQ_ELVPRIV;
1990 }
1991
1992 return rq;
1993 }
1994
1995 /*
1996 * ioc_batching returns true if the ioc is a valid batching request and
1997 * should be given priority access to a request.
1998 */
1999 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2000 {
2001 if (!ioc)
2002 return 0;
2003
2004 /*
2005 * Make sure the process is able to allocate at least 1 request
2006 * even if the batch times out, otherwise we could theoretically
2007 * lose wakeups.
2008 */
2009 return ioc->nr_batch_requests == q->nr_batching ||
2010 (ioc->nr_batch_requests > 0
2011 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2012 }
2013
2014 /*
2015 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2016 * will cause the process to be a "batcher" on all queues in the system. This
2017 * is the behaviour we want though - once it gets a wakeup it should be given
2018 * a nice run.
2019 */
2020 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2021 {
2022 if (!ioc || ioc_batching(q, ioc))
2023 return;
2024
2025 ioc->nr_batch_requests = q->nr_batching;
2026 ioc->last_waited = jiffies;
2027 }
2028
2029 static void __freed_request(request_queue_t *q, int rw)
2030 {
2031 struct request_list *rl = &q->rq;
2032
2033 if (rl->count[rw] < queue_congestion_off_threshold(q))
2034 blk_clear_queue_congested(q, rw);
2035
2036 if (rl->count[rw] + 1 <= q->nr_requests) {
2037 if (waitqueue_active(&rl->wait[rw]))
2038 wake_up(&rl->wait[rw]);
2039
2040 blk_clear_queue_full(q, rw);
2041 }
2042 }
2043
2044 /*
2045 * A request has just been released. Account for it, update the full and
2046 * congestion status, wake up any waiters. Called under q->queue_lock.
2047 */
2048 static void freed_request(request_queue_t *q, int rw, int priv)
2049 {
2050 struct request_list *rl = &q->rq;
2051
2052 rl->count[rw]--;
2053 if (priv)
2054 rl->elvpriv--;
2055
2056 __freed_request(q, rw);
2057
2058 if (unlikely(rl->starved[rw ^ 1]))
2059 __freed_request(q, rw ^ 1);
2060 }
2061
2062 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2063 /*
2064 * Get a free request, queue_lock must be held.
2065 * Returns NULL on failure, with queue_lock held.
2066 * Returns !NULL on success, with queue_lock *not held*.
2067 */
2068 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2069 gfp_t gfp_mask)
2070 {
2071 struct request *rq = NULL;
2072 struct request_list *rl = &q->rq;
2073 struct io_context *ioc = NULL;
2074 int may_queue, priv;
2075
2076 may_queue = elv_may_queue(q, rw);
2077 if (may_queue == ELV_MQUEUE_NO)
2078 goto rq_starved;
2079
2080 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2081 if (rl->count[rw]+1 >= q->nr_requests) {
2082 ioc = current_io_context(GFP_ATOMIC, q->node);
2083 /*
2084 * The queue will fill after this allocation, so set
2085 * it as full, and mark this process as "batching".
2086 * This process will be allowed to complete a batch of
2087 * requests, others will be blocked.
2088 */
2089 if (!blk_queue_full(q, rw)) {
2090 ioc_set_batching(q, ioc);
2091 blk_set_queue_full(q, rw);
2092 } else {
2093 if (may_queue != ELV_MQUEUE_MUST
2094 && !ioc_batching(q, ioc)) {
2095 /*
2096 * The queue is full and the allocating
2097 * process is not a "batcher", and not
2098 * exempted by the IO scheduler
2099 */
2100 goto out;
2101 }
2102 }
2103 }
2104 blk_set_queue_congested(q, rw);
2105 }
2106
2107 /*
2108 * Only allow batching queuers to allocate up to 50% over the defined
2109 * limit of requests, otherwise we could have thousands of requests
2110 * allocated with any setting of ->nr_requests
2111 */
2112 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2113 goto out;
2114
2115 rl->count[rw]++;
2116 rl->starved[rw] = 0;
2117
2118 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2119 if (priv)
2120 rl->elvpriv++;
2121
2122 spin_unlock_irq(q->queue_lock);
2123
2124 rq = blk_alloc_request(q, rw, priv, gfp_mask);
2125 if (unlikely(!rq)) {
2126 /*
2127 * Allocation failed presumably due to memory. Undo anything
2128 * we might have messed up.
2129 *
2130 * Allocating task should really be put onto the front of the
2131 * wait queue, but this is pretty rare.
2132 */
2133 spin_lock_irq(q->queue_lock);
2134 freed_request(q, rw, priv);
2135
2136 /*
2137 * in the very unlikely event that allocation failed and no
2138 * requests for this direction was pending, mark us starved
2139 * so that freeing of a request in the other direction will
2140 * notice us. another possible fix would be to split the
2141 * rq mempool into READ and WRITE
2142 */
2143 rq_starved:
2144 if (unlikely(rl->count[rw] == 0))
2145 rl->starved[rw] = 1;
2146
2147 goto out;
2148 }
2149
2150 /*
2151 * ioc may be NULL here, and ioc_batching will be false. That's
2152 * OK, if the queue is under the request limit then requests need
2153 * not count toward the nr_batch_requests limit. There will always
2154 * be some limit enforced by BLK_BATCH_TIME.
2155 */
2156 if (ioc_batching(q, ioc))
2157 ioc->nr_batch_requests--;
2158
2159 rq_init(q, rq);
2160
2161 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2162 out:
2163 return rq;
2164 }
2165
2166 /*
2167 * No available requests for this queue, unplug the device and wait for some
2168 * requests to become available.
2169 *
2170 * Called with q->queue_lock held, and returns with it unlocked.
2171 */
2172 static struct request *get_request_wait(request_queue_t *q, int rw,
2173 struct bio *bio)
2174 {
2175 struct request *rq;
2176
2177 rq = get_request(q, rw, bio, GFP_NOIO);
2178 while (!rq) {
2179 DEFINE_WAIT(wait);
2180 struct request_list *rl = &q->rq;
2181
2182 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2183 TASK_UNINTERRUPTIBLE);
2184
2185 rq = get_request(q, rw, bio, GFP_NOIO);
2186
2187 if (!rq) {
2188 struct io_context *ioc;
2189
2190 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2191
2192 __generic_unplug_device(q);
2193 spin_unlock_irq(q->queue_lock);
2194 io_schedule();
2195
2196 /*
2197 * After sleeping, we become a "batching" process and
2198 * will be able to allocate at least one request, and
2199 * up to a big batch of them for a small period time.
2200 * See ioc_batching, ioc_set_batching
2201 */
2202 ioc = current_io_context(GFP_NOIO, q->node);
2203 ioc_set_batching(q, ioc);
2204
2205 spin_lock_irq(q->queue_lock);
2206 }
2207 finish_wait(&rl->wait[rw], &wait);
2208 }
2209
2210 return rq;
2211 }
2212
2213 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2214 {
2215 struct request *rq;
2216
2217 BUG_ON(rw != READ && rw != WRITE);
2218
2219 spin_lock_irq(q->queue_lock);
2220 if (gfp_mask & __GFP_WAIT) {
2221 rq = get_request_wait(q, rw, NULL);
2222 } else {
2223 rq = get_request(q, rw, NULL, gfp_mask);
2224 if (!rq)
2225 spin_unlock_irq(q->queue_lock);
2226 }
2227 /* q->queue_lock is unlocked at this point */
2228
2229 return rq;
2230 }
2231 EXPORT_SYMBOL(blk_get_request);
2232
2233 /**
2234 * blk_start_queueing - initiate dispatch of requests to device
2235 * @q: request queue to kick into gear
2236 *
2237 * This is basically a helper to remove the need to know whether a queue
2238 * is plugged or not if someone just wants to initiate dispatch of requests
2239 * for this queue.
2240 *
2241 * The queue lock must be held with interrupts disabled.
2242 */
2243 void blk_start_queueing(request_queue_t *q)
2244 {
2245 if (!blk_queue_plugged(q))
2246 q->request_fn(q);
2247 else
2248 __generic_unplug_device(q);
2249 }
2250 EXPORT_SYMBOL(blk_start_queueing);
2251
2252 /**
2253 * blk_requeue_request - put a request back on queue
2254 * @q: request queue where request should be inserted
2255 * @rq: request to be inserted
2256 *
2257 * Description:
2258 * Drivers often keep queueing requests until the hardware cannot accept
2259 * more, when that condition happens we need to put the request back
2260 * on the queue. Must be called with queue lock held.
2261 */
2262 void blk_requeue_request(request_queue_t *q, struct request *rq)
2263 {
2264 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2265
2266 if (blk_rq_tagged(rq))
2267 blk_queue_end_tag(q, rq);
2268
2269 elv_requeue_request(q, rq);
2270 }
2271
2272 EXPORT_SYMBOL(blk_requeue_request);
2273
2274 /**
2275 * blk_insert_request - insert a special request in to a request queue
2276 * @q: request queue where request should be inserted
2277 * @rq: request to be inserted
2278 * @at_head: insert request at head or tail of queue
2279 * @data: private data
2280 *
2281 * Description:
2282 * Many block devices need to execute commands asynchronously, so they don't
2283 * block the whole kernel from preemption during request execution. This is
2284 * accomplished normally by inserting aritficial requests tagged as
2285 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2286 * scheduled for actual execution by the request queue.
2287 *
2288 * We have the option of inserting the head or the tail of the queue.
2289 * Typically we use the tail for new ioctls and so forth. We use the head
2290 * of the queue for things like a QUEUE_FULL message from a device, or a
2291 * host that is unable to accept a particular command.
2292 */
2293 void blk_insert_request(request_queue_t *q, struct request *rq,
2294 int at_head, void *data)
2295 {
2296 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2297 unsigned long flags;
2298
2299 /*
2300 * tell I/O scheduler that this isn't a regular read/write (ie it
2301 * must not attempt merges on this) and that it acts as a soft
2302 * barrier
2303 */
2304 rq->cmd_type = REQ_TYPE_SPECIAL;
2305 rq->cmd_flags |= REQ_SOFTBARRIER;
2306
2307 rq->special = data;
2308
2309 spin_lock_irqsave(q->queue_lock, flags);
2310
2311 /*
2312 * If command is tagged, release the tag
2313 */
2314 if (blk_rq_tagged(rq))
2315 blk_queue_end_tag(q, rq);
2316
2317 drive_stat_acct(rq, rq->nr_sectors, 1);
2318 __elv_add_request(q, rq, where, 0);
2319 blk_start_queueing(q);
2320 spin_unlock_irqrestore(q->queue_lock, flags);
2321 }
2322
2323 EXPORT_SYMBOL(blk_insert_request);
2324
2325 /**
2326 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2327 * @q: request queue where request should be inserted
2328 * @rq: request structure to fill
2329 * @ubuf: the user buffer
2330 * @len: length of user data
2331 *
2332 * Description:
2333 * Data will be mapped directly for zero copy io, if possible. Otherwise
2334 * a kernel bounce buffer is used.
2335 *
2336 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2337 * still in process context.
2338 *
2339 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2340 * before being submitted to the device, as pages mapped may be out of
2341 * reach. It's the callers responsibility to make sure this happens. The
2342 * original bio must be passed back in to blk_rq_unmap_user() for proper
2343 * unmapping.
2344 */
2345 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2346 unsigned int len)
2347 {
2348 unsigned long uaddr;
2349 struct bio *bio;
2350 int reading;
2351
2352 if (len > (q->max_hw_sectors << 9))
2353 return -EINVAL;
2354 if (!len || !ubuf)
2355 return -EINVAL;
2356
2357 reading = rq_data_dir(rq) == READ;
2358
2359 /*
2360 * if alignment requirement is satisfied, map in user pages for
2361 * direct dma. else, set up kernel bounce buffers
2362 */
2363 uaddr = (unsigned long) ubuf;
2364 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2365 bio = bio_map_user(q, NULL, uaddr, len, reading);
2366 else
2367 bio = bio_copy_user(q, uaddr, len, reading);
2368
2369 if (!IS_ERR(bio)) {
2370 rq->bio = rq->biotail = bio;
2371 blk_rq_bio_prep(q, rq, bio);
2372
2373 rq->buffer = rq->data = NULL;
2374 rq->data_len = len;
2375 return 0;
2376 }
2377
2378 /*
2379 * bio is the err-ptr
2380 */
2381 return PTR_ERR(bio);
2382 }
2383
2384 EXPORT_SYMBOL(blk_rq_map_user);
2385
2386 /**
2387 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2388 * @q: request queue where request should be inserted
2389 * @rq: request to map data to
2390 * @iov: pointer to the iovec
2391 * @iov_count: number of elements in the iovec
2392 *
2393 * Description:
2394 * Data will be mapped directly for zero copy io, if possible. Otherwise
2395 * a kernel bounce buffer is used.
2396 *
2397 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2398 * still in process context.
2399 *
2400 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2401 * before being submitted to the device, as pages mapped may be out of
2402 * reach. It's the callers responsibility to make sure this happens. The
2403 * original bio must be passed back in to blk_rq_unmap_user() for proper
2404 * unmapping.
2405 */
2406 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2407 struct sg_iovec *iov, int iov_count)
2408 {
2409 struct bio *bio;
2410
2411 if (!iov || iov_count <= 0)
2412 return -EINVAL;
2413
2414 /* we don't allow misaligned data like bio_map_user() does. If the
2415 * user is using sg, they're expected to know the alignment constraints
2416 * and respect them accordingly */
2417 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2418 if (IS_ERR(bio))
2419 return PTR_ERR(bio);
2420
2421 rq->bio = rq->biotail = bio;
2422 blk_rq_bio_prep(q, rq, bio);
2423 rq->buffer = rq->data = NULL;
2424 rq->data_len = bio->bi_size;
2425 return 0;
2426 }
2427
2428 EXPORT_SYMBOL(blk_rq_map_user_iov);
2429
2430 /**
2431 * blk_rq_unmap_user - unmap a request with user data
2432 * @bio: bio to be unmapped
2433 * @ulen: length of user buffer
2434 *
2435 * Description:
2436 * Unmap a bio previously mapped by blk_rq_map_user().
2437 */
2438 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2439 {
2440 int ret = 0;
2441
2442 if (bio) {
2443 if (bio_flagged(bio, BIO_USER_MAPPED))
2444 bio_unmap_user(bio);
2445 else
2446 ret = bio_uncopy_user(bio);
2447 }
2448
2449 return 0;
2450 }
2451
2452 EXPORT_SYMBOL(blk_rq_unmap_user);
2453
2454 /**
2455 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2456 * @q: request queue where request should be inserted
2457 * @rq: request to fill
2458 * @kbuf: the kernel buffer
2459 * @len: length of user data
2460 * @gfp_mask: memory allocation flags
2461 */
2462 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2463 unsigned int len, gfp_t gfp_mask)
2464 {
2465 struct bio *bio;
2466
2467 if (len > (q->max_hw_sectors << 9))
2468 return -EINVAL;
2469 if (!len || !kbuf)
2470 return -EINVAL;
2471
2472 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2473 if (IS_ERR(bio))
2474 return PTR_ERR(bio);
2475
2476 if (rq_data_dir(rq) == WRITE)
2477 bio->bi_rw |= (1 << BIO_RW);
2478
2479 rq->bio = rq->biotail = bio;
2480 blk_rq_bio_prep(q, rq, bio);
2481
2482 rq->buffer = rq->data = NULL;
2483 rq->data_len = len;
2484 return 0;
2485 }
2486
2487 EXPORT_SYMBOL(blk_rq_map_kern);
2488
2489 /**
2490 * blk_execute_rq_nowait - insert a request into queue for execution
2491 * @q: queue to insert the request in
2492 * @bd_disk: matching gendisk
2493 * @rq: request to insert
2494 * @at_head: insert request at head or tail of queue
2495 * @done: I/O completion handler
2496 *
2497 * Description:
2498 * Insert a fully prepared request at the back of the io scheduler queue
2499 * for execution. Don't wait for completion.
2500 */
2501 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2502 struct request *rq, int at_head,
2503 rq_end_io_fn *done)
2504 {
2505 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2506
2507 rq->rq_disk = bd_disk;
2508 rq->cmd_flags |= REQ_NOMERGE;
2509 rq->end_io = done;
2510 WARN_ON(irqs_disabled());
2511 spin_lock_irq(q->queue_lock);
2512 __elv_add_request(q, rq, where, 1);
2513 __generic_unplug_device(q);
2514 spin_unlock_irq(q->queue_lock);
2515 }
2516 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2517
2518 /**
2519 * blk_execute_rq - insert a request into queue for execution
2520 * @q: queue to insert the request in
2521 * @bd_disk: matching gendisk
2522 * @rq: request to insert
2523 * @at_head: insert request at head or tail of queue
2524 *
2525 * Description:
2526 * Insert a fully prepared request at the back of the io scheduler queue
2527 * for execution and wait for completion.
2528 */
2529 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2530 struct request *rq, int at_head)
2531 {
2532 DECLARE_COMPLETION_ONSTACK(wait);
2533 char sense[SCSI_SENSE_BUFFERSIZE];
2534 int err = 0;
2535
2536 /*
2537 * we need an extra reference to the request, so we can look at
2538 * it after io completion
2539 */
2540 rq->ref_count++;
2541
2542 if (!rq->sense) {
2543 memset(sense, 0, sizeof(sense));
2544 rq->sense = sense;
2545 rq->sense_len = 0;
2546 }
2547
2548 rq->end_io_data = &wait;
2549 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2550 wait_for_completion(&wait);
2551
2552 if (rq->errors)
2553 err = -EIO;
2554
2555 return err;
2556 }
2557
2558 EXPORT_SYMBOL(blk_execute_rq);
2559
2560 /**
2561 * blkdev_issue_flush - queue a flush
2562 * @bdev: blockdev to issue flush for
2563 * @error_sector: error sector
2564 *
2565 * Description:
2566 * Issue a flush for the block device in question. Caller can supply
2567 * room for storing the error offset in case of a flush error, if they
2568 * wish to. Caller must run wait_for_completion() on its own.
2569 */
2570 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2571 {
2572 request_queue_t *q;
2573
2574 if (bdev->bd_disk == NULL)
2575 return -ENXIO;
2576
2577 q = bdev_get_queue(bdev);
2578 if (!q)
2579 return -ENXIO;
2580 if (!q->issue_flush_fn)
2581 return -EOPNOTSUPP;
2582
2583 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2584 }
2585
2586 EXPORT_SYMBOL(blkdev_issue_flush);
2587
2588 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2589 {
2590 int rw = rq_data_dir(rq);
2591
2592 if (!blk_fs_request(rq) || !rq->rq_disk)
2593 return;
2594
2595 if (!new_io) {
2596 __disk_stat_inc(rq->rq_disk, merges[rw]);
2597 } else {
2598 disk_round_stats(rq->rq_disk);
2599 rq->rq_disk->in_flight++;
2600 }
2601 }
2602
2603 /*
2604 * add-request adds a request to the linked list.
2605 * queue lock is held and interrupts disabled, as we muck with the
2606 * request queue list.
2607 */
2608 static inline void add_request(request_queue_t * q, struct request * req)
2609 {
2610 drive_stat_acct(req, req->nr_sectors, 1);
2611
2612 if (q->activity_fn)
2613 q->activity_fn(q->activity_data, rq_data_dir(req));
2614
2615 /*
2616 * elevator indicated where it wants this request to be
2617 * inserted at elevator_merge time
2618 */
2619 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2620 }
2621
2622 /*
2623 * disk_round_stats() - Round off the performance stats on a struct
2624 * disk_stats.
2625 *
2626 * The average IO queue length and utilisation statistics are maintained
2627 * by observing the current state of the queue length and the amount of
2628 * time it has been in this state for.
2629 *
2630 * Normally, that accounting is done on IO completion, but that can result
2631 * in more than a second's worth of IO being accounted for within any one
2632 * second, leading to >100% utilisation. To deal with that, we call this
2633 * function to do a round-off before returning the results when reading
2634 * /proc/diskstats. This accounts immediately for all queue usage up to
2635 * the current jiffies and restarts the counters again.
2636 */
2637 void disk_round_stats(struct gendisk *disk)
2638 {
2639 unsigned long now = jiffies;
2640
2641 if (now == disk->stamp)
2642 return;
2643
2644 if (disk->in_flight) {
2645 __disk_stat_add(disk, time_in_queue,
2646 disk->in_flight * (now - disk->stamp));
2647 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2648 }
2649 disk->stamp = now;
2650 }
2651
2652 EXPORT_SYMBOL_GPL(disk_round_stats);
2653
2654 /*
2655 * queue lock must be held
2656 */
2657 void __blk_put_request(request_queue_t *q, struct request *req)
2658 {
2659 if (unlikely(!q))
2660 return;
2661 if (unlikely(--req->ref_count))
2662 return;
2663
2664 elv_completed_request(q, req);
2665
2666 /*
2667 * Request may not have originated from ll_rw_blk. if not,
2668 * it didn't come out of our reserved rq pools
2669 */
2670 if (req->cmd_flags & REQ_ALLOCED) {
2671 int rw = rq_data_dir(req);
2672 int priv = req->cmd_flags & REQ_ELVPRIV;
2673
2674 BUG_ON(!list_empty(&req->queuelist));
2675 BUG_ON(!hlist_unhashed(&req->hash));
2676
2677 blk_free_request(q, req);
2678 freed_request(q, rw, priv);
2679 }
2680 }
2681
2682 EXPORT_SYMBOL_GPL(__blk_put_request);
2683
2684 void blk_put_request(struct request *req)
2685 {
2686 unsigned long flags;
2687 request_queue_t *q = req->q;
2688
2689 /*
2690 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2691 * following if (q) test.
2692 */
2693 if (q) {
2694 spin_lock_irqsave(q->queue_lock, flags);
2695 __blk_put_request(q, req);
2696 spin_unlock_irqrestore(q->queue_lock, flags);
2697 }
2698 }
2699
2700 EXPORT_SYMBOL(blk_put_request);
2701
2702 /**
2703 * blk_end_sync_rq - executes a completion event on a request
2704 * @rq: request to complete
2705 * @error: end io status of the request
2706 */
2707 void blk_end_sync_rq(struct request *rq, int error)
2708 {
2709 struct completion *waiting = rq->end_io_data;
2710
2711 rq->end_io_data = NULL;
2712 __blk_put_request(rq->q, rq);
2713
2714 /*
2715 * complete last, if this is a stack request the process (and thus
2716 * the rq pointer) could be invalid right after this complete()
2717 */
2718 complete(waiting);
2719 }
2720 EXPORT_SYMBOL(blk_end_sync_rq);
2721
2722 /*
2723 * Has to be called with the request spinlock acquired
2724 */
2725 static int attempt_merge(request_queue_t *q, struct request *req,
2726 struct request *next)
2727 {
2728 if (!rq_mergeable(req) || !rq_mergeable(next))
2729 return 0;
2730
2731 /*
2732 * not contiguous
2733 */
2734 if (req->sector + req->nr_sectors != next->sector)
2735 return 0;
2736
2737 if (rq_data_dir(req) != rq_data_dir(next)
2738 || req->rq_disk != next->rq_disk
2739 || next->special)
2740 return 0;
2741
2742 /*
2743 * If we are allowed to merge, then append bio list
2744 * from next to rq and release next. merge_requests_fn
2745 * will have updated segment counts, update sector
2746 * counts here.
2747 */
2748 if (!q->merge_requests_fn(q, req, next))
2749 return 0;
2750
2751 /*
2752 * At this point we have either done a back merge
2753 * or front merge. We need the smaller start_time of
2754 * the merged requests to be the current request
2755 * for accounting purposes.
2756 */
2757 if (time_after(req->start_time, next->start_time))
2758 req->start_time = next->start_time;
2759
2760 req->biotail->bi_next = next->bio;
2761 req->biotail = next->biotail;
2762
2763 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2764
2765 elv_merge_requests(q, req, next);
2766
2767 if (req->rq_disk) {
2768 disk_round_stats(req->rq_disk);
2769 req->rq_disk->in_flight--;
2770 }
2771
2772 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2773
2774 __blk_put_request(q, next);
2775 return 1;
2776 }
2777
2778 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2779 {
2780 struct request *next = elv_latter_request(q, rq);
2781
2782 if (next)
2783 return attempt_merge(q, rq, next);
2784
2785 return 0;
2786 }
2787
2788 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2789 {
2790 struct request *prev = elv_former_request(q, rq);
2791
2792 if (prev)
2793 return attempt_merge(q, prev, rq);
2794
2795 return 0;
2796 }
2797
2798 static void init_request_from_bio(struct request *req, struct bio *bio)
2799 {
2800 req->cmd_type = REQ_TYPE_FS;
2801
2802 /*
2803 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2804 */
2805 if (bio_rw_ahead(bio) || bio_failfast(bio))
2806 req->cmd_flags |= REQ_FAILFAST;
2807
2808 /*
2809 * REQ_BARRIER implies no merging, but lets make it explicit
2810 */
2811 if (unlikely(bio_barrier(bio)))
2812 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2813
2814 if (bio_sync(bio))
2815 req->cmd_flags |= REQ_RW_SYNC;
2816 if (bio_rw_meta(bio))
2817 req->cmd_flags |= REQ_RW_META;
2818
2819 req->errors = 0;
2820 req->hard_sector = req->sector = bio->bi_sector;
2821 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2822 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2823 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2824 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2825 req->buffer = bio_data(bio); /* see ->buffer comment above */
2826 req->bio = req->biotail = bio;
2827 req->ioprio = bio_prio(bio);
2828 req->rq_disk = bio->bi_bdev->bd_disk;
2829 req->start_time = jiffies;
2830 }
2831
2832 static int __make_request(request_queue_t *q, struct bio *bio)
2833 {
2834 struct request *req;
2835 int el_ret, nr_sectors, barrier, err;
2836 const unsigned short prio = bio_prio(bio);
2837 const int sync = bio_sync(bio);
2838
2839 nr_sectors = bio_sectors(bio);
2840
2841 /*
2842 * low level driver can indicate that it wants pages above a
2843 * certain limit bounced to low memory (ie for highmem, or even
2844 * ISA dma in theory)
2845 */
2846 blk_queue_bounce(q, &bio);
2847
2848 barrier = bio_barrier(bio);
2849 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2850 err = -EOPNOTSUPP;
2851 goto end_io;
2852 }
2853
2854 spin_lock_irq(q->queue_lock);
2855
2856 if (unlikely(barrier) || elv_queue_empty(q))
2857 goto get_rq;
2858
2859 el_ret = elv_merge(q, &req, bio);
2860 switch (el_ret) {
2861 case ELEVATOR_BACK_MERGE:
2862 BUG_ON(!rq_mergeable(req));
2863
2864 if (!q->back_merge_fn(q, req, bio))
2865 break;
2866
2867 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2868
2869 req->biotail->bi_next = bio;
2870 req->biotail = bio;
2871 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2872 req->ioprio = ioprio_best(req->ioprio, prio);
2873 drive_stat_acct(req, nr_sectors, 0);
2874 if (!attempt_back_merge(q, req))
2875 elv_merged_request(q, req, el_ret);
2876 goto out;
2877
2878 case ELEVATOR_FRONT_MERGE:
2879 BUG_ON(!rq_mergeable(req));
2880
2881 if (!q->front_merge_fn(q, req, bio))
2882 break;
2883
2884 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2885
2886 bio->bi_next = req->bio;
2887 req->bio = bio;
2888
2889 /*
2890 * may not be valid. if the low level driver said
2891 * it didn't need a bounce buffer then it better
2892 * not touch req->buffer either...
2893 */
2894 req->buffer = bio_data(bio);
2895 req->current_nr_sectors = bio_cur_sectors(bio);
2896 req->hard_cur_sectors = req->current_nr_sectors;
2897 req->sector = req->hard_sector = bio->bi_sector;
2898 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2899 req->ioprio = ioprio_best(req->ioprio, prio);
2900 drive_stat_acct(req, nr_sectors, 0);
2901 if (!attempt_front_merge(q, req))
2902 elv_merged_request(q, req, el_ret);
2903 goto out;
2904
2905 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2906 default:
2907 ;
2908 }
2909
2910 get_rq:
2911 /*
2912 * Grab a free request. This is might sleep but can not fail.
2913 * Returns with the queue unlocked.
2914 */
2915 req = get_request_wait(q, bio_data_dir(bio), bio);
2916
2917 /*
2918 * After dropping the lock and possibly sleeping here, our request
2919 * may now be mergeable after it had proven unmergeable (above).
2920 * We don't worry about that case for efficiency. It won't happen
2921 * often, and the elevators are able to handle it.
2922 */
2923 init_request_from_bio(req, bio);
2924
2925 spin_lock_irq(q->queue_lock);
2926 if (elv_queue_empty(q))
2927 blk_plug_device(q);
2928 add_request(q, req);
2929 out:
2930 if (sync)
2931 __generic_unplug_device(q);
2932
2933 spin_unlock_irq(q->queue_lock);
2934 return 0;
2935
2936 end_io:
2937 bio_endio(bio, nr_sectors << 9, err);
2938 return 0;
2939 }
2940
2941 /*
2942 * If bio->bi_dev is a partition, remap the location
2943 */
2944 static inline void blk_partition_remap(struct bio *bio)
2945 {
2946 struct block_device *bdev = bio->bi_bdev;
2947
2948 if (bdev != bdev->bd_contains) {
2949 struct hd_struct *p = bdev->bd_part;
2950 const int rw = bio_data_dir(bio);
2951
2952 p->sectors[rw] += bio_sectors(bio);
2953 p->ios[rw]++;
2954
2955 bio->bi_sector += p->start_sect;
2956 bio->bi_bdev = bdev->bd_contains;
2957 }
2958 }
2959
2960 static void handle_bad_sector(struct bio *bio)
2961 {
2962 char b[BDEVNAME_SIZE];
2963
2964 printk(KERN_INFO "attempt to access beyond end of device\n");
2965 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2966 bdevname(bio->bi_bdev, b),
2967 bio->bi_rw,
2968 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2969 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2970
2971 set_bit(BIO_EOF, &bio->bi_flags);
2972 }
2973
2974 /**
2975 * generic_make_request: hand a buffer to its device driver for I/O
2976 * @bio: The bio describing the location in memory and on the device.
2977 *
2978 * generic_make_request() is used to make I/O requests of block
2979 * devices. It is passed a &struct bio, which describes the I/O that needs
2980 * to be done.
2981 *
2982 * generic_make_request() does not return any status. The
2983 * success/failure status of the request, along with notification of
2984 * completion, is delivered asynchronously through the bio->bi_end_io
2985 * function described (one day) else where.
2986 *
2987 * The caller of generic_make_request must make sure that bi_io_vec
2988 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2989 * set to describe the device address, and the
2990 * bi_end_io and optionally bi_private are set to describe how
2991 * completion notification should be signaled.
2992 *
2993 * generic_make_request and the drivers it calls may use bi_next if this
2994 * bio happens to be merged with someone else, and may change bi_dev and
2995 * bi_sector for remaps as it sees fit. So the values of these fields
2996 * should NOT be depended on after the call to generic_make_request.
2997 */
2998 void generic_make_request(struct bio *bio)
2999 {
3000 request_queue_t *q;
3001 sector_t maxsector;
3002 sector_t old_sector;
3003 int ret, nr_sectors = bio_sectors(bio);
3004 dev_t old_dev;
3005
3006 might_sleep();
3007 /* Test device or partition size, when known. */
3008 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3009 if (maxsector) {
3010 sector_t sector = bio->bi_sector;
3011
3012 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3013 /*
3014 * This may well happen - the kernel calls bread()
3015 * without checking the size of the device, e.g., when
3016 * mounting a device.
3017 */
3018 handle_bad_sector(bio);
3019 goto end_io;
3020 }
3021 }
3022
3023 /*
3024 * Resolve the mapping until finished. (drivers are
3025 * still free to implement/resolve their own stacking
3026 * by explicitly returning 0)
3027 *
3028 * NOTE: we don't repeat the blk_size check for each new device.
3029 * Stacking drivers are expected to know what they are doing.
3030 */
3031 old_sector = -1;
3032 old_dev = 0;
3033 do {
3034 char b[BDEVNAME_SIZE];
3035
3036 q = bdev_get_queue(bio->bi_bdev);
3037 if (!q) {
3038 printk(KERN_ERR
3039 "generic_make_request: Trying to access "
3040 "nonexistent block-device %s (%Lu)\n",
3041 bdevname(bio->bi_bdev, b),
3042 (long long) bio->bi_sector);
3043 end_io:
3044 bio_endio(bio, bio->bi_size, -EIO);
3045 break;
3046 }
3047
3048 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3049 printk("bio too big device %s (%u > %u)\n",
3050 bdevname(bio->bi_bdev, b),
3051 bio_sectors(bio),
3052 q->max_hw_sectors);
3053 goto end_io;
3054 }
3055
3056 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3057 goto end_io;
3058
3059 /*
3060 * If this device has partitions, remap block n
3061 * of partition p to block n+start(p) of the disk.
3062 */
3063 blk_partition_remap(bio);
3064
3065 if (old_sector != -1)
3066 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3067 old_sector);
3068
3069 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3070
3071 old_sector = bio->bi_sector;
3072 old_dev = bio->bi_bdev->bd_dev;
3073
3074 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3075 if (maxsector) {
3076 sector_t sector = bio->bi_sector;
3077
3078 if (maxsector < nr_sectors ||
3079 maxsector - nr_sectors < sector) {
3080 /*
3081 * This may well happen - partitions are not
3082 * checked to make sure they are within the size
3083 * of the whole device.
3084 */
3085 handle_bad_sector(bio);
3086 goto end_io;
3087 }
3088 }
3089
3090 ret = q->make_request_fn(q, bio);
3091 } while (ret);
3092 }
3093
3094 EXPORT_SYMBOL(generic_make_request);
3095
3096 /**
3097 * submit_bio: submit a bio to the block device layer for I/O
3098 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3099 * @bio: The &struct bio which describes the I/O
3100 *
3101 * submit_bio() is very similar in purpose to generic_make_request(), and
3102 * uses that function to do most of the work. Both are fairly rough
3103 * interfaces, @bio must be presetup and ready for I/O.
3104 *
3105 */
3106 void submit_bio(int rw, struct bio *bio)
3107 {
3108 int count = bio_sectors(bio);
3109
3110 BIO_BUG_ON(!bio->bi_size);
3111 BIO_BUG_ON(!bio->bi_io_vec);
3112 bio->bi_rw |= rw;
3113 if (rw & WRITE)
3114 count_vm_events(PGPGOUT, count);
3115 else
3116 count_vm_events(PGPGIN, count);
3117
3118 if (unlikely(block_dump)) {
3119 char b[BDEVNAME_SIZE];
3120 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3121 current->comm, current->pid,
3122 (rw & WRITE) ? "WRITE" : "READ",
3123 (unsigned long long)bio->bi_sector,
3124 bdevname(bio->bi_bdev,b));
3125 }
3126
3127 generic_make_request(bio);
3128 }
3129
3130 EXPORT_SYMBOL(submit_bio);
3131
3132 static void blk_recalc_rq_segments(struct request *rq)
3133 {
3134 struct bio *bio, *prevbio = NULL;
3135 int nr_phys_segs, nr_hw_segs;
3136 unsigned int phys_size, hw_size;
3137 request_queue_t *q = rq->q;
3138
3139 if (!rq->bio)
3140 return;
3141
3142 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3143 rq_for_each_bio(bio, rq) {
3144 /* Force bio hw/phys segs to be recalculated. */
3145 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3146
3147 nr_phys_segs += bio_phys_segments(q, bio);
3148 nr_hw_segs += bio_hw_segments(q, bio);
3149 if (prevbio) {
3150 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3151 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3152
3153 if (blk_phys_contig_segment(q, prevbio, bio) &&
3154 pseg <= q->max_segment_size) {
3155 nr_phys_segs--;
3156 phys_size += prevbio->bi_size + bio->bi_size;
3157 } else
3158 phys_size = 0;
3159
3160 if (blk_hw_contig_segment(q, prevbio, bio) &&
3161 hseg <= q->max_segment_size) {
3162 nr_hw_segs--;
3163 hw_size += prevbio->bi_size + bio->bi_size;
3164 } else
3165 hw_size = 0;
3166 }
3167 prevbio = bio;
3168 }
3169
3170 rq->nr_phys_segments = nr_phys_segs;
3171 rq->nr_hw_segments = nr_hw_segs;
3172 }
3173
3174 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3175 {
3176 if (blk_fs_request(rq)) {
3177 rq->hard_sector += nsect;
3178 rq->hard_nr_sectors -= nsect;
3179
3180 /*
3181 * Move the I/O submission pointers ahead if required.
3182 */
3183 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3184 (rq->sector <= rq->hard_sector)) {
3185 rq->sector = rq->hard_sector;
3186 rq->nr_sectors = rq->hard_nr_sectors;
3187 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3188 rq->current_nr_sectors = rq->hard_cur_sectors;
3189 rq->buffer = bio_data(rq->bio);
3190 }
3191
3192 /*
3193 * if total number of sectors is less than the first segment
3194 * size, something has gone terribly wrong
3195 */
3196 if (rq->nr_sectors < rq->current_nr_sectors) {
3197 printk("blk: request botched\n");
3198 rq->nr_sectors = rq->current_nr_sectors;
3199 }
3200 }
3201 }
3202
3203 static int __end_that_request_first(struct request *req, int uptodate,
3204 int nr_bytes)
3205 {
3206 int total_bytes, bio_nbytes, error, next_idx = 0;
3207 struct bio *bio;
3208
3209 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3210
3211 /*
3212 * extend uptodate bool to allow < 0 value to be direct io error
3213 */
3214 error = 0;
3215 if (end_io_error(uptodate))
3216 error = !uptodate ? -EIO : uptodate;
3217
3218 /*
3219 * for a REQ_BLOCK_PC request, we want to carry any eventual
3220 * sense key with us all the way through
3221 */
3222 if (!blk_pc_request(req))
3223 req->errors = 0;
3224
3225 if (!uptodate) {
3226 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3227 printk("end_request: I/O error, dev %s, sector %llu\n",
3228 req->rq_disk ? req->rq_disk->disk_name : "?",
3229 (unsigned long long)req->sector);
3230 }
3231
3232 if (blk_fs_request(req) && req->rq_disk) {
3233 const int rw = rq_data_dir(req);
3234
3235 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3236 }
3237
3238 total_bytes = bio_nbytes = 0;
3239 while ((bio = req->bio) != NULL) {
3240 int nbytes;
3241
3242 if (nr_bytes >= bio->bi_size) {
3243 req->bio = bio->bi_next;
3244 nbytes = bio->bi_size;
3245 if (!ordered_bio_endio(req, bio, nbytes, error))
3246 bio_endio(bio, nbytes, error);
3247 next_idx = 0;
3248 bio_nbytes = 0;
3249 } else {
3250 int idx = bio->bi_idx + next_idx;
3251
3252 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3253 blk_dump_rq_flags(req, "__end_that");
3254 printk("%s: bio idx %d >= vcnt %d\n",
3255 __FUNCTION__,
3256 bio->bi_idx, bio->bi_vcnt);
3257 break;
3258 }
3259
3260 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3261 BIO_BUG_ON(nbytes > bio->bi_size);
3262
3263 /*
3264 * not a complete bvec done
3265 */
3266 if (unlikely(nbytes > nr_bytes)) {
3267 bio_nbytes += nr_bytes;
3268 total_bytes += nr_bytes;
3269 break;
3270 }
3271
3272 /*
3273 * advance to the next vector
3274 */
3275 next_idx++;
3276 bio_nbytes += nbytes;
3277 }
3278
3279 total_bytes += nbytes;
3280 nr_bytes -= nbytes;
3281
3282 if ((bio = req->bio)) {
3283 /*
3284 * end more in this run, or just return 'not-done'
3285 */
3286 if (unlikely(nr_bytes <= 0))
3287 break;
3288 }
3289 }
3290
3291 /*
3292 * completely done
3293 */
3294 if (!req->bio)
3295 return 0;
3296
3297 /*
3298 * if the request wasn't completed, update state
3299 */
3300 if (bio_nbytes) {
3301 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3302 bio_endio(bio, bio_nbytes, error);
3303 bio->bi_idx += next_idx;
3304 bio_iovec(bio)->bv_offset += nr_bytes;
3305 bio_iovec(bio)->bv_len -= nr_bytes;
3306 }
3307
3308 blk_recalc_rq_sectors(req, total_bytes >> 9);
3309 blk_recalc_rq_segments(req);
3310 return 1;
3311 }
3312
3313 /**
3314 * end_that_request_first - end I/O on a request
3315 * @req: the request being processed
3316 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3317 * @nr_sectors: number of sectors to end I/O on
3318 *
3319 * Description:
3320 * Ends I/O on a number of sectors attached to @req, and sets it up
3321 * for the next range of segments (if any) in the cluster.
3322 *
3323 * Return:
3324 * 0 - we are done with this request, call end_that_request_last()
3325 * 1 - still buffers pending for this request
3326 **/
3327 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3328 {
3329 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3330 }
3331
3332 EXPORT_SYMBOL(end_that_request_first);
3333
3334 /**
3335 * end_that_request_chunk - end I/O on a request
3336 * @req: the request being processed
3337 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3338 * @nr_bytes: number of bytes to complete
3339 *
3340 * Description:
3341 * Ends I/O on a number of bytes attached to @req, and sets it up
3342 * for the next range of segments (if any). Like end_that_request_first(),
3343 * but deals with bytes instead of sectors.
3344 *
3345 * Return:
3346 * 0 - we are done with this request, call end_that_request_last()
3347 * 1 - still buffers pending for this request
3348 **/
3349 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3350 {
3351 return __end_that_request_first(req, uptodate, nr_bytes);
3352 }
3353
3354 EXPORT_SYMBOL(end_that_request_chunk);
3355
3356 /*
3357 * splice the completion data to a local structure and hand off to
3358 * process_completion_queue() to complete the requests
3359 */
3360 static void blk_done_softirq(struct softirq_action *h)
3361 {
3362 struct list_head *cpu_list, local_list;
3363
3364 local_irq_disable();
3365 cpu_list = &__get_cpu_var(blk_cpu_done);
3366 list_replace_init(cpu_list, &local_list);
3367 local_irq_enable();
3368
3369 while (!list_empty(&local_list)) {
3370 struct request *rq = list_entry(local_list.next, struct request, donelist);
3371
3372 list_del_init(&rq->donelist);
3373 rq->q->softirq_done_fn(rq);
3374 }
3375 }
3376
3377 #ifdef CONFIG_HOTPLUG_CPU
3378
3379 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3380 void *hcpu)
3381 {
3382 /*
3383 * If a CPU goes away, splice its entries to the current CPU
3384 * and trigger a run of the softirq
3385 */
3386 if (action == CPU_DEAD) {
3387 int cpu = (unsigned long) hcpu;
3388
3389 local_irq_disable();
3390 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3391 &__get_cpu_var(blk_cpu_done));
3392 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3393 local_irq_enable();
3394 }
3395
3396 return NOTIFY_OK;
3397 }
3398
3399
3400 static struct notifier_block __devinitdata blk_cpu_notifier = {
3401 .notifier_call = blk_cpu_notify,
3402 };
3403
3404 #endif /* CONFIG_HOTPLUG_CPU */
3405
3406 /**
3407 * blk_complete_request - end I/O on a request
3408 * @req: the request being processed
3409 *
3410 * Description:
3411 * Ends all I/O on a request. It does not handle partial completions,
3412 * unless the driver actually implements this in its completion callback
3413 * through requeueing. Theh actual completion happens out-of-order,
3414 * through a softirq handler. The user must have registered a completion
3415 * callback through blk_queue_softirq_done().
3416 **/
3417
3418 void blk_complete_request(struct request *req)
3419 {
3420 struct list_head *cpu_list;
3421 unsigned long flags;
3422
3423 BUG_ON(!req->q->softirq_done_fn);
3424
3425 local_irq_save(flags);
3426
3427 cpu_list = &__get_cpu_var(blk_cpu_done);
3428 list_add_tail(&req->donelist, cpu_list);
3429 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3430
3431 local_irq_restore(flags);
3432 }
3433
3434 EXPORT_SYMBOL(blk_complete_request);
3435
3436 /*
3437 * queue lock must be held
3438 */
3439 void end_that_request_last(struct request *req, int uptodate)
3440 {
3441 struct gendisk *disk = req->rq_disk;
3442 int error;
3443
3444 /*
3445 * extend uptodate bool to allow < 0 value to be direct io error
3446 */
3447 error = 0;
3448 if (end_io_error(uptodate))
3449 error = !uptodate ? -EIO : uptodate;
3450
3451 if (unlikely(laptop_mode) && blk_fs_request(req))
3452 laptop_io_completion();
3453
3454 /*
3455 * Account IO completion. bar_rq isn't accounted as a normal
3456 * IO on queueing nor completion. Accounting the containing
3457 * request is enough.
3458 */
3459 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3460 unsigned long duration = jiffies - req->start_time;
3461 const int rw = rq_data_dir(req);
3462
3463 __disk_stat_inc(disk, ios[rw]);
3464 __disk_stat_add(disk, ticks[rw], duration);
3465 disk_round_stats(disk);
3466 disk->in_flight--;
3467 }
3468 if (req->end_io)
3469 req->end_io(req, error);
3470 else
3471 __blk_put_request(req->q, req);
3472 }
3473
3474 EXPORT_SYMBOL(end_that_request_last);
3475
3476 void end_request(struct request *req, int uptodate)
3477 {
3478 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3479 add_disk_randomness(req->rq_disk);
3480 blkdev_dequeue_request(req);
3481 end_that_request_last(req, uptodate);
3482 }
3483 }
3484
3485 EXPORT_SYMBOL(end_request);
3486
3487 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3488 {
3489 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3490 rq->cmd_flags |= (bio->bi_rw & 3);
3491
3492 rq->nr_phys_segments = bio_phys_segments(q, bio);
3493 rq->nr_hw_segments = bio_hw_segments(q, bio);
3494 rq->current_nr_sectors = bio_cur_sectors(bio);
3495 rq->hard_cur_sectors = rq->current_nr_sectors;
3496 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3497 rq->buffer = bio_data(bio);
3498
3499 rq->bio = rq->biotail = bio;
3500 }
3501
3502 EXPORT_SYMBOL(blk_rq_bio_prep);
3503
3504 int kblockd_schedule_work(struct work_struct *work)
3505 {
3506 return queue_work(kblockd_workqueue, work);
3507 }
3508
3509 EXPORT_SYMBOL(kblockd_schedule_work);
3510
3511 void kblockd_flush(void)
3512 {
3513 flush_workqueue(kblockd_workqueue);
3514 }
3515 EXPORT_SYMBOL(kblockd_flush);
3516
3517 int __init blk_dev_init(void)
3518 {
3519 int i;
3520
3521 kblockd_workqueue = create_workqueue("kblockd");
3522 if (!kblockd_workqueue)
3523 panic("Failed to create kblockd\n");
3524
3525 request_cachep = kmem_cache_create("blkdev_requests",
3526 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3527
3528 requestq_cachep = kmem_cache_create("blkdev_queue",
3529 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3530
3531 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3532 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3533
3534 for_each_possible_cpu(i)
3535 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3536
3537 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3538 register_hotcpu_notifier(&blk_cpu_notifier);
3539
3540 blk_max_low_pfn = max_low_pfn;
3541 blk_max_pfn = max_pfn;
3542
3543 return 0;
3544 }
3545
3546 /*
3547 * IO Context helper functions
3548 */
3549 void put_io_context(struct io_context *ioc)
3550 {
3551 if (ioc == NULL)
3552 return;
3553
3554 BUG_ON(atomic_read(&ioc->refcount) == 0);
3555
3556 if (atomic_dec_and_test(&ioc->refcount)) {
3557 struct cfq_io_context *cic;
3558
3559 rcu_read_lock();
3560 if (ioc->aic && ioc->aic->dtor)
3561 ioc->aic->dtor(ioc->aic);
3562 if (ioc->cic_root.rb_node != NULL) {
3563 struct rb_node *n = rb_first(&ioc->cic_root);
3564
3565 cic = rb_entry(n, struct cfq_io_context, rb_node);
3566 cic->dtor(ioc);
3567 }
3568 rcu_read_unlock();
3569
3570 kmem_cache_free(iocontext_cachep, ioc);
3571 }
3572 }
3573 EXPORT_SYMBOL(put_io_context);
3574
3575 /* Called by the exitting task */
3576 void exit_io_context(void)
3577 {
3578 struct io_context *ioc;
3579 struct cfq_io_context *cic;
3580
3581 task_lock(current);
3582 ioc = current->io_context;
3583 current->io_context = NULL;
3584 task_unlock(current);
3585
3586 ioc->task = NULL;
3587 if (ioc->aic && ioc->aic->exit)
3588 ioc->aic->exit(ioc->aic);
3589 if (ioc->cic_root.rb_node != NULL) {
3590 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3591 cic->exit(ioc);
3592 }
3593
3594 put_io_context(ioc);
3595 }
3596
3597 /*
3598 * If the current task has no IO context then create one and initialise it.
3599 * Otherwise, return its existing IO context.
3600 *
3601 * This returned IO context doesn't have a specifically elevated refcount,
3602 * but since the current task itself holds a reference, the context can be
3603 * used in general code, so long as it stays within `current` context.
3604 */
3605 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3606 {
3607 struct task_struct *tsk = current;
3608 struct io_context *ret;
3609
3610 ret = tsk->io_context;
3611 if (likely(ret))
3612 return ret;
3613
3614 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3615 if (ret) {
3616 atomic_set(&ret->refcount, 1);
3617 ret->task = current;
3618 ret->ioprio_changed = 0;
3619 ret->last_waited = jiffies; /* doesn't matter... */
3620 ret->nr_batch_requests = 0; /* because this is 0 */
3621 ret->aic = NULL;
3622 ret->cic_root.rb_node = NULL;
3623 /* make sure set_task_ioprio() sees the settings above */
3624 smp_wmb();
3625 tsk->io_context = ret;
3626 }
3627
3628 return ret;
3629 }
3630 EXPORT_SYMBOL(current_io_context);
3631
3632 /*
3633 * If the current task has no IO context then create one and initialise it.
3634 * If it does have a context, take a ref on it.
3635 *
3636 * This is always called in the context of the task which submitted the I/O.
3637 */
3638 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3639 {
3640 struct io_context *ret;
3641 ret = current_io_context(gfp_flags, node);
3642 if (likely(ret))
3643 atomic_inc(&ret->refcount);
3644 return ret;
3645 }
3646 EXPORT_SYMBOL(get_io_context);
3647
3648 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3649 {
3650 struct io_context *src = *psrc;
3651 struct io_context *dst = *pdst;
3652
3653 if (src) {
3654 BUG_ON(atomic_read(&src->refcount) == 0);
3655 atomic_inc(&src->refcount);
3656 put_io_context(dst);
3657 *pdst = src;
3658 }
3659 }
3660 EXPORT_SYMBOL(copy_io_context);
3661
3662 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3663 {
3664 struct io_context *temp;
3665 temp = *ioc1;
3666 *ioc1 = *ioc2;
3667 *ioc2 = temp;
3668 }
3669 EXPORT_SYMBOL(swap_io_context);
3670
3671 /*
3672 * sysfs parts below
3673 */
3674 struct queue_sysfs_entry {
3675 struct attribute attr;
3676 ssize_t (*show)(struct request_queue *, char *);
3677 ssize_t (*store)(struct request_queue *, const char *, size_t);
3678 };
3679
3680 static ssize_t
3681 queue_var_show(unsigned int var, char *page)
3682 {
3683 return sprintf(page, "%d\n", var);
3684 }
3685
3686 static ssize_t
3687 queue_var_store(unsigned long *var, const char *page, size_t count)
3688 {
3689 char *p = (char *) page;
3690
3691 *var = simple_strtoul(p, &p, 10);
3692 return count;
3693 }
3694
3695 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3696 {
3697 return queue_var_show(q->nr_requests, (page));
3698 }
3699
3700 static ssize_t
3701 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3702 {
3703 struct request_list *rl = &q->rq;
3704 unsigned long nr;
3705 int ret = queue_var_store(&nr, page, count);
3706 if (nr < BLKDEV_MIN_RQ)
3707 nr = BLKDEV_MIN_RQ;
3708
3709 spin_lock_irq(q->queue_lock);
3710 q->nr_requests = nr;
3711 blk_queue_congestion_threshold(q);
3712
3713 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3714 blk_set_queue_congested(q, READ);
3715 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3716 blk_clear_queue_congested(q, READ);
3717
3718 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3719 blk_set_queue_congested(q, WRITE);
3720 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3721 blk_clear_queue_congested(q, WRITE);
3722
3723 if (rl->count[READ] >= q->nr_requests) {
3724 blk_set_queue_full(q, READ);
3725 } else if (rl->count[READ]+1 <= q->nr_requests) {
3726 blk_clear_queue_full(q, READ);
3727 wake_up(&rl->wait[READ]);
3728 }
3729
3730 if (rl->count[WRITE] >= q->nr_requests) {
3731 blk_set_queue_full(q, WRITE);
3732 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3733 blk_clear_queue_full(q, WRITE);
3734 wake_up(&rl->wait[WRITE]);
3735 }
3736 spin_unlock_irq(q->queue_lock);
3737 return ret;
3738 }
3739
3740 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3741 {
3742 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3743
3744 return queue_var_show(ra_kb, (page));
3745 }
3746
3747 static ssize_t
3748 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3749 {
3750 unsigned long ra_kb;
3751 ssize_t ret = queue_var_store(&ra_kb, page, count);
3752
3753 spin_lock_irq(q->queue_lock);
3754 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3755 spin_unlock_irq(q->queue_lock);
3756
3757 return ret;
3758 }
3759
3760 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3761 {
3762 int max_sectors_kb = q->max_sectors >> 1;
3763
3764 return queue_var_show(max_sectors_kb, (page));
3765 }
3766
3767 static ssize_t
3768 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3769 {
3770 unsigned long max_sectors_kb,
3771 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3772 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3773 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3774 int ra_kb;
3775
3776 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3777 return -EINVAL;
3778 /*
3779 * Take the queue lock to update the readahead and max_sectors
3780 * values synchronously:
3781 */
3782 spin_lock_irq(q->queue_lock);
3783 /*
3784 * Trim readahead window as well, if necessary:
3785 */
3786 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3787 if (ra_kb > max_sectors_kb)
3788 q->backing_dev_info.ra_pages =
3789 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3790
3791 q->max_sectors = max_sectors_kb << 1;
3792 spin_unlock_irq(q->queue_lock);
3793
3794 return ret;
3795 }
3796
3797 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3798 {
3799 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3800
3801 return queue_var_show(max_hw_sectors_kb, (page));
3802 }
3803
3804
3805 static struct queue_sysfs_entry queue_requests_entry = {
3806 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3807 .show = queue_requests_show,
3808 .store = queue_requests_store,
3809 };
3810
3811 static struct queue_sysfs_entry queue_ra_entry = {
3812 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3813 .show = queue_ra_show,
3814 .store = queue_ra_store,
3815 };
3816
3817 static struct queue_sysfs_entry queue_max_sectors_entry = {
3818 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3819 .show = queue_max_sectors_show,
3820 .store = queue_max_sectors_store,
3821 };
3822
3823 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3824 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3825 .show = queue_max_hw_sectors_show,
3826 };
3827
3828 static struct queue_sysfs_entry queue_iosched_entry = {
3829 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3830 .show = elv_iosched_show,
3831 .store = elv_iosched_store,
3832 };
3833
3834 static struct attribute *default_attrs[] = {
3835 &queue_requests_entry.attr,
3836 &queue_ra_entry.attr,
3837 &queue_max_hw_sectors_entry.attr,
3838 &queue_max_sectors_entry.attr,
3839 &queue_iosched_entry.attr,
3840 NULL,
3841 };
3842
3843 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3844
3845 static ssize_t
3846 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3847 {
3848 struct queue_sysfs_entry *entry = to_queue(attr);
3849 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3850 ssize_t res;
3851
3852 if (!entry->show)
3853 return -EIO;
3854 mutex_lock(&q->sysfs_lock);
3855 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3856 mutex_unlock(&q->sysfs_lock);
3857 return -ENOENT;
3858 }
3859 res = entry->show(q, page);
3860 mutex_unlock(&q->sysfs_lock);
3861 return res;
3862 }
3863
3864 static ssize_t
3865 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3866 const char *page, size_t length)
3867 {
3868 struct queue_sysfs_entry *entry = to_queue(attr);
3869 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3870
3871 ssize_t res;
3872
3873 if (!entry->store)
3874 return -EIO;
3875 mutex_lock(&q->sysfs_lock);
3876 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3877 mutex_unlock(&q->sysfs_lock);
3878 return -ENOENT;
3879 }
3880 res = entry->store(q, page, length);
3881 mutex_unlock(&q->sysfs_lock);
3882 return res;
3883 }
3884
3885 static struct sysfs_ops queue_sysfs_ops = {
3886 .show = queue_attr_show,
3887 .store = queue_attr_store,
3888 };
3889
3890 static struct kobj_type queue_ktype = {
3891 .sysfs_ops = &queue_sysfs_ops,
3892 .default_attrs = default_attrs,
3893 .release = blk_release_queue,
3894 };
3895
3896 int blk_register_queue(struct gendisk *disk)
3897 {
3898 int ret;
3899
3900 request_queue_t *q = disk->queue;
3901
3902 if (!q || !q->request_fn)
3903 return -ENXIO;
3904
3905 q->kobj.parent = kobject_get(&disk->kobj);
3906
3907 ret = kobject_add(&q->kobj);
3908 if (ret < 0)
3909 return ret;
3910
3911 kobject_uevent(&q->kobj, KOBJ_ADD);
3912
3913 ret = elv_register_queue(q);
3914 if (ret) {
3915 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3916 kobject_del(&q->kobj);
3917 return ret;
3918 }
3919
3920 return 0;
3921 }
3922
3923 void blk_unregister_queue(struct gendisk *disk)
3924 {
3925 request_queue_t *q = disk->queue;
3926
3927 if (q && q->request_fn) {
3928 elv_unregister_queue(q);
3929
3930 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3931 kobject_del(&q->kobj);
3932 kobject_put(&disk->kobj);
3933 }
3934 }