]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/ll_rw_blk.c
[PATCH] cfq-iosched: kill the empty_list
[mirror_ubuntu-artful-kernel.git] / block / ll_rw_blk.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10 /*
11 * This handles all read/write requests to block devices
12 */
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
31
32 /*
33 * for max sense size
34 */
35 #include <scsi/scsi_cmnd.h>
36
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
42 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
43
44 /*
45 * For the allocated request tables
46 */
47 static kmem_cache_t *request_cachep;
48
49 /*
50 * For queue allocation
51 */
52 static kmem_cache_t *requestq_cachep;
53
54 /*
55 * For io context allocations
56 */
57 static kmem_cache_t *iocontext_cachep;
58
59 static wait_queue_head_t congestion_wqh[2] = {
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
61 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
62 };
63
64 /*
65 * Controlling structure to kblockd
66 */
67 static struct workqueue_struct *kblockd_workqueue;
68
69 unsigned long blk_max_low_pfn, blk_max_pfn;
70
71 EXPORT_SYMBOL(blk_max_low_pfn);
72 EXPORT_SYMBOL(blk_max_pfn);
73
74 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
78
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
81
82 /*
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
86 */
87 static inline int queue_congestion_on_threshold(struct request_queue *q)
88 {
89 return q->nr_congestion_on;
90 }
91
92 /*
93 * The threshold at which a queue is considered to be uncongested
94 */
95 static inline int queue_congestion_off_threshold(struct request_queue *q)
96 {
97 return q->nr_congestion_off;
98 }
99
100 static void blk_queue_congestion_threshold(struct request_queue *q)
101 {
102 int nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
108
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
113 }
114
115 /*
116 * A queue has just exitted congestion. Note this in the global counter of
117 * congested queues, and wake up anyone who was waiting for requests to be
118 * put back.
119 */
120 static void clear_queue_congested(request_queue_t *q, int rw)
121 {
122 enum bdi_state bit;
123 wait_queue_head_t *wqh = &congestion_wqh[rw];
124
125 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
126 clear_bit(bit, &q->backing_dev_info.state);
127 smp_mb__after_clear_bit();
128 if (waitqueue_active(wqh))
129 wake_up(wqh);
130 }
131
132 /*
133 * A queue has just entered congestion. Flag that in the queue's VM-visible
134 * state flags and increment the global gounter of congested queues.
135 */
136 static void set_queue_congested(request_queue_t *q, int rw)
137 {
138 enum bdi_state bit;
139
140 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
141 set_bit(bit, &q->backing_dev_info.state);
142 }
143
144 /**
145 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
146 * @bdev: device
147 *
148 * Locates the passed device's request queue and returns the address of its
149 * backing_dev_info
150 *
151 * Will return NULL if the request queue cannot be located.
152 */
153 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
154 {
155 struct backing_dev_info *ret = NULL;
156 request_queue_t *q = bdev_get_queue(bdev);
157
158 if (q)
159 ret = &q->backing_dev_info;
160 return ret;
161 }
162
163 EXPORT_SYMBOL(blk_get_backing_dev_info);
164
165 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
166 {
167 q->activity_fn = fn;
168 q->activity_data = data;
169 }
170
171 EXPORT_SYMBOL(blk_queue_activity_fn);
172
173 /**
174 * blk_queue_prep_rq - set a prepare_request function for queue
175 * @q: queue
176 * @pfn: prepare_request function
177 *
178 * It's possible for a queue to register a prepare_request callback which
179 * is invoked before the request is handed to the request_fn. The goal of
180 * the function is to prepare a request for I/O, it can be used to build a
181 * cdb from the request data for instance.
182 *
183 */
184 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
185 {
186 q->prep_rq_fn = pfn;
187 }
188
189 EXPORT_SYMBOL(blk_queue_prep_rq);
190
191 /**
192 * blk_queue_merge_bvec - set a merge_bvec function for queue
193 * @q: queue
194 * @mbfn: merge_bvec_fn
195 *
196 * Usually queues have static limitations on the max sectors or segments that
197 * we can put in a request. Stacking drivers may have some settings that
198 * are dynamic, and thus we have to query the queue whether it is ok to
199 * add a new bio_vec to a bio at a given offset or not. If the block device
200 * has such limitations, it needs to register a merge_bvec_fn to control
201 * the size of bio's sent to it. Note that a block device *must* allow a
202 * single page to be added to an empty bio. The block device driver may want
203 * to use the bio_split() function to deal with these bio's. By default
204 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
205 * honored.
206 */
207 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
208 {
209 q->merge_bvec_fn = mbfn;
210 }
211
212 EXPORT_SYMBOL(blk_queue_merge_bvec);
213
214 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
215 {
216 q->softirq_done_fn = fn;
217 }
218
219 EXPORT_SYMBOL(blk_queue_softirq_done);
220
221 /**
222 * blk_queue_make_request - define an alternate make_request function for a device
223 * @q: the request queue for the device to be affected
224 * @mfn: the alternate make_request function
225 *
226 * Description:
227 * The normal way for &struct bios to be passed to a device
228 * driver is for them to be collected into requests on a request
229 * queue, and then to allow the device driver to select requests
230 * off that queue when it is ready. This works well for many block
231 * devices. However some block devices (typically virtual devices
232 * such as md or lvm) do not benefit from the processing on the
233 * request queue, and are served best by having the requests passed
234 * directly to them. This can be achieved by providing a function
235 * to blk_queue_make_request().
236 *
237 * Caveat:
238 * The driver that does this *must* be able to deal appropriately
239 * with buffers in "highmemory". This can be accomplished by either calling
240 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
241 * blk_queue_bounce() to create a buffer in normal memory.
242 **/
243 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
244 {
245 /*
246 * set defaults
247 */
248 q->nr_requests = BLKDEV_MAX_RQ;
249 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
250 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
251 q->make_request_fn = mfn;
252 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
253 q->backing_dev_info.state = 0;
254 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
255 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
256 blk_queue_hardsect_size(q, 512);
257 blk_queue_dma_alignment(q, 511);
258 blk_queue_congestion_threshold(q);
259 q->nr_batching = BLK_BATCH_REQ;
260
261 q->unplug_thresh = 4; /* hmm */
262 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
263 if (q->unplug_delay == 0)
264 q->unplug_delay = 1;
265
266 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
267
268 q->unplug_timer.function = blk_unplug_timeout;
269 q->unplug_timer.data = (unsigned long)q;
270
271 /*
272 * by default assume old behaviour and bounce for any highmem page
273 */
274 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
275
276 blk_queue_activity_fn(q, NULL, NULL);
277 }
278
279 EXPORT_SYMBOL(blk_queue_make_request);
280
281 static void rq_init(request_queue_t *q, struct request *rq)
282 {
283 INIT_LIST_HEAD(&rq->queuelist);
284 INIT_LIST_HEAD(&rq->donelist);
285
286 rq->errors = 0;
287 rq->bio = rq->biotail = NULL;
288 INIT_HLIST_NODE(&rq->hash);
289 RB_CLEAR_NODE(&rq->rb_node);
290 rq->ioprio = 0;
291 rq->buffer = NULL;
292 rq->ref_count = 1;
293 rq->q = q;
294 rq->special = NULL;
295 rq->data_len = 0;
296 rq->data = NULL;
297 rq->nr_phys_segments = 0;
298 rq->sense = NULL;
299 rq->end_io = NULL;
300 rq->end_io_data = NULL;
301 rq->completion_data = NULL;
302 }
303
304 /**
305 * blk_queue_ordered - does this queue support ordered writes
306 * @q: the request queue
307 * @ordered: one of QUEUE_ORDERED_*
308 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
309 *
310 * Description:
311 * For journalled file systems, doing ordered writes on a commit
312 * block instead of explicitly doing wait_on_buffer (which is bad
313 * for performance) can be a big win. Block drivers supporting this
314 * feature should call this function and indicate so.
315 *
316 **/
317 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
318 prepare_flush_fn *prepare_flush_fn)
319 {
320 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
321 prepare_flush_fn == NULL) {
322 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
323 return -EINVAL;
324 }
325
326 if (ordered != QUEUE_ORDERED_NONE &&
327 ordered != QUEUE_ORDERED_DRAIN &&
328 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
329 ordered != QUEUE_ORDERED_DRAIN_FUA &&
330 ordered != QUEUE_ORDERED_TAG &&
331 ordered != QUEUE_ORDERED_TAG_FLUSH &&
332 ordered != QUEUE_ORDERED_TAG_FUA) {
333 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
334 return -EINVAL;
335 }
336
337 q->ordered = ordered;
338 q->next_ordered = ordered;
339 q->prepare_flush_fn = prepare_flush_fn;
340
341 return 0;
342 }
343
344 EXPORT_SYMBOL(blk_queue_ordered);
345
346 /**
347 * blk_queue_issue_flush_fn - set function for issuing a flush
348 * @q: the request queue
349 * @iff: the function to be called issuing the flush
350 *
351 * Description:
352 * If a driver supports issuing a flush command, the support is notified
353 * to the block layer by defining it through this call.
354 *
355 **/
356 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
357 {
358 q->issue_flush_fn = iff;
359 }
360
361 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
362
363 /*
364 * Cache flushing for ordered writes handling
365 */
366 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
367 {
368 if (!q->ordseq)
369 return 0;
370 return 1 << ffz(q->ordseq);
371 }
372
373 unsigned blk_ordered_req_seq(struct request *rq)
374 {
375 request_queue_t *q = rq->q;
376
377 BUG_ON(q->ordseq == 0);
378
379 if (rq == &q->pre_flush_rq)
380 return QUEUE_ORDSEQ_PREFLUSH;
381 if (rq == &q->bar_rq)
382 return QUEUE_ORDSEQ_BAR;
383 if (rq == &q->post_flush_rq)
384 return QUEUE_ORDSEQ_POSTFLUSH;
385
386 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
387 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
388 return QUEUE_ORDSEQ_DRAIN;
389 else
390 return QUEUE_ORDSEQ_DONE;
391 }
392
393 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
394 {
395 struct request *rq;
396 int uptodate;
397
398 if (error && !q->orderr)
399 q->orderr = error;
400
401 BUG_ON(q->ordseq & seq);
402 q->ordseq |= seq;
403
404 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
405 return;
406
407 /*
408 * Okay, sequence complete.
409 */
410 rq = q->orig_bar_rq;
411 uptodate = q->orderr ? q->orderr : 1;
412
413 q->ordseq = 0;
414
415 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
416 end_that_request_last(rq, uptodate);
417 }
418
419 static void pre_flush_end_io(struct request *rq, int error)
420 {
421 elv_completed_request(rq->q, rq);
422 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
423 }
424
425 static void bar_end_io(struct request *rq, int error)
426 {
427 elv_completed_request(rq->q, rq);
428 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
429 }
430
431 static void post_flush_end_io(struct request *rq, int error)
432 {
433 elv_completed_request(rq->q, rq);
434 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
435 }
436
437 static void queue_flush(request_queue_t *q, unsigned which)
438 {
439 struct request *rq;
440 rq_end_io_fn *end_io;
441
442 if (which == QUEUE_ORDERED_PREFLUSH) {
443 rq = &q->pre_flush_rq;
444 end_io = pre_flush_end_io;
445 } else {
446 rq = &q->post_flush_rq;
447 end_io = post_flush_end_io;
448 }
449
450 rq->cmd_flags = REQ_HARDBARRIER;
451 rq_init(q, rq);
452 rq->elevator_private = NULL;
453 rq->elevator_private2 = NULL;
454 rq->rq_disk = q->bar_rq.rq_disk;
455 rq->end_io = end_io;
456 q->prepare_flush_fn(q, rq);
457
458 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
459 }
460
461 static inline struct request *start_ordered(request_queue_t *q,
462 struct request *rq)
463 {
464 q->bi_size = 0;
465 q->orderr = 0;
466 q->ordered = q->next_ordered;
467 q->ordseq |= QUEUE_ORDSEQ_STARTED;
468
469 /*
470 * Prep proxy barrier request.
471 */
472 blkdev_dequeue_request(rq);
473 q->orig_bar_rq = rq;
474 rq = &q->bar_rq;
475 rq->cmd_flags = 0;
476 rq_init(q, rq);
477 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
478 rq->cmd_flags |= REQ_RW;
479 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
480 rq->elevator_private = NULL;
481 rq->elevator_private2 = NULL;
482 init_request_from_bio(rq, q->orig_bar_rq->bio);
483 rq->end_io = bar_end_io;
484
485 /*
486 * Queue ordered sequence. As we stack them at the head, we
487 * need to queue in reverse order. Note that we rely on that
488 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
489 * request gets inbetween ordered sequence.
490 */
491 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
492 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
493 else
494 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
495
496 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
497
498 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
499 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
500 rq = &q->pre_flush_rq;
501 } else
502 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
503
504 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
505 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
506 else
507 rq = NULL;
508
509 return rq;
510 }
511
512 int blk_do_ordered(request_queue_t *q, struct request **rqp)
513 {
514 struct request *rq = *rqp;
515 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
516
517 if (!q->ordseq) {
518 if (!is_barrier)
519 return 1;
520
521 if (q->next_ordered != QUEUE_ORDERED_NONE) {
522 *rqp = start_ordered(q, rq);
523 return 1;
524 } else {
525 /*
526 * This can happen when the queue switches to
527 * ORDERED_NONE while this request is on it.
528 */
529 blkdev_dequeue_request(rq);
530 end_that_request_first(rq, -EOPNOTSUPP,
531 rq->hard_nr_sectors);
532 end_that_request_last(rq, -EOPNOTSUPP);
533 *rqp = NULL;
534 return 0;
535 }
536 }
537
538 /*
539 * Ordered sequence in progress
540 */
541
542 /* Special requests are not subject to ordering rules. */
543 if (!blk_fs_request(rq) &&
544 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
545 return 1;
546
547 if (q->ordered & QUEUE_ORDERED_TAG) {
548 /* Ordered by tag. Blocking the next barrier is enough. */
549 if (is_barrier && rq != &q->bar_rq)
550 *rqp = NULL;
551 } else {
552 /* Ordered by draining. Wait for turn. */
553 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
554 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
555 *rqp = NULL;
556 }
557
558 return 1;
559 }
560
561 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
562 {
563 request_queue_t *q = bio->bi_private;
564 struct bio_vec *bvec;
565 int i;
566
567 /*
568 * This is dry run, restore bio_sector and size. We'll finish
569 * this request again with the original bi_end_io after an
570 * error occurs or post flush is complete.
571 */
572 q->bi_size += bytes;
573
574 if (bio->bi_size)
575 return 1;
576
577 /* Rewind bvec's */
578 bio->bi_idx = 0;
579 bio_for_each_segment(bvec, bio, i) {
580 bvec->bv_len += bvec->bv_offset;
581 bvec->bv_offset = 0;
582 }
583
584 /* Reset bio */
585 set_bit(BIO_UPTODATE, &bio->bi_flags);
586 bio->bi_size = q->bi_size;
587 bio->bi_sector -= (q->bi_size >> 9);
588 q->bi_size = 0;
589
590 return 0;
591 }
592
593 static int ordered_bio_endio(struct request *rq, struct bio *bio,
594 unsigned int nbytes, int error)
595 {
596 request_queue_t *q = rq->q;
597 bio_end_io_t *endio;
598 void *private;
599
600 if (&q->bar_rq != rq)
601 return 0;
602
603 /*
604 * Okay, this is the barrier request in progress, dry finish it.
605 */
606 if (error && !q->orderr)
607 q->orderr = error;
608
609 endio = bio->bi_end_io;
610 private = bio->bi_private;
611 bio->bi_end_io = flush_dry_bio_endio;
612 bio->bi_private = q;
613
614 bio_endio(bio, nbytes, error);
615
616 bio->bi_end_io = endio;
617 bio->bi_private = private;
618
619 return 1;
620 }
621
622 /**
623 * blk_queue_bounce_limit - set bounce buffer limit for queue
624 * @q: the request queue for the device
625 * @dma_addr: bus address limit
626 *
627 * Description:
628 * Different hardware can have different requirements as to what pages
629 * it can do I/O directly to. A low level driver can call
630 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
631 * buffers for doing I/O to pages residing above @page.
632 **/
633 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
634 {
635 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
636 int dma = 0;
637
638 q->bounce_gfp = GFP_NOIO;
639 #if BITS_PER_LONG == 64
640 /* Assume anything <= 4GB can be handled by IOMMU.
641 Actually some IOMMUs can handle everything, but I don't
642 know of a way to test this here. */
643 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
644 dma = 1;
645 q->bounce_pfn = max_low_pfn;
646 #else
647 if (bounce_pfn < blk_max_low_pfn)
648 dma = 1;
649 q->bounce_pfn = bounce_pfn;
650 #endif
651 if (dma) {
652 init_emergency_isa_pool();
653 q->bounce_gfp = GFP_NOIO | GFP_DMA;
654 q->bounce_pfn = bounce_pfn;
655 }
656 }
657
658 EXPORT_SYMBOL(blk_queue_bounce_limit);
659
660 /**
661 * blk_queue_max_sectors - set max sectors for a request for this queue
662 * @q: the request queue for the device
663 * @max_sectors: max sectors in the usual 512b unit
664 *
665 * Description:
666 * Enables a low level driver to set an upper limit on the size of
667 * received requests.
668 **/
669 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
670 {
671 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
672 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
673 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
674 }
675
676 if (BLK_DEF_MAX_SECTORS > max_sectors)
677 q->max_hw_sectors = q->max_sectors = max_sectors;
678 else {
679 q->max_sectors = BLK_DEF_MAX_SECTORS;
680 q->max_hw_sectors = max_sectors;
681 }
682 }
683
684 EXPORT_SYMBOL(blk_queue_max_sectors);
685
686 /**
687 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
688 * @q: the request queue for the device
689 * @max_segments: max number of segments
690 *
691 * Description:
692 * Enables a low level driver to set an upper limit on the number of
693 * physical data segments in a request. This would be the largest sized
694 * scatter list the driver could handle.
695 **/
696 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
697 {
698 if (!max_segments) {
699 max_segments = 1;
700 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
701 }
702
703 q->max_phys_segments = max_segments;
704 }
705
706 EXPORT_SYMBOL(blk_queue_max_phys_segments);
707
708 /**
709 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
710 * @q: the request queue for the device
711 * @max_segments: max number of segments
712 *
713 * Description:
714 * Enables a low level driver to set an upper limit on the number of
715 * hw data segments in a request. This would be the largest number of
716 * address/length pairs the host adapter can actually give as once
717 * to the device.
718 **/
719 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
720 {
721 if (!max_segments) {
722 max_segments = 1;
723 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
724 }
725
726 q->max_hw_segments = max_segments;
727 }
728
729 EXPORT_SYMBOL(blk_queue_max_hw_segments);
730
731 /**
732 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
733 * @q: the request queue for the device
734 * @max_size: max size of segment in bytes
735 *
736 * Description:
737 * Enables a low level driver to set an upper limit on the size of a
738 * coalesced segment
739 **/
740 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
741 {
742 if (max_size < PAGE_CACHE_SIZE) {
743 max_size = PAGE_CACHE_SIZE;
744 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
745 }
746
747 q->max_segment_size = max_size;
748 }
749
750 EXPORT_SYMBOL(blk_queue_max_segment_size);
751
752 /**
753 * blk_queue_hardsect_size - set hardware sector size for the queue
754 * @q: the request queue for the device
755 * @size: the hardware sector size, in bytes
756 *
757 * Description:
758 * This should typically be set to the lowest possible sector size
759 * that the hardware can operate on (possible without reverting to
760 * even internal read-modify-write operations). Usually the default
761 * of 512 covers most hardware.
762 **/
763 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
764 {
765 q->hardsect_size = size;
766 }
767
768 EXPORT_SYMBOL(blk_queue_hardsect_size);
769
770 /*
771 * Returns the minimum that is _not_ zero, unless both are zero.
772 */
773 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
774
775 /**
776 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
777 * @t: the stacking driver (top)
778 * @b: the underlying device (bottom)
779 **/
780 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
781 {
782 /* zero is "infinity" */
783 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
784 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
785
786 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
787 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
788 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
789 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
790 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
791 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
792 }
793
794 EXPORT_SYMBOL(blk_queue_stack_limits);
795
796 /**
797 * blk_queue_segment_boundary - set boundary rules for segment merging
798 * @q: the request queue for the device
799 * @mask: the memory boundary mask
800 **/
801 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
802 {
803 if (mask < PAGE_CACHE_SIZE - 1) {
804 mask = PAGE_CACHE_SIZE - 1;
805 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
806 }
807
808 q->seg_boundary_mask = mask;
809 }
810
811 EXPORT_SYMBOL(blk_queue_segment_boundary);
812
813 /**
814 * blk_queue_dma_alignment - set dma length and memory alignment
815 * @q: the request queue for the device
816 * @mask: alignment mask
817 *
818 * description:
819 * set required memory and length aligment for direct dma transactions.
820 * this is used when buiding direct io requests for the queue.
821 *
822 **/
823 void blk_queue_dma_alignment(request_queue_t *q, int mask)
824 {
825 q->dma_alignment = mask;
826 }
827
828 EXPORT_SYMBOL(blk_queue_dma_alignment);
829
830 /**
831 * blk_queue_find_tag - find a request by its tag and queue
832 * @q: The request queue for the device
833 * @tag: The tag of the request
834 *
835 * Notes:
836 * Should be used when a device returns a tag and you want to match
837 * it with a request.
838 *
839 * no locks need be held.
840 **/
841 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
842 {
843 struct blk_queue_tag *bqt = q->queue_tags;
844
845 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
846 return NULL;
847
848 return bqt->tag_index[tag];
849 }
850
851 EXPORT_SYMBOL(blk_queue_find_tag);
852
853 /**
854 * __blk_free_tags - release a given set of tag maintenance info
855 * @bqt: the tag map to free
856 *
857 * Tries to free the specified @bqt@. Returns true if it was
858 * actually freed and false if there are still references using it
859 */
860 static int __blk_free_tags(struct blk_queue_tag *bqt)
861 {
862 int retval;
863
864 retval = atomic_dec_and_test(&bqt->refcnt);
865 if (retval) {
866 BUG_ON(bqt->busy);
867 BUG_ON(!list_empty(&bqt->busy_list));
868
869 kfree(bqt->tag_index);
870 bqt->tag_index = NULL;
871
872 kfree(bqt->tag_map);
873 bqt->tag_map = NULL;
874
875 kfree(bqt);
876
877 }
878
879 return retval;
880 }
881
882 /**
883 * __blk_queue_free_tags - release tag maintenance info
884 * @q: the request queue for the device
885 *
886 * Notes:
887 * blk_cleanup_queue() will take care of calling this function, if tagging
888 * has been used. So there's no need to call this directly.
889 **/
890 static void __blk_queue_free_tags(request_queue_t *q)
891 {
892 struct blk_queue_tag *bqt = q->queue_tags;
893
894 if (!bqt)
895 return;
896
897 __blk_free_tags(bqt);
898
899 q->queue_tags = NULL;
900 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
901 }
902
903
904 /**
905 * blk_free_tags - release a given set of tag maintenance info
906 * @bqt: the tag map to free
907 *
908 * For externally managed @bqt@ frees the map. Callers of this
909 * function must guarantee to have released all the queues that
910 * might have been using this tag map.
911 */
912 void blk_free_tags(struct blk_queue_tag *bqt)
913 {
914 if (unlikely(!__blk_free_tags(bqt)))
915 BUG();
916 }
917 EXPORT_SYMBOL(blk_free_tags);
918
919 /**
920 * blk_queue_free_tags - release tag maintenance info
921 * @q: the request queue for the device
922 *
923 * Notes:
924 * This is used to disabled tagged queuing to a device, yet leave
925 * queue in function.
926 **/
927 void blk_queue_free_tags(request_queue_t *q)
928 {
929 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
930 }
931
932 EXPORT_SYMBOL(blk_queue_free_tags);
933
934 static int
935 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
936 {
937 struct request **tag_index;
938 unsigned long *tag_map;
939 int nr_ulongs;
940
941 if (q && depth > q->nr_requests * 2) {
942 depth = q->nr_requests * 2;
943 printk(KERN_ERR "%s: adjusted depth to %d\n",
944 __FUNCTION__, depth);
945 }
946
947 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
948 if (!tag_index)
949 goto fail;
950
951 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
952 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
953 if (!tag_map)
954 goto fail;
955
956 tags->real_max_depth = depth;
957 tags->max_depth = depth;
958 tags->tag_index = tag_index;
959 tags->tag_map = tag_map;
960
961 return 0;
962 fail:
963 kfree(tag_index);
964 return -ENOMEM;
965 }
966
967 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
968 int depth)
969 {
970 struct blk_queue_tag *tags;
971
972 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
973 if (!tags)
974 goto fail;
975
976 if (init_tag_map(q, tags, depth))
977 goto fail;
978
979 INIT_LIST_HEAD(&tags->busy_list);
980 tags->busy = 0;
981 atomic_set(&tags->refcnt, 1);
982 return tags;
983 fail:
984 kfree(tags);
985 return NULL;
986 }
987
988 /**
989 * blk_init_tags - initialize the tag info for an external tag map
990 * @depth: the maximum queue depth supported
991 * @tags: the tag to use
992 **/
993 struct blk_queue_tag *blk_init_tags(int depth)
994 {
995 return __blk_queue_init_tags(NULL, depth);
996 }
997 EXPORT_SYMBOL(blk_init_tags);
998
999 /**
1000 * blk_queue_init_tags - initialize the queue tag info
1001 * @q: the request queue for the device
1002 * @depth: the maximum queue depth supported
1003 * @tags: the tag to use
1004 **/
1005 int blk_queue_init_tags(request_queue_t *q, int depth,
1006 struct blk_queue_tag *tags)
1007 {
1008 int rc;
1009
1010 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1011
1012 if (!tags && !q->queue_tags) {
1013 tags = __blk_queue_init_tags(q, depth);
1014
1015 if (!tags)
1016 goto fail;
1017 } else if (q->queue_tags) {
1018 if ((rc = blk_queue_resize_tags(q, depth)))
1019 return rc;
1020 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1021 return 0;
1022 } else
1023 atomic_inc(&tags->refcnt);
1024
1025 /*
1026 * assign it, all done
1027 */
1028 q->queue_tags = tags;
1029 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1030 return 0;
1031 fail:
1032 kfree(tags);
1033 return -ENOMEM;
1034 }
1035
1036 EXPORT_SYMBOL(blk_queue_init_tags);
1037
1038 /**
1039 * blk_queue_resize_tags - change the queueing depth
1040 * @q: the request queue for the device
1041 * @new_depth: the new max command queueing depth
1042 *
1043 * Notes:
1044 * Must be called with the queue lock held.
1045 **/
1046 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1047 {
1048 struct blk_queue_tag *bqt = q->queue_tags;
1049 struct request **tag_index;
1050 unsigned long *tag_map;
1051 int max_depth, nr_ulongs;
1052
1053 if (!bqt)
1054 return -ENXIO;
1055
1056 /*
1057 * if we already have large enough real_max_depth. just
1058 * adjust max_depth. *NOTE* as requests with tag value
1059 * between new_depth and real_max_depth can be in-flight, tag
1060 * map can not be shrunk blindly here.
1061 */
1062 if (new_depth <= bqt->real_max_depth) {
1063 bqt->max_depth = new_depth;
1064 return 0;
1065 }
1066
1067 /*
1068 * Currently cannot replace a shared tag map with a new
1069 * one, so error out if this is the case
1070 */
1071 if (atomic_read(&bqt->refcnt) != 1)
1072 return -EBUSY;
1073
1074 /*
1075 * save the old state info, so we can copy it back
1076 */
1077 tag_index = bqt->tag_index;
1078 tag_map = bqt->tag_map;
1079 max_depth = bqt->real_max_depth;
1080
1081 if (init_tag_map(q, bqt, new_depth))
1082 return -ENOMEM;
1083
1084 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1085 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1086 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1087
1088 kfree(tag_index);
1089 kfree(tag_map);
1090 return 0;
1091 }
1092
1093 EXPORT_SYMBOL(blk_queue_resize_tags);
1094
1095 /**
1096 * blk_queue_end_tag - end tag operations for a request
1097 * @q: the request queue for the device
1098 * @rq: the request that has completed
1099 *
1100 * Description:
1101 * Typically called when end_that_request_first() returns 0, meaning
1102 * all transfers have been done for a request. It's important to call
1103 * this function before end_that_request_last(), as that will put the
1104 * request back on the free list thus corrupting the internal tag list.
1105 *
1106 * Notes:
1107 * queue lock must be held.
1108 **/
1109 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1110 {
1111 struct blk_queue_tag *bqt = q->queue_tags;
1112 int tag = rq->tag;
1113
1114 BUG_ON(tag == -1);
1115
1116 if (unlikely(tag >= bqt->real_max_depth))
1117 /*
1118 * This can happen after tag depth has been reduced.
1119 * FIXME: how about a warning or info message here?
1120 */
1121 return;
1122
1123 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1124 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1125 __FUNCTION__, tag);
1126 return;
1127 }
1128
1129 list_del_init(&rq->queuelist);
1130 rq->cmd_flags &= ~REQ_QUEUED;
1131 rq->tag = -1;
1132
1133 if (unlikely(bqt->tag_index[tag] == NULL))
1134 printk(KERN_ERR "%s: tag %d is missing\n",
1135 __FUNCTION__, tag);
1136
1137 bqt->tag_index[tag] = NULL;
1138 bqt->busy--;
1139 }
1140
1141 EXPORT_SYMBOL(blk_queue_end_tag);
1142
1143 /**
1144 * blk_queue_start_tag - find a free tag and assign it
1145 * @q: the request queue for the device
1146 * @rq: the block request that needs tagging
1147 *
1148 * Description:
1149 * This can either be used as a stand-alone helper, or possibly be
1150 * assigned as the queue &prep_rq_fn (in which case &struct request
1151 * automagically gets a tag assigned). Note that this function
1152 * assumes that any type of request can be queued! if this is not
1153 * true for your device, you must check the request type before
1154 * calling this function. The request will also be removed from
1155 * the request queue, so it's the drivers responsibility to readd
1156 * it if it should need to be restarted for some reason.
1157 *
1158 * Notes:
1159 * queue lock must be held.
1160 **/
1161 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1162 {
1163 struct blk_queue_tag *bqt = q->queue_tags;
1164 int tag;
1165
1166 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1167 printk(KERN_ERR
1168 "%s: request %p for device [%s] already tagged %d",
1169 __FUNCTION__, rq,
1170 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1171 BUG();
1172 }
1173
1174 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1175 if (tag >= bqt->max_depth)
1176 return 1;
1177
1178 __set_bit(tag, bqt->tag_map);
1179
1180 rq->cmd_flags |= REQ_QUEUED;
1181 rq->tag = tag;
1182 bqt->tag_index[tag] = rq;
1183 blkdev_dequeue_request(rq);
1184 list_add(&rq->queuelist, &bqt->busy_list);
1185 bqt->busy++;
1186 return 0;
1187 }
1188
1189 EXPORT_SYMBOL(blk_queue_start_tag);
1190
1191 /**
1192 * blk_queue_invalidate_tags - invalidate all pending tags
1193 * @q: the request queue for the device
1194 *
1195 * Description:
1196 * Hardware conditions may dictate a need to stop all pending requests.
1197 * In this case, we will safely clear the block side of the tag queue and
1198 * readd all requests to the request queue in the right order.
1199 *
1200 * Notes:
1201 * queue lock must be held.
1202 **/
1203 void blk_queue_invalidate_tags(request_queue_t *q)
1204 {
1205 struct blk_queue_tag *bqt = q->queue_tags;
1206 struct list_head *tmp, *n;
1207 struct request *rq;
1208
1209 list_for_each_safe(tmp, n, &bqt->busy_list) {
1210 rq = list_entry_rq(tmp);
1211
1212 if (rq->tag == -1) {
1213 printk(KERN_ERR
1214 "%s: bad tag found on list\n", __FUNCTION__);
1215 list_del_init(&rq->queuelist);
1216 rq->cmd_flags &= ~REQ_QUEUED;
1217 } else
1218 blk_queue_end_tag(q, rq);
1219
1220 rq->cmd_flags &= ~REQ_STARTED;
1221 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1222 }
1223 }
1224
1225 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1226
1227 void blk_dump_rq_flags(struct request *rq, char *msg)
1228 {
1229 int bit;
1230
1231 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1232 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1233 rq->cmd_flags);
1234
1235 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1236 rq->nr_sectors,
1237 rq->current_nr_sectors);
1238 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1239
1240 if (blk_pc_request(rq)) {
1241 printk("cdb: ");
1242 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1243 printk("%02x ", rq->cmd[bit]);
1244 printk("\n");
1245 }
1246 }
1247
1248 EXPORT_SYMBOL(blk_dump_rq_flags);
1249
1250 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1251 {
1252 struct bio_vec *bv, *bvprv = NULL;
1253 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1254 int high, highprv = 1;
1255
1256 if (unlikely(!bio->bi_io_vec))
1257 return;
1258
1259 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1260 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1261 bio_for_each_segment(bv, bio, i) {
1262 /*
1263 * the trick here is making sure that a high page is never
1264 * considered part of another segment, since that might
1265 * change with the bounce page.
1266 */
1267 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1268 if (high || highprv)
1269 goto new_hw_segment;
1270 if (cluster) {
1271 if (seg_size + bv->bv_len > q->max_segment_size)
1272 goto new_segment;
1273 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1274 goto new_segment;
1275 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1276 goto new_segment;
1277 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1278 goto new_hw_segment;
1279
1280 seg_size += bv->bv_len;
1281 hw_seg_size += bv->bv_len;
1282 bvprv = bv;
1283 continue;
1284 }
1285 new_segment:
1286 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1287 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1288 hw_seg_size += bv->bv_len;
1289 } else {
1290 new_hw_segment:
1291 if (hw_seg_size > bio->bi_hw_front_size)
1292 bio->bi_hw_front_size = hw_seg_size;
1293 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1294 nr_hw_segs++;
1295 }
1296
1297 nr_phys_segs++;
1298 bvprv = bv;
1299 seg_size = bv->bv_len;
1300 highprv = high;
1301 }
1302 if (hw_seg_size > bio->bi_hw_back_size)
1303 bio->bi_hw_back_size = hw_seg_size;
1304 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1305 bio->bi_hw_front_size = hw_seg_size;
1306 bio->bi_phys_segments = nr_phys_segs;
1307 bio->bi_hw_segments = nr_hw_segs;
1308 bio->bi_flags |= (1 << BIO_SEG_VALID);
1309 }
1310
1311
1312 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1313 struct bio *nxt)
1314 {
1315 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1316 return 0;
1317
1318 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1319 return 0;
1320 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1321 return 0;
1322
1323 /*
1324 * bio and nxt are contigous in memory, check if the queue allows
1325 * these two to be merged into one
1326 */
1327 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1328 return 1;
1329
1330 return 0;
1331 }
1332
1333 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1334 struct bio *nxt)
1335 {
1336 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1337 blk_recount_segments(q, bio);
1338 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1339 blk_recount_segments(q, nxt);
1340 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1341 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1342 return 0;
1343 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1344 return 0;
1345
1346 return 1;
1347 }
1348
1349 /*
1350 * map a request to scatterlist, return number of sg entries setup. Caller
1351 * must make sure sg can hold rq->nr_phys_segments entries
1352 */
1353 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1354 {
1355 struct bio_vec *bvec, *bvprv;
1356 struct bio *bio;
1357 int nsegs, i, cluster;
1358
1359 nsegs = 0;
1360 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1361
1362 /*
1363 * for each bio in rq
1364 */
1365 bvprv = NULL;
1366 rq_for_each_bio(bio, rq) {
1367 /*
1368 * for each segment in bio
1369 */
1370 bio_for_each_segment(bvec, bio, i) {
1371 int nbytes = bvec->bv_len;
1372
1373 if (bvprv && cluster) {
1374 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1375 goto new_segment;
1376
1377 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1378 goto new_segment;
1379 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1380 goto new_segment;
1381
1382 sg[nsegs - 1].length += nbytes;
1383 } else {
1384 new_segment:
1385 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1386 sg[nsegs].page = bvec->bv_page;
1387 sg[nsegs].length = nbytes;
1388 sg[nsegs].offset = bvec->bv_offset;
1389
1390 nsegs++;
1391 }
1392 bvprv = bvec;
1393 } /* segments in bio */
1394 } /* bios in rq */
1395
1396 return nsegs;
1397 }
1398
1399 EXPORT_SYMBOL(blk_rq_map_sg);
1400
1401 /*
1402 * the standard queue merge functions, can be overridden with device
1403 * specific ones if so desired
1404 */
1405
1406 static inline int ll_new_mergeable(request_queue_t *q,
1407 struct request *req,
1408 struct bio *bio)
1409 {
1410 int nr_phys_segs = bio_phys_segments(q, bio);
1411
1412 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1413 req->cmd_flags |= REQ_NOMERGE;
1414 if (req == q->last_merge)
1415 q->last_merge = NULL;
1416 return 0;
1417 }
1418
1419 /*
1420 * A hw segment is just getting larger, bump just the phys
1421 * counter.
1422 */
1423 req->nr_phys_segments += nr_phys_segs;
1424 return 1;
1425 }
1426
1427 static inline int ll_new_hw_segment(request_queue_t *q,
1428 struct request *req,
1429 struct bio *bio)
1430 {
1431 int nr_hw_segs = bio_hw_segments(q, bio);
1432 int nr_phys_segs = bio_phys_segments(q, bio);
1433
1434 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1435 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1436 req->cmd_flags |= REQ_NOMERGE;
1437 if (req == q->last_merge)
1438 q->last_merge = NULL;
1439 return 0;
1440 }
1441
1442 /*
1443 * This will form the start of a new hw segment. Bump both
1444 * counters.
1445 */
1446 req->nr_hw_segments += nr_hw_segs;
1447 req->nr_phys_segments += nr_phys_segs;
1448 return 1;
1449 }
1450
1451 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1452 struct bio *bio)
1453 {
1454 unsigned short max_sectors;
1455 int len;
1456
1457 if (unlikely(blk_pc_request(req)))
1458 max_sectors = q->max_hw_sectors;
1459 else
1460 max_sectors = q->max_sectors;
1461
1462 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1463 req->cmd_flags |= REQ_NOMERGE;
1464 if (req == q->last_merge)
1465 q->last_merge = NULL;
1466 return 0;
1467 }
1468 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1469 blk_recount_segments(q, req->biotail);
1470 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1471 blk_recount_segments(q, bio);
1472 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1473 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1474 !BIOVEC_VIRT_OVERSIZE(len)) {
1475 int mergeable = ll_new_mergeable(q, req, bio);
1476
1477 if (mergeable) {
1478 if (req->nr_hw_segments == 1)
1479 req->bio->bi_hw_front_size = len;
1480 if (bio->bi_hw_segments == 1)
1481 bio->bi_hw_back_size = len;
1482 }
1483 return mergeable;
1484 }
1485
1486 return ll_new_hw_segment(q, req, bio);
1487 }
1488
1489 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1490 struct bio *bio)
1491 {
1492 unsigned short max_sectors;
1493 int len;
1494
1495 if (unlikely(blk_pc_request(req)))
1496 max_sectors = q->max_hw_sectors;
1497 else
1498 max_sectors = q->max_sectors;
1499
1500
1501 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1502 req->cmd_flags |= REQ_NOMERGE;
1503 if (req == q->last_merge)
1504 q->last_merge = NULL;
1505 return 0;
1506 }
1507 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1508 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1509 blk_recount_segments(q, bio);
1510 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1511 blk_recount_segments(q, req->bio);
1512 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1513 !BIOVEC_VIRT_OVERSIZE(len)) {
1514 int mergeable = ll_new_mergeable(q, req, bio);
1515
1516 if (mergeable) {
1517 if (bio->bi_hw_segments == 1)
1518 bio->bi_hw_front_size = len;
1519 if (req->nr_hw_segments == 1)
1520 req->biotail->bi_hw_back_size = len;
1521 }
1522 return mergeable;
1523 }
1524
1525 return ll_new_hw_segment(q, req, bio);
1526 }
1527
1528 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1529 struct request *next)
1530 {
1531 int total_phys_segments;
1532 int total_hw_segments;
1533
1534 /*
1535 * First check if the either of the requests are re-queued
1536 * requests. Can't merge them if they are.
1537 */
1538 if (req->special || next->special)
1539 return 0;
1540
1541 /*
1542 * Will it become too large?
1543 */
1544 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1545 return 0;
1546
1547 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1548 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1549 total_phys_segments--;
1550
1551 if (total_phys_segments > q->max_phys_segments)
1552 return 0;
1553
1554 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1555 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1556 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1557 /*
1558 * propagate the combined length to the end of the requests
1559 */
1560 if (req->nr_hw_segments == 1)
1561 req->bio->bi_hw_front_size = len;
1562 if (next->nr_hw_segments == 1)
1563 next->biotail->bi_hw_back_size = len;
1564 total_hw_segments--;
1565 }
1566
1567 if (total_hw_segments > q->max_hw_segments)
1568 return 0;
1569
1570 /* Merge is OK... */
1571 req->nr_phys_segments = total_phys_segments;
1572 req->nr_hw_segments = total_hw_segments;
1573 return 1;
1574 }
1575
1576 /*
1577 * "plug" the device if there are no outstanding requests: this will
1578 * force the transfer to start only after we have put all the requests
1579 * on the list.
1580 *
1581 * This is called with interrupts off and no requests on the queue and
1582 * with the queue lock held.
1583 */
1584 void blk_plug_device(request_queue_t *q)
1585 {
1586 WARN_ON(!irqs_disabled());
1587
1588 /*
1589 * don't plug a stopped queue, it must be paired with blk_start_queue()
1590 * which will restart the queueing
1591 */
1592 if (blk_queue_stopped(q))
1593 return;
1594
1595 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1596 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1597 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1598 }
1599 }
1600
1601 EXPORT_SYMBOL(blk_plug_device);
1602
1603 /*
1604 * remove the queue from the plugged list, if present. called with
1605 * queue lock held and interrupts disabled.
1606 */
1607 int blk_remove_plug(request_queue_t *q)
1608 {
1609 WARN_ON(!irqs_disabled());
1610
1611 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1612 return 0;
1613
1614 del_timer(&q->unplug_timer);
1615 return 1;
1616 }
1617
1618 EXPORT_SYMBOL(blk_remove_plug);
1619
1620 /*
1621 * remove the plug and let it rip..
1622 */
1623 void __generic_unplug_device(request_queue_t *q)
1624 {
1625 if (unlikely(blk_queue_stopped(q)))
1626 return;
1627
1628 if (!blk_remove_plug(q))
1629 return;
1630
1631 q->request_fn(q);
1632 }
1633 EXPORT_SYMBOL(__generic_unplug_device);
1634
1635 /**
1636 * generic_unplug_device - fire a request queue
1637 * @q: The &request_queue_t in question
1638 *
1639 * Description:
1640 * Linux uses plugging to build bigger requests queues before letting
1641 * the device have at them. If a queue is plugged, the I/O scheduler
1642 * is still adding and merging requests on the queue. Once the queue
1643 * gets unplugged, the request_fn defined for the queue is invoked and
1644 * transfers started.
1645 **/
1646 void generic_unplug_device(request_queue_t *q)
1647 {
1648 spin_lock_irq(q->queue_lock);
1649 __generic_unplug_device(q);
1650 spin_unlock_irq(q->queue_lock);
1651 }
1652 EXPORT_SYMBOL(generic_unplug_device);
1653
1654 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1655 struct page *page)
1656 {
1657 request_queue_t *q = bdi->unplug_io_data;
1658
1659 /*
1660 * devices don't necessarily have an ->unplug_fn defined
1661 */
1662 if (q->unplug_fn) {
1663 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1664 q->rq.count[READ] + q->rq.count[WRITE]);
1665
1666 q->unplug_fn(q);
1667 }
1668 }
1669
1670 static void blk_unplug_work(void *data)
1671 {
1672 request_queue_t *q = data;
1673
1674 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1675 q->rq.count[READ] + q->rq.count[WRITE]);
1676
1677 q->unplug_fn(q);
1678 }
1679
1680 static void blk_unplug_timeout(unsigned long data)
1681 {
1682 request_queue_t *q = (request_queue_t *)data;
1683
1684 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1685 q->rq.count[READ] + q->rq.count[WRITE]);
1686
1687 kblockd_schedule_work(&q->unplug_work);
1688 }
1689
1690 /**
1691 * blk_start_queue - restart a previously stopped queue
1692 * @q: The &request_queue_t in question
1693 *
1694 * Description:
1695 * blk_start_queue() will clear the stop flag on the queue, and call
1696 * the request_fn for the queue if it was in a stopped state when
1697 * entered. Also see blk_stop_queue(). Queue lock must be held.
1698 **/
1699 void blk_start_queue(request_queue_t *q)
1700 {
1701 WARN_ON(!irqs_disabled());
1702
1703 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1704
1705 /*
1706 * one level of recursion is ok and is much faster than kicking
1707 * the unplug handling
1708 */
1709 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1710 q->request_fn(q);
1711 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1712 } else {
1713 blk_plug_device(q);
1714 kblockd_schedule_work(&q->unplug_work);
1715 }
1716 }
1717
1718 EXPORT_SYMBOL(blk_start_queue);
1719
1720 /**
1721 * blk_stop_queue - stop a queue
1722 * @q: The &request_queue_t in question
1723 *
1724 * Description:
1725 * The Linux block layer assumes that a block driver will consume all
1726 * entries on the request queue when the request_fn strategy is called.
1727 * Often this will not happen, because of hardware limitations (queue
1728 * depth settings). If a device driver gets a 'queue full' response,
1729 * or if it simply chooses not to queue more I/O at one point, it can
1730 * call this function to prevent the request_fn from being called until
1731 * the driver has signalled it's ready to go again. This happens by calling
1732 * blk_start_queue() to restart queue operations. Queue lock must be held.
1733 **/
1734 void blk_stop_queue(request_queue_t *q)
1735 {
1736 blk_remove_plug(q);
1737 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1738 }
1739 EXPORT_SYMBOL(blk_stop_queue);
1740
1741 /**
1742 * blk_sync_queue - cancel any pending callbacks on a queue
1743 * @q: the queue
1744 *
1745 * Description:
1746 * The block layer may perform asynchronous callback activity
1747 * on a queue, such as calling the unplug function after a timeout.
1748 * A block device may call blk_sync_queue to ensure that any
1749 * such activity is cancelled, thus allowing it to release resources
1750 * the the callbacks might use. The caller must already have made sure
1751 * that its ->make_request_fn will not re-add plugging prior to calling
1752 * this function.
1753 *
1754 */
1755 void blk_sync_queue(struct request_queue *q)
1756 {
1757 del_timer_sync(&q->unplug_timer);
1758 kblockd_flush();
1759 }
1760 EXPORT_SYMBOL(blk_sync_queue);
1761
1762 /**
1763 * blk_run_queue - run a single device queue
1764 * @q: The queue to run
1765 */
1766 void blk_run_queue(struct request_queue *q)
1767 {
1768 unsigned long flags;
1769
1770 spin_lock_irqsave(q->queue_lock, flags);
1771 blk_remove_plug(q);
1772
1773 /*
1774 * Only recurse once to avoid overrunning the stack, let the unplug
1775 * handling reinvoke the handler shortly if we already got there.
1776 */
1777 if (!elv_queue_empty(q)) {
1778 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1779 q->request_fn(q);
1780 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1781 } else {
1782 blk_plug_device(q);
1783 kblockd_schedule_work(&q->unplug_work);
1784 }
1785 }
1786
1787 spin_unlock_irqrestore(q->queue_lock, flags);
1788 }
1789 EXPORT_SYMBOL(blk_run_queue);
1790
1791 /**
1792 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1793 * @kobj: the kobj belonging of the request queue to be released
1794 *
1795 * Description:
1796 * blk_cleanup_queue is the pair to blk_init_queue() or
1797 * blk_queue_make_request(). It should be called when a request queue is
1798 * being released; typically when a block device is being de-registered.
1799 * Currently, its primary task it to free all the &struct request
1800 * structures that were allocated to the queue and the queue itself.
1801 *
1802 * Caveat:
1803 * Hopefully the low level driver will have finished any
1804 * outstanding requests first...
1805 **/
1806 static void blk_release_queue(struct kobject *kobj)
1807 {
1808 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1809 struct request_list *rl = &q->rq;
1810
1811 blk_sync_queue(q);
1812
1813 if (rl->rq_pool)
1814 mempool_destroy(rl->rq_pool);
1815
1816 if (q->queue_tags)
1817 __blk_queue_free_tags(q);
1818
1819 blk_trace_shutdown(q);
1820
1821 kmem_cache_free(requestq_cachep, q);
1822 }
1823
1824 void blk_put_queue(request_queue_t *q)
1825 {
1826 kobject_put(&q->kobj);
1827 }
1828 EXPORT_SYMBOL(blk_put_queue);
1829
1830 void blk_cleanup_queue(request_queue_t * q)
1831 {
1832 mutex_lock(&q->sysfs_lock);
1833 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1834 mutex_unlock(&q->sysfs_lock);
1835
1836 if (q->elevator)
1837 elevator_exit(q->elevator);
1838
1839 blk_put_queue(q);
1840 }
1841
1842 EXPORT_SYMBOL(blk_cleanup_queue);
1843
1844 static int blk_init_free_list(request_queue_t *q)
1845 {
1846 struct request_list *rl = &q->rq;
1847
1848 rl->count[READ] = rl->count[WRITE] = 0;
1849 rl->starved[READ] = rl->starved[WRITE] = 0;
1850 rl->elvpriv = 0;
1851 init_waitqueue_head(&rl->wait[READ]);
1852 init_waitqueue_head(&rl->wait[WRITE]);
1853
1854 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1855 mempool_free_slab, request_cachep, q->node);
1856
1857 if (!rl->rq_pool)
1858 return -ENOMEM;
1859
1860 return 0;
1861 }
1862
1863 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1864 {
1865 return blk_alloc_queue_node(gfp_mask, -1);
1866 }
1867 EXPORT_SYMBOL(blk_alloc_queue);
1868
1869 static struct kobj_type queue_ktype;
1870
1871 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1872 {
1873 request_queue_t *q;
1874
1875 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1876 if (!q)
1877 return NULL;
1878
1879 memset(q, 0, sizeof(*q));
1880 init_timer(&q->unplug_timer);
1881
1882 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1883 q->kobj.ktype = &queue_ktype;
1884 kobject_init(&q->kobj);
1885
1886 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1887 q->backing_dev_info.unplug_io_data = q;
1888
1889 mutex_init(&q->sysfs_lock);
1890
1891 return q;
1892 }
1893 EXPORT_SYMBOL(blk_alloc_queue_node);
1894
1895 /**
1896 * blk_init_queue - prepare a request queue for use with a block device
1897 * @rfn: The function to be called to process requests that have been
1898 * placed on the queue.
1899 * @lock: Request queue spin lock
1900 *
1901 * Description:
1902 * If a block device wishes to use the standard request handling procedures,
1903 * which sorts requests and coalesces adjacent requests, then it must
1904 * call blk_init_queue(). The function @rfn will be called when there
1905 * are requests on the queue that need to be processed. If the device
1906 * supports plugging, then @rfn may not be called immediately when requests
1907 * are available on the queue, but may be called at some time later instead.
1908 * Plugged queues are generally unplugged when a buffer belonging to one
1909 * of the requests on the queue is needed, or due to memory pressure.
1910 *
1911 * @rfn is not required, or even expected, to remove all requests off the
1912 * queue, but only as many as it can handle at a time. If it does leave
1913 * requests on the queue, it is responsible for arranging that the requests
1914 * get dealt with eventually.
1915 *
1916 * The queue spin lock must be held while manipulating the requests on the
1917 * request queue; this lock will be taken also from interrupt context, so irq
1918 * disabling is needed for it.
1919 *
1920 * Function returns a pointer to the initialized request queue, or NULL if
1921 * it didn't succeed.
1922 *
1923 * Note:
1924 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1925 * when the block device is deactivated (such as at module unload).
1926 **/
1927
1928 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1929 {
1930 return blk_init_queue_node(rfn, lock, -1);
1931 }
1932 EXPORT_SYMBOL(blk_init_queue);
1933
1934 request_queue_t *
1935 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1936 {
1937 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1938
1939 if (!q)
1940 return NULL;
1941
1942 q->node = node_id;
1943 if (blk_init_free_list(q)) {
1944 kmem_cache_free(requestq_cachep, q);
1945 return NULL;
1946 }
1947
1948 /*
1949 * if caller didn't supply a lock, they get per-queue locking with
1950 * our embedded lock
1951 */
1952 if (!lock) {
1953 spin_lock_init(&q->__queue_lock);
1954 lock = &q->__queue_lock;
1955 }
1956
1957 q->request_fn = rfn;
1958 q->back_merge_fn = ll_back_merge_fn;
1959 q->front_merge_fn = ll_front_merge_fn;
1960 q->merge_requests_fn = ll_merge_requests_fn;
1961 q->prep_rq_fn = NULL;
1962 q->unplug_fn = generic_unplug_device;
1963 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1964 q->queue_lock = lock;
1965
1966 blk_queue_segment_boundary(q, 0xffffffff);
1967
1968 blk_queue_make_request(q, __make_request);
1969 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1970
1971 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1972 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1973
1974 /*
1975 * all done
1976 */
1977 if (!elevator_init(q, NULL)) {
1978 blk_queue_congestion_threshold(q);
1979 return q;
1980 }
1981
1982 blk_put_queue(q);
1983 return NULL;
1984 }
1985 EXPORT_SYMBOL(blk_init_queue_node);
1986
1987 int blk_get_queue(request_queue_t *q)
1988 {
1989 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1990 kobject_get(&q->kobj);
1991 return 0;
1992 }
1993
1994 return 1;
1995 }
1996
1997 EXPORT_SYMBOL(blk_get_queue);
1998
1999 static inline void blk_free_request(request_queue_t *q, struct request *rq)
2000 {
2001 if (rq->cmd_flags & REQ_ELVPRIV)
2002 elv_put_request(q, rq);
2003 mempool_free(rq, q->rq.rq_pool);
2004 }
2005
2006 static struct request *
2007 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
2008 {
2009 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2010
2011 if (!rq)
2012 return NULL;
2013
2014 /*
2015 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2016 * see bio.h and blkdev.h
2017 */
2018 rq->cmd_flags = rw | REQ_ALLOCED;
2019
2020 if (priv) {
2021 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
2022 mempool_free(rq, q->rq.rq_pool);
2023 return NULL;
2024 }
2025 rq->cmd_flags |= REQ_ELVPRIV;
2026 }
2027
2028 return rq;
2029 }
2030
2031 /*
2032 * ioc_batching returns true if the ioc is a valid batching request and
2033 * should be given priority access to a request.
2034 */
2035 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2036 {
2037 if (!ioc)
2038 return 0;
2039
2040 /*
2041 * Make sure the process is able to allocate at least 1 request
2042 * even if the batch times out, otherwise we could theoretically
2043 * lose wakeups.
2044 */
2045 return ioc->nr_batch_requests == q->nr_batching ||
2046 (ioc->nr_batch_requests > 0
2047 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2048 }
2049
2050 /*
2051 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2052 * will cause the process to be a "batcher" on all queues in the system. This
2053 * is the behaviour we want though - once it gets a wakeup it should be given
2054 * a nice run.
2055 */
2056 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2057 {
2058 if (!ioc || ioc_batching(q, ioc))
2059 return;
2060
2061 ioc->nr_batch_requests = q->nr_batching;
2062 ioc->last_waited = jiffies;
2063 }
2064
2065 static void __freed_request(request_queue_t *q, int rw)
2066 {
2067 struct request_list *rl = &q->rq;
2068
2069 if (rl->count[rw] < queue_congestion_off_threshold(q))
2070 clear_queue_congested(q, rw);
2071
2072 if (rl->count[rw] + 1 <= q->nr_requests) {
2073 if (waitqueue_active(&rl->wait[rw]))
2074 wake_up(&rl->wait[rw]);
2075
2076 blk_clear_queue_full(q, rw);
2077 }
2078 }
2079
2080 /*
2081 * A request has just been released. Account for it, update the full and
2082 * congestion status, wake up any waiters. Called under q->queue_lock.
2083 */
2084 static void freed_request(request_queue_t *q, int rw, int priv)
2085 {
2086 struct request_list *rl = &q->rq;
2087
2088 rl->count[rw]--;
2089 if (priv)
2090 rl->elvpriv--;
2091
2092 __freed_request(q, rw);
2093
2094 if (unlikely(rl->starved[rw ^ 1]))
2095 __freed_request(q, rw ^ 1);
2096 }
2097
2098 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2099 /*
2100 * Get a free request, queue_lock must be held.
2101 * Returns NULL on failure, with queue_lock held.
2102 * Returns !NULL on success, with queue_lock *not held*.
2103 */
2104 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2105 gfp_t gfp_mask)
2106 {
2107 struct request *rq = NULL;
2108 struct request_list *rl = &q->rq;
2109 struct io_context *ioc = NULL;
2110 int may_queue, priv;
2111
2112 may_queue = elv_may_queue(q, rw);
2113 if (may_queue == ELV_MQUEUE_NO)
2114 goto rq_starved;
2115
2116 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2117 if (rl->count[rw]+1 >= q->nr_requests) {
2118 ioc = current_io_context(GFP_ATOMIC, q->node);
2119 /*
2120 * The queue will fill after this allocation, so set
2121 * it as full, and mark this process as "batching".
2122 * This process will be allowed to complete a batch of
2123 * requests, others will be blocked.
2124 */
2125 if (!blk_queue_full(q, rw)) {
2126 ioc_set_batching(q, ioc);
2127 blk_set_queue_full(q, rw);
2128 } else {
2129 if (may_queue != ELV_MQUEUE_MUST
2130 && !ioc_batching(q, ioc)) {
2131 /*
2132 * The queue is full and the allocating
2133 * process is not a "batcher", and not
2134 * exempted by the IO scheduler
2135 */
2136 goto out;
2137 }
2138 }
2139 }
2140 set_queue_congested(q, rw);
2141 }
2142
2143 /*
2144 * Only allow batching queuers to allocate up to 50% over the defined
2145 * limit of requests, otherwise we could have thousands of requests
2146 * allocated with any setting of ->nr_requests
2147 */
2148 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2149 goto out;
2150
2151 rl->count[rw]++;
2152 rl->starved[rw] = 0;
2153
2154 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2155 if (priv)
2156 rl->elvpriv++;
2157
2158 spin_unlock_irq(q->queue_lock);
2159
2160 rq = blk_alloc_request(q, rw, priv, gfp_mask);
2161 if (unlikely(!rq)) {
2162 /*
2163 * Allocation failed presumably due to memory. Undo anything
2164 * we might have messed up.
2165 *
2166 * Allocating task should really be put onto the front of the
2167 * wait queue, but this is pretty rare.
2168 */
2169 spin_lock_irq(q->queue_lock);
2170 freed_request(q, rw, priv);
2171
2172 /*
2173 * in the very unlikely event that allocation failed and no
2174 * requests for this direction was pending, mark us starved
2175 * so that freeing of a request in the other direction will
2176 * notice us. another possible fix would be to split the
2177 * rq mempool into READ and WRITE
2178 */
2179 rq_starved:
2180 if (unlikely(rl->count[rw] == 0))
2181 rl->starved[rw] = 1;
2182
2183 goto out;
2184 }
2185
2186 /*
2187 * ioc may be NULL here, and ioc_batching will be false. That's
2188 * OK, if the queue is under the request limit then requests need
2189 * not count toward the nr_batch_requests limit. There will always
2190 * be some limit enforced by BLK_BATCH_TIME.
2191 */
2192 if (ioc_batching(q, ioc))
2193 ioc->nr_batch_requests--;
2194
2195 rq_init(q, rq);
2196
2197 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2198 out:
2199 return rq;
2200 }
2201
2202 /*
2203 * No available requests for this queue, unplug the device and wait for some
2204 * requests to become available.
2205 *
2206 * Called with q->queue_lock held, and returns with it unlocked.
2207 */
2208 static struct request *get_request_wait(request_queue_t *q, int rw,
2209 struct bio *bio)
2210 {
2211 struct request *rq;
2212
2213 rq = get_request(q, rw, bio, GFP_NOIO);
2214 while (!rq) {
2215 DEFINE_WAIT(wait);
2216 struct request_list *rl = &q->rq;
2217
2218 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2219 TASK_UNINTERRUPTIBLE);
2220
2221 rq = get_request(q, rw, bio, GFP_NOIO);
2222
2223 if (!rq) {
2224 struct io_context *ioc;
2225
2226 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2227
2228 __generic_unplug_device(q);
2229 spin_unlock_irq(q->queue_lock);
2230 io_schedule();
2231
2232 /*
2233 * After sleeping, we become a "batching" process and
2234 * will be able to allocate at least one request, and
2235 * up to a big batch of them for a small period time.
2236 * See ioc_batching, ioc_set_batching
2237 */
2238 ioc = current_io_context(GFP_NOIO, q->node);
2239 ioc_set_batching(q, ioc);
2240
2241 spin_lock_irq(q->queue_lock);
2242 }
2243 finish_wait(&rl->wait[rw], &wait);
2244 }
2245
2246 return rq;
2247 }
2248
2249 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2250 {
2251 struct request *rq;
2252
2253 BUG_ON(rw != READ && rw != WRITE);
2254
2255 spin_lock_irq(q->queue_lock);
2256 if (gfp_mask & __GFP_WAIT) {
2257 rq = get_request_wait(q, rw, NULL);
2258 } else {
2259 rq = get_request(q, rw, NULL, gfp_mask);
2260 if (!rq)
2261 spin_unlock_irq(q->queue_lock);
2262 }
2263 /* q->queue_lock is unlocked at this point */
2264
2265 return rq;
2266 }
2267 EXPORT_SYMBOL(blk_get_request);
2268
2269 /**
2270 * blk_requeue_request - put a request back on queue
2271 * @q: request queue where request should be inserted
2272 * @rq: request to be inserted
2273 *
2274 * Description:
2275 * Drivers often keep queueing requests until the hardware cannot accept
2276 * more, when that condition happens we need to put the request back
2277 * on the queue. Must be called with queue lock held.
2278 */
2279 void blk_requeue_request(request_queue_t *q, struct request *rq)
2280 {
2281 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2282
2283 if (blk_rq_tagged(rq))
2284 blk_queue_end_tag(q, rq);
2285
2286 elv_requeue_request(q, rq);
2287 }
2288
2289 EXPORT_SYMBOL(blk_requeue_request);
2290
2291 /**
2292 * blk_insert_request - insert a special request in to a request queue
2293 * @q: request queue where request should be inserted
2294 * @rq: request to be inserted
2295 * @at_head: insert request at head or tail of queue
2296 * @data: private data
2297 *
2298 * Description:
2299 * Many block devices need to execute commands asynchronously, so they don't
2300 * block the whole kernel from preemption during request execution. This is
2301 * accomplished normally by inserting aritficial requests tagged as
2302 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2303 * scheduled for actual execution by the request queue.
2304 *
2305 * We have the option of inserting the head or the tail of the queue.
2306 * Typically we use the tail for new ioctls and so forth. We use the head
2307 * of the queue for things like a QUEUE_FULL message from a device, or a
2308 * host that is unable to accept a particular command.
2309 */
2310 void blk_insert_request(request_queue_t *q, struct request *rq,
2311 int at_head, void *data)
2312 {
2313 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2314 unsigned long flags;
2315
2316 /*
2317 * tell I/O scheduler that this isn't a regular read/write (ie it
2318 * must not attempt merges on this) and that it acts as a soft
2319 * barrier
2320 */
2321 rq->cmd_type = REQ_TYPE_SPECIAL;
2322 rq->cmd_flags |= REQ_SOFTBARRIER;
2323
2324 rq->special = data;
2325
2326 spin_lock_irqsave(q->queue_lock, flags);
2327
2328 /*
2329 * If command is tagged, release the tag
2330 */
2331 if (blk_rq_tagged(rq))
2332 blk_queue_end_tag(q, rq);
2333
2334 drive_stat_acct(rq, rq->nr_sectors, 1);
2335 __elv_add_request(q, rq, where, 0);
2336
2337 if (blk_queue_plugged(q))
2338 __generic_unplug_device(q);
2339 else
2340 q->request_fn(q);
2341 spin_unlock_irqrestore(q->queue_lock, flags);
2342 }
2343
2344 EXPORT_SYMBOL(blk_insert_request);
2345
2346 /**
2347 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2348 * @q: request queue where request should be inserted
2349 * @rq: request structure to fill
2350 * @ubuf: the user buffer
2351 * @len: length of user data
2352 *
2353 * Description:
2354 * Data will be mapped directly for zero copy io, if possible. Otherwise
2355 * a kernel bounce buffer is used.
2356 *
2357 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2358 * still in process context.
2359 *
2360 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2361 * before being submitted to the device, as pages mapped may be out of
2362 * reach. It's the callers responsibility to make sure this happens. The
2363 * original bio must be passed back in to blk_rq_unmap_user() for proper
2364 * unmapping.
2365 */
2366 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2367 unsigned int len)
2368 {
2369 unsigned long uaddr;
2370 struct bio *bio;
2371 int reading;
2372
2373 if (len > (q->max_hw_sectors << 9))
2374 return -EINVAL;
2375 if (!len || !ubuf)
2376 return -EINVAL;
2377
2378 reading = rq_data_dir(rq) == READ;
2379
2380 /*
2381 * if alignment requirement is satisfied, map in user pages for
2382 * direct dma. else, set up kernel bounce buffers
2383 */
2384 uaddr = (unsigned long) ubuf;
2385 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2386 bio = bio_map_user(q, NULL, uaddr, len, reading);
2387 else
2388 bio = bio_copy_user(q, uaddr, len, reading);
2389
2390 if (!IS_ERR(bio)) {
2391 rq->bio = rq->biotail = bio;
2392 blk_rq_bio_prep(q, rq, bio);
2393
2394 rq->buffer = rq->data = NULL;
2395 rq->data_len = len;
2396 return 0;
2397 }
2398
2399 /*
2400 * bio is the err-ptr
2401 */
2402 return PTR_ERR(bio);
2403 }
2404
2405 EXPORT_SYMBOL(blk_rq_map_user);
2406
2407 /**
2408 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2409 * @q: request queue where request should be inserted
2410 * @rq: request to map data to
2411 * @iov: pointer to the iovec
2412 * @iov_count: number of elements in the iovec
2413 *
2414 * Description:
2415 * Data will be mapped directly for zero copy io, if possible. Otherwise
2416 * a kernel bounce buffer is used.
2417 *
2418 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2419 * still in process context.
2420 *
2421 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2422 * before being submitted to the device, as pages mapped may be out of
2423 * reach. It's the callers responsibility to make sure this happens. The
2424 * original bio must be passed back in to blk_rq_unmap_user() for proper
2425 * unmapping.
2426 */
2427 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2428 struct sg_iovec *iov, int iov_count)
2429 {
2430 struct bio *bio;
2431
2432 if (!iov || iov_count <= 0)
2433 return -EINVAL;
2434
2435 /* we don't allow misaligned data like bio_map_user() does. If the
2436 * user is using sg, they're expected to know the alignment constraints
2437 * and respect them accordingly */
2438 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2439 if (IS_ERR(bio))
2440 return PTR_ERR(bio);
2441
2442 rq->bio = rq->biotail = bio;
2443 blk_rq_bio_prep(q, rq, bio);
2444 rq->buffer = rq->data = NULL;
2445 rq->data_len = bio->bi_size;
2446 return 0;
2447 }
2448
2449 EXPORT_SYMBOL(blk_rq_map_user_iov);
2450
2451 /**
2452 * blk_rq_unmap_user - unmap a request with user data
2453 * @bio: bio to be unmapped
2454 * @ulen: length of user buffer
2455 *
2456 * Description:
2457 * Unmap a bio previously mapped by blk_rq_map_user().
2458 */
2459 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2460 {
2461 int ret = 0;
2462
2463 if (bio) {
2464 if (bio_flagged(bio, BIO_USER_MAPPED))
2465 bio_unmap_user(bio);
2466 else
2467 ret = bio_uncopy_user(bio);
2468 }
2469
2470 return 0;
2471 }
2472
2473 EXPORT_SYMBOL(blk_rq_unmap_user);
2474
2475 /**
2476 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2477 * @q: request queue where request should be inserted
2478 * @rq: request to fill
2479 * @kbuf: the kernel buffer
2480 * @len: length of user data
2481 * @gfp_mask: memory allocation flags
2482 */
2483 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2484 unsigned int len, gfp_t gfp_mask)
2485 {
2486 struct bio *bio;
2487
2488 if (len > (q->max_hw_sectors << 9))
2489 return -EINVAL;
2490 if (!len || !kbuf)
2491 return -EINVAL;
2492
2493 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2494 if (IS_ERR(bio))
2495 return PTR_ERR(bio);
2496
2497 if (rq_data_dir(rq) == WRITE)
2498 bio->bi_rw |= (1 << BIO_RW);
2499
2500 rq->bio = rq->biotail = bio;
2501 blk_rq_bio_prep(q, rq, bio);
2502
2503 rq->buffer = rq->data = NULL;
2504 rq->data_len = len;
2505 return 0;
2506 }
2507
2508 EXPORT_SYMBOL(blk_rq_map_kern);
2509
2510 /**
2511 * blk_execute_rq_nowait - insert a request into queue for execution
2512 * @q: queue to insert the request in
2513 * @bd_disk: matching gendisk
2514 * @rq: request to insert
2515 * @at_head: insert request at head or tail of queue
2516 * @done: I/O completion handler
2517 *
2518 * Description:
2519 * Insert a fully prepared request at the back of the io scheduler queue
2520 * for execution. Don't wait for completion.
2521 */
2522 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2523 struct request *rq, int at_head,
2524 rq_end_io_fn *done)
2525 {
2526 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2527
2528 rq->rq_disk = bd_disk;
2529 rq->cmd_flags |= REQ_NOMERGE;
2530 rq->end_io = done;
2531 WARN_ON(irqs_disabled());
2532 spin_lock_irq(q->queue_lock);
2533 __elv_add_request(q, rq, where, 1);
2534 __generic_unplug_device(q);
2535 spin_unlock_irq(q->queue_lock);
2536 }
2537 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2538
2539 /**
2540 * blk_execute_rq - insert a request into queue for execution
2541 * @q: queue to insert the request in
2542 * @bd_disk: matching gendisk
2543 * @rq: request to insert
2544 * @at_head: insert request at head or tail of queue
2545 *
2546 * Description:
2547 * Insert a fully prepared request at the back of the io scheduler queue
2548 * for execution and wait for completion.
2549 */
2550 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2551 struct request *rq, int at_head)
2552 {
2553 DECLARE_COMPLETION_ONSTACK(wait);
2554 char sense[SCSI_SENSE_BUFFERSIZE];
2555 int err = 0;
2556
2557 /*
2558 * we need an extra reference to the request, so we can look at
2559 * it after io completion
2560 */
2561 rq->ref_count++;
2562
2563 if (!rq->sense) {
2564 memset(sense, 0, sizeof(sense));
2565 rq->sense = sense;
2566 rq->sense_len = 0;
2567 }
2568
2569 rq->end_io_data = &wait;
2570 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2571 wait_for_completion(&wait);
2572
2573 if (rq->errors)
2574 err = -EIO;
2575
2576 return err;
2577 }
2578
2579 EXPORT_SYMBOL(blk_execute_rq);
2580
2581 /**
2582 * blkdev_issue_flush - queue a flush
2583 * @bdev: blockdev to issue flush for
2584 * @error_sector: error sector
2585 *
2586 * Description:
2587 * Issue a flush for the block device in question. Caller can supply
2588 * room for storing the error offset in case of a flush error, if they
2589 * wish to. Caller must run wait_for_completion() on its own.
2590 */
2591 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2592 {
2593 request_queue_t *q;
2594
2595 if (bdev->bd_disk == NULL)
2596 return -ENXIO;
2597
2598 q = bdev_get_queue(bdev);
2599 if (!q)
2600 return -ENXIO;
2601 if (!q->issue_flush_fn)
2602 return -EOPNOTSUPP;
2603
2604 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2605 }
2606
2607 EXPORT_SYMBOL(blkdev_issue_flush);
2608
2609 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2610 {
2611 int rw = rq_data_dir(rq);
2612
2613 if (!blk_fs_request(rq) || !rq->rq_disk)
2614 return;
2615
2616 if (!new_io) {
2617 __disk_stat_inc(rq->rq_disk, merges[rw]);
2618 } else {
2619 disk_round_stats(rq->rq_disk);
2620 rq->rq_disk->in_flight++;
2621 }
2622 }
2623
2624 /*
2625 * add-request adds a request to the linked list.
2626 * queue lock is held and interrupts disabled, as we muck with the
2627 * request queue list.
2628 */
2629 static inline void add_request(request_queue_t * q, struct request * req)
2630 {
2631 drive_stat_acct(req, req->nr_sectors, 1);
2632
2633 if (q->activity_fn)
2634 q->activity_fn(q->activity_data, rq_data_dir(req));
2635
2636 /*
2637 * elevator indicated where it wants this request to be
2638 * inserted at elevator_merge time
2639 */
2640 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2641 }
2642
2643 /*
2644 * disk_round_stats() - Round off the performance stats on a struct
2645 * disk_stats.
2646 *
2647 * The average IO queue length and utilisation statistics are maintained
2648 * by observing the current state of the queue length and the amount of
2649 * time it has been in this state for.
2650 *
2651 * Normally, that accounting is done on IO completion, but that can result
2652 * in more than a second's worth of IO being accounted for within any one
2653 * second, leading to >100% utilisation. To deal with that, we call this
2654 * function to do a round-off before returning the results when reading
2655 * /proc/diskstats. This accounts immediately for all queue usage up to
2656 * the current jiffies and restarts the counters again.
2657 */
2658 void disk_round_stats(struct gendisk *disk)
2659 {
2660 unsigned long now = jiffies;
2661
2662 if (now == disk->stamp)
2663 return;
2664
2665 if (disk->in_flight) {
2666 __disk_stat_add(disk, time_in_queue,
2667 disk->in_flight * (now - disk->stamp));
2668 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2669 }
2670 disk->stamp = now;
2671 }
2672
2673 EXPORT_SYMBOL_GPL(disk_round_stats);
2674
2675 /*
2676 * queue lock must be held
2677 */
2678 void __blk_put_request(request_queue_t *q, struct request *req)
2679 {
2680 if (unlikely(!q))
2681 return;
2682 if (unlikely(--req->ref_count))
2683 return;
2684
2685 elv_completed_request(q, req);
2686
2687 /*
2688 * Request may not have originated from ll_rw_blk. if not,
2689 * it didn't come out of our reserved rq pools
2690 */
2691 if (req->cmd_flags & REQ_ALLOCED) {
2692 int rw = rq_data_dir(req);
2693 int priv = req->cmd_flags & REQ_ELVPRIV;
2694
2695 BUG_ON(!list_empty(&req->queuelist));
2696 BUG_ON(!hlist_unhashed(&req->hash));
2697
2698 blk_free_request(q, req);
2699 freed_request(q, rw, priv);
2700 }
2701 }
2702
2703 EXPORT_SYMBOL_GPL(__blk_put_request);
2704
2705 void blk_put_request(struct request *req)
2706 {
2707 unsigned long flags;
2708 request_queue_t *q = req->q;
2709
2710 /*
2711 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2712 * following if (q) test.
2713 */
2714 if (q) {
2715 spin_lock_irqsave(q->queue_lock, flags);
2716 __blk_put_request(q, req);
2717 spin_unlock_irqrestore(q->queue_lock, flags);
2718 }
2719 }
2720
2721 EXPORT_SYMBOL(blk_put_request);
2722
2723 /**
2724 * blk_end_sync_rq - executes a completion event on a request
2725 * @rq: request to complete
2726 * @error: end io status of the request
2727 */
2728 void blk_end_sync_rq(struct request *rq, int error)
2729 {
2730 struct completion *waiting = rq->end_io_data;
2731
2732 rq->end_io_data = NULL;
2733 __blk_put_request(rq->q, rq);
2734
2735 /*
2736 * complete last, if this is a stack request the process (and thus
2737 * the rq pointer) could be invalid right after this complete()
2738 */
2739 complete(waiting);
2740 }
2741 EXPORT_SYMBOL(blk_end_sync_rq);
2742
2743 /**
2744 * blk_congestion_wait - wait for a queue to become uncongested
2745 * @rw: READ or WRITE
2746 * @timeout: timeout in jiffies
2747 *
2748 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2749 * If no queues are congested then just wait for the next request to be
2750 * returned.
2751 */
2752 long blk_congestion_wait(int rw, long timeout)
2753 {
2754 long ret;
2755 DEFINE_WAIT(wait);
2756 wait_queue_head_t *wqh = &congestion_wqh[rw];
2757
2758 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2759 ret = io_schedule_timeout(timeout);
2760 finish_wait(wqh, &wait);
2761 return ret;
2762 }
2763
2764 EXPORT_SYMBOL(blk_congestion_wait);
2765
2766 /**
2767 * blk_congestion_end - wake up sleepers on a congestion queue
2768 * @rw: READ or WRITE
2769 */
2770 void blk_congestion_end(int rw)
2771 {
2772 wait_queue_head_t *wqh = &congestion_wqh[rw];
2773
2774 if (waitqueue_active(wqh))
2775 wake_up(wqh);
2776 }
2777
2778 /*
2779 * Has to be called with the request spinlock acquired
2780 */
2781 static int attempt_merge(request_queue_t *q, struct request *req,
2782 struct request *next)
2783 {
2784 if (!rq_mergeable(req) || !rq_mergeable(next))
2785 return 0;
2786
2787 /*
2788 * not contiguous
2789 */
2790 if (req->sector + req->nr_sectors != next->sector)
2791 return 0;
2792
2793 if (rq_data_dir(req) != rq_data_dir(next)
2794 || req->rq_disk != next->rq_disk
2795 || next->special)
2796 return 0;
2797
2798 /*
2799 * If we are allowed to merge, then append bio list
2800 * from next to rq and release next. merge_requests_fn
2801 * will have updated segment counts, update sector
2802 * counts here.
2803 */
2804 if (!q->merge_requests_fn(q, req, next))
2805 return 0;
2806
2807 /*
2808 * At this point we have either done a back merge
2809 * or front merge. We need the smaller start_time of
2810 * the merged requests to be the current request
2811 * for accounting purposes.
2812 */
2813 if (time_after(req->start_time, next->start_time))
2814 req->start_time = next->start_time;
2815
2816 req->biotail->bi_next = next->bio;
2817 req->biotail = next->biotail;
2818
2819 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2820
2821 elv_merge_requests(q, req, next);
2822
2823 if (req->rq_disk) {
2824 disk_round_stats(req->rq_disk);
2825 req->rq_disk->in_flight--;
2826 }
2827
2828 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2829
2830 __blk_put_request(q, next);
2831 return 1;
2832 }
2833
2834 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2835 {
2836 struct request *next = elv_latter_request(q, rq);
2837
2838 if (next)
2839 return attempt_merge(q, rq, next);
2840
2841 return 0;
2842 }
2843
2844 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2845 {
2846 struct request *prev = elv_former_request(q, rq);
2847
2848 if (prev)
2849 return attempt_merge(q, prev, rq);
2850
2851 return 0;
2852 }
2853
2854 static void init_request_from_bio(struct request *req, struct bio *bio)
2855 {
2856 req->cmd_type = REQ_TYPE_FS;
2857
2858 /*
2859 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2860 */
2861 if (bio_rw_ahead(bio) || bio_failfast(bio))
2862 req->cmd_flags |= REQ_FAILFAST;
2863
2864 /*
2865 * REQ_BARRIER implies no merging, but lets make it explicit
2866 */
2867 if (unlikely(bio_barrier(bio)))
2868 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2869
2870 if (bio_sync(bio))
2871 req->cmd_flags |= REQ_RW_SYNC;
2872
2873 req->errors = 0;
2874 req->hard_sector = req->sector = bio->bi_sector;
2875 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2876 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2877 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2878 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2879 req->buffer = bio_data(bio); /* see ->buffer comment above */
2880 req->bio = req->biotail = bio;
2881 req->ioprio = bio_prio(bio);
2882 req->rq_disk = bio->bi_bdev->bd_disk;
2883 req->start_time = jiffies;
2884 }
2885
2886 static int __make_request(request_queue_t *q, struct bio *bio)
2887 {
2888 struct request *req;
2889 int el_ret, nr_sectors, barrier, err;
2890 const unsigned short prio = bio_prio(bio);
2891 const int sync = bio_sync(bio);
2892
2893 nr_sectors = bio_sectors(bio);
2894
2895 /*
2896 * low level driver can indicate that it wants pages above a
2897 * certain limit bounced to low memory (ie for highmem, or even
2898 * ISA dma in theory)
2899 */
2900 blk_queue_bounce(q, &bio);
2901
2902 barrier = bio_barrier(bio);
2903 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2904 err = -EOPNOTSUPP;
2905 goto end_io;
2906 }
2907
2908 spin_lock_irq(q->queue_lock);
2909
2910 if (unlikely(barrier) || elv_queue_empty(q))
2911 goto get_rq;
2912
2913 el_ret = elv_merge(q, &req, bio);
2914 switch (el_ret) {
2915 case ELEVATOR_BACK_MERGE:
2916 BUG_ON(!rq_mergeable(req));
2917
2918 if (!q->back_merge_fn(q, req, bio))
2919 break;
2920
2921 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2922
2923 req->biotail->bi_next = bio;
2924 req->biotail = bio;
2925 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2926 req->ioprio = ioprio_best(req->ioprio, prio);
2927 drive_stat_acct(req, nr_sectors, 0);
2928 if (!attempt_back_merge(q, req))
2929 elv_merged_request(q, req, el_ret);
2930 goto out;
2931
2932 case ELEVATOR_FRONT_MERGE:
2933 BUG_ON(!rq_mergeable(req));
2934
2935 if (!q->front_merge_fn(q, req, bio))
2936 break;
2937
2938 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2939
2940 bio->bi_next = req->bio;
2941 req->bio = bio;
2942
2943 /*
2944 * may not be valid. if the low level driver said
2945 * it didn't need a bounce buffer then it better
2946 * not touch req->buffer either...
2947 */
2948 req->buffer = bio_data(bio);
2949 req->current_nr_sectors = bio_cur_sectors(bio);
2950 req->hard_cur_sectors = req->current_nr_sectors;
2951 req->sector = req->hard_sector = bio->bi_sector;
2952 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2953 req->ioprio = ioprio_best(req->ioprio, prio);
2954 drive_stat_acct(req, nr_sectors, 0);
2955 if (!attempt_front_merge(q, req))
2956 elv_merged_request(q, req, el_ret);
2957 goto out;
2958
2959 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2960 default:
2961 ;
2962 }
2963
2964 get_rq:
2965 /*
2966 * Grab a free request. This is might sleep but can not fail.
2967 * Returns with the queue unlocked.
2968 */
2969 req = get_request_wait(q, bio_data_dir(bio), bio);
2970
2971 /*
2972 * After dropping the lock and possibly sleeping here, our request
2973 * may now be mergeable after it had proven unmergeable (above).
2974 * We don't worry about that case for efficiency. It won't happen
2975 * often, and the elevators are able to handle it.
2976 */
2977 init_request_from_bio(req, bio);
2978
2979 spin_lock_irq(q->queue_lock);
2980 if (elv_queue_empty(q))
2981 blk_plug_device(q);
2982 add_request(q, req);
2983 out:
2984 if (sync)
2985 __generic_unplug_device(q);
2986
2987 spin_unlock_irq(q->queue_lock);
2988 return 0;
2989
2990 end_io:
2991 bio_endio(bio, nr_sectors << 9, err);
2992 return 0;
2993 }
2994
2995 /*
2996 * If bio->bi_dev is a partition, remap the location
2997 */
2998 static inline void blk_partition_remap(struct bio *bio)
2999 {
3000 struct block_device *bdev = bio->bi_bdev;
3001
3002 if (bdev != bdev->bd_contains) {
3003 struct hd_struct *p = bdev->bd_part;
3004 const int rw = bio_data_dir(bio);
3005
3006 p->sectors[rw] += bio_sectors(bio);
3007 p->ios[rw]++;
3008
3009 bio->bi_sector += p->start_sect;
3010 bio->bi_bdev = bdev->bd_contains;
3011 }
3012 }
3013
3014 static void handle_bad_sector(struct bio *bio)
3015 {
3016 char b[BDEVNAME_SIZE];
3017
3018 printk(KERN_INFO "attempt to access beyond end of device\n");
3019 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3020 bdevname(bio->bi_bdev, b),
3021 bio->bi_rw,
3022 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3023 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3024
3025 set_bit(BIO_EOF, &bio->bi_flags);
3026 }
3027
3028 /**
3029 * generic_make_request: hand a buffer to its device driver for I/O
3030 * @bio: The bio describing the location in memory and on the device.
3031 *
3032 * generic_make_request() is used to make I/O requests of block
3033 * devices. It is passed a &struct bio, which describes the I/O that needs
3034 * to be done.
3035 *
3036 * generic_make_request() does not return any status. The
3037 * success/failure status of the request, along with notification of
3038 * completion, is delivered asynchronously through the bio->bi_end_io
3039 * function described (one day) else where.
3040 *
3041 * The caller of generic_make_request must make sure that bi_io_vec
3042 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3043 * set to describe the device address, and the
3044 * bi_end_io and optionally bi_private are set to describe how
3045 * completion notification should be signaled.
3046 *
3047 * generic_make_request and the drivers it calls may use bi_next if this
3048 * bio happens to be merged with someone else, and may change bi_dev and
3049 * bi_sector for remaps as it sees fit. So the values of these fields
3050 * should NOT be depended on after the call to generic_make_request.
3051 */
3052 void generic_make_request(struct bio *bio)
3053 {
3054 request_queue_t *q;
3055 sector_t maxsector;
3056 int ret, nr_sectors = bio_sectors(bio);
3057 dev_t old_dev;
3058
3059 might_sleep();
3060 /* Test device or partition size, when known. */
3061 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3062 if (maxsector) {
3063 sector_t sector = bio->bi_sector;
3064
3065 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3066 /*
3067 * This may well happen - the kernel calls bread()
3068 * without checking the size of the device, e.g., when
3069 * mounting a device.
3070 */
3071 handle_bad_sector(bio);
3072 goto end_io;
3073 }
3074 }
3075
3076 /*
3077 * Resolve the mapping until finished. (drivers are
3078 * still free to implement/resolve their own stacking
3079 * by explicitly returning 0)
3080 *
3081 * NOTE: we don't repeat the blk_size check for each new device.
3082 * Stacking drivers are expected to know what they are doing.
3083 */
3084 maxsector = -1;
3085 old_dev = 0;
3086 do {
3087 char b[BDEVNAME_SIZE];
3088
3089 q = bdev_get_queue(bio->bi_bdev);
3090 if (!q) {
3091 printk(KERN_ERR
3092 "generic_make_request: Trying to access "
3093 "nonexistent block-device %s (%Lu)\n",
3094 bdevname(bio->bi_bdev, b),
3095 (long long) bio->bi_sector);
3096 end_io:
3097 bio_endio(bio, bio->bi_size, -EIO);
3098 break;
3099 }
3100
3101 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3102 printk("bio too big device %s (%u > %u)\n",
3103 bdevname(bio->bi_bdev, b),
3104 bio_sectors(bio),
3105 q->max_hw_sectors);
3106 goto end_io;
3107 }
3108
3109 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3110 goto end_io;
3111
3112 /*
3113 * If this device has partitions, remap block n
3114 * of partition p to block n+start(p) of the disk.
3115 */
3116 blk_partition_remap(bio);
3117
3118 if (maxsector != -1)
3119 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3120 maxsector);
3121
3122 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3123
3124 maxsector = bio->bi_sector;
3125 old_dev = bio->bi_bdev->bd_dev;
3126
3127 ret = q->make_request_fn(q, bio);
3128 } while (ret);
3129 }
3130
3131 EXPORT_SYMBOL(generic_make_request);
3132
3133 /**
3134 * submit_bio: submit a bio to the block device layer for I/O
3135 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3136 * @bio: The &struct bio which describes the I/O
3137 *
3138 * submit_bio() is very similar in purpose to generic_make_request(), and
3139 * uses that function to do most of the work. Both are fairly rough
3140 * interfaces, @bio must be presetup and ready for I/O.
3141 *
3142 */
3143 void submit_bio(int rw, struct bio *bio)
3144 {
3145 int count = bio_sectors(bio);
3146
3147 BIO_BUG_ON(!bio->bi_size);
3148 BIO_BUG_ON(!bio->bi_io_vec);
3149 bio->bi_rw |= rw;
3150 if (rw & WRITE)
3151 count_vm_events(PGPGOUT, count);
3152 else
3153 count_vm_events(PGPGIN, count);
3154
3155 if (unlikely(block_dump)) {
3156 char b[BDEVNAME_SIZE];
3157 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3158 current->comm, current->pid,
3159 (rw & WRITE) ? "WRITE" : "READ",
3160 (unsigned long long)bio->bi_sector,
3161 bdevname(bio->bi_bdev,b));
3162 }
3163
3164 generic_make_request(bio);
3165 }
3166
3167 EXPORT_SYMBOL(submit_bio);
3168
3169 static void blk_recalc_rq_segments(struct request *rq)
3170 {
3171 struct bio *bio, *prevbio = NULL;
3172 int nr_phys_segs, nr_hw_segs;
3173 unsigned int phys_size, hw_size;
3174 request_queue_t *q = rq->q;
3175
3176 if (!rq->bio)
3177 return;
3178
3179 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3180 rq_for_each_bio(bio, rq) {
3181 /* Force bio hw/phys segs to be recalculated. */
3182 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3183
3184 nr_phys_segs += bio_phys_segments(q, bio);
3185 nr_hw_segs += bio_hw_segments(q, bio);
3186 if (prevbio) {
3187 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3188 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3189
3190 if (blk_phys_contig_segment(q, prevbio, bio) &&
3191 pseg <= q->max_segment_size) {
3192 nr_phys_segs--;
3193 phys_size += prevbio->bi_size + bio->bi_size;
3194 } else
3195 phys_size = 0;
3196
3197 if (blk_hw_contig_segment(q, prevbio, bio) &&
3198 hseg <= q->max_segment_size) {
3199 nr_hw_segs--;
3200 hw_size += prevbio->bi_size + bio->bi_size;
3201 } else
3202 hw_size = 0;
3203 }
3204 prevbio = bio;
3205 }
3206
3207 rq->nr_phys_segments = nr_phys_segs;
3208 rq->nr_hw_segments = nr_hw_segs;
3209 }
3210
3211 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3212 {
3213 if (blk_fs_request(rq)) {
3214 rq->hard_sector += nsect;
3215 rq->hard_nr_sectors -= nsect;
3216
3217 /*
3218 * Move the I/O submission pointers ahead if required.
3219 */
3220 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3221 (rq->sector <= rq->hard_sector)) {
3222 rq->sector = rq->hard_sector;
3223 rq->nr_sectors = rq->hard_nr_sectors;
3224 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3225 rq->current_nr_sectors = rq->hard_cur_sectors;
3226 rq->buffer = bio_data(rq->bio);
3227 }
3228
3229 /*
3230 * if total number of sectors is less than the first segment
3231 * size, something has gone terribly wrong
3232 */
3233 if (rq->nr_sectors < rq->current_nr_sectors) {
3234 printk("blk: request botched\n");
3235 rq->nr_sectors = rq->current_nr_sectors;
3236 }
3237 }
3238 }
3239
3240 static int __end_that_request_first(struct request *req, int uptodate,
3241 int nr_bytes)
3242 {
3243 int total_bytes, bio_nbytes, error, next_idx = 0;
3244 struct bio *bio;
3245
3246 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3247
3248 /*
3249 * extend uptodate bool to allow < 0 value to be direct io error
3250 */
3251 error = 0;
3252 if (end_io_error(uptodate))
3253 error = !uptodate ? -EIO : uptodate;
3254
3255 /*
3256 * for a REQ_BLOCK_PC request, we want to carry any eventual
3257 * sense key with us all the way through
3258 */
3259 if (!blk_pc_request(req))
3260 req->errors = 0;
3261
3262 if (!uptodate) {
3263 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3264 printk("end_request: I/O error, dev %s, sector %llu\n",
3265 req->rq_disk ? req->rq_disk->disk_name : "?",
3266 (unsigned long long)req->sector);
3267 }
3268
3269 if (blk_fs_request(req) && req->rq_disk) {
3270 const int rw = rq_data_dir(req);
3271
3272 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3273 }
3274
3275 total_bytes = bio_nbytes = 0;
3276 while ((bio = req->bio) != NULL) {
3277 int nbytes;
3278
3279 if (nr_bytes >= bio->bi_size) {
3280 req->bio = bio->bi_next;
3281 nbytes = bio->bi_size;
3282 if (!ordered_bio_endio(req, bio, nbytes, error))
3283 bio_endio(bio, nbytes, error);
3284 next_idx = 0;
3285 bio_nbytes = 0;
3286 } else {
3287 int idx = bio->bi_idx + next_idx;
3288
3289 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3290 blk_dump_rq_flags(req, "__end_that");
3291 printk("%s: bio idx %d >= vcnt %d\n",
3292 __FUNCTION__,
3293 bio->bi_idx, bio->bi_vcnt);
3294 break;
3295 }
3296
3297 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3298 BIO_BUG_ON(nbytes > bio->bi_size);
3299
3300 /*
3301 * not a complete bvec done
3302 */
3303 if (unlikely(nbytes > nr_bytes)) {
3304 bio_nbytes += nr_bytes;
3305 total_bytes += nr_bytes;
3306 break;
3307 }
3308
3309 /*
3310 * advance to the next vector
3311 */
3312 next_idx++;
3313 bio_nbytes += nbytes;
3314 }
3315
3316 total_bytes += nbytes;
3317 nr_bytes -= nbytes;
3318
3319 if ((bio = req->bio)) {
3320 /*
3321 * end more in this run, or just return 'not-done'
3322 */
3323 if (unlikely(nr_bytes <= 0))
3324 break;
3325 }
3326 }
3327
3328 /*
3329 * completely done
3330 */
3331 if (!req->bio)
3332 return 0;
3333
3334 /*
3335 * if the request wasn't completed, update state
3336 */
3337 if (bio_nbytes) {
3338 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3339 bio_endio(bio, bio_nbytes, error);
3340 bio->bi_idx += next_idx;
3341 bio_iovec(bio)->bv_offset += nr_bytes;
3342 bio_iovec(bio)->bv_len -= nr_bytes;
3343 }
3344
3345 blk_recalc_rq_sectors(req, total_bytes >> 9);
3346 blk_recalc_rq_segments(req);
3347 return 1;
3348 }
3349
3350 /**
3351 * end_that_request_first - end I/O on a request
3352 * @req: the request being processed
3353 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3354 * @nr_sectors: number of sectors to end I/O on
3355 *
3356 * Description:
3357 * Ends I/O on a number of sectors attached to @req, and sets it up
3358 * for the next range of segments (if any) in the cluster.
3359 *
3360 * Return:
3361 * 0 - we are done with this request, call end_that_request_last()
3362 * 1 - still buffers pending for this request
3363 **/
3364 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3365 {
3366 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3367 }
3368
3369 EXPORT_SYMBOL(end_that_request_first);
3370
3371 /**
3372 * end_that_request_chunk - end I/O on a request
3373 * @req: the request being processed
3374 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3375 * @nr_bytes: number of bytes to complete
3376 *
3377 * Description:
3378 * Ends I/O on a number of bytes attached to @req, and sets it up
3379 * for the next range of segments (if any). Like end_that_request_first(),
3380 * but deals with bytes instead of sectors.
3381 *
3382 * Return:
3383 * 0 - we are done with this request, call end_that_request_last()
3384 * 1 - still buffers pending for this request
3385 **/
3386 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3387 {
3388 return __end_that_request_first(req, uptodate, nr_bytes);
3389 }
3390
3391 EXPORT_SYMBOL(end_that_request_chunk);
3392
3393 /*
3394 * splice the completion data to a local structure and hand off to
3395 * process_completion_queue() to complete the requests
3396 */
3397 static void blk_done_softirq(struct softirq_action *h)
3398 {
3399 struct list_head *cpu_list, local_list;
3400
3401 local_irq_disable();
3402 cpu_list = &__get_cpu_var(blk_cpu_done);
3403 list_replace_init(cpu_list, &local_list);
3404 local_irq_enable();
3405
3406 while (!list_empty(&local_list)) {
3407 struct request *rq = list_entry(local_list.next, struct request, donelist);
3408
3409 list_del_init(&rq->donelist);
3410 rq->q->softirq_done_fn(rq);
3411 }
3412 }
3413
3414 #ifdef CONFIG_HOTPLUG_CPU
3415
3416 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3417 void *hcpu)
3418 {
3419 /*
3420 * If a CPU goes away, splice its entries to the current CPU
3421 * and trigger a run of the softirq
3422 */
3423 if (action == CPU_DEAD) {
3424 int cpu = (unsigned long) hcpu;
3425
3426 local_irq_disable();
3427 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3428 &__get_cpu_var(blk_cpu_done));
3429 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3430 local_irq_enable();
3431 }
3432
3433 return NOTIFY_OK;
3434 }
3435
3436
3437 static struct notifier_block __devinitdata blk_cpu_notifier = {
3438 .notifier_call = blk_cpu_notify,
3439 };
3440
3441 #endif /* CONFIG_HOTPLUG_CPU */
3442
3443 /**
3444 * blk_complete_request - end I/O on a request
3445 * @req: the request being processed
3446 *
3447 * Description:
3448 * Ends all I/O on a request. It does not handle partial completions,
3449 * unless the driver actually implements this in its completion callback
3450 * through requeueing. Theh actual completion happens out-of-order,
3451 * through a softirq handler. The user must have registered a completion
3452 * callback through blk_queue_softirq_done().
3453 **/
3454
3455 void blk_complete_request(struct request *req)
3456 {
3457 struct list_head *cpu_list;
3458 unsigned long flags;
3459
3460 BUG_ON(!req->q->softirq_done_fn);
3461
3462 local_irq_save(flags);
3463
3464 cpu_list = &__get_cpu_var(blk_cpu_done);
3465 list_add_tail(&req->donelist, cpu_list);
3466 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3467
3468 local_irq_restore(flags);
3469 }
3470
3471 EXPORT_SYMBOL(blk_complete_request);
3472
3473 /*
3474 * queue lock must be held
3475 */
3476 void end_that_request_last(struct request *req, int uptodate)
3477 {
3478 struct gendisk *disk = req->rq_disk;
3479 int error;
3480
3481 /*
3482 * extend uptodate bool to allow < 0 value to be direct io error
3483 */
3484 error = 0;
3485 if (end_io_error(uptodate))
3486 error = !uptodate ? -EIO : uptodate;
3487
3488 if (unlikely(laptop_mode) && blk_fs_request(req))
3489 laptop_io_completion();
3490
3491 /*
3492 * Account IO completion. bar_rq isn't accounted as a normal
3493 * IO on queueing nor completion. Accounting the containing
3494 * request is enough.
3495 */
3496 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3497 unsigned long duration = jiffies - req->start_time;
3498 const int rw = rq_data_dir(req);
3499
3500 __disk_stat_inc(disk, ios[rw]);
3501 __disk_stat_add(disk, ticks[rw], duration);
3502 disk_round_stats(disk);
3503 disk->in_flight--;
3504 }
3505 if (req->end_io)
3506 req->end_io(req, error);
3507 else
3508 __blk_put_request(req->q, req);
3509 }
3510
3511 EXPORT_SYMBOL(end_that_request_last);
3512
3513 void end_request(struct request *req, int uptodate)
3514 {
3515 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3516 add_disk_randomness(req->rq_disk);
3517 blkdev_dequeue_request(req);
3518 end_that_request_last(req, uptodate);
3519 }
3520 }
3521
3522 EXPORT_SYMBOL(end_request);
3523
3524 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3525 {
3526 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3527 rq->cmd_flags |= (bio->bi_rw & 3);
3528
3529 rq->nr_phys_segments = bio_phys_segments(q, bio);
3530 rq->nr_hw_segments = bio_hw_segments(q, bio);
3531 rq->current_nr_sectors = bio_cur_sectors(bio);
3532 rq->hard_cur_sectors = rq->current_nr_sectors;
3533 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3534 rq->buffer = bio_data(bio);
3535
3536 rq->bio = rq->biotail = bio;
3537 }
3538
3539 EXPORT_SYMBOL(blk_rq_bio_prep);
3540
3541 int kblockd_schedule_work(struct work_struct *work)
3542 {
3543 return queue_work(kblockd_workqueue, work);
3544 }
3545
3546 EXPORT_SYMBOL(kblockd_schedule_work);
3547
3548 void kblockd_flush(void)
3549 {
3550 flush_workqueue(kblockd_workqueue);
3551 }
3552 EXPORT_SYMBOL(kblockd_flush);
3553
3554 int __init blk_dev_init(void)
3555 {
3556 int i;
3557
3558 kblockd_workqueue = create_workqueue("kblockd");
3559 if (!kblockd_workqueue)
3560 panic("Failed to create kblockd\n");
3561
3562 request_cachep = kmem_cache_create("blkdev_requests",
3563 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3564
3565 requestq_cachep = kmem_cache_create("blkdev_queue",
3566 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3567
3568 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3569 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3570
3571 for_each_possible_cpu(i)
3572 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3573
3574 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3575 register_hotcpu_notifier(&blk_cpu_notifier);
3576
3577 blk_max_low_pfn = max_low_pfn;
3578 blk_max_pfn = max_pfn;
3579
3580 return 0;
3581 }
3582
3583 /*
3584 * IO Context helper functions
3585 */
3586 void put_io_context(struct io_context *ioc)
3587 {
3588 if (ioc == NULL)
3589 return;
3590
3591 BUG_ON(atomic_read(&ioc->refcount) == 0);
3592
3593 if (atomic_dec_and_test(&ioc->refcount)) {
3594 struct cfq_io_context *cic;
3595
3596 rcu_read_lock();
3597 if (ioc->aic && ioc->aic->dtor)
3598 ioc->aic->dtor(ioc->aic);
3599 if (ioc->cic_root.rb_node != NULL) {
3600 struct rb_node *n = rb_first(&ioc->cic_root);
3601
3602 cic = rb_entry(n, struct cfq_io_context, rb_node);
3603 cic->dtor(ioc);
3604 }
3605 rcu_read_unlock();
3606
3607 kmem_cache_free(iocontext_cachep, ioc);
3608 }
3609 }
3610 EXPORT_SYMBOL(put_io_context);
3611
3612 /* Called by the exitting task */
3613 void exit_io_context(void)
3614 {
3615 unsigned long flags;
3616 struct io_context *ioc;
3617 struct cfq_io_context *cic;
3618
3619 local_irq_save(flags);
3620 task_lock(current);
3621 ioc = current->io_context;
3622 current->io_context = NULL;
3623 ioc->task = NULL;
3624 task_unlock(current);
3625 local_irq_restore(flags);
3626
3627 if (ioc->aic && ioc->aic->exit)
3628 ioc->aic->exit(ioc->aic);
3629 if (ioc->cic_root.rb_node != NULL) {
3630 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3631 cic->exit(ioc);
3632 }
3633
3634 put_io_context(ioc);
3635 }
3636
3637 /*
3638 * If the current task has no IO context then create one and initialise it.
3639 * Otherwise, return its existing IO context.
3640 *
3641 * This returned IO context doesn't have a specifically elevated refcount,
3642 * but since the current task itself holds a reference, the context can be
3643 * used in general code, so long as it stays within `current` context.
3644 */
3645 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3646 {
3647 struct task_struct *tsk = current;
3648 struct io_context *ret;
3649
3650 ret = tsk->io_context;
3651 if (likely(ret))
3652 return ret;
3653
3654 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3655 if (ret) {
3656 atomic_set(&ret->refcount, 1);
3657 ret->task = current;
3658 ret->ioprio_changed = 0;
3659 ret->last_waited = jiffies; /* doesn't matter... */
3660 ret->nr_batch_requests = 0; /* because this is 0 */
3661 ret->aic = NULL;
3662 ret->cic_root.rb_node = NULL;
3663 /* make sure set_task_ioprio() sees the settings above */
3664 smp_wmb();
3665 tsk->io_context = ret;
3666 }
3667
3668 return ret;
3669 }
3670 EXPORT_SYMBOL(current_io_context);
3671
3672 /*
3673 * If the current task has no IO context then create one and initialise it.
3674 * If it does have a context, take a ref on it.
3675 *
3676 * This is always called in the context of the task which submitted the I/O.
3677 */
3678 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3679 {
3680 struct io_context *ret;
3681 ret = current_io_context(gfp_flags, node);
3682 if (likely(ret))
3683 atomic_inc(&ret->refcount);
3684 return ret;
3685 }
3686 EXPORT_SYMBOL(get_io_context);
3687
3688 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3689 {
3690 struct io_context *src = *psrc;
3691 struct io_context *dst = *pdst;
3692
3693 if (src) {
3694 BUG_ON(atomic_read(&src->refcount) == 0);
3695 atomic_inc(&src->refcount);
3696 put_io_context(dst);
3697 *pdst = src;
3698 }
3699 }
3700 EXPORT_SYMBOL(copy_io_context);
3701
3702 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3703 {
3704 struct io_context *temp;
3705 temp = *ioc1;
3706 *ioc1 = *ioc2;
3707 *ioc2 = temp;
3708 }
3709 EXPORT_SYMBOL(swap_io_context);
3710
3711 /*
3712 * sysfs parts below
3713 */
3714 struct queue_sysfs_entry {
3715 struct attribute attr;
3716 ssize_t (*show)(struct request_queue *, char *);
3717 ssize_t (*store)(struct request_queue *, const char *, size_t);
3718 };
3719
3720 static ssize_t
3721 queue_var_show(unsigned int var, char *page)
3722 {
3723 return sprintf(page, "%d\n", var);
3724 }
3725
3726 static ssize_t
3727 queue_var_store(unsigned long *var, const char *page, size_t count)
3728 {
3729 char *p = (char *) page;
3730
3731 *var = simple_strtoul(p, &p, 10);
3732 return count;
3733 }
3734
3735 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3736 {
3737 return queue_var_show(q->nr_requests, (page));
3738 }
3739
3740 static ssize_t
3741 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3742 {
3743 struct request_list *rl = &q->rq;
3744 unsigned long nr;
3745 int ret = queue_var_store(&nr, page, count);
3746 if (nr < BLKDEV_MIN_RQ)
3747 nr = BLKDEV_MIN_RQ;
3748
3749 spin_lock_irq(q->queue_lock);
3750 q->nr_requests = nr;
3751 blk_queue_congestion_threshold(q);
3752
3753 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3754 set_queue_congested(q, READ);
3755 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3756 clear_queue_congested(q, READ);
3757
3758 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3759 set_queue_congested(q, WRITE);
3760 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3761 clear_queue_congested(q, WRITE);
3762
3763 if (rl->count[READ] >= q->nr_requests) {
3764 blk_set_queue_full(q, READ);
3765 } else if (rl->count[READ]+1 <= q->nr_requests) {
3766 blk_clear_queue_full(q, READ);
3767 wake_up(&rl->wait[READ]);
3768 }
3769
3770 if (rl->count[WRITE] >= q->nr_requests) {
3771 blk_set_queue_full(q, WRITE);
3772 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3773 blk_clear_queue_full(q, WRITE);
3774 wake_up(&rl->wait[WRITE]);
3775 }
3776 spin_unlock_irq(q->queue_lock);
3777 return ret;
3778 }
3779
3780 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3781 {
3782 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3783
3784 return queue_var_show(ra_kb, (page));
3785 }
3786
3787 static ssize_t
3788 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3789 {
3790 unsigned long ra_kb;
3791 ssize_t ret = queue_var_store(&ra_kb, page, count);
3792
3793 spin_lock_irq(q->queue_lock);
3794 if (ra_kb > (q->max_sectors >> 1))
3795 ra_kb = (q->max_sectors >> 1);
3796
3797 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3798 spin_unlock_irq(q->queue_lock);
3799
3800 return ret;
3801 }
3802
3803 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3804 {
3805 int max_sectors_kb = q->max_sectors >> 1;
3806
3807 return queue_var_show(max_sectors_kb, (page));
3808 }
3809
3810 static ssize_t
3811 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3812 {
3813 unsigned long max_sectors_kb,
3814 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3815 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3816 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3817 int ra_kb;
3818
3819 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3820 return -EINVAL;
3821 /*
3822 * Take the queue lock to update the readahead and max_sectors
3823 * values synchronously:
3824 */
3825 spin_lock_irq(q->queue_lock);
3826 /*
3827 * Trim readahead window as well, if necessary:
3828 */
3829 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3830 if (ra_kb > max_sectors_kb)
3831 q->backing_dev_info.ra_pages =
3832 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3833
3834 q->max_sectors = max_sectors_kb << 1;
3835 spin_unlock_irq(q->queue_lock);
3836
3837 return ret;
3838 }
3839
3840 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3841 {
3842 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3843
3844 return queue_var_show(max_hw_sectors_kb, (page));
3845 }
3846
3847
3848 static struct queue_sysfs_entry queue_requests_entry = {
3849 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3850 .show = queue_requests_show,
3851 .store = queue_requests_store,
3852 };
3853
3854 static struct queue_sysfs_entry queue_ra_entry = {
3855 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3856 .show = queue_ra_show,
3857 .store = queue_ra_store,
3858 };
3859
3860 static struct queue_sysfs_entry queue_max_sectors_entry = {
3861 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3862 .show = queue_max_sectors_show,
3863 .store = queue_max_sectors_store,
3864 };
3865
3866 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3867 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3868 .show = queue_max_hw_sectors_show,
3869 };
3870
3871 static struct queue_sysfs_entry queue_iosched_entry = {
3872 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3873 .show = elv_iosched_show,
3874 .store = elv_iosched_store,
3875 };
3876
3877 static struct attribute *default_attrs[] = {
3878 &queue_requests_entry.attr,
3879 &queue_ra_entry.attr,
3880 &queue_max_hw_sectors_entry.attr,
3881 &queue_max_sectors_entry.attr,
3882 &queue_iosched_entry.attr,
3883 NULL,
3884 };
3885
3886 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3887
3888 static ssize_t
3889 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3890 {
3891 struct queue_sysfs_entry *entry = to_queue(attr);
3892 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3893 ssize_t res;
3894
3895 if (!entry->show)
3896 return -EIO;
3897 mutex_lock(&q->sysfs_lock);
3898 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3899 mutex_unlock(&q->sysfs_lock);
3900 return -ENOENT;
3901 }
3902 res = entry->show(q, page);
3903 mutex_unlock(&q->sysfs_lock);
3904 return res;
3905 }
3906
3907 static ssize_t
3908 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3909 const char *page, size_t length)
3910 {
3911 struct queue_sysfs_entry *entry = to_queue(attr);
3912 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3913
3914 ssize_t res;
3915
3916 if (!entry->store)
3917 return -EIO;
3918 mutex_lock(&q->sysfs_lock);
3919 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3920 mutex_unlock(&q->sysfs_lock);
3921 return -ENOENT;
3922 }
3923 res = entry->store(q, page, length);
3924 mutex_unlock(&q->sysfs_lock);
3925 return res;
3926 }
3927
3928 static struct sysfs_ops queue_sysfs_ops = {
3929 .show = queue_attr_show,
3930 .store = queue_attr_store,
3931 };
3932
3933 static struct kobj_type queue_ktype = {
3934 .sysfs_ops = &queue_sysfs_ops,
3935 .default_attrs = default_attrs,
3936 .release = blk_release_queue,
3937 };
3938
3939 int blk_register_queue(struct gendisk *disk)
3940 {
3941 int ret;
3942
3943 request_queue_t *q = disk->queue;
3944
3945 if (!q || !q->request_fn)
3946 return -ENXIO;
3947
3948 q->kobj.parent = kobject_get(&disk->kobj);
3949
3950 ret = kobject_add(&q->kobj);
3951 if (ret < 0)
3952 return ret;
3953
3954 kobject_uevent(&q->kobj, KOBJ_ADD);
3955
3956 ret = elv_register_queue(q);
3957 if (ret) {
3958 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3959 kobject_del(&q->kobj);
3960 return ret;
3961 }
3962
3963 return 0;
3964 }
3965
3966 void blk_unregister_queue(struct gendisk *disk)
3967 {
3968 request_queue_t *q = disk->queue;
3969
3970 if (q && q->request_fn) {
3971 elv_unregister_queue(q);
3972
3973 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3974 kobject_del(&q->kobj);
3975 kobject_put(&disk->kobj);
3976 }
3977 }