]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/ll_rw_blk.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild
[mirror_ubuntu-bionic-kernel.git] / block / ll_rw_blk.c
1 /*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
32
33 /*
34 * for max sense size
35 */
36 #include <scsi/scsi_cmnd.h>
37
38 static void blk_unplug_work(void *data);
39 static void blk_unplug_timeout(unsigned long data);
40 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
41
42 /*
43 * For the allocated request tables
44 */
45 static kmem_cache_t *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 static kmem_cache_t *requestq_cachep;
51
52 /*
53 * For io context allocations
54 */
55 static kmem_cache_t *iocontext_cachep;
56
57 static wait_queue_head_t congestion_wqh[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
60 };
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 unsigned long blk_max_low_pfn, blk_max_pfn;
68
69 EXPORT_SYMBOL(blk_max_low_pfn);
70 EXPORT_SYMBOL(blk_max_pfn);
71
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
74
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
77
78 /*
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
82 */
83 static inline int queue_congestion_on_threshold(struct request_queue *q)
84 {
85 return q->nr_congestion_on;
86 }
87
88 /*
89 * The threshold at which a queue is considered to be uncongested
90 */
91 static inline int queue_congestion_off_threshold(struct request_queue *q)
92 {
93 return q->nr_congestion_off;
94 }
95
96 static void blk_queue_congestion_threshold(struct request_queue *q)
97 {
98 int nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
109 }
110
111 /*
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
114 * put back.
115 */
116 static void clear_queue_congested(request_queue_t *q, int rw)
117 {
118 enum bdi_state bit;
119 wait_queue_head_t *wqh = &congestion_wqh[rw];
120
121 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
122 clear_bit(bit, &q->backing_dev_info.state);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh))
125 wake_up(wqh);
126 }
127
128 /*
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
131 */
132 static void set_queue_congested(request_queue_t *q, int rw)
133 {
134 enum bdi_state bit;
135
136 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
137 set_bit(bit, &q->backing_dev_info.state);
138 }
139
140 /**
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
142 * @bdev: device
143 *
144 * Locates the passed device's request queue and returns the address of its
145 * backing_dev_info
146 *
147 * Will return NULL if the request queue cannot be located.
148 */
149 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
150 {
151 struct backing_dev_info *ret = NULL;
152 request_queue_t *q = bdev_get_queue(bdev);
153
154 if (q)
155 ret = &q->backing_dev_info;
156 return ret;
157 }
158
159 EXPORT_SYMBOL(blk_get_backing_dev_info);
160
161 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
162 {
163 q->activity_fn = fn;
164 q->activity_data = data;
165 }
166
167 EXPORT_SYMBOL(blk_queue_activity_fn);
168
169 /**
170 * blk_queue_prep_rq - set a prepare_request function for queue
171 * @q: queue
172 * @pfn: prepare_request function
173 *
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
178 *
179 */
180 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
181 {
182 q->prep_rq_fn = pfn;
183 }
184
185 EXPORT_SYMBOL(blk_queue_prep_rq);
186
187 /**
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
189 * @q: queue
190 * @mbfn: merge_bvec_fn
191 *
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
201 * honored.
202 */
203 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
204 {
205 q->merge_bvec_fn = mbfn;
206 }
207
208 EXPORT_SYMBOL(blk_queue_merge_bvec);
209
210 /**
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
214 *
215 * Description:
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
225 *
226 * Caveat:
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
231 **/
232 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
233 {
234 /*
235 * set defaults
236 */
237 q->nr_requests = BLKDEV_MAX_RQ;
238 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
239 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
240 q->make_request_fn = mfn;
241 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
242 q->backing_dev_info.state = 0;
243 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
244 blk_queue_max_sectors(q, MAX_SECTORS);
245 blk_queue_hardsect_size(q, 512);
246 blk_queue_dma_alignment(q, 511);
247 blk_queue_congestion_threshold(q);
248 q->nr_batching = BLK_BATCH_REQ;
249
250 q->unplug_thresh = 4; /* hmm */
251 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
252 if (q->unplug_delay == 0)
253 q->unplug_delay = 1;
254
255 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
256
257 q->unplug_timer.function = blk_unplug_timeout;
258 q->unplug_timer.data = (unsigned long)q;
259
260 /*
261 * by default assume old behaviour and bounce for any highmem page
262 */
263 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
264
265 blk_queue_activity_fn(q, NULL, NULL);
266 }
267
268 EXPORT_SYMBOL(blk_queue_make_request);
269
270 static inline void rq_init(request_queue_t *q, struct request *rq)
271 {
272 INIT_LIST_HEAD(&rq->queuelist);
273
274 rq->errors = 0;
275 rq->rq_status = RQ_ACTIVE;
276 rq->bio = rq->biotail = NULL;
277 rq->ioprio = 0;
278 rq->buffer = NULL;
279 rq->ref_count = 1;
280 rq->q = q;
281 rq->waiting = NULL;
282 rq->special = NULL;
283 rq->data_len = 0;
284 rq->data = NULL;
285 rq->nr_phys_segments = 0;
286 rq->sense = NULL;
287 rq->end_io = NULL;
288 rq->end_io_data = NULL;
289 }
290
291 /**
292 * blk_queue_ordered - does this queue support ordered writes
293 * @q: the request queue
294 * @flag: see below
295 *
296 * Description:
297 * For journalled file systems, doing ordered writes on a commit
298 * block instead of explicitly doing wait_on_buffer (which is bad
299 * for performance) can be a big win. Block drivers supporting this
300 * feature should call this function and indicate so.
301 *
302 **/
303 void blk_queue_ordered(request_queue_t *q, int flag)
304 {
305 switch (flag) {
306 case QUEUE_ORDERED_NONE:
307 if (q->flush_rq)
308 kmem_cache_free(request_cachep, q->flush_rq);
309 q->flush_rq = NULL;
310 q->ordered = flag;
311 break;
312 case QUEUE_ORDERED_TAG:
313 q->ordered = flag;
314 break;
315 case QUEUE_ORDERED_FLUSH:
316 q->ordered = flag;
317 if (!q->flush_rq)
318 q->flush_rq = kmem_cache_alloc(request_cachep,
319 GFP_KERNEL);
320 break;
321 default:
322 printk("blk_queue_ordered: bad value %d\n", flag);
323 break;
324 }
325 }
326
327 EXPORT_SYMBOL(blk_queue_ordered);
328
329 /**
330 * blk_queue_issue_flush_fn - set function for issuing a flush
331 * @q: the request queue
332 * @iff: the function to be called issuing the flush
333 *
334 * Description:
335 * If a driver supports issuing a flush command, the support is notified
336 * to the block layer by defining it through this call.
337 *
338 **/
339 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
340 {
341 q->issue_flush_fn = iff;
342 }
343
344 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
345
346 /*
347 * Cache flushing for ordered writes handling
348 */
349 static void blk_pre_flush_end_io(struct request *flush_rq)
350 {
351 struct request *rq = flush_rq->end_io_data;
352 request_queue_t *q = rq->q;
353
354 elv_completed_request(q, flush_rq);
355
356 rq->flags |= REQ_BAR_PREFLUSH;
357
358 if (!flush_rq->errors)
359 elv_requeue_request(q, rq);
360 else {
361 q->end_flush_fn(q, flush_rq);
362 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
363 q->request_fn(q);
364 }
365 }
366
367 static void blk_post_flush_end_io(struct request *flush_rq)
368 {
369 struct request *rq = flush_rq->end_io_data;
370 request_queue_t *q = rq->q;
371
372 elv_completed_request(q, flush_rq);
373
374 rq->flags |= REQ_BAR_POSTFLUSH;
375
376 q->end_flush_fn(q, flush_rq);
377 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
378 q->request_fn(q);
379 }
380
381 struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
382 {
383 struct request *flush_rq = q->flush_rq;
384
385 BUG_ON(!blk_barrier_rq(rq));
386
387 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
388 return NULL;
389
390 rq_init(q, flush_rq);
391 flush_rq->elevator_private = NULL;
392 flush_rq->flags = REQ_BAR_FLUSH;
393 flush_rq->rq_disk = rq->rq_disk;
394 flush_rq->rl = NULL;
395
396 /*
397 * prepare_flush returns 0 if no flush is needed, just mark both
398 * pre and post flush as done in that case
399 */
400 if (!q->prepare_flush_fn(q, flush_rq)) {
401 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
402 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
403 return rq;
404 }
405
406 /*
407 * some drivers dequeue requests right away, some only after io
408 * completion. make sure the request is dequeued.
409 */
410 if (!list_empty(&rq->queuelist))
411 blkdev_dequeue_request(rq);
412
413 flush_rq->end_io_data = rq;
414 flush_rq->end_io = blk_pre_flush_end_io;
415
416 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
417 return flush_rq;
418 }
419
420 static void blk_start_post_flush(request_queue_t *q, struct request *rq)
421 {
422 struct request *flush_rq = q->flush_rq;
423
424 BUG_ON(!blk_barrier_rq(rq));
425
426 rq_init(q, flush_rq);
427 flush_rq->elevator_private = NULL;
428 flush_rq->flags = REQ_BAR_FLUSH;
429 flush_rq->rq_disk = rq->rq_disk;
430 flush_rq->rl = NULL;
431
432 if (q->prepare_flush_fn(q, flush_rq)) {
433 flush_rq->end_io_data = rq;
434 flush_rq->end_io = blk_post_flush_end_io;
435
436 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
437 q->request_fn(q);
438 }
439 }
440
441 static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
442 int sectors)
443 {
444 if (sectors > rq->nr_sectors)
445 sectors = rq->nr_sectors;
446
447 rq->nr_sectors -= sectors;
448 return rq->nr_sectors;
449 }
450
451 static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
452 int sectors, int queue_locked)
453 {
454 if (q->ordered != QUEUE_ORDERED_FLUSH)
455 return 0;
456 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
457 return 0;
458 if (blk_barrier_postflush(rq))
459 return 0;
460
461 if (!blk_check_end_barrier(q, rq, sectors)) {
462 unsigned long flags = 0;
463
464 if (!queue_locked)
465 spin_lock_irqsave(q->queue_lock, flags);
466
467 blk_start_post_flush(q, rq);
468
469 if (!queue_locked)
470 spin_unlock_irqrestore(q->queue_lock, flags);
471 }
472
473 return 1;
474 }
475
476 /**
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
479 * @rq: the request
480 * @sectors: number of sectors to complete
481 *
482 * Description:
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
486 * queue lock.
487 **/
488 int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
489 {
490 return __blk_complete_barrier_rq(q, rq, sectors, 0);
491 }
492 EXPORT_SYMBOL(blk_complete_barrier_rq);
493
494 /**
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
497 * @rq: the request
498 * @sectors: number of sectors to complete
499 *
500 * Description:
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
503 **/
504 int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
505 int sectors)
506 {
507 return __blk_complete_barrier_rq(q, rq, sectors, 1);
508 }
509 EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
510
511 /**
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
515 *
516 * Description:
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
522 **/
523 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
524 {
525 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
526
527 /*
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
531 */
532 if (bounce_pfn < blk_max_low_pfn) {
533 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
534 init_emergency_isa_pool();
535 q->bounce_gfp = GFP_NOIO | GFP_DMA;
536 } else
537 q->bounce_gfp = GFP_NOIO;
538
539 q->bounce_pfn = bounce_pfn;
540 }
541
542 EXPORT_SYMBOL(blk_queue_bounce_limit);
543
544 /**
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
548 *
549 * Description:
550 * Enables a low level driver to set an upper limit on the size of
551 * received requests.
552 **/
553 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
554 {
555 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
556 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
558 }
559
560 q->max_sectors = q->max_hw_sectors = max_sectors;
561 }
562
563 EXPORT_SYMBOL(blk_queue_max_sectors);
564
565 /**
566 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
567 * @q: the request queue for the device
568 * @max_segments: max number of segments
569 *
570 * Description:
571 * Enables a low level driver to set an upper limit on the number of
572 * physical data segments in a request. This would be the largest sized
573 * scatter list the driver could handle.
574 **/
575 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
576 {
577 if (!max_segments) {
578 max_segments = 1;
579 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
580 }
581
582 q->max_phys_segments = max_segments;
583 }
584
585 EXPORT_SYMBOL(blk_queue_max_phys_segments);
586
587 /**
588 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
589 * @q: the request queue for the device
590 * @max_segments: max number of segments
591 *
592 * Description:
593 * Enables a low level driver to set an upper limit on the number of
594 * hw data segments in a request. This would be the largest number of
595 * address/length pairs the host adapter can actually give as once
596 * to the device.
597 **/
598 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
599 {
600 if (!max_segments) {
601 max_segments = 1;
602 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
603 }
604
605 q->max_hw_segments = max_segments;
606 }
607
608 EXPORT_SYMBOL(blk_queue_max_hw_segments);
609
610 /**
611 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
612 * @q: the request queue for the device
613 * @max_size: max size of segment in bytes
614 *
615 * Description:
616 * Enables a low level driver to set an upper limit on the size of a
617 * coalesced segment
618 **/
619 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
620 {
621 if (max_size < PAGE_CACHE_SIZE) {
622 max_size = PAGE_CACHE_SIZE;
623 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
624 }
625
626 q->max_segment_size = max_size;
627 }
628
629 EXPORT_SYMBOL(blk_queue_max_segment_size);
630
631 /**
632 * blk_queue_hardsect_size - set hardware sector size for the queue
633 * @q: the request queue for the device
634 * @size: the hardware sector size, in bytes
635 *
636 * Description:
637 * This should typically be set to the lowest possible sector size
638 * that the hardware can operate on (possible without reverting to
639 * even internal read-modify-write operations). Usually the default
640 * of 512 covers most hardware.
641 **/
642 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
643 {
644 q->hardsect_size = size;
645 }
646
647 EXPORT_SYMBOL(blk_queue_hardsect_size);
648
649 /*
650 * Returns the minimum that is _not_ zero, unless both are zero.
651 */
652 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
653
654 /**
655 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
656 * @t: the stacking driver (top)
657 * @b: the underlying device (bottom)
658 **/
659 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
660 {
661 /* zero is "infinity" */
662 t->max_sectors = t->max_hw_sectors =
663 min_not_zero(t->max_sectors,b->max_sectors);
664
665 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
666 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
667 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
668 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
669 }
670
671 EXPORT_SYMBOL(blk_queue_stack_limits);
672
673 /**
674 * blk_queue_segment_boundary - set boundary rules for segment merging
675 * @q: the request queue for the device
676 * @mask: the memory boundary mask
677 **/
678 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
679 {
680 if (mask < PAGE_CACHE_SIZE - 1) {
681 mask = PAGE_CACHE_SIZE - 1;
682 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
683 }
684
685 q->seg_boundary_mask = mask;
686 }
687
688 EXPORT_SYMBOL(blk_queue_segment_boundary);
689
690 /**
691 * blk_queue_dma_alignment - set dma length and memory alignment
692 * @q: the request queue for the device
693 * @mask: alignment mask
694 *
695 * description:
696 * set required memory and length aligment for direct dma transactions.
697 * this is used when buiding direct io requests for the queue.
698 *
699 **/
700 void blk_queue_dma_alignment(request_queue_t *q, int mask)
701 {
702 q->dma_alignment = mask;
703 }
704
705 EXPORT_SYMBOL(blk_queue_dma_alignment);
706
707 /**
708 * blk_queue_find_tag - find a request by its tag and queue
709 * @q: The request queue for the device
710 * @tag: The tag of the request
711 *
712 * Notes:
713 * Should be used when a device returns a tag and you want to match
714 * it with a request.
715 *
716 * no locks need be held.
717 **/
718 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
719 {
720 struct blk_queue_tag *bqt = q->queue_tags;
721
722 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
723 return NULL;
724
725 return bqt->tag_index[tag];
726 }
727
728 EXPORT_SYMBOL(blk_queue_find_tag);
729
730 /**
731 * __blk_queue_free_tags - release tag maintenance info
732 * @q: the request queue for the device
733 *
734 * Notes:
735 * blk_cleanup_queue() will take care of calling this function, if tagging
736 * has been used. So there's no need to call this directly.
737 **/
738 static void __blk_queue_free_tags(request_queue_t *q)
739 {
740 struct blk_queue_tag *bqt = q->queue_tags;
741
742 if (!bqt)
743 return;
744
745 if (atomic_dec_and_test(&bqt->refcnt)) {
746 BUG_ON(bqt->busy);
747 BUG_ON(!list_empty(&bqt->busy_list));
748
749 kfree(bqt->tag_index);
750 bqt->tag_index = NULL;
751
752 kfree(bqt->tag_map);
753 bqt->tag_map = NULL;
754
755 kfree(bqt);
756 }
757
758 q->queue_tags = NULL;
759 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
760 }
761
762 /**
763 * blk_queue_free_tags - release tag maintenance info
764 * @q: the request queue for the device
765 *
766 * Notes:
767 * This is used to disabled tagged queuing to a device, yet leave
768 * queue in function.
769 **/
770 void blk_queue_free_tags(request_queue_t *q)
771 {
772 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
773 }
774
775 EXPORT_SYMBOL(blk_queue_free_tags);
776
777 static int
778 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
779 {
780 struct request **tag_index;
781 unsigned long *tag_map;
782 int nr_ulongs;
783
784 if (depth > q->nr_requests * 2) {
785 depth = q->nr_requests * 2;
786 printk(KERN_ERR "%s: adjusted depth to %d\n",
787 __FUNCTION__, depth);
788 }
789
790 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
791 if (!tag_index)
792 goto fail;
793
794 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
795 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
796 if (!tag_map)
797 goto fail;
798
799 memset(tag_index, 0, depth * sizeof(struct request *));
800 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
801 tags->real_max_depth = depth;
802 tags->max_depth = depth;
803 tags->tag_index = tag_index;
804 tags->tag_map = tag_map;
805
806 return 0;
807 fail:
808 kfree(tag_index);
809 return -ENOMEM;
810 }
811
812 /**
813 * blk_queue_init_tags - initialize the queue tag info
814 * @q: the request queue for the device
815 * @depth: the maximum queue depth supported
816 * @tags: the tag to use
817 **/
818 int blk_queue_init_tags(request_queue_t *q, int depth,
819 struct blk_queue_tag *tags)
820 {
821 int rc;
822
823 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
824
825 if (!tags && !q->queue_tags) {
826 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
827 if (!tags)
828 goto fail;
829
830 if (init_tag_map(q, tags, depth))
831 goto fail;
832
833 INIT_LIST_HEAD(&tags->busy_list);
834 tags->busy = 0;
835 atomic_set(&tags->refcnt, 1);
836 } else if (q->queue_tags) {
837 if ((rc = blk_queue_resize_tags(q, depth)))
838 return rc;
839 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
840 return 0;
841 } else
842 atomic_inc(&tags->refcnt);
843
844 /*
845 * assign it, all done
846 */
847 q->queue_tags = tags;
848 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
849 return 0;
850 fail:
851 kfree(tags);
852 return -ENOMEM;
853 }
854
855 EXPORT_SYMBOL(blk_queue_init_tags);
856
857 /**
858 * blk_queue_resize_tags - change the queueing depth
859 * @q: the request queue for the device
860 * @new_depth: the new max command queueing depth
861 *
862 * Notes:
863 * Must be called with the queue lock held.
864 **/
865 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
866 {
867 struct blk_queue_tag *bqt = q->queue_tags;
868 struct request **tag_index;
869 unsigned long *tag_map;
870 int max_depth, nr_ulongs;
871
872 if (!bqt)
873 return -ENXIO;
874
875 /*
876 * if we already have large enough real_max_depth. just
877 * adjust max_depth. *NOTE* as requests with tag value
878 * between new_depth and real_max_depth can be in-flight, tag
879 * map can not be shrunk blindly here.
880 */
881 if (new_depth <= bqt->real_max_depth) {
882 bqt->max_depth = new_depth;
883 return 0;
884 }
885
886 /*
887 * save the old state info, so we can copy it back
888 */
889 tag_index = bqt->tag_index;
890 tag_map = bqt->tag_map;
891 max_depth = bqt->real_max_depth;
892
893 if (init_tag_map(q, bqt, new_depth))
894 return -ENOMEM;
895
896 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
897 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
898 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
899
900 kfree(tag_index);
901 kfree(tag_map);
902 return 0;
903 }
904
905 EXPORT_SYMBOL(blk_queue_resize_tags);
906
907 /**
908 * blk_queue_end_tag - end tag operations for a request
909 * @q: the request queue for the device
910 * @rq: the request that has completed
911 *
912 * Description:
913 * Typically called when end_that_request_first() returns 0, meaning
914 * all transfers have been done for a request. It's important to call
915 * this function before end_that_request_last(), as that will put the
916 * request back on the free list thus corrupting the internal tag list.
917 *
918 * Notes:
919 * queue lock must be held.
920 **/
921 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
922 {
923 struct blk_queue_tag *bqt = q->queue_tags;
924 int tag = rq->tag;
925
926 BUG_ON(tag == -1);
927
928 if (unlikely(tag >= bqt->real_max_depth))
929 /*
930 * This can happen after tag depth has been reduced.
931 * FIXME: how about a warning or info message here?
932 */
933 return;
934
935 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
936 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
937 __FUNCTION__, tag);
938 return;
939 }
940
941 list_del_init(&rq->queuelist);
942 rq->flags &= ~REQ_QUEUED;
943 rq->tag = -1;
944
945 if (unlikely(bqt->tag_index[tag] == NULL))
946 printk(KERN_ERR "%s: tag %d is missing\n",
947 __FUNCTION__, tag);
948
949 bqt->tag_index[tag] = NULL;
950 bqt->busy--;
951 }
952
953 EXPORT_SYMBOL(blk_queue_end_tag);
954
955 /**
956 * blk_queue_start_tag - find a free tag and assign it
957 * @q: the request queue for the device
958 * @rq: the block request that needs tagging
959 *
960 * Description:
961 * This can either be used as a stand-alone helper, or possibly be
962 * assigned as the queue &prep_rq_fn (in which case &struct request
963 * automagically gets a tag assigned). Note that this function
964 * assumes that any type of request can be queued! if this is not
965 * true for your device, you must check the request type before
966 * calling this function. The request will also be removed from
967 * the request queue, so it's the drivers responsibility to readd
968 * it if it should need to be restarted for some reason.
969 *
970 * Notes:
971 * queue lock must be held.
972 **/
973 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
974 {
975 struct blk_queue_tag *bqt = q->queue_tags;
976 int tag;
977
978 if (unlikely((rq->flags & REQ_QUEUED))) {
979 printk(KERN_ERR
980 "%s: request %p for device [%s] already tagged %d",
981 __FUNCTION__, rq,
982 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
983 BUG();
984 }
985
986 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
987 if (tag >= bqt->max_depth)
988 return 1;
989
990 __set_bit(tag, bqt->tag_map);
991
992 rq->flags |= REQ_QUEUED;
993 rq->tag = tag;
994 bqt->tag_index[tag] = rq;
995 blkdev_dequeue_request(rq);
996 list_add(&rq->queuelist, &bqt->busy_list);
997 bqt->busy++;
998 return 0;
999 }
1000
1001 EXPORT_SYMBOL(blk_queue_start_tag);
1002
1003 /**
1004 * blk_queue_invalidate_tags - invalidate all pending tags
1005 * @q: the request queue for the device
1006 *
1007 * Description:
1008 * Hardware conditions may dictate a need to stop all pending requests.
1009 * In this case, we will safely clear the block side of the tag queue and
1010 * readd all requests to the request queue in the right order.
1011 *
1012 * Notes:
1013 * queue lock must be held.
1014 **/
1015 void blk_queue_invalidate_tags(request_queue_t *q)
1016 {
1017 struct blk_queue_tag *bqt = q->queue_tags;
1018 struct list_head *tmp, *n;
1019 struct request *rq;
1020
1021 list_for_each_safe(tmp, n, &bqt->busy_list) {
1022 rq = list_entry_rq(tmp);
1023
1024 if (rq->tag == -1) {
1025 printk(KERN_ERR
1026 "%s: bad tag found on list\n", __FUNCTION__);
1027 list_del_init(&rq->queuelist);
1028 rq->flags &= ~REQ_QUEUED;
1029 } else
1030 blk_queue_end_tag(q, rq);
1031
1032 rq->flags &= ~REQ_STARTED;
1033 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1034 }
1035 }
1036
1037 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1038
1039 static char *rq_flags[] = {
1040 "REQ_RW",
1041 "REQ_FAILFAST",
1042 "REQ_SORTED",
1043 "REQ_SOFTBARRIER",
1044 "REQ_HARDBARRIER",
1045 "REQ_CMD",
1046 "REQ_NOMERGE",
1047 "REQ_STARTED",
1048 "REQ_DONTPREP",
1049 "REQ_QUEUED",
1050 "REQ_ELVPRIV",
1051 "REQ_PC",
1052 "REQ_BLOCK_PC",
1053 "REQ_SENSE",
1054 "REQ_FAILED",
1055 "REQ_QUIET",
1056 "REQ_SPECIAL",
1057 "REQ_DRIVE_CMD",
1058 "REQ_DRIVE_TASK",
1059 "REQ_DRIVE_TASKFILE",
1060 "REQ_PREEMPT",
1061 "REQ_PM_SUSPEND",
1062 "REQ_PM_RESUME",
1063 "REQ_PM_SHUTDOWN",
1064 };
1065
1066 void blk_dump_rq_flags(struct request *rq, char *msg)
1067 {
1068 int bit;
1069
1070 printk("%s: dev %s: flags = ", msg,
1071 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1072 bit = 0;
1073 do {
1074 if (rq->flags & (1 << bit))
1075 printk("%s ", rq_flags[bit]);
1076 bit++;
1077 } while (bit < __REQ_NR_BITS);
1078
1079 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1080 rq->nr_sectors,
1081 rq->current_nr_sectors);
1082 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1083
1084 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1085 printk("cdb: ");
1086 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1087 printk("%02x ", rq->cmd[bit]);
1088 printk("\n");
1089 }
1090 }
1091
1092 EXPORT_SYMBOL(blk_dump_rq_flags);
1093
1094 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1095 {
1096 struct bio_vec *bv, *bvprv = NULL;
1097 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1098 int high, highprv = 1;
1099
1100 if (unlikely(!bio->bi_io_vec))
1101 return;
1102
1103 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1104 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1105 bio_for_each_segment(bv, bio, i) {
1106 /*
1107 * the trick here is making sure that a high page is never
1108 * considered part of another segment, since that might
1109 * change with the bounce page.
1110 */
1111 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1112 if (high || highprv)
1113 goto new_hw_segment;
1114 if (cluster) {
1115 if (seg_size + bv->bv_len > q->max_segment_size)
1116 goto new_segment;
1117 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1118 goto new_segment;
1119 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1120 goto new_segment;
1121 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1122 goto new_hw_segment;
1123
1124 seg_size += bv->bv_len;
1125 hw_seg_size += bv->bv_len;
1126 bvprv = bv;
1127 continue;
1128 }
1129 new_segment:
1130 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1131 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1132 hw_seg_size += bv->bv_len;
1133 } else {
1134 new_hw_segment:
1135 if (hw_seg_size > bio->bi_hw_front_size)
1136 bio->bi_hw_front_size = hw_seg_size;
1137 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1138 nr_hw_segs++;
1139 }
1140
1141 nr_phys_segs++;
1142 bvprv = bv;
1143 seg_size = bv->bv_len;
1144 highprv = high;
1145 }
1146 if (hw_seg_size > bio->bi_hw_back_size)
1147 bio->bi_hw_back_size = hw_seg_size;
1148 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1149 bio->bi_hw_front_size = hw_seg_size;
1150 bio->bi_phys_segments = nr_phys_segs;
1151 bio->bi_hw_segments = nr_hw_segs;
1152 bio->bi_flags |= (1 << BIO_SEG_VALID);
1153 }
1154
1155
1156 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1157 struct bio *nxt)
1158 {
1159 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1160 return 0;
1161
1162 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1163 return 0;
1164 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1165 return 0;
1166
1167 /*
1168 * bio and nxt are contigous in memory, check if the queue allows
1169 * these two to be merged into one
1170 */
1171 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1172 return 1;
1173
1174 return 0;
1175 }
1176
1177 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1178 struct bio *nxt)
1179 {
1180 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1181 blk_recount_segments(q, bio);
1182 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1183 blk_recount_segments(q, nxt);
1184 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1185 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1186 return 0;
1187 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1188 return 0;
1189
1190 return 1;
1191 }
1192
1193 /*
1194 * map a request to scatterlist, return number of sg entries setup. Caller
1195 * must make sure sg can hold rq->nr_phys_segments entries
1196 */
1197 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1198 {
1199 struct bio_vec *bvec, *bvprv;
1200 struct bio *bio;
1201 int nsegs, i, cluster;
1202
1203 nsegs = 0;
1204 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1205
1206 /*
1207 * for each bio in rq
1208 */
1209 bvprv = NULL;
1210 rq_for_each_bio(bio, rq) {
1211 /*
1212 * for each segment in bio
1213 */
1214 bio_for_each_segment(bvec, bio, i) {
1215 int nbytes = bvec->bv_len;
1216
1217 if (bvprv && cluster) {
1218 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1219 goto new_segment;
1220
1221 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1222 goto new_segment;
1223 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1224 goto new_segment;
1225
1226 sg[nsegs - 1].length += nbytes;
1227 } else {
1228 new_segment:
1229 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1230 sg[nsegs].page = bvec->bv_page;
1231 sg[nsegs].length = nbytes;
1232 sg[nsegs].offset = bvec->bv_offset;
1233
1234 nsegs++;
1235 }
1236 bvprv = bvec;
1237 } /* segments in bio */
1238 } /* bios in rq */
1239
1240 return nsegs;
1241 }
1242
1243 EXPORT_SYMBOL(blk_rq_map_sg);
1244
1245 /*
1246 * the standard queue merge functions, can be overridden with device
1247 * specific ones if so desired
1248 */
1249
1250 static inline int ll_new_mergeable(request_queue_t *q,
1251 struct request *req,
1252 struct bio *bio)
1253 {
1254 int nr_phys_segs = bio_phys_segments(q, bio);
1255
1256 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1257 req->flags |= REQ_NOMERGE;
1258 if (req == q->last_merge)
1259 q->last_merge = NULL;
1260 return 0;
1261 }
1262
1263 /*
1264 * A hw segment is just getting larger, bump just the phys
1265 * counter.
1266 */
1267 req->nr_phys_segments += nr_phys_segs;
1268 return 1;
1269 }
1270
1271 static inline int ll_new_hw_segment(request_queue_t *q,
1272 struct request *req,
1273 struct bio *bio)
1274 {
1275 int nr_hw_segs = bio_hw_segments(q, bio);
1276 int nr_phys_segs = bio_phys_segments(q, bio);
1277
1278 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1279 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1280 req->flags |= REQ_NOMERGE;
1281 if (req == q->last_merge)
1282 q->last_merge = NULL;
1283 return 0;
1284 }
1285
1286 /*
1287 * This will form the start of a new hw segment. Bump both
1288 * counters.
1289 */
1290 req->nr_hw_segments += nr_hw_segs;
1291 req->nr_phys_segments += nr_phys_segs;
1292 return 1;
1293 }
1294
1295 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1296 struct bio *bio)
1297 {
1298 int len;
1299
1300 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1301 req->flags |= REQ_NOMERGE;
1302 if (req == q->last_merge)
1303 q->last_merge = NULL;
1304 return 0;
1305 }
1306 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1307 blk_recount_segments(q, req->biotail);
1308 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1309 blk_recount_segments(q, bio);
1310 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1311 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1312 !BIOVEC_VIRT_OVERSIZE(len)) {
1313 int mergeable = ll_new_mergeable(q, req, bio);
1314
1315 if (mergeable) {
1316 if (req->nr_hw_segments == 1)
1317 req->bio->bi_hw_front_size = len;
1318 if (bio->bi_hw_segments == 1)
1319 bio->bi_hw_back_size = len;
1320 }
1321 return mergeable;
1322 }
1323
1324 return ll_new_hw_segment(q, req, bio);
1325 }
1326
1327 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1328 struct bio *bio)
1329 {
1330 int len;
1331
1332 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1333 req->flags |= REQ_NOMERGE;
1334 if (req == q->last_merge)
1335 q->last_merge = NULL;
1336 return 0;
1337 }
1338 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1339 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1340 blk_recount_segments(q, bio);
1341 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1342 blk_recount_segments(q, req->bio);
1343 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1344 !BIOVEC_VIRT_OVERSIZE(len)) {
1345 int mergeable = ll_new_mergeable(q, req, bio);
1346
1347 if (mergeable) {
1348 if (bio->bi_hw_segments == 1)
1349 bio->bi_hw_front_size = len;
1350 if (req->nr_hw_segments == 1)
1351 req->biotail->bi_hw_back_size = len;
1352 }
1353 return mergeable;
1354 }
1355
1356 return ll_new_hw_segment(q, req, bio);
1357 }
1358
1359 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1360 struct request *next)
1361 {
1362 int total_phys_segments;
1363 int total_hw_segments;
1364
1365 /*
1366 * First check if the either of the requests are re-queued
1367 * requests. Can't merge them if they are.
1368 */
1369 if (req->special || next->special)
1370 return 0;
1371
1372 /*
1373 * Will it become too large?
1374 */
1375 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1376 return 0;
1377
1378 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1379 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1380 total_phys_segments--;
1381
1382 if (total_phys_segments > q->max_phys_segments)
1383 return 0;
1384
1385 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1386 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1387 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1388 /*
1389 * propagate the combined length to the end of the requests
1390 */
1391 if (req->nr_hw_segments == 1)
1392 req->bio->bi_hw_front_size = len;
1393 if (next->nr_hw_segments == 1)
1394 next->biotail->bi_hw_back_size = len;
1395 total_hw_segments--;
1396 }
1397
1398 if (total_hw_segments > q->max_hw_segments)
1399 return 0;
1400
1401 /* Merge is OK... */
1402 req->nr_phys_segments = total_phys_segments;
1403 req->nr_hw_segments = total_hw_segments;
1404 return 1;
1405 }
1406
1407 /*
1408 * "plug" the device if there are no outstanding requests: this will
1409 * force the transfer to start only after we have put all the requests
1410 * on the list.
1411 *
1412 * This is called with interrupts off and no requests on the queue and
1413 * with the queue lock held.
1414 */
1415 void blk_plug_device(request_queue_t *q)
1416 {
1417 WARN_ON(!irqs_disabled());
1418
1419 /*
1420 * don't plug a stopped queue, it must be paired with blk_start_queue()
1421 * which will restart the queueing
1422 */
1423 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1424 return;
1425
1426 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1427 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1428 }
1429
1430 EXPORT_SYMBOL(blk_plug_device);
1431
1432 /*
1433 * remove the queue from the plugged list, if present. called with
1434 * queue lock held and interrupts disabled.
1435 */
1436 int blk_remove_plug(request_queue_t *q)
1437 {
1438 WARN_ON(!irqs_disabled());
1439
1440 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1441 return 0;
1442
1443 del_timer(&q->unplug_timer);
1444 return 1;
1445 }
1446
1447 EXPORT_SYMBOL(blk_remove_plug);
1448
1449 /*
1450 * remove the plug and let it rip..
1451 */
1452 void __generic_unplug_device(request_queue_t *q)
1453 {
1454 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1455 return;
1456
1457 if (!blk_remove_plug(q))
1458 return;
1459
1460 q->request_fn(q);
1461 }
1462 EXPORT_SYMBOL(__generic_unplug_device);
1463
1464 /**
1465 * generic_unplug_device - fire a request queue
1466 * @q: The &request_queue_t in question
1467 *
1468 * Description:
1469 * Linux uses plugging to build bigger requests queues before letting
1470 * the device have at them. If a queue is plugged, the I/O scheduler
1471 * is still adding and merging requests on the queue. Once the queue
1472 * gets unplugged, the request_fn defined for the queue is invoked and
1473 * transfers started.
1474 **/
1475 void generic_unplug_device(request_queue_t *q)
1476 {
1477 spin_lock_irq(q->queue_lock);
1478 __generic_unplug_device(q);
1479 spin_unlock_irq(q->queue_lock);
1480 }
1481 EXPORT_SYMBOL(generic_unplug_device);
1482
1483 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1484 struct page *page)
1485 {
1486 request_queue_t *q = bdi->unplug_io_data;
1487
1488 /*
1489 * devices don't necessarily have an ->unplug_fn defined
1490 */
1491 if (q->unplug_fn)
1492 q->unplug_fn(q);
1493 }
1494
1495 static void blk_unplug_work(void *data)
1496 {
1497 request_queue_t *q = data;
1498
1499 q->unplug_fn(q);
1500 }
1501
1502 static void blk_unplug_timeout(unsigned long data)
1503 {
1504 request_queue_t *q = (request_queue_t *)data;
1505
1506 kblockd_schedule_work(&q->unplug_work);
1507 }
1508
1509 /**
1510 * blk_start_queue - restart a previously stopped queue
1511 * @q: The &request_queue_t in question
1512 *
1513 * Description:
1514 * blk_start_queue() will clear the stop flag on the queue, and call
1515 * the request_fn for the queue if it was in a stopped state when
1516 * entered. Also see blk_stop_queue(). Queue lock must be held.
1517 **/
1518 void blk_start_queue(request_queue_t *q)
1519 {
1520 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1521
1522 /*
1523 * one level of recursion is ok and is much faster than kicking
1524 * the unplug handling
1525 */
1526 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1527 q->request_fn(q);
1528 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1529 } else {
1530 blk_plug_device(q);
1531 kblockd_schedule_work(&q->unplug_work);
1532 }
1533 }
1534
1535 EXPORT_SYMBOL(blk_start_queue);
1536
1537 /**
1538 * blk_stop_queue - stop a queue
1539 * @q: The &request_queue_t in question
1540 *
1541 * Description:
1542 * The Linux block layer assumes that a block driver will consume all
1543 * entries on the request queue when the request_fn strategy is called.
1544 * Often this will not happen, because of hardware limitations (queue
1545 * depth settings). If a device driver gets a 'queue full' response,
1546 * or if it simply chooses not to queue more I/O at one point, it can
1547 * call this function to prevent the request_fn from being called until
1548 * the driver has signalled it's ready to go again. This happens by calling
1549 * blk_start_queue() to restart queue operations. Queue lock must be held.
1550 **/
1551 void blk_stop_queue(request_queue_t *q)
1552 {
1553 blk_remove_plug(q);
1554 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1555 }
1556 EXPORT_SYMBOL(blk_stop_queue);
1557
1558 /**
1559 * blk_sync_queue - cancel any pending callbacks on a queue
1560 * @q: the queue
1561 *
1562 * Description:
1563 * The block layer may perform asynchronous callback activity
1564 * on a queue, such as calling the unplug function after a timeout.
1565 * A block device may call blk_sync_queue to ensure that any
1566 * such activity is cancelled, thus allowing it to release resources
1567 * the the callbacks might use. The caller must already have made sure
1568 * that its ->make_request_fn will not re-add plugging prior to calling
1569 * this function.
1570 *
1571 */
1572 void blk_sync_queue(struct request_queue *q)
1573 {
1574 del_timer_sync(&q->unplug_timer);
1575 kblockd_flush();
1576 }
1577 EXPORT_SYMBOL(blk_sync_queue);
1578
1579 /**
1580 * blk_run_queue - run a single device queue
1581 * @q: The queue to run
1582 */
1583 void blk_run_queue(struct request_queue *q)
1584 {
1585 unsigned long flags;
1586
1587 spin_lock_irqsave(q->queue_lock, flags);
1588 blk_remove_plug(q);
1589 if (!elv_queue_empty(q))
1590 q->request_fn(q);
1591 spin_unlock_irqrestore(q->queue_lock, flags);
1592 }
1593 EXPORT_SYMBOL(blk_run_queue);
1594
1595 /**
1596 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1597 * @q: the request queue to be released
1598 *
1599 * Description:
1600 * blk_cleanup_queue is the pair to blk_init_queue() or
1601 * blk_queue_make_request(). It should be called when a request queue is
1602 * being released; typically when a block device is being de-registered.
1603 * Currently, its primary task it to free all the &struct request
1604 * structures that were allocated to the queue and the queue itself.
1605 *
1606 * Caveat:
1607 * Hopefully the low level driver will have finished any
1608 * outstanding requests first...
1609 **/
1610 void blk_cleanup_queue(request_queue_t * q)
1611 {
1612 struct request_list *rl = &q->rq;
1613
1614 if (!atomic_dec_and_test(&q->refcnt))
1615 return;
1616
1617 if (q->elevator)
1618 elevator_exit(q->elevator);
1619
1620 blk_sync_queue(q);
1621
1622 if (rl->rq_pool)
1623 mempool_destroy(rl->rq_pool);
1624
1625 if (q->queue_tags)
1626 __blk_queue_free_tags(q);
1627
1628 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1629
1630 kmem_cache_free(requestq_cachep, q);
1631 }
1632
1633 EXPORT_SYMBOL(blk_cleanup_queue);
1634
1635 static int blk_init_free_list(request_queue_t *q)
1636 {
1637 struct request_list *rl = &q->rq;
1638
1639 rl->count[READ] = rl->count[WRITE] = 0;
1640 rl->starved[READ] = rl->starved[WRITE] = 0;
1641 rl->elvpriv = 0;
1642 init_waitqueue_head(&rl->wait[READ]);
1643 init_waitqueue_head(&rl->wait[WRITE]);
1644
1645 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1646 mempool_free_slab, request_cachep, q->node);
1647
1648 if (!rl->rq_pool)
1649 return -ENOMEM;
1650
1651 return 0;
1652 }
1653
1654 static int __make_request(request_queue_t *, struct bio *);
1655
1656 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1657 {
1658 return blk_alloc_queue_node(gfp_mask, -1);
1659 }
1660 EXPORT_SYMBOL(blk_alloc_queue);
1661
1662 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1663 {
1664 request_queue_t *q;
1665
1666 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1667 if (!q)
1668 return NULL;
1669
1670 memset(q, 0, sizeof(*q));
1671 init_timer(&q->unplug_timer);
1672 atomic_set(&q->refcnt, 1);
1673
1674 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1675 q->backing_dev_info.unplug_io_data = q;
1676
1677 return q;
1678 }
1679 EXPORT_SYMBOL(blk_alloc_queue_node);
1680
1681 /**
1682 * blk_init_queue - prepare a request queue for use with a block device
1683 * @rfn: The function to be called to process requests that have been
1684 * placed on the queue.
1685 * @lock: Request queue spin lock
1686 *
1687 * Description:
1688 * If a block device wishes to use the standard request handling procedures,
1689 * which sorts requests and coalesces adjacent requests, then it must
1690 * call blk_init_queue(). The function @rfn will be called when there
1691 * are requests on the queue that need to be processed. If the device
1692 * supports plugging, then @rfn may not be called immediately when requests
1693 * are available on the queue, but may be called at some time later instead.
1694 * Plugged queues are generally unplugged when a buffer belonging to one
1695 * of the requests on the queue is needed, or due to memory pressure.
1696 *
1697 * @rfn is not required, or even expected, to remove all requests off the
1698 * queue, but only as many as it can handle at a time. If it does leave
1699 * requests on the queue, it is responsible for arranging that the requests
1700 * get dealt with eventually.
1701 *
1702 * The queue spin lock must be held while manipulating the requests on the
1703 * request queue.
1704 *
1705 * Function returns a pointer to the initialized request queue, or NULL if
1706 * it didn't succeed.
1707 *
1708 * Note:
1709 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1710 * when the block device is deactivated (such as at module unload).
1711 **/
1712
1713 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1714 {
1715 return blk_init_queue_node(rfn, lock, -1);
1716 }
1717 EXPORT_SYMBOL(blk_init_queue);
1718
1719 request_queue_t *
1720 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1721 {
1722 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1723
1724 if (!q)
1725 return NULL;
1726
1727 q->node = node_id;
1728 if (blk_init_free_list(q))
1729 goto out_init;
1730
1731 /*
1732 * if caller didn't supply a lock, they get per-queue locking with
1733 * our embedded lock
1734 */
1735 if (!lock) {
1736 spin_lock_init(&q->__queue_lock);
1737 lock = &q->__queue_lock;
1738 }
1739
1740 q->request_fn = rfn;
1741 q->back_merge_fn = ll_back_merge_fn;
1742 q->front_merge_fn = ll_front_merge_fn;
1743 q->merge_requests_fn = ll_merge_requests_fn;
1744 q->prep_rq_fn = NULL;
1745 q->unplug_fn = generic_unplug_device;
1746 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1747 q->queue_lock = lock;
1748
1749 blk_queue_segment_boundary(q, 0xffffffff);
1750
1751 blk_queue_make_request(q, __make_request);
1752 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1753
1754 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1755 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1756
1757 /*
1758 * all done
1759 */
1760 if (!elevator_init(q, NULL)) {
1761 blk_queue_congestion_threshold(q);
1762 return q;
1763 }
1764
1765 blk_cleanup_queue(q);
1766 out_init:
1767 kmem_cache_free(requestq_cachep, q);
1768 return NULL;
1769 }
1770 EXPORT_SYMBOL(blk_init_queue_node);
1771
1772 int blk_get_queue(request_queue_t *q)
1773 {
1774 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1775 atomic_inc(&q->refcnt);
1776 return 0;
1777 }
1778
1779 return 1;
1780 }
1781
1782 EXPORT_SYMBOL(blk_get_queue);
1783
1784 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1785 {
1786 if (rq->flags & REQ_ELVPRIV)
1787 elv_put_request(q, rq);
1788 mempool_free(rq, q->rq.rq_pool);
1789 }
1790
1791 static inline struct request *
1792 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
1793 int priv, gfp_t gfp_mask)
1794 {
1795 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1796
1797 if (!rq)
1798 return NULL;
1799
1800 /*
1801 * first three bits are identical in rq->flags and bio->bi_rw,
1802 * see bio.h and blkdev.h
1803 */
1804 rq->flags = rw;
1805
1806 if (priv) {
1807 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
1808 mempool_free(rq, q->rq.rq_pool);
1809 return NULL;
1810 }
1811 rq->flags |= REQ_ELVPRIV;
1812 }
1813
1814 return rq;
1815 }
1816
1817 /*
1818 * ioc_batching returns true if the ioc is a valid batching request and
1819 * should be given priority access to a request.
1820 */
1821 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1822 {
1823 if (!ioc)
1824 return 0;
1825
1826 /*
1827 * Make sure the process is able to allocate at least 1 request
1828 * even if the batch times out, otherwise we could theoretically
1829 * lose wakeups.
1830 */
1831 return ioc->nr_batch_requests == q->nr_batching ||
1832 (ioc->nr_batch_requests > 0
1833 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1834 }
1835
1836 /*
1837 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1838 * will cause the process to be a "batcher" on all queues in the system. This
1839 * is the behaviour we want though - once it gets a wakeup it should be given
1840 * a nice run.
1841 */
1842 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1843 {
1844 if (!ioc || ioc_batching(q, ioc))
1845 return;
1846
1847 ioc->nr_batch_requests = q->nr_batching;
1848 ioc->last_waited = jiffies;
1849 }
1850
1851 static void __freed_request(request_queue_t *q, int rw)
1852 {
1853 struct request_list *rl = &q->rq;
1854
1855 if (rl->count[rw] < queue_congestion_off_threshold(q))
1856 clear_queue_congested(q, rw);
1857
1858 if (rl->count[rw] + 1 <= q->nr_requests) {
1859 if (waitqueue_active(&rl->wait[rw]))
1860 wake_up(&rl->wait[rw]);
1861
1862 blk_clear_queue_full(q, rw);
1863 }
1864 }
1865
1866 /*
1867 * A request has just been released. Account for it, update the full and
1868 * congestion status, wake up any waiters. Called under q->queue_lock.
1869 */
1870 static void freed_request(request_queue_t *q, int rw, int priv)
1871 {
1872 struct request_list *rl = &q->rq;
1873
1874 rl->count[rw]--;
1875 if (priv)
1876 rl->elvpriv--;
1877
1878 __freed_request(q, rw);
1879
1880 if (unlikely(rl->starved[rw ^ 1]))
1881 __freed_request(q, rw ^ 1);
1882 }
1883
1884 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1885 /*
1886 * Get a free request, queue_lock must be held.
1887 * Returns NULL on failure, with queue_lock held.
1888 * Returns !NULL on success, with queue_lock *not held*.
1889 */
1890 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
1891 gfp_t gfp_mask)
1892 {
1893 struct request *rq = NULL;
1894 struct request_list *rl = &q->rq;
1895 struct io_context *ioc = current_io_context(GFP_ATOMIC);
1896 int priv;
1897
1898 if (rl->count[rw]+1 >= q->nr_requests) {
1899 /*
1900 * The queue will fill after this allocation, so set it as
1901 * full, and mark this process as "batching". This process
1902 * will be allowed to complete a batch of requests, others
1903 * will be blocked.
1904 */
1905 if (!blk_queue_full(q, rw)) {
1906 ioc_set_batching(q, ioc);
1907 blk_set_queue_full(q, rw);
1908 }
1909 }
1910
1911 switch (elv_may_queue(q, rw, bio)) {
1912 case ELV_MQUEUE_NO:
1913 goto rq_starved;
1914 case ELV_MQUEUE_MAY:
1915 break;
1916 case ELV_MQUEUE_MUST:
1917 goto get_rq;
1918 }
1919
1920 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1921 /*
1922 * The queue is full and the allocating process is not a
1923 * "batcher", and not exempted by the IO scheduler
1924 */
1925 goto out;
1926 }
1927
1928 get_rq:
1929 /*
1930 * Only allow batching queuers to allocate up to 50% over the defined
1931 * limit of requests, otherwise we could have thousands of requests
1932 * allocated with any setting of ->nr_requests
1933 */
1934 if (rl->count[rw] >= (3 * q->nr_requests / 2))
1935 goto out;
1936
1937 rl->count[rw]++;
1938 rl->starved[rw] = 0;
1939 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1940 set_queue_congested(q, rw);
1941
1942 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1943 if (priv)
1944 rl->elvpriv++;
1945
1946 spin_unlock_irq(q->queue_lock);
1947
1948 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
1949 if (!rq) {
1950 /*
1951 * Allocation failed presumably due to memory. Undo anything
1952 * we might have messed up.
1953 *
1954 * Allocating task should really be put onto the front of the
1955 * wait queue, but this is pretty rare.
1956 */
1957 spin_lock_irq(q->queue_lock);
1958 freed_request(q, rw, priv);
1959
1960 /*
1961 * in the very unlikely event that allocation failed and no
1962 * requests for this direction was pending, mark us starved
1963 * so that freeing of a request in the other direction will
1964 * notice us. another possible fix would be to split the
1965 * rq mempool into READ and WRITE
1966 */
1967 rq_starved:
1968 if (unlikely(rl->count[rw] == 0))
1969 rl->starved[rw] = 1;
1970
1971 goto out;
1972 }
1973
1974 if (ioc_batching(q, ioc))
1975 ioc->nr_batch_requests--;
1976
1977 rq_init(q, rq);
1978 rq->rl = rl;
1979 out:
1980 return rq;
1981 }
1982
1983 /*
1984 * No available requests for this queue, unplug the device and wait for some
1985 * requests to become available.
1986 *
1987 * Called with q->queue_lock held, and returns with it unlocked.
1988 */
1989 static struct request *get_request_wait(request_queue_t *q, int rw,
1990 struct bio *bio)
1991 {
1992 struct request *rq;
1993
1994 rq = get_request(q, rw, bio, GFP_NOIO);
1995 while (!rq) {
1996 DEFINE_WAIT(wait);
1997 struct request_list *rl = &q->rq;
1998
1999 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2000 TASK_UNINTERRUPTIBLE);
2001
2002 rq = get_request(q, rw, bio, GFP_NOIO);
2003
2004 if (!rq) {
2005 struct io_context *ioc;
2006
2007 __generic_unplug_device(q);
2008 spin_unlock_irq(q->queue_lock);
2009 io_schedule();
2010
2011 /*
2012 * After sleeping, we become a "batching" process and
2013 * will be able to allocate at least one request, and
2014 * up to a big batch of them for a small period time.
2015 * See ioc_batching, ioc_set_batching
2016 */
2017 ioc = current_io_context(GFP_NOIO);
2018 ioc_set_batching(q, ioc);
2019
2020 spin_lock_irq(q->queue_lock);
2021 }
2022 finish_wait(&rl->wait[rw], &wait);
2023 }
2024
2025 return rq;
2026 }
2027
2028 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2029 {
2030 struct request *rq;
2031
2032 BUG_ON(rw != READ && rw != WRITE);
2033
2034 spin_lock_irq(q->queue_lock);
2035 if (gfp_mask & __GFP_WAIT) {
2036 rq = get_request_wait(q, rw, NULL);
2037 } else {
2038 rq = get_request(q, rw, NULL, gfp_mask);
2039 if (!rq)
2040 spin_unlock_irq(q->queue_lock);
2041 }
2042 /* q->queue_lock is unlocked at this point */
2043
2044 return rq;
2045 }
2046 EXPORT_SYMBOL(blk_get_request);
2047
2048 /**
2049 * blk_requeue_request - put a request back on queue
2050 * @q: request queue where request should be inserted
2051 * @rq: request to be inserted
2052 *
2053 * Description:
2054 * Drivers often keep queueing requests until the hardware cannot accept
2055 * more, when that condition happens we need to put the request back
2056 * on the queue. Must be called with queue lock held.
2057 */
2058 void blk_requeue_request(request_queue_t *q, struct request *rq)
2059 {
2060 if (blk_rq_tagged(rq))
2061 blk_queue_end_tag(q, rq);
2062
2063 elv_requeue_request(q, rq);
2064 }
2065
2066 EXPORT_SYMBOL(blk_requeue_request);
2067
2068 /**
2069 * blk_insert_request - insert a special request in to a request queue
2070 * @q: request queue where request should be inserted
2071 * @rq: request to be inserted
2072 * @at_head: insert request at head or tail of queue
2073 * @data: private data
2074 *
2075 * Description:
2076 * Many block devices need to execute commands asynchronously, so they don't
2077 * block the whole kernel from preemption during request execution. This is
2078 * accomplished normally by inserting aritficial requests tagged as
2079 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2080 * scheduled for actual execution by the request queue.
2081 *
2082 * We have the option of inserting the head or the tail of the queue.
2083 * Typically we use the tail for new ioctls and so forth. We use the head
2084 * of the queue for things like a QUEUE_FULL message from a device, or a
2085 * host that is unable to accept a particular command.
2086 */
2087 void blk_insert_request(request_queue_t *q, struct request *rq,
2088 int at_head, void *data)
2089 {
2090 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2091 unsigned long flags;
2092
2093 /*
2094 * tell I/O scheduler that this isn't a regular read/write (ie it
2095 * must not attempt merges on this) and that it acts as a soft
2096 * barrier
2097 */
2098 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2099
2100 rq->special = data;
2101
2102 spin_lock_irqsave(q->queue_lock, flags);
2103
2104 /*
2105 * If command is tagged, release the tag
2106 */
2107 if (blk_rq_tagged(rq))
2108 blk_queue_end_tag(q, rq);
2109
2110 drive_stat_acct(rq, rq->nr_sectors, 1);
2111 __elv_add_request(q, rq, where, 0);
2112
2113 if (blk_queue_plugged(q))
2114 __generic_unplug_device(q);
2115 else
2116 q->request_fn(q);
2117 spin_unlock_irqrestore(q->queue_lock, flags);
2118 }
2119
2120 EXPORT_SYMBOL(blk_insert_request);
2121
2122 /**
2123 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2124 * @q: request queue where request should be inserted
2125 * @rq: request structure to fill
2126 * @ubuf: the user buffer
2127 * @len: length of user data
2128 *
2129 * Description:
2130 * Data will be mapped directly for zero copy io, if possible. Otherwise
2131 * a kernel bounce buffer is used.
2132 *
2133 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2134 * still in process context.
2135 *
2136 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2137 * before being submitted to the device, as pages mapped may be out of
2138 * reach. It's the callers responsibility to make sure this happens. The
2139 * original bio must be passed back in to blk_rq_unmap_user() for proper
2140 * unmapping.
2141 */
2142 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2143 unsigned int len)
2144 {
2145 unsigned long uaddr;
2146 struct bio *bio;
2147 int reading;
2148
2149 if (len > (q->max_sectors << 9))
2150 return -EINVAL;
2151 if (!len || !ubuf)
2152 return -EINVAL;
2153
2154 reading = rq_data_dir(rq) == READ;
2155
2156 /*
2157 * if alignment requirement is satisfied, map in user pages for
2158 * direct dma. else, set up kernel bounce buffers
2159 */
2160 uaddr = (unsigned long) ubuf;
2161 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2162 bio = bio_map_user(q, NULL, uaddr, len, reading);
2163 else
2164 bio = bio_copy_user(q, uaddr, len, reading);
2165
2166 if (!IS_ERR(bio)) {
2167 rq->bio = rq->biotail = bio;
2168 blk_rq_bio_prep(q, rq, bio);
2169
2170 rq->buffer = rq->data = NULL;
2171 rq->data_len = len;
2172 return 0;
2173 }
2174
2175 /*
2176 * bio is the err-ptr
2177 */
2178 return PTR_ERR(bio);
2179 }
2180
2181 EXPORT_SYMBOL(blk_rq_map_user);
2182
2183 /**
2184 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2185 * @q: request queue where request should be inserted
2186 * @rq: request to map data to
2187 * @iov: pointer to the iovec
2188 * @iov_count: number of elements in the iovec
2189 *
2190 * Description:
2191 * Data will be mapped directly for zero copy io, if possible. Otherwise
2192 * a kernel bounce buffer is used.
2193 *
2194 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2195 * still in process context.
2196 *
2197 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2198 * before being submitted to the device, as pages mapped may be out of
2199 * reach. It's the callers responsibility to make sure this happens. The
2200 * original bio must be passed back in to blk_rq_unmap_user() for proper
2201 * unmapping.
2202 */
2203 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2204 struct sg_iovec *iov, int iov_count)
2205 {
2206 struct bio *bio;
2207
2208 if (!iov || iov_count <= 0)
2209 return -EINVAL;
2210
2211 /* we don't allow misaligned data like bio_map_user() does. If the
2212 * user is using sg, they're expected to know the alignment constraints
2213 * and respect them accordingly */
2214 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2215 if (IS_ERR(bio))
2216 return PTR_ERR(bio);
2217
2218 rq->bio = rq->biotail = bio;
2219 blk_rq_bio_prep(q, rq, bio);
2220 rq->buffer = rq->data = NULL;
2221 rq->data_len = bio->bi_size;
2222 return 0;
2223 }
2224
2225 EXPORT_SYMBOL(blk_rq_map_user_iov);
2226
2227 /**
2228 * blk_rq_unmap_user - unmap a request with user data
2229 * @bio: bio to be unmapped
2230 * @ulen: length of user buffer
2231 *
2232 * Description:
2233 * Unmap a bio previously mapped by blk_rq_map_user().
2234 */
2235 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2236 {
2237 int ret = 0;
2238
2239 if (bio) {
2240 if (bio_flagged(bio, BIO_USER_MAPPED))
2241 bio_unmap_user(bio);
2242 else
2243 ret = bio_uncopy_user(bio);
2244 }
2245
2246 return 0;
2247 }
2248
2249 EXPORT_SYMBOL(blk_rq_unmap_user);
2250
2251 /**
2252 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2253 * @q: request queue where request should be inserted
2254 * @rq: request to fill
2255 * @kbuf: the kernel buffer
2256 * @len: length of user data
2257 * @gfp_mask: memory allocation flags
2258 */
2259 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2260 unsigned int len, gfp_t gfp_mask)
2261 {
2262 struct bio *bio;
2263
2264 if (len > (q->max_sectors << 9))
2265 return -EINVAL;
2266 if (!len || !kbuf)
2267 return -EINVAL;
2268
2269 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2270 if (IS_ERR(bio))
2271 return PTR_ERR(bio);
2272
2273 if (rq_data_dir(rq) == WRITE)
2274 bio->bi_rw |= (1 << BIO_RW);
2275
2276 rq->bio = rq->biotail = bio;
2277 blk_rq_bio_prep(q, rq, bio);
2278
2279 rq->buffer = rq->data = NULL;
2280 rq->data_len = len;
2281 return 0;
2282 }
2283
2284 EXPORT_SYMBOL(blk_rq_map_kern);
2285
2286 /**
2287 * blk_execute_rq_nowait - insert a request into queue for execution
2288 * @q: queue to insert the request in
2289 * @bd_disk: matching gendisk
2290 * @rq: request to insert
2291 * @at_head: insert request at head or tail of queue
2292 * @done: I/O completion handler
2293 *
2294 * Description:
2295 * Insert a fully prepared request at the back of the io scheduler queue
2296 * for execution. Don't wait for completion.
2297 */
2298 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2299 struct request *rq, int at_head,
2300 void (*done)(struct request *))
2301 {
2302 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2303
2304 rq->rq_disk = bd_disk;
2305 rq->flags |= REQ_NOMERGE;
2306 rq->end_io = done;
2307 elv_add_request(q, rq, where, 1);
2308 generic_unplug_device(q);
2309 }
2310
2311 /**
2312 * blk_execute_rq - insert a request into queue for execution
2313 * @q: queue to insert the request in
2314 * @bd_disk: matching gendisk
2315 * @rq: request to insert
2316 * @at_head: insert request at head or tail of queue
2317 *
2318 * Description:
2319 * Insert a fully prepared request at the back of the io scheduler queue
2320 * for execution and wait for completion.
2321 */
2322 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2323 struct request *rq, int at_head)
2324 {
2325 DECLARE_COMPLETION(wait);
2326 char sense[SCSI_SENSE_BUFFERSIZE];
2327 int err = 0;
2328
2329 /*
2330 * we need an extra reference to the request, so we can look at
2331 * it after io completion
2332 */
2333 rq->ref_count++;
2334
2335 if (!rq->sense) {
2336 memset(sense, 0, sizeof(sense));
2337 rq->sense = sense;
2338 rq->sense_len = 0;
2339 }
2340
2341 rq->waiting = &wait;
2342 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2343 wait_for_completion(&wait);
2344 rq->waiting = NULL;
2345
2346 if (rq->errors)
2347 err = -EIO;
2348
2349 return err;
2350 }
2351
2352 EXPORT_SYMBOL(blk_execute_rq);
2353
2354 /**
2355 * blkdev_issue_flush - queue a flush
2356 * @bdev: blockdev to issue flush for
2357 * @error_sector: error sector
2358 *
2359 * Description:
2360 * Issue a flush for the block device in question. Caller can supply
2361 * room for storing the error offset in case of a flush error, if they
2362 * wish to. Caller must run wait_for_completion() on its own.
2363 */
2364 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2365 {
2366 request_queue_t *q;
2367
2368 if (bdev->bd_disk == NULL)
2369 return -ENXIO;
2370
2371 q = bdev_get_queue(bdev);
2372 if (!q)
2373 return -ENXIO;
2374 if (!q->issue_flush_fn)
2375 return -EOPNOTSUPP;
2376
2377 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2378 }
2379
2380 EXPORT_SYMBOL(blkdev_issue_flush);
2381
2382 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2383 {
2384 int rw = rq_data_dir(rq);
2385
2386 if (!blk_fs_request(rq) || !rq->rq_disk)
2387 return;
2388
2389 if (!new_io) {
2390 __disk_stat_inc(rq->rq_disk, merges[rw]);
2391 } else {
2392 disk_round_stats(rq->rq_disk);
2393 rq->rq_disk->in_flight++;
2394 }
2395 }
2396
2397 /*
2398 * add-request adds a request to the linked list.
2399 * queue lock is held and interrupts disabled, as we muck with the
2400 * request queue list.
2401 */
2402 static inline void add_request(request_queue_t * q, struct request * req)
2403 {
2404 drive_stat_acct(req, req->nr_sectors, 1);
2405
2406 if (q->activity_fn)
2407 q->activity_fn(q->activity_data, rq_data_dir(req));
2408
2409 /*
2410 * elevator indicated where it wants this request to be
2411 * inserted at elevator_merge time
2412 */
2413 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2414 }
2415
2416 /*
2417 * disk_round_stats() - Round off the performance stats on a struct
2418 * disk_stats.
2419 *
2420 * The average IO queue length and utilisation statistics are maintained
2421 * by observing the current state of the queue length and the amount of
2422 * time it has been in this state for.
2423 *
2424 * Normally, that accounting is done on IO completion, but that can result
2425 * in more than a second's worth of IO being accounted for within any one
2426 * second, leading to >100% utilisation. To deal with that, we call this
2427 * function to do a round-off before returning the results when reading
2428 * /proc/diskstats. This accounts immediately for all queue usage up to
2429 * the current jiffies and restarts the counters again.
2430 */
2431 void disk_round_stats(struct gendisk *disk)
2432 {
2433 unsigned long now = jiffies;
2434
2435 if (now == disk->stamp)
2436 return;
2437
2438 if (disk->in_flight) {
2439 __disk_stat_add(disk, time_in_queue,
2440 disk->in_flight * (now - disk->stamp));
2441 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2442 }
2443 disk->stamp = now;
2444 }
2445
2446 /*
2447 * queue lock must be held
2448 */
2449 static void __blk_put_request(request_queue_t *q, struct request *req)
2450 {
2451 struct request_list *rl = req->rl;
2452
2453 if (unlikely(!q))
2454 return;
2455 if (unlikely(--req->ref_count))
2456 return;
2457
2458 elv_completed_request(q, req);
2459
2460 req->rq_status = RQ_INACTIVE;
2461 req->rl = NULL;
2462
2463 /*
2464 * Request may not have originated from ll_rw_blk. if not,
2465 * it didn't come out of our reserved rq pools
2466 */
2467 if (rl) {
2468 int rw = rq_data_dir(req);
2469 int priv = req->flags & REQ_ELVPRIV;
2470
2471 BUG_ON(!list_empty(&req->queuelist));
2472
2473 blk_free_request(q, req);
2474 freed_request(q, rw, priv);
2475 }
2476 }
2477
2478 void blk_put_request(struct request *req)
2479 {
2480 unsigned long flags;
2481 request_queue_t *q = req->q;
2482
2483 /*
2484 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2485 * following if (q) test.
2486 */
2487 if (q) {
2488 spin_lock_irqsave(q->queue_lock, flags);
2489 __blk_put_request(q, req);
2490 spin_unlock_irqrestore(q->queue_lock, flags);
2491 }
2492 }
2493
2494 EXPORT_SYMBOL(blk_put_request);
2495
2496 /**
2497 * blk_end_sync_rq - executes a completion event on a request
2498 * @rq: request to complete
2499 */
2500 void blk_end_sync_rq(struct request *rq)
2501 {
2502 struct completion *waiting = rq->waiting;
2503
2504 rq->waiting = NULL;
2505 __blk_put_request(rq->q, rq);
2506
2507 /*
2508 * complete last, if this is a stack request the process (and thus
2509 * the rq pointer) could be invalid right after this complete()
2510 */
2511 complete(waiting);
2512 }
2513 EXPORT_SYMBOL(blk_end_sync_rq);
2514
2515 /**
2516 * blk_congestion_wait - wait for a queue to become uncongested
2517 * @rw: READ or WRITE
2518 * @timeout: timeout in jiffies
2519 *
2520 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2521 * If no queues are congested then just wait for the next request to be
2522 * returned.
2523 */
2524 long blk_congestion_wait(int rw, long timeout)
2525 {
2526 long ret;
2527 DEFINE_WAIT(wait);
2528 wait_queue_head_t *wqh = &congestion_wqh[rw];
2529
2530 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2531 ret = io_schedule_timeout(timeout);
2532 finish_wait(wqh, &wait);
2533 return ret;
2534 }
2535
2536 EXPORT_SYMBOL(blk_congestion_wait);
2537
2538 /*
2539 * Has to be called with the request spinlock acquired
2540 */
2541 static int attempt_merge(request_queue_t *q, struct request *req,
2542 struct request *next)
2543 {
2544 if (!rq_mergeable(req) || !rq_mergeable(next))
2545 return 0;
2546
2547 /*
2548 * not contigious
2549 */
2550 if (req->sector + req->nr_sectors != next->sector)
2551 return 0;
2552
2553 if (rq_data_dir(req) != rq_data_dir(next)
2554 || req->rq_disk != next->rq_disk
2555 || next->waiting || next->special)
2556 return 0;
2557
2558 /*
2559 * If we are allowed to merge, then append bio list
2560 * from next to rq and release next. merge_requests_fn
2561 * will have updated segment counts, update sector
2562 * counts here.
2563 */
2564 if (!q->merge_requests_fn(q, req, next))
2565 return 0;
2566
2567 /*
2568 * At this point we have either done a back merge
2569 * or front merge. We need the smaller start_time of
2570 * the merged requests to be the current request
2571 * for accounting purposes.
2572 */
2573 if (time_after(req->start_time, next->start_time))
2574 req->start_time = next->start_time;
2575
2576 req->biotail->bi_next = next->bio;
2577 req->biotail = next->biotail;
2578
2579 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2580
2581 elv_merge_requests(q, req, next);
2582
2583 if (req->rq_disk) {
2584 disk_round_stats(req->rq_disk);
2585 req->rq_disk->in_flight--;
2586 }
2587
2588 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2589
2590 __blk_put_request(q, next);
2591 return 1;
2592 }
2593
2594 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2595 {
2596 struct request *next = elv_latter_request(q, rq);
2597
2598 if (next)
2599 return attempt_merge(q, rq, next);
2600
2601 return 0;
2602 }
2603
2604 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2605 {
2606 struct request *prev = elv_former_request(q, rq);
2607
2608 if (prev)
2609 return attempt_merge(q, prev, rq);
2610
2611 return 0;
2612 }
2613
2614 /**
2615 * blk_attempt_remerge - attempt to remerge active head with next request
2616 * @q: The &request_queue_t belonging to the device
2617 * @rq: The head request (usually)
2618 *
2619 * Description:
2620 * For head-active devices, the queue can easily be unplugged so quickly
2621 * that proper merging is not done on the front request. This may hurt
2622 * performance greatly for some devices. The block layer cannot safely
2623 * do merging on that first request for these queues, but the driver can
2624 * call this function and make it happen any way. Only the driver knows
2625 * when it is safe to do so.
2626 **/
2627 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2628 {
2629 unsigned long flags;
2630
2631 spin_lock_irqsave(q->queue_lock, flags);
2632 attempt_back_merge(q, rq);
2633 spin_unlock_irqrestore(q->queue_lock, flags);
2634 }
2635
2636 EXPORT_SYMBOL(blk_attempt_remerge);
2637
2638 static int __make_request(request_queue_t *q, struct bio *bio)
2639 {
2640 struct request *req;
2641 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2642 unsigned short prio;
2643 sector_t sector;
2644
2645 sector = bio->bi_sector;
2646 nr_sectors = bio_sectors(bio);
2647 cur_nr_sectors = bio_cur_sectors(bio);
2648 prio = bio_prio(bio);
2649
2650 rw = bio_data_dir(bio);
2651 sync = bio_sync(bio);
2652
2653 /*
2654 * low level driver can indicate that it wants pages above a
2655 * certain limit bounced to low memory (ie for highmem, or even
2656 * ISA dma in theory)
2657 */
2658 blk_queue_bounce(q, &bio);
2659
2660 spin_lock_prefetch(q->queue_lock);
2661
2662 barrier = bio_barrier(bio);
2663 if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
2664 err = -EOPNOTSUPP;
2665 goto end_io;
2666 }
2667
2668 spin_lock_irq(q->queue_lock);
2669
2670 if (unlikely(barrier) || elv_queue_empty(q))
2671 goto get_rq;
2672
2673 el_ret = elv_merge(q, &req, bio);
2674 switch (el_ret) {
2675 case ELEVATOR_BACK_MERGE:
2676 BUG_ON(!rq_mergeable(req));
2677
2678 if (!q->back_merge_fn(q, req, bio))
2679 break;
2680
2681 req->biotail->bi_next = bio;
2682 req->biotail = bio;
2683 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2684 req->ioprio = ioprio_best(req->ioprio, prio);
2685 drive_stat_acct(req, nr_sectors, 0);
2686 if (!attempt_back_merge(q, req))
2687 elv_merged_request(q, req);
2688 goto out;
2689
2690 case ELEVATOR_FRONT_MERGE:
2691 BUG_ON(!rq_mergeable(req));
2692
2693 if (!q->front_merge_fn(q, req, bio))
2694 break;
2695
2696 bio->bi_next = req->bio;
2697 req->bio = bio;
2698
2699 /*
2700 * may not be valid. if the low level driver said
2701 * it didn't need a bounce buffer then it better
2702 * not touch req->buffer either...
2703 */
2704 req->buffer = bio_data(bio);
2705 req->current_nr_sectors = cur_nr_sectors;
2706 req->hard_cur_sectors = cur_nr_sectors;
2707 req->sector = req->hard_sector = sector;
2708 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2709 req->ioprio = ioprio_best(req->ioprio, prio);
2710 drive_stat_acct(req, nr_sectors, 0);
2711 if (!attempt_front_merge(q, req))
2712 elv_merged_request(q, req);
2713 goto out;
2714
2715 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2716 default:
2717 ;
2718 }
2719
2720 get_rq:
2721 /*
2722 * Grab a free request. This is might sleep but can not fail.
2723 * Returns with the queue unlocked.
2724 */
2725 req = get_request_wait(q, rw, bio);
2726
2727 /*
2728 * After dropping the lock and possibly sleeping here, our request
2729 * may now be mergeable after it had proven unmergeable (above).
2730 * We don't worry about that case for efficiency. It won't happen
2731 * often, and the elevators are able to handle it.
2732 */
2733
2734 req->flags |= REQ_CMD;
2735
2736 /*
2737 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2738 */
2739 if (bio_rw_ahead(bio) || bio_failfast(bio))
2740 req->flags |= REQ_FAILFAST;
2741
2742 /*
2743 * REQ_BARRIER implies no merging, but lets make it explicit
2744 */
2745 if (unlikely(barrier))
2746 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2747
2748 req->errors = 0;
2749 req->hard_sector = req->sector = sector;
2750 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2751 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2752 req->nr_phys_segments = bio_phys_segments(q, bio);
2753 req->nr_hw_segments = bio_hw_segments(q, bio);
2754 req->buffer = bio_data(bio); /* see ->buffer comment above */
2755 req->waiting = NULL;
2756 req->bio = req->biotail = bio;
2757 req->ioprio = prio;
2758 req->rq_disk = bio->bi_bdev->bd_disk;
2759 req->start_time = jiffies;
2760
2761 spin_lock_irq(q->queue_lock);
2762 if (elv_queue_empty(q))
2763 blk_plug_device(q);
2764 add_request(q, req);
2765 out:
2766 if (sync)
2767 __generic_unplug_device(q);
2768
2769 spin_unlock_irq(q->queue_lock);
2770 return 0;
2771
2772 end_io:
2773 bio_endio(bio, nr_sectors << 9, err);
2774 return 0;
2775 }
2776
2777 /*
2778 * If bio->bi_dev is a partition, remap the location
2779 */
2780 static inline void blk_partition_remap(struct bio *bio)
2781 {
2782 struct block_device *bdev = bio->bi_bdev;
2783
2784 if (bdev != bdev->bd_contains) {
2785 struct hd_struct *p = bdev->bd_part;
2786 const int rw = bio_data_dir(bio);
2787
2788 p->sectors[rw] += bio_sectors(bio);
2789 p->ios[rw]++;
2790
2791 bio->bi_sector += p->start_sect;
2792 bio->bi_bdev = bdev->bd_contains;
2793 }
2794 }
2795
2796 static void handle_bad_sector(struct bio *bio)
2797 {
2798 char b[BDEVNAME_SIZE];
2799
2800 printk(KERN_INFO "attempt to access beyond end of device\n");
2801 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2802 bdevname(bio->bi_bdev, b),
2803 bio->bi_rw,
2804 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2805 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2806
2807 set_bit(BIO_EOF, &bio->bi_flags);
2808 }
2809
2810 /**
2811 * generic_make_request: hand a buffer to its device driver for I/O
2812 * @bio: The bio describing the location in memory and on the device.
2813 *
2814 * generic_make_request() is used to make I/O requests of block
2815 * devices. It is passed a &struct bio, which describes the I/O that needs
2816 * to be done.
2817 *
2818 * generic_make_request() does not return any status. The
2819 * success/failure status of the request, along with notification of
2820 * completion, is delivered asynchronously through the bio->bi_end_io
2821 * function described (one day) else where.
2822 *
2823 * The caller of generic_make_request must make sure that bi_io_vec
2824 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2825 * set to describe the device address, and the
2826 * bi_end_io and optionally bi_private are set to describe how
2827 * completion notification should be signaled.
2828 *
2829 * generic_make_request and the drivers it calls may use bi_next if this
2830 * bio happens to be merged with someone else, and may change bi_dev and
2831 * bi_sector for remaps as it sees fit. So the values of these fields
2832 * should NOT be depended on after the call to generic_make_request.
2833 */
2834 void generic_make_request(struct bio *bio)
2835 {
2836 request_queue_t *q;
2837 sector_t maxsector;
2838 int ret, nr_sectors = bio_sectors(bio);
2839
2840 might_sleep();
2841 /* Test device or partition size, when known. */
2842 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2843 if (maxsector) {
2844 sector_t sector = bio->bi_sector;
2845
2846 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2847 /*
2848 * This may well happen - the kernel calls bread()
2849 * without checking the size of the device, e.g., when
2850 * mounting a device.
2851 */
2852 handle_bad_sector(bio);
2853 goto end_io;
2854 }
2855 }
2856
2857 /*
2858 * Resolve the mapping until finished. (drivers are
2859 * still free to implement/resolve their own stacking
2860 * by explicitly returning 0)
2861 *
2862 * NOTE: we don't repeat the blk_size check for each new device.
2863 * Stacking drivers are expected to know what they are doing.
2864 */
2865 do {
2866 char b[BDEVNAME_SIZE];
2867
2868 q = bdev_get_queue(bio->bi_bdev);
2869 if (!q) {
2870 printk(KERN_ERR
2871 "generic_make_request: Trying to access "
2872 "nonexistent block-device %s (%Lu)\n",
2873 bdevname(bio->bi_bdev, b),
2874 (long long) bio->bi_sector);
2875 end_io:
2876 bio_endio(bio, bio->bi_size, -EIO);
2877 break;
2878 }
2879
2880 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2881 printk("bio too big device %s (%u > %u)\n",
2882 bdevname(bio->bi_bdev, b),
2883 bio_sectors(bio),
2884 q->max_hw_sectors);
2885 goto end_io;
2886 }
2887
2888 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
2889 goto end_io;
2890
2891 /*
2892 * If this device has partitions, remap block n
2893 * of partition p to block n+start(p) of the disk.
2894 */
2895 blk_partition_remap(bio);
2896
2897 ret = q->make_request_fn(q, bio);
2898 } while (ret);
2899 }
2900
2901 EXPORT_SYMBOL(generic_make_request);
2902
2903 /**
2904 * submit_bio: submit a bio to the block device layer for I/O
2905 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2906 * @bio: The &struct bio which describes the I/O
2907 *
2908 * submit_bio() is very similar in purpose to generic_make_request(), and
2909 * uses that function to do most of the work. Both are fairly rough
2910 * interfaces, @bio must be presetup and ready for I/O.
2911 *
2912 */
2913 void submit_bio(int rw, struct bio *bio)
2914 {
2915 int count = bio_sectors(bio);
2916
2917 BIO_BUG_ON(!bio->bi_size);
2918 BIO_BUG_ON(!bio->bi_io_vec);
2919 bio->bi_rw |= rw;
2920 if (rw & WRITE)
2921 mod_page_state(pgpgout, count);
2922 else
2923 mod_page_state(pgpgin, count);
2924
2925 if (unlikely(block_dump)) {
2926 char b[BDEVNAME_SIZE];
2927 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2928 current->comm, current->pid,
2929 (rw & WRITE) ? "WRITE" : "READ",
2930 (unsigned long long)bio->bi_sector,
2931 bdevname(bio->bi_bdev,b));
2932 }
2933
2934 generic_make_request(bio);
2935 }
2936
2937 EXPORT_SYMBOL(submit_bio);
2938
2939 static void blk_recalc_rq_segments(struct request *rq)
2940 {
2941 struct bio *bio, *prevbio = NULL;
2942 int nr_phys_segs, nr_hw_segs;
2943 unsigned int phys_size, hw_size;
2944 request_queue_t *q = rq->q;
2945
2946 if (!rq->bio)
2947 return;
2948
2949 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2950 rq_for_each_bio(bio, rq) {
2951 /* Force bio hw/phys segs to be recalculated. */
2952 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2953
2954 nr_phys_segs += bio_phys_segments(q, bio);
2955 nr_hw_segs += bio_hw_segments(q, bio);
2956 if (prevbio) {
2957 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
2958 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
2959
2960 if (blk_phys_contig_segment(q, prevbio, bio) &&
2961 pseg <= q->max_segment_size) {
2962 nr_phys_segs--;
2963 phys_size += prevbio->bi_size + bio->bi_size;
2964 } else
2965 phys_size = 0;
2966
2967 if (blk_hw_contig_segment(q, prevbio, bio) &&
2968 hseg <= q->max_segment_size) {
2969 nr_hw_segs--;
2970 hw_size += prevbio->bi_size + bio->bi_size;
2971 } else
2972 hw_size = 0;
2973 }
2974 prevbio = bio;
2975 }
2976
2977 rq->nr_phys_segments = nr_phys_segs;
2978 rq->nr_hw_segments = nr_hw_segs;
2979 }
2980
2981 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
2982 {
2983 if (blk_fs_request(rq)) {
2984 rq->hard_sector += nsect;
2985 rq->hard_nr_sectors -= nsect;
2986
2987 /*
2988 * Move the I/O submission pointers ahead if required.
2989 */
2990 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2991 (rq->sector <= rq->hard_sector)) {
2992 rq->sector = rq->hard_sector;
2993 rq->nr_sectors = rq->hard_nr_sectors;
2994 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2995 rq->current_nr_sectors = rq->hard_cur_sectors;
2996 rq->buffer = bio_data(rq->bio);
2997 }
2998
2999 /*
3000 * if total number of sectors is less than the first segment
3001 * size, something has gone terribly wrong
3002 */
3003 if (rq->nr_sectors < rq->current_nr_sectors) {
3004 printk("blk: request botched\n");
3005 rq->nr_sectors = rq->current_nr_sectors;
3006 }
3007 }
3008 }
3009
3010 static int __end_that_request_first(struct request *req, int uptodate,
3011 int nr_bytes)
3012 {
3013 int total_bytes, bio_nbytes, error, next_idx = 0;
3014 struct bio *bio;
3015
3016 /*
3017 * extend uptodate bool to allow < 0 value to be direct io error
3018 */
3019 error = 0;
3020 if (end_io_error(uptodate))
3021 error = !uptodate ? -EIO : uptodate;
3022
3023 /*
3024 * for a REQ_BLOCK_PC request, we want to carry any eventual
3025 * sense key with us all the way through
3026 */
3027 if (!blk_pc_request(req))
3028 req->errors = 0;
3029
3030 if (!uptodate) {
3031 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3032 printk("end_request: I/O error, dev %s, sector %llu\n",
3033 req->rq_disk ? req->rq_disk->disk_name : "?",
3034 (unsigned long long)req->sector);
3035 }
3036
3037 if (blk_fs_request(req) && req->rq_disk) {
3038 const int rw = rq_data_dir(req);
3039
3040 __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3041 }
3042
3043 total_bytes = bio_nbytes = 0;
3044 while ((bio = req->bio) != NULL) {
3045 int nbytes;
3046
3047 if (nr_bytes >= bio->bi_size) {
3048 req->bio = bio->bi_next;
3049 nbytes = bio->bi_size;
3050 bio_endio(bio, nbytes, error);
3051 next_idx = 0;
3052 bio_nbytes = 0;
3053 } else {
3054 int idx = bio->bi_idx + next_idx;
3055
3056 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3057 blk_dump_rq_flags(req, "__end_that");
3058 printk("%s: bio idx %d >= vcnt %d\n",
3059 __FUNCTION__,
3060 bio->bi_idx, bio->bi_vcnt);
3061 break;
3062 }
3063
3064 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3065 BIO_BUG_ON(nbytes > bio->bi_size);
3066
3067 /*
3068 * not a complete bvec done
3069 */
3070 if (unlikely(nbytes > nr_bytes)) {
3071 bio_nbytes += nr_bytes;
3072 total_bytes += nr_bytes;
3073 break;
3074 }
3075
3076 /*
3077 * advance to the next vector
3078 */
3079 next_idx++;
3080 bio_nbytes += nbytes;
3081 }
3082
3083 total_bytes += nbytes;
3084 nr_bytes -= nbytes;
3085
3086 if ((bio = req->bio)) {
3087 /*
3088 * end more in this run, or just return 'not-done'
3089 */
3090 if (unlikely(nr_bytes <= 0))
3091 break;
3092 }
3093 }
3094
3095 /*
3096 * completely done
3097 */
3098 if (!req->bio)
3099 return 0;
3100
3101 /*
3102 * if the request wasn't completed, update state
3103 */
3104 if (bio_nbytes) {
3105 bio_endio(bio, bio_nbytes, error);
3106 bio->bi_idx += next_idx;
3107 bio_iovec(bio)->bv_offset += nr_bytes;
3108 bio_iovec(bio)->bv_len -= nr_bytes;
3109 }
3110
3111 blk_recalc_rq_sectors(req, total_bytes >> 9);
3112 blk_recalc_rq_segments(req);
3113 return 1;
3114 }
3115
3116 /**
3117 * end_that_request_first - end I/O on a request
3118 * @req: the request being processed
3119 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3120 * @nr_sectors: number of sectors to end I/O on
3121 *
3122 * Description:
3123 * Ends I/O on a number of sectors attached to @req, and sets it up
3124 * for the next range of segments (if any) in the cluster.
3125 *
3126 * Return:
3127 * 0 - we are done with this request, call end_that_request_last()
3128 * 1 - still buffers pending for this request
3129 **/
3130 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3131 {
3132 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3133 }
3134
3135 EXPORT_SYMBOL(end_that_request_first);
3136
3137 /**
3138 * end_that_request_chunk - end I/O on a request
3139 * @req: the request being processed
3140 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3141 * @nr_bytes: number of bytes to complete
3142 *
3143 * Description:
3144 * Ends I/O on a number of bytes attached to @req, and sets it up
3145 * for the next range of segments (if any). Like end_that_request_first(),
3146 * but deals with bytes instead of sectors.
3147 *
3148 * Return:
3149 * 0 - we are done with this request, call end_that_request_last()
3150 * 1 - still buffers pending for this request
3151 **/
3152 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3153 {
3154 return __end_that_request_first(req, uptodate, nr_bytes);
3155 }
3156
3157 EXPORT_SYMBOL(end_that_request_chunk);
3158
3159 /*
3160 * queue lock must be held
3161 */
3162 void end_that_request_last(struct request *req)
3163 {
3164 struct gendisk *disk = req->rq_disk;
3165
3166 if (unlikely(laptop_mode) && blk_fs_request(req))
3167 laptop_io_completion();
3168
3169 if (disk && blk_fs_request(req)) {
3170 unsigned long duration = jiffies - req->start_time;
3171 const int rw = rq_data_dir(req);
3172
3173 __disk_stat_inc(disk, ios[rw]);
3174 __disk_stat_add(disk, ticks[rw], duration);
3175 disk_round_stats(disk);
3176 disk->in_flight--;
3177 }
3178 if (req->end_io)
3179 req->end_io(req);
3180 else
3181 __blk_put_request(req->q, req);
3182 }
3183
3184 EXPORT_SYMBOL(end_that_request_last);
3185
3186 void end_request(struct request *req, int uptodate)
3187 {
3188 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3189 add_disk_randomness(req->rq_disk);
3190 blkdev_dequeue_request(req);
3191 end_that_request_last(req);
3192 }
3193 }
3194
3195 EXPORT_SYMBOL(end_request);
3196
3197 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3198 {
3199 /* first three bits are identical in rq->flags and bio->bi_rw */
3200 rq->flags |= (bio->bi_rw & 7);
3201
3202 rq->nr_phys_segments = bio_phys_segments(q, bio);
3203 rq->nr_hw_segments = bio_hw_segments(q, bio);
3204 rq->current_nr_sectors = bio_cur_sectors(bio);
3205 rq->hard_cur_sectors = rq->current_nr_sectors;
3206 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3207 rq->buffer = bio_data(bio);
3208
3209 rq->bio = rq->biotail = bio;
3210 }
3211
3212 EXPORT_SYMBOL(blk_rq_bio_prep);
3213
3214 int kblockd_schedule_work(struct work_struct *work)
3215 {
3216 return queue_work(kblockd_workqueue, work);
3217 }
3218
3219 EXPORT_SYMBOL(kblockd_schedule_work);
3220
3221 void kblockd_flush(void)
3222 {
3223 flush_workqueue(kblockd_workqueue);
3224 }
3225 EXPORT_SYMBOL(kblockd_flush);
3226
3227 int __init blk_dev_init(void)
3228 {
3229 kblockd_workqueue = create_workqueue("kblockd");
3230 if (!kblockd_workqueue)
3231 panic("Failed to create kblockd\n");
3232
3233 request_cachep = kmem_cache_create("blkdev_requests",
3234 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3235
3236 requestq_cachep = kmem_cache_create("blkdev_queue",
3237 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3238
3239 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3240 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3241
3242 blk_max_low_pfn = max_low_pfn;
3243 blk_max_pfn = max_pfn;
3244
3245 return 0;
3246 }
3247
3248 /*
3249 * IO Context helper functions
3250 */
3251 void put_io_context(struct io_context *ioc)
3252 {
3253 if (ioc == NULL)
3254 return;
3255
3256 BUG_ON(atomic_read(&ioc->refcount) == 0);
3257
3258 if (atomic_dec_and_test(&ioc->refcount)) {
3259 if (ioc->aic && ioc->aic->dtor)
3260 ioc->aic->dtor(ioc->aic);
3261 if (ioc->cic && ioc->cic->dtor)
3262 ioc->cic->dtor(ioc->cic);
3263
3264 kmem_cache_free(iocontext_cachep, ioc);
3265 }
3266 }
3267 EXPORT_SYMBOL(put_io_context);
3268
3269 /* Called by the exitting task */
3270 void exit_io_context(void)
3271 {
3272 unsigned long flags;
3273 struct io_context *ioc;
3274
3275 local_irq_save(flags);
3276 task_lock(current);
3277 ioc = current->io_context;
3278 current->io_context = NULL;
3279 ioc->task = NULL;
3280 task_unlock(current);
3281 local_irq_restore(flags);
3282
3283 if (ioc->aic && ioc->aic->exit)
3284 ioc->aic->exit(ioc->aic);
3285 if (ioc->cic && ioc->cic->exit)
3286 ioc->cic->exit(ioc->cic);
3287
3288 put_io_context(ioc);
3289 }
3290
3291 /*
3292 * If the current task has no IO context then create one and initialise it.
3293 * Otherwise, return its existing IO context.
3294 *
3295 * This returned IO context doesn't have a specifically elevated refcount,
3296 * but since the current task itself holds a reference, the context can be
3297 * used in general code, so long as it stays within `current` context.
3298 */
3299 struct io_context *current_io_context(gfp_t gfp_flags)
3300 {
3301 struct task_struct *tsk = current;
3302 struct io_context *ret;
3303
3304 ret = tsk->io_context;
3305 if (likely(ret))
3306 return ret;
3307
3308 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3309 if (ret) {
3310 atomic_set(&ret->refcount, 1);
3311 ret->task = current;
3312 ret->set_ioprio = NULL;
3313 ret->last_waited = jiffies; /* doesn't matter... */
3314 ret->nr_batch_requests = 0; /* because this is 0 */
3315 ret->aic = NULL;
3316 ret->cic = NULL;
3317 tsk->io_context = ret;
3318 }
3319
3320 return ret;
3321 }
3322 EXPORT_SYMBOL(current_io_context);
3323
3324 /*
3325 * If the current task has no IO context then create one and initialise it.
3326 * If it does have a context, take a ref on it.
3327 *
3328 * This is always called in the context of the task which submitted the I/O.
3329 */
3330 struct io_context *get_io_context(gfp_t gfp_flags)
3331 {
3332 struct io_context *ret;
3333 ret = current_io_context(gfp_flags);
3334 if (likely(ret))
3335 atomic_inc(&ret->refcount);
3336 return ret;
3337 }
3338 EXPORT_SYMBOL(get_io_context);
3339
3340 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3341 {
3342 struct io_context *src = *psrc;
3343 struct io_context *dst = *pdst;
3344
3345 if (src) {
3346 BUG_ON(atomic_read(&src->refcount) == 0);
3347 atomic_inc(&src->refcount);
3348 put_io_context(dst);
3349 *pdst = src;
3350 }
3351 }
3352 EXPORT_SYMBOL(copy_io_context);
3353
3354 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3355 {
3356 struct io_context *temp;
3357 temp = *ioc1;
3358 *ioc1 = *ioc2;
3359 *ioc2 = temp;
3360 }
3361 EXPORT_SYMBOL(swap_io_context);
3362
3363 /*
3364 * sysfs parts below
3365 */
3366 struct queue_sysfs_entry {
3367 struct attribute attr;
3368 ssize_t (*show)(struct request_queue *, char *);
3369 ssize_t (*store)(struct request_queue *, const char *, size_t);
3370 };
3371
3372 static ssize_t
3373 queue_var_show(unsigned int var, char *page)
3374 {
3375 return sprintf(page, "%d\n", var);
3376 }
3377
3378 static ssize_t
3379 queue_var_store(unsigned long *var, const char *page, size_t count)
3380 {
3381 char *p = (char *) page;
3382
3383 *var = simple_strtoul(p, &p, 10);
3384 return count;
3385 }
3386
3387 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3388 {
3389 return queue_var_show(q->nr_requests, (page));
3390 }
3391
3392 static ssize_t
3393 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3394 {
3395 struct request_list *rl = &q->rq;
3396
3397 int ret = queue_var_store(&q->nr_requests, page, count);
3398 if (q->nr_requests < BLKDEV_MIN_RQ)
3399 q->nr_requests = BLKDEV_MIN_RQ;
3400 blk_queue_congestion_threshold(q);
3401
3402 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3403 set_queue_congested(q, READ);
3404 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3405 clear_queue_congested(q, READ);
3406
3407 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3408 set_queue_congested(q, WRITE);
3409 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3410 clear_queue_congested(q, WRITE);
3411
3412 if (rl->count[READ] >= q->nr_requests) {
3413 blk_set_queue_full(q, READ);
3414 } else if (rl->count[READ]+1 <= q->nr_requests) {
3415 blk_clear_queue_full(q, READ);
3416 wake_up(&rl->wait[READ]);
3417 }
3418
3419 if (rl->count[WRITE] >= q->nr_requests) {
3420 blk_set_queue_full(q, WRITE);
3421 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3422 blk_clear_queue_full(q, WRITE);
3423 wake_up(&rl->wait[WRITE]);
3424 }
3425 return ret;
3426 }
3427
3428 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3429 {
3430 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3431
3432 return queue_var_show(ra_kb, (page));
3433 }
3434
3435 static ssize_t
3436 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3437 {
3438 unsigned long ra_kb;
3439 ssize_t ret = queue_var_store(&ra_kb, page, count);
3440
3441 spin_lock_irq(q->queue_lock);
3442 if (ra_kb > (q->max_sectors >> 1))
3443 ra_kb = (q->max_sectors >> 1);
3444
3445 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3446 spin_unlock_irq(q->queue_lock);
3447
3448 return ret;
3449 }
3450
3451 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3452 {
3453 int max_sectors_kb = q->max_sectors >> 1;
3454
3455 return queue_var_show(max_sectors_kb, (page));
3456 }
3457
3458 static ssize_t
3459 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3460 {
3461 unsigned long max_sectors_kb,
3462 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3463 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3464 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3465 int ra_kb;
3466
3467 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3468 return -EINVAL;
3469 /*
3470 * Take the queue lock to update the readahead and max_sectors
3471 * values synchronously:
3472 */
3473 spin_lock_irq(q->queue_lock);
3474 /*
3475 * Trim readahead window as well, if necessary:
3476 */
3477 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3478 if (ra_kb > max_sectors_kb)
3479 q->backing_dev_info.ra_pages =
3480 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3481
3482 q->max_sectors = max_sectors_kb << 1;
3483 spin_unlock_irq(q->queue_lock);
3484
3485 return ret;
3486 }
3487
3488 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3489 {
3490 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3491
3492 return queue_var_show(max_hw_sectors_kb, (page));
3493 }
3494
3495
3496 static struct queue_sysfs_entry queue_requests_entry = {
3497 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3498 .show = queue_requests_show,
3499 .store = queue_requests_store,
3500 };
3501
3502 static struct queue_sysfs_entry queue_ra_entry = {
3503 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3504 .show = queue_ra_show,
3505 .store = queue_ra_store,
3506 };
3507
3508 static struct queue_sysfs_entry queue_max_sectors_entry = {
3509 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3510 .show = queue_max_sectors_show,
3511 .store = queue_max_sectors_store,
3512 };
3513
3514 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3515 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3516 .show = queue_max_hw_sectors_show,
3517 };
3518
3519 static struct queue_sysfs_entry queue_iosched_entry = {
3520 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3521 .show = elv_iosched_show,
3522 .store = elv_iosched_store,
3523 };
3524
3525 static struct attribute *default_attrs[] = {
3526 &queue_requests_entry.attr,
3527 &queue_ra_entry.attr,
3528 &queue_max_hw_sectors_entry.attr,
3529 &queue_max_sectors_entry.attr,
3530 &queue_iosched_entry.attr,
3531 NULL,
3532 };
3533
3534 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3535
3536 static ssize_t
3537 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3538 {
3539 struct queue_sysfs_entry *entry = to_queue(attr);
3540 struct request_queue *q;
3541
3542 q = container_of(kobj, struct request_queue, kobj);
3543 if (!entry->show)
3544 return -EIO;
3545
3546 return entry->show(q, page);
3547 }
3548
3549 static ssize_t
3550 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3551 const char *page, size_t length)
3552 {
3553 struct queue_sysfs_entry *entry = to_queue(attr);
3554 struct request_queue *q;
3555
3556 q = container_of(kobj, struct request_queue, kobj);
3557 if (!entry->store)
3558 return -EIO;
3559
3560 return entry->store(q, page, length);
3561 }
3562
3563 static struct sysfs_ops queue_sysfs_ops = {
3564 .show = queue_attr_show,
3565 .store = queue_attr_store,
3566 };
3567
3568 static struct kobj_type queue_ktype = {
3569 .sysfs_ops = &queue_sysfs_ops,
3570 .default_attrs = default_attrs,
3571 };
3572
3573 int blk_register_queue(struct gendisk *disk)
3574 {
3575 int ret;
3576
3577 request_queue_t *q = disk->queue;
3578
3579 if (!q || !q->request_fn)
3580 return -ENXIO;
3581
3582 q->kobj.parent = kobject_get(&disk->kobj);
3583 if (!q->kobj.parent)
3584 return -EBUSY;
3585
3586 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3587 q->kobj.ktype = &queue_ktype;
3588
3589 ret = kobject_register(&q->kobj);
3590 if (ret < 0)
3591 return ret;
3592
3593 ret = elv_register_queue(q);
3594 if (ret) {
3595 kobject_unregister(&q->kobj);
3596 return ret;
3597 }
3598
3599 return 0;
3600 }
3601
3602 void blk_unregister_queue(struct gendisk *disk)
3603 {
3604 request_queue_t *q = disk->queue;
3605
3606 if (q && q->request_fn) {
3607 elv_unregister_queue(q);
3608
3609 kobject_unregister(&q->kobj);
3610 kobject_put(&disk->kobj);
3611 }
3612 }