]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
block/nvme: Replace qemu_try_blockalign(bs) by qemu_try_memalign(pg_sz)
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28
29 #include "block/nvme.h"
30
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
35
36 /*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
42 typedef struct BDRVNVMeState BDRVNVMeState;
43
44 typedef struct {
45 int32_t head, tail;
46 uint8_t *queue;
47 uint64_t iova;
48 /* Hardware MMIO register */
49 volatile uint32_t *doorbell;
50 } NVMeQueue;
51
52 typedef struct {
53 BlockCompletionFunc *cb;
54 void *opaque;
55 int cid;
56 void *prp_list_page;
57 uint64_t prp_list_iova;
58 int free_req_next; /* q->reqs[] index of next free req */
59 } NVMeRequest;
60
61 typedef struct {
62 QemuMutex lock;
63
64 /* Read from I/O code path, initialized under BQL */
65 BDRVNVMeState *s;
66 int index;
67
68 /* Fields protected by BQL */
69 uint8_t *prp_list_pages;
70
71 /* Fields protected by @lock */
72 CoQueue free_req_queue;
73 NVMeQueue sq, cq;
74 int cq_phase;
75 int free_req_head;
76 NVMeRequest reqs[NVME_NUM_REQS];
77 int need_kick;
78 int inflight;
79
80 /* Thread-safe, no lock necessary */
81 QEMUBH *completion_bh;
82 } NVMeQueuePair;
83
84 /* Memory mapped registers */
85 typedef volatile struct {
86 uint64_t cap;
87 uint32_t vs;
88 uint32_t intms;
89 uint32_t intmc;
90 uint32_t cc;
91 uint32_t reserved0;
92 uint32_t csts;
93 uint32_t nssr;
94 uint32_t aqa;
95 uint64_t asq;
96 uint64_t acq;
97 uint32_t cmbloc;
98 uint32_t cmbsz;
99 uint8_t reserved1[0xec0];
100 uint8_t cmd_set_specfic[0x100];
101 uint32_t doorbells[];
102 } NVMeRegs;
103
104 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
105
106 #define INDEX_ADMIN 0
107 #define INDEX_IO(n) (1 + n)
108
109 struct BDRVNVMeState {
110 AioContext *aio_context;
111 QEMUVFIOState *vfio;
112 NVMeRegs *regs;
113 /* The submission/completion queue pairs.
114 * [0]: admin queue.
115 * [1..]: io queues.
116 */
117 NVMeQueuePair **queues;
118 int nr_queues;
119 size_t page_size;
120 /* How many uint32_t elements does each doorbell entry take. */
121 size_t doorbell_scale;
122 bool write_cache_supported;
123 EventNotifier irq_notifier;
124
125 uint64_t nsze; /* Namespace size reported by identify command */
126 int nsid; /* The namespace id to read/write data. */
127 int blkshift;
128
129 uint64_t max_transfer;
130 bool plugged;
131
132 bool supports_write_zeroes;
133 bool supports_discard;
134
135 CoMutex dma_map_lock;
136 CoQueue dma_flush_queue;
137
138 /* Total size of mapped qiov, accessed under dma_map_lock */
139 int dma_map_count;
140
141 /* PCI address (required for nvme_refresh_filename()) */
142 char *device;
143 };
144
145 #define NVME_BLOCK_OPT_DEVICE "device"
146 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
147
148 static void nvme_process_completion_bh(void *opaque);
149
150 static QemuOptsList runtime_opts = {
151 .name = "nvme",
152 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
153 .desc = {
154 {
155 .name = NVME_BLOCK_OPT_DEVICE,
156 .type = QEMU_OPT_STRING,
157 .help = "NVMe PCI device address",
158 },
159 {
160 .name = NVME_BLOCK_OPT_NAMESPACE,
161 .type = QEMU_OPT_NUMBER,
162 .help = "NVMe namespace",
163 },
164 { /* end of list */ }
165 },
166 };
167
168 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
169 int nentries, int entry_bytes, Error **errp)
170 {
171 BDRVNVMeState *s = bs->opaque;
172 size_t bytes;
173 int r;
174
175 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
176 q->head = q->tail = 0;
177 q->queue = qemu_try_memalign(s->page_size, bytes);
178 if (!q->queue) {
179 error_setg(errp, "Cannot allocate queue");
180 return;
181 }
182 memset(q->queue, 0, bytes);
183 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
184 if (r) {
185 error_setg(errp, "Cannot map queue");
186 }
187 }
188
189 static void nvme_free_queue_pair(NVMeQueuePair *q)
190 {
191 if (q->completion_bh) {
192 qemu_bh_delete(q->completion_bh);
193 }
194 qemu_vfree(q->prp_list_pages);
195 qemu_vfree(q->sq.queue);
196 qemu_vfree(q->cq.queue);
197 qemu_mutex_destroy(&q->lock);
198 g_free(q);
199 }
200
201 static void nvme_free_req_queue_cb(void *opaque)
202 {
203 NVMeQueuePair *q = opaque;
204
205 qemu_mutex_lock(&q->lock);
206 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
207 /* Retry all pending requests */
208 }
209 qemu_mutex_unlock(&q->lock);
210 }
211
212 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
213 int idx, int size,
214 Error **errp)
215 {
216 int i, r;
217 BDRVNVMeState *s = bs->opaque;
218 Error *local_err = NULL;
219 NVMeQueuePair *q;
220 uint64_t prp_list_iova;
221
222 q = g_try_new0(NVMeQueuePair, 1);
223 if (!q) {
224 return NULL;
225 }
226 q->prp_list_pages = qemu_try_memalign(s->page_size,
227 s->page_size * NVME_NUM_REQS);
228 if (!q->prp_list_pages) {
229 goto fail;
230 }
231 memset(q->prp_list_pages, 0, s->page_size * NVME_NUM_REQS);
232 qemu_mutex_init(&q->lock);
233 q->s = s;
234 q->index = idx;
235 qemu_co_queue_init(&q->free_req_queue);
236 q->completion_bh = aio_bh_new(bdrv_get_aio_context(bs),
237 nvme_process_completion_bh, q);
238 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
239 s->page_size * NVME_NUM_REQS,
240 false, &prp_list_iova);
241 if (r) {
242 goto fail;
243 }
244 q->free_req_head = -1;
245 for (i = 0; i < NVME_NUM_REQS; i++) {
246 NVMeRequest *req = &q->reqs[i];
247 req->cid = i + 1;
248 req->free_req_next = q->free_req_head;
249 q->free_req_head = i;
250 req->prp_list_page = q->prp_list_pages + i * s->page_size;
251 req->prp_list_iova = prp_list_iova + i * s->page_size;
252 }
253
254 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
255 if (local_err) {
256 error_propagate(errp, local_err);
257 goto fail;
258 }
259 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
260
261 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
262 if (local_err) {
263 error_propagate(errp, local_err);
264 goto fail;
265 }
266 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
267
268 return q;
269 fail:
270 nvme_free_queue_pair(q);
271 return NULL;
272 }
273
274 /* With q->lock */
275 static void nvme_kick(NVMeQueuePair *q)
276 {
277 BDRVNVMeState *s = q->s;
278
279 if (s->plugged || !q->need_kick) {
280 return;
281 }
282 trace_nvme_kick(s, q->index);
283 assert(!(q->sq.tail & 0xFF00));
284 /* Fence the write to submission queue entry before notifying the device. */
285 smp_wmb();
286 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
287 q->inflight += q->need_kick;
288 q->need_kick = 0;
289 }
290
291 /* Find a free request element if any, otherwise:
292 * a) if in coroutine context, try to wait for one to become available;
293 * b) if not in coroutine, return NULL;
294 */
295 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
296 {
297 NVMeRequest *req;
298
299 qemu_mutex_lock(&q->lock);
300
301 while (q->free_req_head == -1) {
302 if (qemu_in_coroutine()) {
303 trace_nvme_free_req_queue_wait(q);
304 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
305 } else {
306 qemu_mutex_unlock(&q->lock);
307 return NULL;
308 }
309 }
310
311 req = &q->reqs[q->free_req_head];
312 q->free_req_head = req->free_req_next;
313 req->free_req_next = -1;
314
315 qemu_mutex_unlock(&q->lock);
316 return req;
317 }
318
319 /* With q->lock */
320 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
321 {
322 req->free_req_next = q->free_req_head;
323 q->free_req_head = req - q->reqs;
324 }
325
326 /* With q->lock */
327 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
328 {
329 if (!qemu_co_queue_empty(&q->free_req_queue)) {
330 replay_bh_schedule_oneshot_event(q->s->aio_context,
331 nvme_free_req_queue_cb, q);
332 }
333 }
334
335 /* Insert a request in the freelist and wake waiters */
336 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
337 {
338 qemu_mutex_lock(&q->lock);
339 nvme_put_free_req_locked(q, req);
340 nvme_wake_free_req_locked(q);
341 qemu_mutex_unlock(&q->lock);
342 }
343
344 static inline int nvme_translate_error(const NvmeCqe *c)
345 {
346 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
347 if (status) {
348 trace_nvme_error(le32_to_cpu(c->result),
349 le16_to_cpu(c->sq_head),
350 le16_to_cpu(c->sq_id),
351 le16_to_cpu(c->cid),
352 le16_to_cpu(status));
353 }
354 switch (status) {
355 case 0:
356 return 0;
357 case 1:
358 return -ENOSYS;
359 case 2:
360 return -EINVAL;
361 default:
362 return -EIO;
363 }
364 }
365
366 /* With q->lock */
367 static bool nvme_process_completion(NVMeQueuePair *q)
368 {
369 BDRVNVMeState *s = q->s;
370 bool progress = false;
371 NVMeRequest *preq;
372 NVMeRequest req;
373 NvmeCqe *c;
374
375 trace_nvme_process_completion(s, q->index, q->inflight);
376 if (s->plugged) {
377 trace_nvme_process_completion_queue_plugged(s, q->index);
378 return false;
379 }
380
381 /*
382 * Support re-entrancy when a request cb() function invokes aio_poll().
383 * Pending completions must be visible to aio_poll() so that a cb()
384 * function can wait for the completion of another request.
385 *
386 * The aio_poll() loop will execute our BH and we'll resume completion
387 * processing there.
388 */
389 qemu_bh_schedule(q->completion_bh);
390
391 assert(q->inflight >= 0);
392 while (q->inflight) {
393 int ret;
394 int16_t cid;
395
396 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
397 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
398 break;
399 }
400 ret = nvme_translate_error(c);
401 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
402 if (!q->cq.head) {
403 q->cq_phase = !q->cq_phase;
404 }
405 cid = le16_to_cpu(c->cid);
406 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
407 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
408 cid);
409 continue;
410 }
411 trace_nvme_complete_command(s, q->index, cid);
412 preq = &q->reqs[cid - 1];
413 req = *preq;
414 assert(req.cid == cid);
415 assert(req.cb);
416 nvme_put_free_req_locked(q, preq);
417 preq->cb = preq->opaque = NULL;
418 q->inflight--;
419 qemu_mutex_unlock(&q->lock);
420 req.cb(req.opaque, ret);
421 qemu_mutex_lock(&q->lock);
422 progress = true;
423 }
424 if (progress) {
425 /* Notify the device so it can post more completions. */
426 smp_mb_release();
427 *q->cq.doorbell = cpu_to_le32(q->cq.head);
428 nvme_wake_free_req_locked(q);
429 }
430
431 qemu_bh_cancel(q->completion_bh);
432
433 return progress;
434 }
435
436 static void nvme_process_completion_bh(void *opaque)
437 {
438 NVMeQueuePair *q = opaque;
439
440 /*
441 * We're being invoked because a nvme_process_completion() cb() function
442 * called aio_poll(). The callback may be waiting for further completions
443 * so notify the device that it has space to fill in more completions now.
444 */
445 smp_mb_release();
446 *q->cq.doorbell = cpu_to_le32(q->cq.head);
447 nvme_wake_free_req_locked(q);
448
449 nvme_process_completion(q);
450 }
451
452 static void nvme_trace_command(const NvmeCmd *cmd)
453 {
454 int i;
455
456 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
457 return;
458 }
459 for (i = 0; i < 8; ++i) {
460 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
461 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
462 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
463 }
464 }
465
466 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
467 NvmeCmd *cmd, BlockCompletionFunc cb,
468 void *opaque)
469 {
470 assert(!req->cb);
471 req->cb = cb;
472 req->opaque = opaque;
473 cmd->cid = cpu_to_le32(req->cid);
474
475 trace_nvme_submit_command(q->s, q->index, req->cid);
476 nvme_trace_command(cmd);
477 qemu_mutex_lock(&q->lock);
478 memcpy((uint8_t *)q->sq.queue +
479 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
480 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
481 q->need_kick++;
482 nvme_kick(q);
483 nvme_process_completion(q);
484 qemu_mutex_unlock(&q->lock);
485 }
486
487 static void nvme_cmd_sync_cb(void *opaque, int ret)
488 {
489 int *pret = opaque;
490 *pret = ret;
491 aio_wait_kick();
492 }
493
494 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
495 NvmeCmd *cmd)
496 {
497 NVMeRequest *req;
498 int ret = -EINPROGRESS;
499 req = nvme_get_free_req(q);
500 if (!req) {
501 return -EBUSY;
502 }
503 nvme_submit_command(q, req, cmd, nvme_cmd_sync_cb, &ret);
504
505 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
506 return ret;
507 }
508
509 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
510 {
511 BDRVNVMeState *s = bs->opaque;
512 union {
513 NvmeIdCtrl ctrl;
514 NvmeIdNs ns;
515 } *id;
516 NvmeLBAF *lbaf;
517 uint16_t oncs;
518 int r;
519 uint64_t iova;
520 NvmeCmd cmd = {
521 .opcode = NVME_ADM_CMD_IDENTIFY,
522 .cdw10 = cpu_to_le32(0x1),
523 };
524
525 id = qemu_try_memalign(s->page_size, sizeof(*id));
526 if (!id) {
527 error_setg(errp, "Cannot allocate buffer for identify response");
528 goto out;
529 }
530 r = qemu_vfio_dma_map(s->vfio, id, sizeof(*id), true, &iova);
531 if (r) {
532 error_setg(errp, "Cannot map buffer for DMA");
533 goto out;
534 }
535
536 memset(id, 0, sizeof(*id));
537 cmd.dptr.prp1 = cpu_to_le64(iova);
538 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
539 error_setg(errp, "Failed to identify controller");
540 goto out;
541 }
542
543 if (le32_to_cpu(id->ctrl.nn) < namespace) {
544 error_setg(errp, "Invalid namespace");
545 goto out;
546 }
547 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
548 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
549 /* For now the page list buffer per command is one page, to hold at most
550 * s->page_size / sizeof(uint64_t) entries. */
551 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
552 s->page_size / sizeof(uint64_t) * s->page_size);
553
554 oncs = le16_to_cpu(id->ctrl.oncs);
555 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
556 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
557
558 memset(id, 0, sizeof(*id));
559 cmd.cdw10 = 0;
560 cmd.nsid = cpu_to_le32(namespace);
561 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
562 error_setg(errp, "Failed to identify namespace");
563 goto out;
564 }
565
566 s->nsze = le64_to_cpu(id->ns.nsze);
567 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
568
569 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
570 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
571 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
572 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
573 }
574
575 if (lbaf->ms) {
576 error_setg(errp, "Namespaces with metadata are not yet supported");
577 goto out;
578 }
579
580 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
581 (1 << lbaf->ds) > s->page_size)
582 {
583 error_setg(errp, "Namespace has unsupported block size (2^%d)",
584 lbaf->ds);
585 goto out;
586 }
587
588 s->blkshift = lbaf->ds;
589 out:
590 qemu_vfio_dma_unmap(s->vfio, id);
591 qemu_vfree(id);
592 }
593
594 static bool nvme_poll_queues(BDRVNVMeState *s)
595 {
596 bool progress = false;
597 int i;
598
599 for (i = 0; i < s->nr_queues; i++) {
600 NVMeQueuePair *q = s->queues[i];
601 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
602 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
603
604 /*
605 * Do an early check for completions. q->lock isn't needed because
606 * nvme_process_completion() only runs in the event loop thread and
607 * cannot race with itself.
608 */
609 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
610 continue;
611 }
612
613 qemu_mutex_lock(&q->lock);
614 while (nvme_process_completion(q)) {
615 /* Keep polling */
616 progress = true;
617 }
618 qemu_mutex_unlock(&q->lock);
619 }
620 return progress;
621 }
622
623 static void nvme_handle_event(EventNotifier *n)
624 {
625 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
626
627 trace_nvme_handle_event(s);
628 event_notifier_test_and_clear(n);
629 nvme_poll_queues(s);
630 }
631
632 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
633 {
634 BDRVNVMeState *s = bs->opaque;
635 int n = s->nr_queues;
636 NVMeQueuePair *q;
637 NvmeCmd cmd;
638 int queue_size = NVME_QUEUE_SIZE;
639
640 q = nvme_create_queue_pair(bs, n, queue_size, errp);
641 if (!q) {
642 return false;
643 }
644 cmd = (NvmeCmd) {
645 .opcode = NVME_ADM_CMD_CREATE_CQ,
646 .dptr.prp1 = cpu_to_le64(q->cq.iova),
647 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
648 .cdw11 = cpu_to_le32(0x3),
649 };
650 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
651 error_setg(errp, "Failed to create CQ io queue [%d]", n);
652 goto out_error;
653 }
654 cmd = (NvmeCmd) {
655 .opcode = NVME_ADM_CMD_CREATE_SQ,
656 .dptr.prp1 = cpu_to_le64(q->sq.iova),
657 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
658 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
659 };
660 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
661 error_setg(errp, "Failed to create SQ io queue [%d]", n);
662 goto out_error;
663 }
664 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
665 s->queues[n] = q;
666 s->nr_queues++;
667 return true;
668 out_error:
669 nvme_free_queue_pair(q);
670 return false;
671 }
672
673 static bool nvme_poll_cb(void *opaque)
674 {
675 EventNotifier *e = opaque;
676 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
677
678 trace_nvme_poll_cb(s);
679 return nvme_poll_queues(s);
680 }
681
682 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
683 Error **errp)
684 {
685 BDRVNVMeState *s = bs->opaque;
686 int ret;
687 uint64_t cap;
688 uint64_t timeout_ms;
689 uint64_t deadline, now;
690 Error *local_err = NULL;
691
692 qemu_co_mutex_init(&s->dma_map_lock);
693 qemu_co_queue_init(&s->dma_flush_queue);
694 s->device = g_strdup(device);
695 s->nsid = namespace;
696 s->aio_context = bdrv_get_aio_context(bs);
697 ret = event_notifier_init(&s->irq_notifier, 0);
698 if (ret) {
699 error_setg(errp, "Failed to init event notifier");
700 return ret;
701 }
702
703 s->vfio = qemu_vfio_open_pci(device, errp);
704 if (!s->vfio) {
705 ret = -EINVAL;
706 goto out;
707 }
708
709 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
710 if (!s->regs) {
711 ret = -EINVAL;
712 goto out;
713 }
714
715 /* Perform initialize sequence as described in NVMe spec "7.6.1
716 * Initialization". */
717
718 cap = le64_to_cpu(s->regs->cap);
719 if (!(cap & (1ULL << 37))) {
720 error_setg(errp, "Device doesn't support NVMe command set");
721 ret = -EINVAL;
722 goto out;
723 }
724
725 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
726 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
727 bs->bl.opt_mem_alignment = s->page_size;
728 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
729
730 /* Reset device to get a clean state. */
731 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
732 /* Wait for CSTS.RDY = 0. */
733 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
734 while (le32_to_cpu(s->regs->csts) & 0x1) {
735 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
736 error_setg(errp, "Timeout while waiting for device to reset (%"
737 PRId64 " ms)",
738 timeout_ms);
739 ret = -ETIMEDOUT;
740 goto out;
741 }
742 }
743
744 /* Set up admin queue. */
745 s->queues = g_new(NVMeQueuePair *, 1);
746 s->queues[INDEX_ADMIN] = nvme_create_queue_pair(bs, 0,
747 NVME_QUEUE_SIZE,
748 errp);
749 if (!s->queues[INDEX_ADMIN]) {
750 ret = -EINVAL;
751 goto out;
752 }
753 s->nr_queues = 1;
754 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
755 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
756 s->regs->asq = cpu_to_le64(s->queues[INDEX_ADMIN]->sq.iova);
757 s->regs->acq = cpu_to_le64(s->queues[INDEX_ADMIN]->cq.iova);
758
759 /* After setting up all control registers we can enable device now. */
760 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
761 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
762 0x1);
763 /* Wait for CSTS.RDY = 1. */
764 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
765 deadline = now + timeout_ms * 1000000;
766 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
767 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
768 error_setg(errp, "Timeout while waiting for device to start (%"
769 PRId64 " ms)",
770 timeout_ms);
771 ret = -ETIMEDOUT;
772 goto out;
773 }
774 }
775
776 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
777 VFIO_PCI_MSIX_IRQ_INDEX, errp);
778 if (ret) {
779 goto out;
780 }
781 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
782 false, nvme_handle_event, nvme_poll_cb);
783
784 nvme_identify(bs, namespace, &local_err);
785 if (local_err) {
786 error_propagate(errp, local_err);
787 ret = -EIO;
788 goto out;
789 }
790
791 /* Set up command queues. */
792 if (!nvme_add_io_queue(bs, errp)) {
793 ret = -EIO;
794 }
795 out:
796 /* Cleaning up is done in nvme_file_open() upon error. */
797 return ret;
798 }
799
800 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
801 *
802 * nvme://0000:44:00.0/1
803 *
804 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
805 * is the PCI address, and the last part is the namespace number starting from
806 * 1 according to the NVMe spec. */
807 static void nvme_parse_filename(const char *filename, QDict *options,
808 Error **errp)
809 {
810 int pref = strlen("nvme://");
811
812 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
813 const char *tmp = filename + pref;
814 char *device;
815 const char *namespace;
816 unsigned long ns;
817 const char *slash = strchr(tmp, '/');
818 if (!slash) {
819 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
820 return;
821 }
822 device = g_strndup(tmp, slash - tmp);
823 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
824 g_free(device);
825 namespace = slash + 1;
826 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
827 error_setg(errp, "Invalid namespace '%s', positive number expected",
828 namespace);
829 return;
830 }
831 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
832 *namespace ? namespace : "1");
833 }
834 }
835
836 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
837 Error **errp)
838 {
839 int ret;
840 BDRVNVMeState *s = bs->opaque;
841 NvmeCmd cmd = {
842 .opcode = NVME_ADM_CMD_SET_FEATURES,
843 .nsid = cpu_to_le32(s->nsid),
844 .cdw10 = cpu_to_le32(0x06),
845 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
846 };
847
848 ret = nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd);
849 if (ret) {
850 error_setg(errp, "Failed to configure NVMe write cache");
851 }
852 return ret;
853 }
854
855 static void nvme_close(BlockDriverState *bs)
856 {
857 int i;
858 BDRVNVMeState *s = bs->opaque;
859
860 for (i = 0; i < s->nr_queues; ++i) {
861 nvme_free_queue_pair(s->queues[i]);
862 }
863 g_free(s->queues);
864 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
865 false, NULL, NULL);
866 event_notifier_cleanup(&s->irq_notifier);
867 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
868 qemu_vfio_close(s->vfio);
869
870 g_free(s->device);
871 }
872
873 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
874 Error **errp)
875 {
876 const char *device;
877 QemuOpts *opts;
878 int namespace;
879 int ret;
880 BDRVNVMeState *s = bs->opaque;
881
882 bs->supported_write_flags = BDRV_REQ_FUA;
883
884 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
885 qemu_opts_absorb_qdict(opts, options, &error_abort);
886 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
887 if (!device) {
888 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
889 qemu_opts_del(opts);
890 return -EINVAL;
891 }
892
893 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
894 ret = nvme_init(bs, device, namespace, errp);
895 qemu_opts_del(opts);
896 if (ret) {
897 goto fail;
898 }
899 if (flags & BDRV_O_NOCACHE) {
900 if (!s->write_cache_supported) {
901 error_setg(errp,
902 "NVMe controller doesn't support write cache configuration");
903 ret = -EINVAL;
904 } else {
905 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
906 errp);
907 }
908 if (ret) {
909 goto fail;
910 }
911 }
912 return 0;
913 fail:
914 nvme_close(bs);
915 return ret;
916 }
917
918 static int64_t nvme_getlength(BlockDriverState *bs)
919 {
920 BDRVNVMeState *s = bs->opaque;
921 return s->nsze << s->blkshift;
922 }
923
924 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
925 {
926 BDRVNVMeState *s = bs->opaque;
927 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
928 return UINT32_C(1) << s->blkshift;
929 }
930
931 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
932 {
933 uint32_t blocksize = nvme_get_blocksize(bs);
934 bsz->phys = blocksize;
935 bsz->log = blocksize;
936 return 0;
937 }
938
939 /* Called with s->dma_map_lock */
940 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
941 QEMUIOVector *qiov)
942 {
943 int r = 0;
944 BDRVNVMeState *s = bs->opaque;
945
946 s->dma_map_count -= qiov->size;
947 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
948 r = qemu_vfio_dma_reset_temporary(s->vfio);
949 if (!r) {
950 qemu_co_queue_restart_all(&s->dma_flush_queue);
951 }
952 }
953 return r;
954 }
955
956 /* Called with s->dma_map_lock */
957 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
958 NVMeRequest *req, QEMUIOVector *qiov)
959 {
960 BDRVNVMeState *s = bs->opaque;
961 uint64_t *pagelist = req->prp_list_page;
962 int i, j, r;
963 int entries = 0;
964
965 assert(qiov->size);
966 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
967 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
968 for (i = 0; i < qiov->niov; ++i) {
969 bool retry = true;
970 uint64_t iova;
971 try_map:
972 r = qemu_vfio_dma_map(s->vfio,
973 qiov->iov[i].iov_base,
974 qiov->iov[i].iov_len,
975 true, &iova);
976 if (r == -ENOMEM && retry) {
977 retry = false;
978 trace_nvme_dma_flush_queue_wait(s);
979 if (s->dma_map_count) {
980 trace_nvme_dma_map_flush(s);
981 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
982 } else {
983 r = qemu_vfio_dma_reset_temporary(s->vfio);
984 if (r) {
985 goto fail;
986 }
987 }
988 goto try_map;
989 }
990 if (r) {
991 goto fail;
992 }
993
994 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
995 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
996 }
997 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
998 qiov->iov[i].iov_len / s->page_size);
999 }
1000
1001 s->dma_map_count += qiov->size;
1002
1003 assert(entries <= s->page_size / sizeof(uint64_t));
1004 switch (entries) {
1005 case 0:
1006 abort();
1007 case 1:
1008 cmd->dptr.prp1 = pagelist[0];
1009 cmd->dptr.prp2 = 0;
1010 break;
1011 case 2:
1012 cmd->dptr.prp1 = pagelist[0];
1013 cmd->dptr.prp2 = pagelist[1];
1014 break;
1015 default:
1016 cmd->dptr.prp1 = pagelist[0];
1017 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1018 break;
1019 }
1020 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1021 for (i = 0; i < entries; ++i) {
1022 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1023 }
1024 return 0;
1025 fail:
1026 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1027 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1028 * because they are already mapped before calling this function; for
1029 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1030 * calling qemu_vfio_dma_reset_temporary when necessary. */
1031 return r;
1032 }
1033
1034 typedef struct {
1035 Coroutine *co;
1036 int ret;
1037 AioContext *ctx;
1038 } NVMeCoData;
1039
1040 static void nvme_rw_cb_bh(void *opaque)
1041 {
1042 NVMeCoData *data = opaque;
1043 qemu_coroutine_enter(data->co);
1044 }
1045
1046 static void nvme_rw_cb(void *opaque, int ret)
1047 {
1048 NVMeCoData *data = opaque;
1049 data->ret = ret;
1050 if (!data->co) {
1051 /* The rw coroutine hasn't yielded, don't try to enter. */
1052 return;
1053 }
1054 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1055 }
1056
1057 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1058 uint64_t offset, uint64_t bytes,
1059 QEMUIOVector *qiov,
1060 bool is_write,
1061 int flags)
1062 {
1063 int r;
1064 BDRVNVMeState *s = bs->opaque;
1065 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1066 NVMeRequest *req;
1067
1068 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1069 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1070 NvmeCmd cmd = {
1071 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1072 .nsid = cpu_to_le32(s->nsid),
1073 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1074 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1075 .cdw12 = cpu_to_le32(cdw12),
1076 };
1077 NVMeCoData data = {
1078 .ctx = bdrv_get_aio_context(bs),
1079 .ret = -EINPROGRESS,
1080 };
1081
1082 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1083 assert(s->nr_queues > 1);
1084 req = nvme_get_free_req(ioq);
1085 assert(req);
1086
1087 qemu_co_mutex_lock(&s->dma_map_lock);
1088 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1089 qemu_co_mutex_unlock(&s->dma_map_lock);
1090 if (r) {
1091 nvme_put_free_req_and_wake(ioq, req);
1092 return r;
1093 }
1094 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1095
1096 data.co = qemu_coroutine_self();
1097 while (data.ret == -EINPROGRESS) {
1098 qemu_coroutine_yield();
1099 }
1100
1101 qemu_co_mutex_lock(&s->dma_map_lock);
1102 r = nvme_cmd_unmap_qiov(bs, qiov);
1103 qemu_co_mutex_unlock(&s->dma_map_lock);
1104 if (r) {
1105 return r;
1106 }
1107
1108 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1109 return data.ret;
1110 }
1111
1112 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1113 const QEMUIOVector *qiov)
1114 {
1115 int i;
1116 BDRVNVMeState *s = bs->opaque;
1117
1118 for (i = 0; i < qiov->niov; ++i) {
1119 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1120 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1121 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1122 qiov->iov[i].iov_len, s->page_size);
1123 return false;
1124 }
1125 }
1126 return true;
1127 }
1128
1129 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1130 QEMUIOVector *qiov, bool is_write, int flags)
1131 {
1132 BDRVNVMeState *s = bs->opaque;
1133 int r;
1134 uint8_t *buf = NULL;
1135 QEMUIOVector local_qiov;
1136
1137 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1138 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1139 assert(bytes <= s->max_transfer);
1140 if (nvme_qiov_aligned(bs, qiov)) {
1141 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1142 }
1143 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1144 buf = qemu_try_memalign(s->page_size, bytes);
1145
1146 if (!buf) {
1147 return -ENOMEM;
1148 }
1149 qemu_iovec_init(&local_qiov, 1);
1150 if (is_write) {
1151 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1152 }
1153 qemu_iovec_add(&local_qiov, buf, bytes);
1154 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1155 qemu_iovec_destroy(&local_qiov);
1156 if (!r && !is_write) {
1157 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1158 }
1159 qemu_vfree(buf);
1160 return r;
1161 }
1162
1163 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1164 uint64_t offset, uint64_t bytes,
1165 QEMUIOVector *qiov, int flags)
1166 {
1167 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1168 }
1169
1170 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1171 uint64_t offset, uint64_t bytes,
1172 QEMUIOVector *qiov, int flags)
1173 {
1174 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1175 }
1176
1177 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1178 {
1179 BDRVNVMeState *s = bs->opaque;
1180 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1181 NVMeRequest *req;
1182 NvmeCmd cmd = {
1183 .opcode = NVME_CMD_FLUSH,
1184 .nsid = cpu_to_le32(s->nsid),
1185 };
1186 NVMeCoData data = {
1187 .ctx = bdrv_get_aio_context(bs),
1188 .ret = -EINPROGRESS,
1189 };
1190
1191 assert(s->nr_queues > 1);
1192 req = nvme_get_free_req(ioq);
1193 assert(req);
1194 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1195
1196 data.co = qemu_coroutine_self();
1197 if (data.ret == -EINPROGRESS) {
1198 qemu_coroutine_yield();
1199 }
1200
1201 return data.ret;
1202 }
1203
1204
1205 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1206 int64_t offset,
1207 int bytes,
1208 BdrvRequestFlags flags)
1209 {
1210 BDRVNVMeState *s = bs->opaque;
1211 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1212 NVMeRequest *req;
1213
1214 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1215
1216 if (!s->supports_write_zeroes) {
1217 return -ENOTSUP;
1218 }
1219
1220 NvmeCmd cmd = {
1221 .opcode = NVME_CMD_WRITE_ZEROES,
1222 .nsid = cpu_to_le32(s->nsid),
1223 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1224 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1225 };
1226
1227 NVMeCoData data = {
1228 .ctx = bdrv_get_aio_context(bs),
1229 .ret = -EINPROGRESS,
1230 };
1231
1232 if (flags & BDRV_REQ_MAY_UNMAP) {
1233 cdw12 |= (1 << 25);
1234 }
1235
1236 if (flags & BDRV_REQ_FUA) {
1237 cdw12 |= (1 << 30);
1238 }
1239
1240 cmd.cdw12 = cpu_to_le32(cdw12);
1241
1242 trace_nvme_write_zeroes(s, offset, bytes, flags);
1243 assert(s->nr_queues > 1);
1244 req = nvme_get_free_req(ioq);
1245 assert(req);
1246
1247 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1248
1249 data.co = qemu_coroutine_self();
1250 while (data.ret == -EINPROGRESS) {
1251 qemu_coroutine_yield();
1252 }
1253
1254 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1255 return data.ret;
1256 }
1257
1258
1259 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1260 int64_t offset,
1261 int bytes)
1262 {
1263 BDRVNVMeState *s = bs->opaque;
1264 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1265 NVMeRequest *req;
1266 NvmeDsmRange *buf;
1267 QEMUIOVector local_qiov;
1268 int ret;
1269
1270 NvmeCmd cmd = {
1271 .opcode = NVME_CMD_DSM,
1272 .nsid = cpu_to_le32(s->nsid),
1273 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1274 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1275 };
1276
1277 NVMeCoData data = {
1278 .ctx = bdrv_get_aio_context(bs),
1279 .ret = -EINPROGRESS,
1280 };
1281
1282 if (!s->supports_discard) {
1283 return -ENOTSUP;
1284 }
1285
1286 assert(s->nr_queues > 1);
1287
1288 buf = qemu_try_memalign(s->page_size, s->page_size);
1289 if (!buf) {
1290 return -ENOMEM;
1291 }
1292 memset(buf, 0, s->page_size);
1293 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1294 buf->slba = cpu_to_le64(offset >> s->blkshift);
1295 buf->cattr = 0;
1296
1297 qemu_iovec_init(&local_qiov, 1);
1298 qemu_iovec_add(&local_qiov, buf, 4096);
1299
1300 req = nvme_get_free_req(ioq);
1301 assert(req);
1302
1303 qemu_co_mutex_lock(&s->dma_map_lock);
1304 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1305 qemu_co_mutex_unlock(&s->dma_map_lock);
1306
1307 if (ret) {
1308 nvme_put_free_req_and_wake(ioq, req);
1309 goto out;
1310 }
1311
1312 trace_nvme_dsm(s, offset, bytes);
1313
1314 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1315
1316 data.co = qemu_coroutine_self();
1317 while (data.ret == -EINPROGRESS) {
1318 qemu_coroutine_yield();
1319 }
1320
1321 qemu_co_mutex_lock(&s->dma_map_lock);
1322 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1323 qemu_co_mutex_unlock(&s->dma_map_lock);
1324
1325 if (ret) {
1326 goto out;
1327 }
1328
1329 ret = data.ret;
1330 trace_nvme_dsm_done(s, offset, bytes, ret);
1331 out:
1332 qemu_iovec_destroy(&local_qiov);
1333 qemu_vfree(buf);
1334 return ret;
1335
1336 }
1337
1338
1339 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1340 BlockReopenQueue *queue, Error **errp)
1341 {
1342 return 0;
1343 }
1344
1345 static void nvme_refresh_filename(BlockDriverState *bs)
1346 {
1347 BDRVNVMeState *s = bs->opaque;
1348
1349 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1350 s->device, s->nsid);
1351 }
1352
1353 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1354 {
1355 BDRVNVMeState *s = bs->opaque;
1356
1357 bs->bl.opt_mem_alignment = s->page_size;
1358 bs->bl.request_alignment = s->page_size;
1359 bs->bl.max_transfer = s->max_transfer;
1360 }
1361
1362 static void nvme_detach_aio_context(BlockDriverState *bs)
1363 {
1364 BDRVNVMeState *s = bs->opaque;
1365
1366 for (int i = 0; i < s->nr_queues; i++) {
1367 NVMeQueuePair *q = s->queues[i];
1368
1369 qemu_bh_delete(q->completion_bh);
1370 q->completion_bh = NULL;
1371 }
1372
1373 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1374 false, NULL, NULL);
1375 }
1376
1377 static void nvme_attach_aio_context(BlockDriverState *bs,
1378 AioContext *new_context)
1379 {
1380 BDRVNVMeState *s = bs->opaque;
1381
1382 s->aio_context = new_context;
1383 aio_set_event_notifier(new_context, &s->irq_notifier,
1384 false, nvme_handle_event, nvme_poll_cb);
1385
1386 for (int i = 0; i < s->nr_queues; i++) {
1387 NVMeQueuePair *q = s->queues[i];
1388
1389 q->completion_bh =
1390 aio_bh_new(new_context, nvme_process_completion_bh, q);
1391 }
1392 }
1393
1394 static void nvme_aio_plug(BlockDriverState *bs)
1395 {
1396 BDRVNVMeState *s = bs->opaque;
1397 assert(!s->plugged);
1398 s->plugged = true;
1399 }
1400
1401 static void nvme_aio_unplug(BlockDriverState *bs)
1402 {
1403 int i;
1404 BDRVNVMeState *s = bs->opaque;
1405 assert(s->plugged);
1406 s->plugged = false;
1407 for (i = INDEX_IO(0); i < s->nr_queues; i++) {
1408 NVMeQueuePair *q = s->queues[i];
1409 qemu_mutex_lock(&q->lock);
1410 nvme_kick(q);
1411 nvme_process_completion(q);
1412 qemu_mutex_unlock(&q->lock);
1413 }
1414 }
1415
1416 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1417 {
1418 int ret;
1419 BDRVNVMeState *s = bs->opaque;
1420
1421 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1422 if (ret) {
1423 /* FIXME: we may run out of IOVA addresses after repeated
1424 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1425 * doesn't reclaim addresses for fixed mappings. */
1426 error_report("nvme_register_buf failed: %s", strerror(-ret));
1427 }
1428 }
1429
1430 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1431 {
1432 BDRVNVMeState *s = bs->opaque;
1433
1434 qemu_vfio_dma_unmap(s->vfio, host);
1435 }
1436
1437 static const char *const nvme_strong_runtime_opts[] = {
1438 NVME_BLOCK_OPT_DEVICE,
1439 NVME_BLOCK_OPT_NAMESPACE,
1440
1441 NULL
1442 };
1443
1444 static BlockDriver bdrv_nvme = {
1445 .format_name = "nvme",
1446 .protocol_name = "nvme",
1447 .instance_size = sizeof(BDRVNVMeState),
1448
1449 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1450 .create_opts = &bdrv_create_opts_simple,
1451
1452 .bdrv_parse_filename = nvme_parse_filename,
1453 .bdrv_file_open = nvme_file_open,
1454 .bdrv_close = nvme_close,
1455 .bdrv_getlength = nvme_getlength,
1456 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1457
1458 .bdrv_co_preadv = nvme_co_preadv,
1459 .bdrv_co_pwritev = nvme_co_pwritev,
1460
1461 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1462 .bdrv_co_pdiscard = nvme_co_pdiscard,
1463
1464 .bdrv_co_flush_to_disk = nvme_co_flush,
1465 .bdrv_reopen_prepare = nvme_reopen_prepare,
1466
1467 .bdrv_refresh_filename = nvme_refresh_filename,
1468 .bdrv_refresh_limits = nvme_refresh_limits,
1469 .strong_runtime_opts = nvme_strong_runtime_opts,
1470
1471 .bdrv_detach_aio_context = nvme_detach_aio_context,
1472 .bdrv_attach_aio_context = nvme_attach_aio_context,
1473
1474 .bdrv_io_plug = nvme_aio_plug,
1475 .bdrv_io_unplug = nvme_aio_unplug,
1476
1477 .bdrv_register_buf = nvme_register_buf,
1478 .bdrv_unregister_buf = nvme_unregister_buf,
1479 };
1480
1481 static void bdrv_nvme_init(void)
1482 {
1483 bdrv_register(&bdrv_nvme);
1484 }
1485
1486 block_init(bdrv_nvme_init);