]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
block: use int64_t instead of int in driver discard handlers
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28
29 #include "block/nvme.h"
30
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
35
36 /*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
42 typedef struct BDRVNVMeState BDRVNVMeState;
43
44 /* Same index is used for queues and IRQs */
45 #define INDEX_ADMIN 0
46 #define INDEX_IO(n) (1 + n)
47
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
49 enum {
50 MSIX_SHARED_IRQ_IDX = 0,
51 MSIX_IRQ_COUNT = 1
52 };
53
54 typedef struct {
55 int32_t head, tail;
56 uint8_t *queue;
57 uint64_t iova;
58 /* Hardware MMIO register */
59 volatile uint32_t *doorbell;
60 } NVMeQueue;
61
62 typedef struct {
63 BlockCompletionFunc *cb;
64 void *opaque;
65 int cid;
66 void *prp_list_page;
67 uint64_t prp_list_iova;
68 int free_req_next; /* q->reqs[] index of next free req */
69 } NVMeRequest;
70
71 typedef struct {
72 QemuMutex lock;
73
74 /* Read from I/O code path, initialized under BQL */
75 BDRVNVMeState *s;
76 int index;
77
78 /* Fields protected by BQL */
79 uint8_t *prp_list_pages;
80
81 /* Fields protected by @lock */
82 CoQueue free_req_queue;
83 NVMeQueue sq, cq;
84 int cq_phase;
85 int free_req_head;
86 NVMeRequest reqs[NVME_NUM_REQS];
87 int need_kick;
88 int inflight;
89
90 /* Thread-safe, no lock necessary */
91 QEMUBH *completion_bh;
92 } NVMeQueuePair;
93
94 struct BDRVNVMeState {
95 AioContext *aio_context;
96 QEMUVFIOState *vfio;
97 void *bar0_wo_map;
98 /* Memory mapped registers */
99 volatile struct {
100 uint32_t sq_tail;
101 uint32_t cq_head;
102 } *doorbells;
103 /* The submission/completion queue pairs.
104 * [0]: admin queue.
105 * [1..]: io queues.
106 */
107 NVMeQueuePair **queues;
108 unsigned queue_count;
109 size_t page_size;
110 /* How many uint32_t elements does each doorbell entry take. */
111 size_t doorbell_scale;
112 bool write_cache_supported;
113 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
114
115 uint64_t nsze; /* Namespace size reported by identify command */
116 int nsid; /* The namespace id to read/write data. */
117 int blkshift;
118
119 uint64_t max_transfer;
120 bool plugged;
121
122 bool supports_write_zeroes;
123 bool supports_discard;
124
125 CoMutex dma_map_lock;
126 CoQueue dma_flush_queue;
127
128 /* Total size of mapped qiov, accessed under dma_map_lock */
129 int dma_map_count;
130
131 /* PCI address (required for nvme_refresh_filename()) */
132 char *device;
133
134 struct {
135 uint64_t completion_errors;
136 uint64_t aligned_accesses;
137 uint64_t unaligned_accesses;
138 } stats;
139 };
140
141 #define NVME_BLOCK_OPT_DEVICE "device"
142 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
143
144 static void nvme_process_completion_bh(void *opaque);
145
146 static QemuOptsList runtime_opts = {
147 .name = "nvme",
148 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
149 .desc = {
150 {
151 .name = NVME_BLOCK_OPT_DEVICE,
152 .type = QEMU_OPT_STRING,
153 .help = "NVMe PCI device address",
154 },
155 {
156 .name = NVME_BLOCK_OPT_NAMESPACE,
157 .type = QEMU_OPT_NUMBER,
158 .help = "NVMe namespace",
159 },
160 { /* end of list */ }
161 },
162 };
163
164 /* Returns true on success, false on failure. */
165 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
166 unsigned nentries, size_t entry_bytes, Error **errp)
167 {
168 size_t bytes;
169 int r;
170
171 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
172 q->head = q->tail = 0;
173 q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
174 if (!q->queue) {
175 error_setg(errp, "Cannot allocate queue");
176 return false;
177 }
178 memset(q->queue, 0, bytes);
179 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
180 if (r) {
181 error_prepend(errp, "Cannot map queue: ");
182 }
183 return r == 0;
184 }
185
186 static void nvme_free_queue_pair(NVMeQueuePair *q)
187 {
188 trace_nvme_free_queue_pair(q->index, q);
189 if (q->completion_bh) {
190 qemu_bh_delete(q->completion_bh);
191 }
192 qemu_vfree(q->prp_list_pages);
193 qemu_vfree(q->sq.queue);
194 qemu_vfree(q->cq.queue);
195 qemu_mutex_destroy(&q->lock);
196 g_free(q);
197 }
198
199 static void nvme_free_req_queue_cb(void *opaque)
200 {
201 NVMeQueuePair *q = opaque;
202
203 qemu_mutex_lock(&q->lock);
204 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
205 /* Retry all pending requests */
206 }
207 qemu_mutex_unlock(&q->lock);
208 }
209
210 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
211 AioContext *aio_context,
212 unsigned idx, size_t size,
213 Error **errp)
214 {
215 int i, r;
216 NVMeQueuePair *q;
217 uint64_t prp_list_iova;
218 size_t bytes;
219
220 q = g_try_new0(NVMeQueuePair, 1);
221 if (!q) {
222 error_setg(errp, "Cannot allocate queue pair");
223 return NULL;
224 }
225 trace_nvme_create_queue_pair(idx, q, size, aio_context,
226 event_notifier_get_fd(s->irq_notifier));
227 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
228 qemu_real_host_page_size);
229 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
230 if (!q->prp_list_pages) {
231 error_setg(errp, "Cannot allocate PRP page list");
232 goto fail;
233 }
234 memset(q->prp_list_pages, 0, bytes);
235 qemu_mutex_init(&q->lock);
236 q->s = s;
237 q->index = idx;
238 qemu_co_queue_init(&q->free_req_queue);
239 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
240 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
241 false, &prp_list_iova, errp);
242 if (r) {
243 error_prepend(errp, "Cannot map buffer for DMA: ");
244 goto fail;
245 }
246 q->free_req_head = -1;
247 for (i = 0; i < NVME_NUM_REQS; i++) {
248 NVMeRequest *req = &q->reqs[i];
249 req->cid = i + 1;
250 req->free_req_next = q->free_req_head;
251 q->free_req_head = i;
252 req->prp_list_page = q->prp_list_pages + i * s->page_size;
253 req->prp_list_iova = prp_list_iova + i * s->page_size;
254 }
255
256 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
257 goto fail;
258 }
259 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
260
261 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
262 goto fail;
263 }
264 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
265
266 return q;
267 fail:
268 nvme_free_queue_pair(q);
269 return NULL;
270 }
271
272 /* With q->lock */
273 static void nvme_kick(NVMeQueuePair *q)
274 {
275 BDRVNVMeState *s = q->s;
276
277 if (s->plugged || !q->need_kick) {
278 return;
279 }
280 trace_nvme_kick(s, q->index);
281 assert(!(q->sq.tail & 0xFF00));
282 /* Fence the write to submission queue entry before notifying the device. */
283 smp_wmb();
284 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
285 q->inflight += q->need_kick;
286 q->need_kick = 0;
287 }
288
289 /* Find a free request element if any, otherwise:
290 * a) if in coroutine context, try to wait for one to become available;
291 * b) if not in coroutine, return NULL;
292 */
293 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
294 {
295 NVMeRequest *req;
296
297 qemu_mutex_lock(&q->lock);
298
299 while (q->free_req_head == -1) {
300 if (qemu_in_coroutine()) {
301 trace_nvme_free_req_queue_wait(q->s, q->index);
302 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
303 } else {
304 qemu_mutex_unlock(&q->lock);
305 return NULL;
306 }
307 }
308
309 req = &q->reqs[q->free_req_head];
310 q->free_req_head = req->free_req_next;
311 req->free_req_next = -1;
312
313 qemu_mutex_unlock(&q->lock);
314 return req;
315 }
316
317 /* With q->lock */
318 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
319 {
320 req->free_req_next = q->free_req_head;
321 q->free_req_head = req - q->reqs;
322 }
323
324 /* With q->lock */
325 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
326 {
327 if (!qemu_co_queue_empty(&q->free_req_queue)) {
328 replay_bh_schedule_oneshot_event(q->s->aio_context,
329 nvme_free_req_queue_cb, q);
330 }
331 }
332
333 /* Insert a request in the freelist and wake waiters */
334 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
335 {
336 qemu_mutex_lock(&q->lock);
337 nvme_put_free_req_locked(q, req);
338 nvme_wake_free_req_locked(q);
339 qemu_mutex_unlock(&q->lock);
340 }
341
342 static inline int nvme_translate_error(const NvmeCqe *c)
343 {
344 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
345 if (status) {
346 trace_nvme_error(le32_to_cpu(c->result),
347 le16_to_cpu(c->sq_head),
348 le16_to_cpu(c->sq_id),
349 le16_to_cpu(c->cid),
350 le16_to_cpu(status));
351 }
352 switch (status) {
353 case 0:
354 return 0;
355 case 1:
356 return -ENOSYS;
357 case 2:
358 return -EINVAL;
359 default:
360 return -EIO;
361 }
362 }
363
364 /* With q->lock */
365 static bool nvme_process_completion(NVMeQueuePair *q)
366 {
367 BDRVNVMeState *s = q->s;
368 bool progress = false;
369 NVMeRequest *preq;
370 NVMeRequest req;
371 NvmeCqe *c;
372
373 trace_nvme_process_completion(s, q->index, q->inflight);
374 if (s->plugged) {
375 trace_nvme_process_completion_queue_plugged(s, q->index);
376 return false;
377 }
378
379 /*
380 * Support re-entrancy when a request cb() function invokes aio_poll().
381 * Pending completions must be visible to aio_poll() so that a cb()
382 * function can wait for the completion of another request.
383 *
384 * The aio_poll() loop will execute our BH and we'll resume completion
385 * processing there.
386 */
387 qemu_bh_schedule(q->completion_bh);
388
389 assert(q->inflight >= 0);
390 while (q->inflight) {
391 int ret;
392 int16_t cid;
393
394 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
395 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
396 break;
397 }
398 ret = nvme_translate_error(c);
399 if (ret) {
400 s->stats.completion_errors++;
401 }
402 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
403 if (!q->cq.head) {
404 q->cq_phase = !q->cq_phase;
405 }
406 cid = le16_to_cpu(c->cid);
407 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
408 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
409 "queue size: %u", cid, NVME_QUEUE_SIZE);
410 continue;
411 }
412 trace_nvme_complete_command(s, q->index, cid);
413 preq = &q->reqs[cid - 1];
414 req = *preq;
415 assert(req.cid == cid);
416 assert(req.cb);
417 nvme_put_free_req_locked(q, preq);
418 preq->cb = preq->opaque = NULL;
419 q->inflight--;
420 qemu_mutex_unlock(&q->lock);
421 req.cb(req.opaque, ret);
422 qemu_mutex_lock(&q->lock);
423 progress = true;
424 }
425 if (progress) {
426 /* Notify the device so it can post more completions. */
427 smp_mb_release();
428 *q->cq.doorbell = cpu_to_le32(q->cq.head);
429 nvme_wake_free_req_locked(q);
430 }
431
432 qemu_bh_cancel(q->completion_bh);
433
434 return progress;
435 }
436
437 static void nvme_process_completion_bh(void *opaque)
438 {
439 NVMeQueuePair *q = opaque;
440
441 /*
442 * We're being invoked because a nvme_process_completion() cb() function
443 * called aio_poll(). The callback may be waiting for further completions
444 * so notify the device that it has space to fill in more completions now.
445 */
446 smp_mb_release();
447 *q->cq.doorbell = cpu_to_le32(q->cq.head);
448 nvme_wake_free_req_locked(q);
449
450 nvme_process_completion(q);
451 }
452
453 static void nvme_trace_command(const NvmeCmd *cmd)
454 {
455 int i;
456
457 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
458 return;
459 }
460 for (i = 0; i < 8; ++i) {
461 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
462 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
463 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
464 }
465 }
466
467 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
468 NvmeCmd *cmd, BlockCompletionFunc cb,
469 void *opaque)
470 {
471 assert(!req->cb);
472 req->cb = cb;
473 req->opaque = opaque;
474 cmd->cid = cpu_to_le16(req->cid);
475
476 trace_nvme_submit_command(q->s, q->index, req->cid);
477 nvme_trace_command(cmd);
478 qemu_mutex_lock(&q->lock);
479 memcpy((uint8_t *)q->sq.queue +
480 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
481 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
482 q->need_kick++;
483 nvme_kick(q);
484 nvme_process_completion(q);
485 qemu_mutex_unlock(&q->lock);
486 }
487
488 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
489 {
490 int *pret = opaque;
491 *pret = ret;
492 aio_wait_kick();
493 }
494
495 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
496 {
497 BDRVNVMeState *s = bs->opaque;
498 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
499 AioContext *aio_context = bdrv_get_aio_context(bs);
500 NVMeRequest *req;
501 int ret = -EINPROGRESS;
502 req = nvme_get_free_req(q);
503 if (!req) {
504 return -EBUSY;
505 }
506 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
507
508 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
509 return ret;
510 }
511
512 /* Returns true on success, false on failure. */
513 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
514 {
515 BDRVNVMeState *s = bs->opaque;
516 bool ret = false;
517 union {
518 NvmeIdCtrl ctrl;
519 NvmeIdNs ns;
520 } *id;
521 NvmeLBAF *lbaf;
522 uint16_t oncs;
523 int r;
524 uint64_t iova;
525 NvmeCmd cmd = {
526 .opcode = NVME_ADM_CMD_IDENTIFY,
527 .cdw10 = cpu_to_le32(0x1),
528 };
529 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
530
531 id = qemu_try_memalign(qemu_real_host_page_size, id_size);
532 if (!id) {
533 error_setg(errp, "Cannot allocate buffer for identify response");
534 goto out;
535 }
536 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
537 if (r) {
538 error_prepend(errp, "Cannot map buffer for DMA: ");
539 goto out;
540 }
541
542 memset(id, 0, id_size);
543 cmd.dptr.prp1 = cpu_to_le64(iova);
544 if (nvme_admin_cmd_sync(bs, &cmd)) {
545 error_setg(errp, "Failed to identify controller");
546 goto out;
547 }
548
549 if (le32_to_cpu(id->ctrl.nn) < namespace) {
550 error_setg(errp, "Invalid namespace");
551 goto out;
552 }
553 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
554 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
555 /* For now the page list buffer per command is one page, to hold at most
556 * s->page_size / sizeof(uint64_t) entries. */
557 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
558 s->page_size / sizeof(uint64_t) * s->page_size);
559
560 oncs = le16_to_cpu(id->ctrl.oncs);
561 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
562 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
563
564 memset(id, 0, id_size);
565 cmd.cdw10 = 0;
566 cmd.nsid = cpu_to_le32(namespace);
567 if (nvme_admin_cmd_sync(bs, &cmd)) {
568 error_setg(errp, "Failed to identify namespace");
569 goto out;
570 }
571
572 s->nsze = le64_to_cpu(id->ns.nsze);
573 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
574
575 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
576 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
577 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
578 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
579 }
580
581 if (lbaf->ms) {
582 error_setg(errp, "Namespaces with metadata are not yet supported");
583 goto out;
584 }
585
586 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
587 (1 << lbaf->ds) > s->page_size)
588 {
589 error_setg(errp, "Namespace has unsupported block size (2^%d)",
590 lbaf->ds);
591 goto out;
592 }
593
594 ret = true;
595 s->blkshift = lbaf->ds;
596 out:
597 qemu_vfio_dma_unmap(s->vfio, id);
598 qemu_vfree(id);
599
600 return ret;
601 }
602
603 static bool nvme_poll_queue(NVMeQueuePair *q)
604 {
605 bool progress = false;
606
607 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
608 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
609
610 trace_nvme_poll_queue(q->s, q->index);
611 /*
612 * Do an early check for completions. q->lock isn't needed because
613 * nvme_process_completion() only runs in the event loop thread and
614 * cannot race with itself.
615 */
616 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
617 return false;
618 }
619
620 qemu_mutex_lock(&q->lock);
621 while (nvme_process_completion(q)) {
622 /* Keep polling */
623 progress = true;
624 }
625 qemu_mutex_unlock(&q->lock);
626
627 return progress;
628 }
629
630 static bool nvme_poll_queues(BDRVNVMeState *s)
631 {
632 bool progress = false;
633 int i;
634
635 for (i = 0; i < s->queue_count; i++) {
636 if (nvme_poll_queue(s->queues[i])) {
637 progress = true;
638 }
639 }
640 return progress;
641 }
642
643 static void nvme_handle_event(EventNotifier *n)
644 {
645 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
646 irq_notifier[MSIX_SHARED_IRQ_IDX]);
647
648 trace_nvme_handle_event(s);
649 event_notifier_test_and_clear(n);
650 nvme_poll_queues(s);
651 }
652
653 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
654 {
655 BDRVNVMeState *s = bs->opaque;
656 unsigned n = s->queue_count;
657 NVMeQueuePair *q;
658 NvmeCmd cmd;
659 unsigned queue_size = NVME_QUEUE_SIZE;
660
661 assert(n <= UINT16_MAX);
662 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
663 n, queue_size, errp);
664 if (!q) {
665 return false;
666 }
667 cmd = (NvmeCmd) {
668 .opcode = NVME_ADM_CMD_CREATE_CQ,
669 .dptr.prp1 = cpu_to_le64(q->cq.iova),
670 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
671 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
672 };
673 if (nvme_admin_cmd_sync(bs, &cmd)) {
674 error_setg(errp, "Failed to create CQ io queue [%u]", n);
675 goto out_error;
676 }
677 cmd = (NvmeCmd) {
678 .opcode = NVME_ADM_CMD_CREATE_SQ,
679 .dptr.prp1 = cpu_to_le64(q->sq.iova),
680 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
681 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
682 };
683 if (nvme_admin_cmd_sync(bs, &cmd)) {
684 error_setg(errp, "Failed to create SQ io queue [%u]", n);
685 goto out_error;
686 }
687 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
688 s->queues[n] = q;
689 s->queue_count++;
690 return true;
691 out_error:
692 nvme_free_queue_pair(q);
693 return false;
694 }
695
696 static bool nvme_poll_cb(void *opaque)
697 {
698 EventNotifier *e = opaque;
699 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
700 irq_notifier[MSIX_SHARED_IRQ_IDX]);
701
702 return nvme_poll_queues(s);
703 }
704
705 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
706 Error **errp)
707 {
708 BDRVNVMeState *s = bs->opaque;
709 NVMeQueuePair *q;
710 AioContext *aio_context = bdrv_get_aio_context(bs);
711 int ret;
712 uint64_t cap;
713 uint32_t ver;
714 uint64_t timeout_ms;
715 uint64_t deadline, now;
716 volatile NvmeBar *regs = NULL;
717
718 qemu_co_mutex_init(&s->dma_map_lock);
719 qemu_co_queue_init(&s->dma_flush_queue);
720 s->device = g_strdup(device);
721 s->nsid = namespace;
722 s->aio_context = bdrv_get_aio_context(bs);
723 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
724 if (ret) {
725 error_setg(errp, "Failed to init event notifier");
726 return ret;
727 }
728
729 s->vfio = qemu_vfio_open_pci(device, errp);
730 if (!s->vfio) {
731 ret = -EINVAL;
732 goto out;
733 }
734
735 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
736 PROT_READ | PROT_WRITE, errp);
737 if (!regs) {
738 ret = -EINVAL;
739 goto out;
740 }
741 /* Perform initialize sequence as described in NVMe spec "7.6.1
742 * Initialization". */
743
744 cap = le64_to_cpu(regs->cap);
745 trace_nvme_controller_capability_raw(cap);
746 trace_nvme_controller_capability("Maximum Queue Entries Supported",
747 1 + NVME_CAP_MQES(cap));
748 trace_nvme_controller_capability("Contiguous Queues Required",
749 NVME_CAP_CQR(cap));
750 trace_nvme_controller_capability("Doorbell Stride",
751 1 << (2 + NVME_CAP_DSTRD(cap)));
752 trace_nvme_controller_capability("Subsystem Reset Supported",
753 NVME_CAP_NSSRS(cap));
754 trace_nvme_controller_capability("Memory Page Size Minimum",
755 1 << (12 + NVME_CAP_MPSMIN(cap)));
756 trace_nvme_controller_capability("Memory Page Size Maximum",
757 1 << (12 + NVME_CAP_MPSMAX(cap)));
758 if (!NVME_CAP_CSS(cap)) {
759 error_setg(errp, "Device doesn't support NVMe command set");
760 ret = -EINVAL;
761 goto out;
762 }
763
764 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
765 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
766 bs->bl.opt_mem_alignment = s->page_size;
767 bs->bl.request_alignment = s->page_size;
768 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
769
770 ver = le32_to_cpu(regs->vs);
771 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
772 extract32(ver, 8, 8),
773 extract32(ver, 0, 8));
774
775 /* Reset device to get a clean state. */
776 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
777 /* Wait for CSTS.RDY = 0. */
778 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
779 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
780 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
781 error_setg(errp, "Timeout while waiting for device to reset (%"
782 PRId64 " ms)",
783 timeout_ms);
784 ret = -ETIMEDOUT;
785 goto out;
786 }
787 }
788
789 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
790 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
791 PROT_WRITE, errp);
792 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
793 if (!s->doorbells) {
794 ret = -EINVAL;
795 goto out;
796 }
797
798 /* Set up admin queue. */
799 s->queues = g_new(NVMeQueuePair *, 1);
800 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
801 if (!q) {
802 ret = -EINVAL;
803 goto out;
804 }
805 s->queues[INDEX_ADMIN] = q;
806 s->queue_count = 1;
807 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
808 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
809 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
810 regs->asq = cpu_to_le64(q->sq.iova);
811 regs->acq = cpu_to_le64(q->cq.iova);
812
813 /* After setting up all control registers we can enable device now. */
814 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
815 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
816 CC_EN_MASK);
817 /* Wait for CSTS.RDY = 1. */
818 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
819 deadline = now + timeout_ms * SCALE_MS;
820 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
821 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
822 error_setg(errp, "Timeout while waiting for device to start (%"
823 PRId64 " ms)",
824 timeout_ms);
825 ret = -ETIMEDOUT;
826 goto out;
827 }
828 }
829
830 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
831 VFIO_PCI_MSIX_IRQ_INDEX, errp);
832 if (ret) {
833 goto out;
834 }
835 aio_set_event_notifier(bdrv_get_aio_context(bs),
836 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
837 false, nvme_handle_event, nvme_poll_cb);
838
839 if (!nvme_identify(bs, namespace, errp)) {
840 ret = -EIO;
841 goto out;
842 }
843
844 /* Set up command queues. */
845 if (!nvme_add_io_queue(bs, errp)) {
846 ret = -EIO;
847 }
848 out:
849 if (regs) {
850 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
851 }
852
853 /* Cleaning up is done in nvme_file_open() upon error. */
854 return ret;
855 }
856
857 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
858 *
859 * nvme://0000:44:00.0/1
860 *
861 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
862 * is the PCI address, and the last part is the namespace number starting from
863 * 1 according to the NVMe spec. */
864 static void nvme_parse_filename(const char *filename, QDict *options,
865 Error **errp)
866 {
867 int pref = strlen("nvme://");
868
869 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
870 const char *tmp = filename + pref;
871 char *device;
872 const char *namespace;
873 unsigned long ns;
874 const char *slash = strchr(tmp, '/');
875 if (!slash) {
876 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
877 return;
878 }
879 device = g_strndup(tmp, slash - tmp);
880 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
881 g_free(device);
882 namespace = slash + 1;
883 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
884 error_setg(errp, "Invalid namespace '%s', positive number expected",
885 namespace);
886 return;
887 }
888 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
889 *namespace ? namespace : "1");
890 }
891 }
892
893 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
894 Error **errp)
895 {
896 int ret;
897 BDRVNVMeState *s = bs->opaque;
898 NvmeCmd cmd = {
899 .opcode = NVME_ADM_CMD_SET_FEATURES,
900 .nsid = cpu_to_le32(s->nsid),
901 .cdw10 = cpu_to_le32(0x06),
902 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
903 };
904
905 ret = nvme_admin_cmd_sync(bs, &cmd);
906 if (ret) {
907 error_setg(errp, "Failed to configure NVMe write cache");
908 }
909 return ret;
910 }
911
912 static void nvme_close(BlockDriverState *bs)
913 {
914 BDRVNVMeState *s = bs->opaque;
915
916 for (unsigned i = 0; i < s->queue_count; ++i) {
917 nvme_free_queue_pair(s->queues[i]);
918 }
919 g_free(s->queues);
920 aio_set_event_notifier(bdrv_get_aio_context(bs),
921 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
922 false, NULL, NULL);
923 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
924 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
925 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
926 qemu_vfio_close(s->vfio);
927
928 g_free(s->device);
929 }
930
931 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
932 Error **errp)
933 {
934 const char *device;
935 QemuOpts *opts;
936 int namespace;
937 int ret;
938 BDRVNVMeState *s = bs->opaque;
939
940 bs->supported_write_flags = BDRV_REQ_FUA;
941
942 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
943 qemu_opts_absorb_qdict(opts, options, &error_abort);
944 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
945 if (!device) {
946 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
947 qemu_opts_del(opts);
948 return -EINVAL;
949 }
950
951 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
952 ret = nvme_init(bs, device, namespace, errp);
953 qemu_opts_del(opts);
954 if (ret) {
955 goto fail;
956 }
957 if (flags & BDRV_O_NOCACHE) {
958 if (!s->write_cache_supported) {
959 error_setg(errp,
960 "NVMe controller doesn't support write cache configuration");
961 ret = -EINVAL;
962 } else {
963 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
964 errp);
965 }
966 if (ret) {
967 goto fail;
968 }
969 }
970 return 0;
971 fail:
972 nvme_close(bs);
973 return ret;
974 }
975
976 static int64_t nvme_getlength(BlockDriverState *bs)
977 {
978 BDRVNVMeState *s = bs->opaque;
979 return s->nsze << s->blkshift;
980 }
981
982 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
983 {
984 BDRVNVMeState *s = bs->opaque;
985 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
986 return UINT32_C(1) << s->blkshift;
987 }
988
989 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
990 {
991 uint32_t blocksize = nvme_get_blocksize(bs);
992 bsz->phys = blocksize;
993 bsz->log = blocksize;
994 return 0;
995 }
996
997 /* Called with s->dma_map_lock */
998 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
999 QEMUIOVector *qiov)
1000 {
1001 int r = 0;
1002 BDRVNVMeState *s = bs->opaque;
1003
1004 s->dma_map_count -= qiov->size;
1005 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1006 r = qemu_vfio_dma_reset_temporary(s->vfio);
1007 if (!r) {
1008 qemu_co_queue_restart_all(&s->dma_flush_queue);
1009 }
1010 }
1011 return r;
1012 }
1013
1014 /* Called with s->dma_map_lock */
1015 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1016 NVMeRequest *req, QEMUIOVector *qiov)
1017 {
1018 BDRVNVMeState *s = bs->opaque;
1019 uint64_t *pagelist = req->prp_list_page;
1020 int i, j, r;
1021 int entries = 0;
1022 Error *local_err = NULL, **errp = NULL;
1023
1024 assert(qiov->size);
1025 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1026 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1027 for (i = 0; i < qiov->niov; ++i) {
1028 bool retry = true;
1029 uint64_t iova;
1030 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1031 qemu_real_host_page_size);
1032 try_map:
1033 r = qemu_vfio_dma_map(s->vfio,
1034 qiov->iov[i].iov_base,
1035 len, true, &iova, errp);
1036 if (r == -ENOSPC) {
1037 /*
1038 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1039 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1040 * mappings available for a container since Linux kernel commit
1041 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1042 * April 2019, see CVE-2019-3882).
1043 *
1044 * This block driver already handles this error path by checking
1045 * for the -ENOMEM error, so we directly replace -ENOSPC by
1046 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1047 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1048 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1049 * to add more storage to the blockdev. Not something we can do
1050 * easily with an IOMMU :)
1051 */
1052 r = -ENOMEM;
1053 }
1054 if (r == -ENOMEM && retry) {
1055 /*
1056 * We exhausted the DMA mappings available for our container:
1057 * recycle the volatile IOVA mappings.
1058 */
1059 retry = false;
1060 trace_nvme_dma_flush_queue_wait(s);
1061 if (s->dma_map_count) {
1062 trace_nvme_dma_map_flush(s);
1063 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1064 } else {
1065 r = qemu_vfio_dma_reset_temporary(s->vfio);
1066 if (r) {
1067 goto fail;
1068 }
1069 }
1070 errp = &local_err;
1071
1072 goto try_map;
1073 }
1074 if (r) {
1075 goto fail;
1076 }
1077
1078 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1079 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1080 }
1081 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1082 qiov->iov[i].iov_len / s->page_size);
1083 }
1084
1085 s->dma_map_count += qiov->size;
1086
1087 assert(entries <= s->page_size / sizeof(uint64_t));
1088 switch (entries) {
1089 case 0:
1090 abort();
1091 case 1:
1092 cmd->dptr.prp1 = pagelist[0];
1093 cmd->dptr.prp2 = 0;
1094 break;
1095 case 2:
1096 cmd->dptr.prp1 = pagelist[0];
1097 cmd->dptr.prp2 = pagelist[1];
1098 break;
1099 default:
1100 cmd->dptr.prp1 = pagelist[0];
1101 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1102 break;
1103 }
1104 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1105 for (i = 0; i < entries; ++i) {
1106 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1107 }
1108 return 0;
1109 fail:
1110 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1111 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1112 * because they are already mapped before calling this function; for
1113 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1114 * calling qemu_vfio_dma_reset_temporary when necessary. */
1115 if (local_err) {
1116 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1117 }
1118 return r;
1119 }
1120
1121 typedef struct {
1122 Coroutine *co;
1123 int ret;
1124 AioContext *ctx;
1125 } NVMeCoData;
1126
1127 static void nvme_rw_cb_bh(void *opaque)
1128 {
1129 NVMeCoData *data = opaque;
1130 qemu_coroutine_enter(data->co);
1131 }
1132
1133 static void nvme_rw_cb(void *opaque, int ret)
1134 {
1135 NVMeCoData *data = opaque;
1136 data->ret = ret;
1137 if (!data->co) {
1138 /* The rw coroutine hasn't yielded, don't try to enter. */
1139 return;
1140 }
1141 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1142 }
1143
1144 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1145 uint64_t offset, uint64_t bytes,
1146 QEMUIOVector *qiov,
1147 bool is_write,
1148 int flags)
1149 {
1150 int r;
1151 BDRVNVMeState *s = bs->opaque;
1152 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1153 NVMeRequest *req;
1154
1155 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1156 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1157 NvmeCmd cmd = {
1158 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1159 .nsid = cpu_to_le32(s->nsid),
1160 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1161 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1162 .cdw12 = cpu_to_le32(cdw12),
1163 };
1164 NVMeCoData data = {
1165 .ctx = bdrv_get_aio_context(bs),
1166 .ret = -EINPROGRESS,
1167 };
1168
1169 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1170 assert(s->queue_count > 1);
1171 req = nvme_get_free_req(ioq);
1172 assert(req);
1173
1174 qemu_co_mutex_lock(&s->dma_map_lock);
1175 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1176 qemu_co_mutex_unlock(&s->dma_map_lock);
1177 if (r) {
1178 nvme_put_free_req_and_wake(ioq, req);
1179 return r;
1180 }
1181 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1182
1183 data.co = qemu_coroutine_self();
1184 while (data.ret == -EINPROGRESS) {
1185 qemu_coroutine_yield();
1186 }
1187
1188 qemu_co_mutex_lock(&s->dma_map_lock);
1189 r = nvme_cmd_unmap_qiov(bs, qiov);
1190 qemu_co_mutex_unlock(&s->dma_map_lock);
1191 if (r) {
1192 return r;
1193 }
1194
1195 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1196 return data.ret;
1197 }
1198
1199 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1200 const QEMUIOVector *qiov)
1201 {
1202 int i;
1203 BDRVNVMeState *s = bs->opaque;
1204
1205 for (i = 0; i < qiov->niov; ++i) {
1206 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1207 qemu_real_host_page_size) ||
1208 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1209 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1210 qiov->iov[i].iov_len, s->page_size);
1211 return false;
1212 }
1213 }
1214 return true;
1215 }
1216
1217 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1218 QEMUIOVector *qiov, bool is_write, int flags)
1219 {
1220 BDRVNVMeState *s = bs->opaque;
1221 int r;
1222 uint8_t *buf = NULL;
1223 QEMUIOVector local_qiov;
1224 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1225 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1226 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1227 assert(bytes <= s->max_transfer);
1228 if (nvme_qiov_aligned(bs, qiov)) {
1229 s->stats.aligned_accesses++;
1230 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1231 }
1232 s->stats.unaligned_accesses++;
1233 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1234 buf = qemu_try_memalign(qemu_real_host_page_size, len);
1235
1236 if (!buf) {
1237 return -ENOMEM;
1238 }
1239 qemu_iovec_init(&local_qiov, 1);
1240 if (is_write) {
1241 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1242 }
1243 qemu_iovec_add(&local_qiov, buf, bytes);
1244 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1245 qemu_iovec_destroy(&local_qiov);
1246 if (!r && !is_write) {
1247 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1248 }
1249 qemu_vfree(buf);
1250 return r;
1251 }
1252
1253 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1254 int64_t offset, int64_t bytes,
1255 QEMUIOVector *qiov,
1256 BdrvRequestFlags flags)
1257 {
1258 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1259 }
1260
1261 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1262 int64_t offset, int64_t bytes,
1263 QEMUIOVector *qiov,
1264 BdrvRequestFlags flags)
1265 {
1266 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1267 }
1268
1269 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1270 {
1271 BDRVNVMeState *s = bs->opaque;
1272 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1273 NVMeRequest *req;
1274 NvmeCmd cmd = {
1275 .opcode = NVME_CMD_FLUSH,
1276 .nsid = cpu_to_le32(s->nsid),
1277 };
1278 NVMeCoData data = {
1279 .ctx = bdrv_get_aio_context(bs),
1280 .ret = -EINPROGRESS,
1281 };
1282
1283 assert(s->queue_count > 1);
1284 req = nvme_get_free_req(ioq);
1285 assert(req);
1286 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1287
1288 data.co = qemu_coroutine_self();
1289 if (data.ret == -EINPROGRESS) {
1290 qemu_coroutine_yield();
1291 }
1292
1293 return data.ret;
1294 }
1295
1296
1297 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1298 int64_t offset,
1299 int64_t bytes,
1300 BdrvRequestFlags flags)
1301 {
1302 BDRVNVMeState *s = bs->opaque;
1303 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1304 NVMeRequest *req;
1305 uint32_t cdw12;
1306
1307 if (!s->supports_write_zeroes) {
1308 return -ENOTSUP;
1309 }
1310
1311 if (bytes == 0) {
1312 return 0;
1313 }
1314
1315 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1316 /*
1317 * We should not lose information. pwrite_zeroes_alignment and
1318 * max_pwrite_zeroes guarantees it.
1319 */
1320 assert(((cdw12 + 1) << s->blkshift) == bytes);
1321
1322 NvmeCmd cmd = {
1323 .opcode = NVME_CMD_WRITE_ZEROES,
1324 .nsid = cpu_to_le32(s->nsid),
1325 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1326 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1327 };
1328
1329 NVMeCoData data = {
1330 .ctx = bdrv_get_aio_context(bs),
1331 .ret = -EINPROGRESS,
1332 };
1333
1334 if (flags & BDRV_REQ_MAY_UNMAP) {
1335 cdw12 |= (1 << 25);
1336 }
1337
1338 if (flags & BDRV_REQ_FUA) {
1339 cdw12 |= (1 << 30);
1340 }
1341
1342 cmd.cdw12 = cpu_to_le32(cdw12);
1343
1344 trace_nvme_write_zeroes(s, offset, bytes, flags);
1345 assert(s->queue_count > 1);
1346 req = nvme_get_free_req(ioq);
1347 assert(req);
1348
1349 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1350
1351 data.co = qemu_coroutine_self();
1352 while (data.ret == -EINPROGRESS) {
1353 qemu_coroutine_yield();
1354 }
1355
1356 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1357 return data.ret;
1358 }
1359
1360
1361 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1362 int64_t offset,
1363 int64_t bytes)
1364 {
1365 BDRVNVMeState *s = bs->opaque;
1366 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1367 NVMeRequest *req;
1368 NvmeDsmRange *buf;
1369 QEMUIOVector local_qiov;
1370 int ret;
1371
1372 NvmeCmd cmd = {
1373 .opcode = NVME_CMD_DSM,
1374 .nsid = cpu_to_le32(s->nsid),
1375 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1376 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1377 };
1378
1379 NVMeCoData data = {
1380 .ctx = bdrv_get_aio_context(bs),
1381 .ret = -EINPROGRESS,
1382 };
1383
1384 if (!s->supports_discard) {
1385 return -ENOTSUP;
1386 }
1387
1388 assert(s->queue_count > 1);
1389
1390 /*
1391 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1392 * defined in nvme_refresh_limits().
1393 */
1394 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1395 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1396 assert((bytes >> s->blkshift) <= UINT32_MAX);
1397
1398 buf = qemu_try_memalign(s->page_size, s->page_size);
1399 if (!buf) {
1400 return -ENOMEM;
1401 }
1402 memset(buf, 0, s->page_size);
1403 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1404 buf->slba = cpu_to_le64(offset >> s->blkshift);
1405 buf->cattr = 0;
1406
1407 qemu_iovec_init(&local_qiov, 1);
1408 qemu_iovec_add(&local_qiov, buf, 4096);
1409
1410 req = nvme_get_free_req(ioq);
1411 assert(req);
1412
1413 qemu_co_mutex_lock(&s->dma_map_lock);
1414 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1415 qemu_co_mutex_unlock(&s->dma_map_lock);
1416
1417 if (ret) {
1418 nvme_put_free_req_and_wake(ioq, req);
1419 goto out;
1420 }
1421
1422 trace_nvme_dsm(s, offset, bytes);
1423
1424 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1425
1426 data.co = qemu_coroutine_self();
1427 while (data.ret == -EINPROGRESS) {
1428 qemu_coroutine_yield();
1429 }
1430
1431 qemu_co_mutex_lock(&s->dma_map_lock);
1432 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1433 qemu_co_mutex_unlock(&s->dma_map_lock);
1434
1435 if (ret) {
1436 goto out;
1437 }
1438
1439 ret = data.ret;
1440 trace_nvme_dsm_done(s, offset, bytes, ret);
1441 out:
1442 qemu_iovec_destroy(&local_qiov);
1443 qemu_vfree(buf);
1444 return ret;
1445
1446 }
1447
1448 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1449 bool exact, PreallocMode prealloc,
1450 BdrvRequestFlags flags, Error **errp)
1451 {
1452 int64_t cur_length;
1453
1454 if (prealloc != PREALLOC_MODE_OFF) {
1455 error_setg(errp, "Unsupported preallocation mode '%s'",
1456 PreallocMode_str(prealloc));
1457 return -ENOTSUP;
1458 }
1459
1460 cur_length = nvme_getlength(bs);
1461 if (offset != cur_length && exact) {
1462 error_setg(errp, "Cannot resize NVMe devices");
1463 return -ENOTSUP;
1464 } else if (offset > cur_length) {
1465 error_setg(errp, "Cannot grow NVMe devices");
1466 return -EINVAL;
1467 }
1468
1469 return 0;
1470 }
1471
1472 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1473 BlockReopenQueue *queue, Error **errp)
1474 {
1475 return 0;
1476 }
1477
1478 static void nvme_refresh_filename(BlockDriverState *bs)
1479 {
1480 BDRVNVMeState *s = bs->opaque;
1481
1482 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1483 s->device, s->nsid);
1484 }
1485
1486 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1487 {
1488 BDRVNVMeState *s = bs->opaque;
1489
1490 bs->bl.opt_mem_alignment = s->page_size;
1491 bs->bl.request_alignment = s->page_size;
1492 bs->bl.max_transfer = s->max_transfer;
1493
1494 /*
1495 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1496 * at most 0xFFFF
1497 */
1498 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1499 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1500 1UL << s->blkshift);
1501
1502 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1503 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1504 1UL << s->blkshift);
1505 }
1506
1507 static void nvme_detach_aio_context(BlockDriverState *bs)
1508 {
1509 BDRVNVMeState *s = bs->opaque;
1510
1511 for (unsigned i = 0; i < s->queue_count; i++) {
1512 NVMeQueuePair *q = s->queues[i];
1513
1514 qemu_bh_delete(q->completion_bh);
1515 q->completion_bh = NULL;
1516 }
1517
1518 aio_set_event_notifier(bdrv_get_aio_context(bs),
1519 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1520 false, NULL, NULL);
1521 }
1522
1523 static void nvme_attach_aio_context(BlockDriverState *bs,
1524 AioContext *new_context)
1525 {
1526 BDRVNVMeState *s = bs->opaque;
1527
1528 s->aio_context = new_context;
1529 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1530 false, nvme_handle_event, nvme_poll_cb);
1531
1532 for (unsigned i = 0; i < s->queue_count; i++) {
1533 NVMeQueuePair *q = s->queues[i];
1534
1535 q->completion_bh =
1536 aio_bh_new(new_context, nvme_process_completion_bh, q);
1537 }
1538 }
1539
1540 static void nvme_aio_plug(BlockDriverState *bs)
1541 {
1542 BDRVNVMeState *s = bs->opaque;
1543 assert(!s->plugged);
1544 s->plugged = true;
1545 }
1546
1547 static void nvme_aio_unplug(BlockDriverState *bs)
1548 {
1549 BDRVNVMeState *s = bs->opaque;
1550 assert(s->plugged);
1551 s->plugged = false;
1552 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1553 NVMeQueuePair *q = s->queues[i];
1554 qemu_mutex_lock(&q->lock);
1555 nvme_kick(q);
1556 nvme_process_completion(q);
1557 qemu_mutex_unlock(&q->lock);
1558 }
1559 }
1560
1561 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1562 {
1563 int ret;
1564 Error *local_err = NULL;
1565 BDRVNVMeState *s = bs->opaque;
1566
1567 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
1568 if (ret) {
1569 /* FIXME: we may run out of IOVA addresses after repeated
1570 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1571 * doesn't reclaim addresses for fixed mappings. */
1572 error_reportf_err(local_err, "nvme_register_buf failed: ");
1573 }
1574 }
1575
1576 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1577 {
1578 BDRVNVMeState *s = bs->opaque;
1579
1580 qemu_vfio_dma_unmap(s->vfio, host);
1581 }
1582
1583 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1584 {
1585 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1586 BDRVNVMeState *s = bs->opaque;
1587
1588 stats->driver = BLOCKDEV_DRIVER_NVME;
1589 stats->u.nvme = (BlockStatsSpecificNvme) {
1590 .completion_errors = s->stats.completion_errors,
1591 .aligned_accesses = s->stats.aligned_accesses,
1592 .unaligned_accesses = s->stats.unaligned_accesses,
1593 };
1594
1595 return stats;
1596 }
1597
1598 static const char *const nvme_strong_runtime_opts[] = {
1599 NVME_BLOCK_OPT_DEVICE,
1600 NVME_BLOCK_OPT_NAMESPACE,
1601
1602 NULL
1603 };
1604
1605 static BlockDriver bdrv_nvme = {
1606 .format_name = "nvme",
1607 .protocol_name = "nvme",
1608 .instance_size = sizeof(BDRVNVMeState),
1609
1610 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1611 .create_opts = &bdrv_create_opts_simple,
1612
1613 .bdrv_parse_filename = nvme_parse_filename,
1614 .bdrv_file_open = nvme_file_open,
1615 .bdrv_close = nvme_close,
1616 .bdrv_getlength = nvme_getlength,
1617 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1618 .bdrv_co_truncate = nvme_co_truncate,
1619
1620 .bdrv_co_preadv = nvme_co_preadv,
1621 .bdrv_co_pwritev = nvme_co_pwritev,
1622
1623 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1624 .bdrv_co_pdiscard = nvme_co_pdiscard,
1625
1626 .bdrv_co_flush_to_disk = nvme_co_flush,
1627 .bdrv_reopen_prepare = nvme_reopen_prepare,
1628
1629 .bdrv_refresh_filename = nvme_refresh_filename,
1630 .bdrv_refresh_limits = nvme_refresh_limits,
1631 .strong_runtime_opts = nvme_strong_runtime_opts,
1632 .bdrv_get_specific_stats = nvme_get_specific_stats,
1633
1634 .bdrv_detach_aio_context = nvme_detach_aio_context,
1635 .bdrv_attach_aio_context = nvme_attach_aio_context,
1636
1637 .bdrv_io_plug = nvme_aio_plug,
1638 .bdrv_io_unplug = nvme_aio_unplug,
1639
1640 .bdrv_register_buf = nvme_register_buf,
1641 .bdrv_unregister_buf = nvme_unregister_buf,
1642 };
1643
1644 static void bdrv_nvme_init(void)
1645 {
1646 bdrv_register(&bdrv_nvme);
1647 }
1648
1649 block_init(bdrv_nvme_init);