]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28
29 #include "block/nvme.h"
30
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
35
36 /*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
42 typedef struct BDRVNVMeState BDRVNVMeState;
43
44 /* Same index is used for queues and IRQs */
45 #define INDEX_ADMIN 0
46 #define INDEX_IO(n) (1 + n)
47
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
49 enum {
50 MSIX_SHARED_IRQ_IDX = 0,
51 MSIX_IRQ_COUNT = 1
52 };
53
54 typedef struct {
55 int32_t head, tail;
56 uint8_t *queue;
57 uint64_t iova;
58 /* Hardware MMIO register */
59 volatile uint32_t *doorbell;
60 } NVMeQueue;
61
62 typedef struct {
63 BlockCompletionFunc *cb;
64 void *opaque;
65 int cid;
66 void *prp_list_page;
67 uint64_t prp_list_iova;
68 int free_req_next; /* q->reqs[] index of next free req */
69 } NVMeRequest;
70
71 typedef struct {
72 QemuMutex lock;
73
74 /* Read from I/O code path, initialized under BQL */
75 BDRVNVMeState *s;
76 int index;
77
78 /* Fields protected by BQL */
79 uint8_t *prp_list_pages;
80
81 /* Fields protected by @lock */
82 CoQueue free_req_queue;
83 NVMeQueue sq, cq;
84 int cq_phase;
85 int free_req_head;
86 NVMeRequest reqs[NVME_NUM_REQS];
87 int need_kick;
88 int inflight;
89
90 /* Thread-safe, no lock necessary */
91 QEMUBH *completion_bh;
92 } NVMeQueuePair;
93
94 struct BDRVNVMeState {
95 AioContext *aio_context;
96 QEMUVFIOState *vfio;
97 void *bar0_wo_map;
98 /* Memory mapped registers */
99 volatile struct {
100 uint32_t sq_tail;
101 uint32_t cq_head;
102 } *doorbells;
103 /* The submission/completion queue pairs.
104 * [0]: admin queue.
105 * [1..]: io queues.
106 */
107 NVMeQueuePair **queues;
108 unsigned queue_count;
109 size_t page_size;
110 /* How many uint32_t elements does each doorbell entry take. */
111 size_t doorbell_scale;
112 bool write_cache_supported;
113 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
114
115 uint64_t nsze; /* Namespace size reported by identify command */
116 int nsid; /* The namespace id to read/write data. */
117 int blkshift;
118
119 uint64_t max_transfer;
120 bool plugged;
121
122 bool supports_write_zeroes;
123 bool supports_discard;
124
125 CoMutex dma_map_lock;
126 CoQueue dma_flush_queue;
127
128 /* Total size of mapped qiov, accessed under dma_map_lock */
129 int dma_map_count;
130
131 /* PCI address (required for nvme_refresh_filename()) */
132 char *device;
133
134 struct {
135 uint64_t completion_errors;
136 uint64_t aligned_accesses;
137 uint64_t unaligned_accesses;
138 } stats;
139 };
140
141 #define NVME_BLOCK_OPT_DEVICE "device"
142 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
143
144 static void nvme_process_completion_bh(void *opaque);
145
146 static QemuOptsList runtime_opts = {
147 .name = "nvme",
148 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
149 .desc = {
150 {
151 .name = NVME_BLOCK_OPT_DEVICE,
152 .type = QEMU_OPT_STRING,
153 .help = "NVMe PCI device address",
154 },
155 {
156 .name = NVME_BLOCK_OPT_NAMESPACE,
157 .type = QEMU_OPT_NUMBER,
158 .help = "NVMe namespace",
159 },
160 { /* end of list */ }
161 },
162 };
163
164 /* Returns true on success, false on failure. */
165 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
166 unsigned nentries, size_t entry_bytes, Error **errp)
167 {
168 size_t bytes;
169 int r;
170
171 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
172 q->head = q->tail = 0;
173 q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
174 if (!q->queue) {
175 error_setg(errp, "Cannot allocate queue");
176 return false;
177 }
178 memset(q->queue, 0, bytes);
179 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
180 if (r) {
181 error_prepend(errp, "Cannot map queue: ");
182 }
183 return r == 0;
184 }
185
186 static void nvme_free_queue(NVMeQueue *q)
187 {
188 qemu_vfree(q->queue);
189 }
190
191 static void nvme_free_queue_pair(NVMeQueuePair *q)
192 {
193 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
194 if (q->completion_bh) {
195 qemu_bh_delete(q->completion_bh);
196 }
197 nvme_free_queue(&q->sq);
198 nvme_free_queue(&q->cq);
199 qemu_vfree(q->prp_list_pages);
200 qemu_mutex_destroy(&q->lock);
201 g_free(q);
202 }
203
204 static void nvme_free_req_queue_cb(void *opaque)
205 {
206 NVMeQueuePair *q = opaque;
207
208 qemu_mutex_lock(&q->lock);
209 while (q->free_req_head != -1 &&
210 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
211 /* Retry waiting requests */
212 }
213 qemu_mutex_unlock(&q->lock);
214 }
215
216 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
217 AioContext *aio_context,
218 unsigned idx, size_t size,
219 Error **errp)
220 {
221 int i, r;
222 NVMeQueuePair *q;
223 uint64_t prp_list_iova;
224 size_t bytes;
225
226 q = g_try_new0(NVMeQueuePair, 1);
227 if (!q) {
228 error_setg(errp, "Cannot allocate queue pair");
229 return NULL;
230 }
231 trace_nvme_create_queue_pair(idx, q, size, aio_context,
232 event_notifier_get_fd(s->irq_notifier));
233 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
234 qemu_real_host_page_size);
235 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
236 if (!q->prp_list_pages) {
237 error_setg(errp, "Cannot allocate PRP page list");
238 goto fail;
239 }
240 memset(q->prp_list_pages, 0, bytes);
241 qemu_mutex_init(&q->lock);
242 q->s = s;
243 q->index = idx;
244 qemu_co_queue_init(&q->free_req_queue);
245 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
246 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
247 false, &prp_list_iova, errp);
248 if (r) {
249 error_prepend(errp, "Cannot map buffer for DMA: ");
250 goto fail;
251 }
252 q->free_req_head = -1;
253 for (i = 0; i < NVME_NUM_REQS; i++) {
254 NVMeRequest *req = &q->reqs[i];
255 req->cid = i + 1;
256 req->free_req_next = q->free_req_head;
257 q->free_req_head = i;
258 req->prp_list_page = q->prp_list_pages + i * s->page_size;
259 req->prp_list_iova = prp_list_iova + i * s->page_size;
260 }
261
262 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
263 goto fail;
264 }
265 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
266
267 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
268 goto fail;
269 }
270 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
271
272 return q;
273 fail:
274 nvme_free_queue_pair(q);
275 return NULL;
276 }
277
278 /* With q->lock */
279 static void nvme_kick(NVMeQueuePair *q)
280 {
281 BDRVNVMeState *s = q->s;
282
283 if (s->plugged || !q->need_kick) {
284 return;
285 }
286 trace_nvme_kick(s, q->index);
287 assert(!(q->sq.tail & 0xFF00));
288 /* Fence the write to submission queue entry before notifying the device. */
289 smp_wmb();
290 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
291 q->inflight += q->need_kick;
292 q->need_kick = 0;
293 }
294
295 /* Find a free request element if any, otherwise:
296 * a) if in coroutine context, try to wait for one to become available;
297 * b) if not in coroutine, return NULL;
298 */
299 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
300 {
301 NVMeRequest *req;
302
303 qemu_mutex_lock(&q->lock);
304
305 while (q->free_req_head == -1) {
306 if (qemu_in_coroutine()) {
307 trace_nvme_free_req_queue_wait(q->s, q->index);
308 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
309 } else {
310 qemu_mutex_unlock(&q->lock);
311 return NULL;
312 }
313 }
314
315 req = &q->reqs[q->free_req_head];
316 q->free_req_head = req->free_req_next;
317 req->free_req_next = -1;
318
319 qemu_mutex_unlock(&q->lock);
320 return req;
321 }
322
323 /* With q->lock */
324 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
325 {
326 req->free_req_next = q->free_req_head;
327 q->free_req_head = req - q->reqs;
328 }
329
330 /* With q->lock */
331 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
332 {
333 if (!qemu_co_queue_empty(&q->free_req_queue)) {
334 replay_bh_schedule_oneshot_event(q->s->aio_context,
335 nvme_free_req_queue_cb, q);
336 }
337 }
338
339 /* Insert a request in the freelist and wake waiters */
340 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
341 {
342 qemu_mutex_lock(&q->lock);
343 nvme_put_free_req_locked(q, req);
344 nvme_wake_free_req_locked(q);
345 qemu_mutex_unlock(&q->lock);
346 }
347
348 static inline int nvme_translate_error(const NvmeCqe *c)
349 {
350 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
351 if (status) {
352 trace_nvme_error(le32_to_cpu(c->result),
353 le16_to_cpu(c->sq_head),
354 le16_to_cpu(c->sq_id),
355 le16_to_cpu(c->cid),
356 le16_to_cpu(status));
357 }
358 switch (status) {
359 case 0:
360 return 0;
361 case 1:
362 return -ENOSYS;
363 case 2:
364 return -EINVAL;
365 default:
366 return -EIO;
367 }
368 }
369
370 /* With q->lock */
371 static bool nvme_process_completion(NVMeQueuePair *q)
372 {
373 BDRVNVMeState *s = q->s;
374 bool progress = false;
375 NVMeRequest *preq;
376 NVMeRequest req;
377 NvmeCqe *c;
378
379 trace_nvme_process_completion(s, q->index, q->inflight);
380 if (s->plugged) {
381 trace_nvme_process_completion_queue_plugged(s, q->index);
382 return false;
383 }
384
385 /*
386 * Support re-entrancy when a request cb() function invokes aio_poll().
387 * Pending completions must be visible to aio_poll() so that a cb()
388 * function can wait for the completion of another request.
389 *
390 * The aio_poll() loop will execute our BH and we'll resume completion
391 * processing there.
392 */
393 qemu_bh_schedule(q->completion_bh);
394
395 assert(q->inflight >= 0);
396 while (q->inflight) {
397 int ret;
398 int16_t cid;
399
400 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
401 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
402 break;
403 }
404 ret = nvme_translate_error(c);
405 if (ret) {
406 s->stats.completion_errors++;
407 }
408 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
409 if (!q->cq.head) {
410 q->cq_phase = !q->cq_phase;
411 }
412 cid = le16_to_cpu(c->cid);
413 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
414 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
415 "queue size: %u", cid, NVME_QUEUE_SIZE);
416 continue;
417 }
418 trace_nvme_complete_command(s, q->index, cid);
419 preq = &q->reqs[cid - 1];
420 req = *preq;
421 assert(req.cid == cid);
422 assert(req.cb);
423 nvme_put_free_req_locked(q, preq);
424 preq->cb = preq->opaque = NULL;
425 q->inflight--;
426 qemu_mutex_unlock(&q->lock);
427 req.cb(req.opaque, ret);
428 qemu_mutex_lock(&q->lock);
429 progress = true;
430 }
431 if (progress) {
432 /* Notify the device so it can post more completions. */
433 smp_mb_release();
434 *q->cq.doorbell = cpu_to_le32(q->cq.head);
435 nvme_wake_free_req_locked(q);
436 }
437
438 qemu_bh_cancel(q->completion_bh);
439
440 return progress;
441 }
442
443 static void nvme_process_completion_bh(void *opaque)
444 {
445 NVMeQueuePair *q = opaque;
446
447 /*
448 * We're being invoked because a nvme_process_completion() cb() function
449 * called aio_poll(). The callback may be waiting for further completions
450 * so notify the device that it has space to fill in more completions now.
451 */
452 smp_mb_release();
453 *q->cq.doorbell = cpu_to_le32(q->cq.head);
454 nvme_wake_free_req_locked(q);
455
456 nvme_process_completion(q);
457 }
458
459 static void nvme_trace_command(const NvmeCmd *cmd)
460 {
461 int i;
462
463 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
464 return;
465 }
466 for (i = 0; i < 8; ++i) {
467 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
468 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
469 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
470 }
471 }
472
473 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
474 NvmeCmd *cmd, BlockCompletionFunc cb,
475 void *opaque)
476 {
477 assert(!req->cb);
478 req->cb = cb;
479 req->opaque = opaque;
480 cmd->cid = cpu_to_le16(req->cid);
481
482 trace_nvme_submit_command(q->s, q->index, req->cid);
483 nvme_trace_command(cmd);
484 qemu_mutex_lock(&q->lock);
485 memcpy((uint8_t *)q->sq.queue +
486 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
487 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
488 q->need_kick++;
489 nvme_kick(q);
490 nvme_process_completion(q);
491 qemu_mutex_unlock(&q->lock);
492 }
493
494 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
495 {
496 int *pret = opaque;
497 *pret = ret;
498 aio_wait_kick();
499 }
500
501 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
502 {
503 BDRVNVMeState *s = bs->opaque;
504 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
505 AioContext *aio_context = bdrv_get_aio_context(bs);
506 NVMeRequest *req;
507 int ret = -EINPROGRESS;
508 req = nvme_get_free_req(q);
509 if (!req) {
510 return -EBUSY;
511 }
512 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
513
514 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
515 return ret;
516 }
517
518 /* Returns true on success, false on failure. */
519 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
520 {
521 BDRVNVMeState *s = bs->opaque;
522 bool ret = false;
523 QEMU_AUTO_VFREE union {
524 NvmeIdCtrl ctrl;
525 NvmeIdNs ns;
526 } *id = NULL;
527 NvmeLBAF *lbaf;
528 uint16_t oncs;
529 int r;
530 uint64_t iova;
531 NvmeCmd cmd = {
532 .opcode = NVME_ADM_CMD_IDENTIFY,
533 .cdw10 = cpu_to_le32(0x1),
534 };
535 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
536
537 id = qemu_try_memalign(qemu_real_host_page_size, id_size);
538 if (!id) {
539 error_setg(errp, "Cannot allocate buffer for identify response");
540 goto out;
541 }
542 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
543 if (r) {
544 error_prepend(errp, "Cannot map buffer for DMA: ");
545 goto out;
546 }
547
548 memset(id, 0, id_size);
549 cmd.dptr.prp1 = cpu_to_le64(iova);
550 if (nvme_admin_cmd_sync(bs, &cmd)) {
551 error_setg(errp, "Failed to identify controller");
552 goto out;
553 }
554
555 if (le32_to_cpu(id->ctrl.nn) < namespace) {
556 error_setg(errp, "Invalid namespace");
557 goto out;
558 }
559 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
560 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
561 /* For now the page list buffer per command is one page, to hold at most
562 * s->page_size / sizeof(uint64_t) entries. */
563 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
564 s->page_size / sizeof(uint64_t) * s->page_size);
565
566 oncs = le16_to_cpu(id->ctrl.oncs);
567 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
568 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
569
570 memset(id, 0, id_size);
571 cmd.cdw10 = 0;
572 cmd.nsid = cpu_to_le32(namespace);
573 if (nvme_admin_cmd_sync(bs, &cmd)) {
574 error_setg(errp, "Failed to identify namespace");
575 goto out;
576 }
577
578 s->nsze = le64_to_cpu(id->ns.nsze);
579 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
580
581 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
582 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
583 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
584 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
585 }
586
587 if (lbaf->ms) {
588 error_setg(errp, "Namespaces with metadata are not yet supported");
589 goto out;
590 }
591
592 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
593 (1 << lbaf->ds) > s->page_size)
594 {
595 error_setg(errp, "Namespace has unsupported block size (2^%d)",
596 lbaf->ds);
597 goto out;
598 }
599
600 ret = true;
601 s->blkshift = lbaf->ds;
602 out:
603 qemu_vfio_dma_unmap(s->vfio, id);
604
605 return ret;
606 }
607
608 static bool nvme_poll_queue(NVMeQueuePair *q)
609 {
610 bool progress = false;
611
612 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
613 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
614
615 trace_nvme_poll_queue(q->s, q->index);
616 /*
617 * Do an early check for completions. q->lock isn't needed because
618 * nvme_process_completion() only runs in the event loop thread and
619 * cannot race with itself.
620 */
621 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
622 return false;
623 }
624
625 qemu_mutex_lock(&q->lock);
626 while (nvme_process_completion(q)) {
627 /* Keep polling */
628 progress = true;
629 }
630 qemu_mutex_unlock(&q->lock);
631
632 return progress;
633 }
634
635 static bool nvme_poll_queues(BDRVNVMeState *s)
636 {
637 bool progress = false;
638 int i;
639
640 for (i = 0; i < s->queue_count; i++) {
641 if (nvme_poll_queue(s->queues[i])) {
642 progress = true;
643 }
644 }
645 return progress;
646 }
647
648 static void nvme_handle_event(EventNotifier *n)
649 {
650 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
651 irq_notifier[MSIX_SHARED_IRQ_IDX]);
652
653 trace_nvme_handle_event(s);
654 event_notifier_test_and_clear(n);
655 nvme_poll_queues(s);
656 }
657
658 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
659 {
660 BDRVNVMeState *s = bs->opaque;
661 unsigned n = s->queue_count;
662 NVMeQueuePair *q;
663 NvmeCmd cmd;
664 unsigned queue_size = NVME_QUEUE_SIZE;
665
666 assert(n <= UINT16_MAX);
667 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
668 n, queue_size, errp);
669 if (!q) {
670 return false;
671 }
672 cmd = (NvmeCmd) {
673 .opcode = NVME_ADM_CMD_CREATE_CQ,
674 .dptr.prp1 = cpu_to_le64(q->cq.iova),
675 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
676 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
677 };
678 if (nvme_admin_cmd_sync(bs, &cmd)) {
679 error_setg(errp, "Failed to create CQ io queue [%u]", n);
680 goto out_error;
681 }
682 cmd = (NvmeCmd) {
683 .opcode = NVME_ADM_CMD_CREATE_SQ,
684 .dptr.prp1 = cpu_to_le64(q->sq.iova),
685 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
686 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
687 };
688 if (nvme_admin_cmd_sync(bs, &cmd)) {
689 error_setg(errp, "Failed to create SQ io queue [%u]", n);
690 goto out_error;
691 }
692 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
693 s->queues[n] = q;
694 s->queue_count++;
695 return true;
696 out_error:
697 nvme_free_queue_pair(q);
698 return false;
699 }
700
701 static bool nvme_poll_cb(void *opaque)
702 {
703 EventNotifier *e = opaque;
704 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
705 irq_notifier[MSIX_SHARED_IRQ_IDX]);
706
707 return nvme_poll_queues(s);
708 }
709
710 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
711 Error **errp)
712 {
713 BDRVNVMeState *s = bs->opaque;
714 NVMeQueuePair *q;
715 AioContext *aio_context = bdrv_get_aio_context(bs);
716 int ret;
717 uint64_t cap;
718 uint32_t ver;
719 uint64_t timeout_ms;
720 uint64_t deadline, now;
721 volatile NvmeBar *regs = NULL;
722
723 qemu_co_mutex_init(&s->dma_map_lock);
724 qemu_co_queue_init(&s->dma_flush_queue);
725 s->device = g_strdup(device);
726 s->nsid = namespace;
727 s->aio_context = bdrv_get_aio_context(bs);
728 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
729 if (ret) {
730 error_setg(errp, "Failed to init event notifier");
731 return ret;
732 }
733
734 s->vfio = qemu_vfio_open_pci(device, errp);
735 if (!s->vfio) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
741 PROT_READ | PROT_WRITE, errp);
742 if (!regs) {
743 ret = -EINVAL;
744 goto out;
745 }
746 /* Perform initialize sequence as described in NVMe spec "7.6.1
747 * Initialization". */
748
749 cap = le64_to_cpu(regs->cap);
750 trace_nvme_controller_capability_raw(cap);
751 trace_nvme_controller_capability("Maximum Queue Entries Supported",
752 1 + NVME_CAP_MQES(cap));
753 trace_nvme_controller_capability("Contiguous Queues Required",
754 NVME_CAP_CQR(cap));
755 trace_nvme_controller_capability("Doorbell Stride",
756 1 << (2 + NVME_CAP_DSTRD(cap)));
757 trace_nvme_controller_capability("Subsystem Reset Supported",
758 NVME_CAP_NSSRS(cap));
759 trace_nvme_controller_capability("Memory Page Size Minimum",
760 1 << (12 + NVME_CAP_MPSMIN(cap)));
761 trace_nvme_controller_capability("Memory Page Size Maximum",
762 1 << (12 + NVME_CAP_MPSMAX(cap)));
763 if (!NVME_CAP_CSS(cap)) {
764 error_setg(errp, "Device doesn't support NVMe command set");
765 ret = -EINVAL;
766 goto out;
767 }
768
769 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
770 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
771 bs->bl.opt_mem_alignment = s->page_size;
772 bs->bl.request_alignment = s->page_size;
773 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
774
775 ver = le32_to_cpu(regs->vs);
776 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
777 extract32(ver, 8, 8),
778 extract32(ver, 0, 8));
779
780 /* Reset device to get a clean state. */
781 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
782 /* Wait for CSTS.RDY = 0. */
783 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
784 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
785 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
786 error_setg(errp, "Timeout while waiting for device to reset (%"
787 PRId64 " ms)",
788 timeout_ms);
789 ret = -ETIMEDOUT;
790 goto out;
791 }
792 }
793
794 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
795 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
796 PROT_WRITE, errp);
797 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
798 if (!s->doorbells) {
799 ret = -EINVAL;
800 goto out;
801 }
802
803 /* Set up admin queue. */
804 s->queues = g_new(NVMeQueuePair *, 1);
805 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
806 if (!q) {
807 ret = -EINVAL;
808 goto out;
809 }
810 s->queues[INDEX_ADMIN] = q;
811 s->queue_count = 1;
812 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
813 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
814 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
815 regs->asq = cpu_to_le64(q->sq.iova);
816 regs->acq = cpu_to_le64(q->cq.iova);
817
818 /* After setting up all control registers we can enable device now. */
819 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
820 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
821 CC_EN_MASK);
822 /* Wait for CSTS.RDY = 1. */
823 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
824 deadline = now + timeout_ms * SCALE_MS;
825 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
826 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
827 error_setg(errp, "Timeout while waiting for device to start (%"
828 PRId64 " ms)",
829 timeout_ms);
830 ret = -ETIMEDOUT;
831 goto out;
832 }
833 }
834
835 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
836 VFIO_PCI_MSIX_IRQ_INDEX, errp);
837 if (ret) {
838 goto out;
839 }
840 aio_set_event_notifier(bdrv_get_aio_context(bs),
841 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
842 false, nvme_handle_event, nvme_poll_cb);
843
844 if (!nvme_identify(bs, namespace, errp)) {
845 ret = -EIO;
846 goto out;
847 }
848
849 /* Set up command queues. */
850 if (!nvme_add_io_queue(bs, errp)) {
851 ret = -EIO;
852 }
853 out:
854 if (regs) {
855 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
856 }
857
858 /* Cleaning up is done in nvme_file_open() upon error. */
859 return ret;
860 }
861
862 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
863 *
864 * nvme://0000:44:00.0/1
865 *
866 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
867 * is the PCI address, and the last part is the namespace number starting from
868 * 1 according to the NVMe spec. */
869 static void nvme_parse_filename(const char *filename, QDict *options,
870 Error **errp)
871 {
872 int pref = strlen("nvme://");
873
874 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
875 const char *tmp = filename + pref;
876 char *device;
877 const char *namespace;
878 unsigned long ns;
879 const char *slash = strchr(tmp, '/');
880 if (!slash) {
881 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
882 return;
883 }
884 device = g_strndup(tmp, slash - tmp);
885 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
886 g_free(device);
887 namespace = slash + 1;
888 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
889 error_setg(errp, "Invalid namespace '%s', positive number expected",
890 namespace);
891 return;
892 }
893 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
894 *namespace ? namespace : "1");
895 }
896 }
897
898 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
899 Error **errp)
900 {
901 int ret;
902 BDRVNVMeState *s = bs->opaque;
903 NvmeCmd cmd = {
904 .opcode = NVME_ADM_CMD_SET_FEATURES,
905 .nsid = cpu_to_le32(s->nsid),
906 .cdw10 = cpu_to_le32(0x06),
907 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
908 };
909
910 ret = nvme_admin_cmd_sync(bs, &cmd);
911 if (ret) {
912 error_setg(errp, "Failed to configure NVMe write cache");
913 }
914 return ret;
915 }
916
917 static void nvme_close(BlockDriverState *bs)
918 {
919 BDRVNVMeState *s = bs->opaque;
920
921 for (unsigned i = 0; i < s->queue_count; ++i) {
922 nvme_free_queue_pair(s->queues[i]);
923 }
924 g_free(s->queues);
925 aio_set_event_notifier(bdrv_get_aio_context(bs),
926 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
927 false, NULL, NULL);
928 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
929 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
930 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
931 qemu_vfio_close(s->vfio);
932
933 g_free(s->device);
934 }
935
936 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
937 Error **errp)
938 {
939 const char *device;
940 QemuOpts *opts;
941 int namespace;
942 int ret;
943 BDRVNVMeState *s = bs->opaque;
944
945 bs->supported_write_flags = BDRV_REQ_FUA;
946
947 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
948 qemu_opts_absorb_qdict(opts, options, &error_abort);
949 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
950 if (!device) {
951 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
952 qemu_opts_del(opts);
953 return -EINVAL;
954 }
955
956 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
957 ret = nvme_init(bs, device, namespace, errp);
958 qemu_opts_del(opts);
959 if (ret) {
960 goto fail;
961 }
962 if (flags & BDRV_O_NOCACHE) {
963 if (!s->write_cache_supported) {
964 error_setg(errp,
965 "NVMe controller doesn't support write cache configuration");
966 ret = -EINVAL;
967 } else {
968 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
969 errp);
970 }
971 if (ret) {
972 goto fail;
973 }
974 }
975 return 0;
976 fail:
977 nvme_close(bs);
978 return ret;
979 }
980
981 static int64_t nvme_getlength(BlockDriverState *bs)
982 {
983 BDRVNVMeState *s = bs->opaque;
984 return s->nsze << s->blkshift;
985 }
986
987 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
988 {
989 BDRVNVMeState *s = bs->opaque;
990 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
991 return UINT32_C(1) << s->blkshift;
992 }
993
994 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
995 {
996 uint32_t blocksize = nvme_get_blocksize(bs);
997 bsz->phys = blocksize;
998 bsz->log = blocksize;
999 return 0;
1000 }
1001
1002 /* Called with s->dma_map_lock */
1003 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1004 QEMUIOVector *qiov)
1005 {
1006 int r = 0;
1007 BDRVNVMeState *s = bs->opaque;
1008
1009 s->dma_map_count -= qiov->size;
1010 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1011 r = qemu_vfio_dma_reset_temporary(s->vfio);
1012 if (!r) {
1013 qemu_co_queue_restart_all(&s->dma_flush_queue);
1014 }
1015 }
1016 return r;
1017 }
1018
1019 /* Called with s->dma_map_lock */
1020 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1021 NVMeRequest *req, QEMUIOVector *qiov)
1022 {
1023 BDRVNVMeState *s = bs->opaque;
1024 uint64_t *pagelist = req->prp_list_page;
1025 int i, j, r;
1026 int entries = 0;
1027 Error *local_err = NULL, **errp = NULL;
1028
1029 assert(qiov->size);
1030 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1031 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1032 for (i = 0; i < qiov->niov; ++i) {
1033 bool retry = true;
1034 uint64_t iova;
1035 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1036 qemu_real_host_page_size);
1037 try_map:
1038 r = qemu_vfio_dma_map(s->vfio,
1039 qiov->iov[i].iov_base,
1040 len, true, &iova, errp);
1041 if (r == -ENOSPC) {
1042 /*
1043 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1044 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1045 * mappings available for a container since Linux kernel commit
1046 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1047 * April 2019, see CVE-2019-3882).
1048 *
1049 * This block driver already handles this error path by checking
1050 * for the -ENOMEM error, so we directly replace -ENOSPC by
1051 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1052 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1053 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1054 * to add more storage to the blockdev. Not something we can do
1055 * easily with an IOMMU :)
1056 */
1057 r = -ENOMEM;
1058 }
1059 if (r == -ENOMEM && retry) {
1060 /*
1061 * We exhausted the DMA mappings available for our container:
1062 * recycle the volatile IOVA mappings.
1063 */
1064 retry = false;
1065 trace_nvme_dma_flush_queue_wait(s);
1066 if (s->dma_map_count) {
1067 trace_nvme_dma_map_flush(s);
1068 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1069 } else {
1070 r = qemu_vfio_dma_reset_temporary(s->vfio);
1071 if (r) {
1072 goto fail;
1073 }
1074 }
1075 errp = &local_err;
1076
1077 goto try_map;
1078 }
1079 if (r) {
1080 goto fail;
1081 }
1082
1083 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1084 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1085 }
1086 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1087 qiov->iov[i].iov_len / s->page_size);
1088 }
1089
1090 s->dma_map_count += qiov->size;
1091
1092 assert(entries <= s->page_size / sizeof(uint64_t));
1093 switch (entries) {
1094 case 0:
1095 abort();
1096 case 1:
1097 cmd->dptr.prp1 = pagelist[0];
1098 cmd->dptr.prp2 = 0;
1099 break;
1100 case 2:
1101 cmd->dptr.prp1 = pagelist[0];
1102 cmd->dptr.prp2 = pagelist[1];
1103 break;
1104 default:
1105 cmd->dptr.prp1 = pagelist[0];
1106 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1107 break;
1108 }
1109 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1110 for (i = 0; i < entries; ++i) {
1111 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1112 }
1113 return 0;
1114 fail:
1115 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1116 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1117 * because they are already mapped before calling this function; for
1118 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1119 * calling qemu_vfio_dma_reset_temporary when necessary. */
1120 if (local_err) {
1121 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1122 }
1123 return r;
1124 }
1125
1126 typedef struct {
1127 Coroutine *co;
1128 int ret;
1129 AioContext *ctx;
1130 } NVMeCoData;
1131
1132 static void nvme_rw_cb_bh(void *opaque)
1133 {
1134 NVMeCoData *data = opaque;
1135 qemu_coroutine_enter(data->co);
1136 }
1137
1138 static void nvme_rw_cb(void *opaque, int ret)
1139 {
1140 NVMeCoData *data = opaque;
1141 data->ret = ret;
1142 if (!data->co) {
1143 /* The rw coroutine hasn't yielded, don't try to enter. */
1144 return;
1145 }
1146 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1147 }
1148
1149 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1150 uint64_t offset, uint64_t bytes,
1151 QEMUIOVector *qiov,
1152 bool is_write,
1153 int flags)
1154 {
1155 int r;
1156 BDRVNVMeState *s = bs->opaque;
1157 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1158 NVMeRequest *req;
1159
1160 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1161 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1162 NvmeCmd cmd = {
1163 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1164 .nsid = cpu_to_le32(s->nsid),
1165 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1166 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1167 .cdw12 = cpu_to_le32(cdw12),
1168 };
1169 NVMeCoData data = {
1170 .ctx = bdrv_get_aio_context(bs),
1171 .ret = -EINPROGRESS,
1172 };
1173
1174 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1175 assert(s->queue_count > 1);
1176 req = nvme_get_free_req(ioq);
1177 assert(req);
1178
1179 qemu_co_mutex_lock(&s->dma_map_lock);
1180 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1181 qemu_co_mutex_unlock(&s->dma_map_lock);
1182 if (r) {
1183 nvme_put_free_req_and_wake(ioq, req);
1184 return r;
1185 }
1186 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1187
1188 data.co = qemu_coroutine_self();
1189 while (data.ret == -EINPROGRESS) {
1190 qemu_coroutine_yield();
1191 }
1192
1193 qemu_co_mutex_lock(&s->dma_map_lock);
1194 r = nvme_cmd_unmap_qiov(bs, qiov);
1195 qemu_co_mutex_unlock(&s->dma_map_lock);
1196 if (r) {
1197 return r;
1198 }
1199
1200 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1201 return data.ret;
1202 }
1203
1204 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1205 const QEMUIOVector *qiov)
1206 {
1207 int i;
1208 BDRVNVMeState *s = bs->opaque;
1209
1210 for (i = 0; i < qiov->niov; ++i) {
1211 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1212 qemu_real_host_page_size) ||
1213 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1214 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1215 qiov->iov[i].iov_len, s->page_size);
1216 return false;
1217 }
1218 }
1219 return true;
1220 }
1221
1222 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1223 QEMUIOVector *qiov, bool is_write, int flags)
1224 {
1225 BDRVNVMeState *s = bs->opaque;
1226 int r;
1227 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1228 QEMUIOVector local_qiov;
1229 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1230 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1231 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1232 assert(bytes <= s->max_transfer);
1233 if (nvme_qiov_aligned(bs, qiov)) {
1234 s->stats.aligned_accesses++;
1235 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1236 }
1237 s->stats.unaligned_accesses++;
1238 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1239 buf = qemu_try_memalign(qemu_real_host_page_size, len);
1240
1241 if (!buf) {
1242 return -ENOMEM;
1243 }
1244 qemu_iovec_init(&local_qiov, 1);
1245 if (is_write) {
1246 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1247 }
1248 qemu_iovec_add(&local_qiov, buf, bytes);
1249 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1250 qemu_iovec_destroy(&local_qiov);
1251 if (!r && !is_write) {
1252 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1253 }
1254 return r;
1255 }
1256
1257 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1258 int64_t offset, int64_t bytes,
1259 QEMUIOVector *qiov,
1260 BdrvRequestFlags flags)
1261 {
1262 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1263 }
1264
1265 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1266 int64_t offset, int64_t bytes,
1267 QEMUIOVector *qiov,
1268 BdrvRequestFlags flags)
1269 {
1270 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1271 }
1272
1273 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1274 {
1275 BDRVNVMeState *s = bs->opaque;
1276 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1277 NVMeRequest *req;
1278 NvmeCmd cmd = {
1279 .opcode = NVME_CMD_FLUSH,
1280 .nsid = cpu_to_le32(s->nsid),
1281 };
1282 NVMeCoData data = {
1283 .ctx = bdrv_get_aio_context(bs),
1284 .ret = -EINPROGRESS,
1285 };
1286
1287 assert(s->queue_count > 1);
1288 req = nvme_get_free_req(ioq);
1289 assert(req);
1290 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1291
1292 data.co = qemu_coroutine_self();
1293 if (data.ret == -EINPROGRESS) {
1294 qemu_coroutine_yield();
1295 }
1296
1297 return data.ret;
1298 }
1299
1300
1301 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1302 int64_t offset,
1303 int64_t bytes,
1304 BdrvRequestFlags flags)
1305 {
1306 BDRVNVMeState *s = bs->opaque;
1307 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1308 NVMeRequest *req;
1309 uint32_t cdw12;
1310
1311 if (!s->supports_write_zeroes) {
1312 return -ENOTSUP;
1313 }
1314
1315 if (bytes == 0) {
1316 return 0;
1317 }
1318
1319 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1320 /*
1321 * We should not lose information. pwrite_zeroes_alignment and
1322 * max_pwrite_zeroes guarantees it.
1323 */
1324 assert(((cdw12 + 1) << s->blkshift) == bytes);
1325
1326 NvmeCmd cmd = {
1327 .opcode = NVME_CMD_WRITE_ZEROES,
1328 .nsid = cpu_to_le32(s->nsid),
1329 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1330 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1331 };
1332
1333 NVMeCoData data = {
1334 .ctx = bdrv_get_aio_context(bs),
1335 .ret = -EINPROGRESS,
1336 };
1337
1338 if (flags & BDRV_REQ_MAY_UNMAP) {
1339 cdw12 |= (1 << 25);
1340 }
1341
1342 if (flags & BDRV_REQ_FUA) {
1343 cdw12 |= (1 << 30);
1344 }
1345
1346 cmd.cdw12 = cpu_to_le32(cdw12);
1347
1348 trace_nvme_write_zeroes(s, offset, bytes, flags);
1349 assert(s->queue_count > 1);
1350 req = nvme_get_free_req(ioq);
1351 assert(req);
1352
1353 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1354
1355 data.co = qemu_coroutine_self();
1356 while (data.ret == -EINPROGRESS) {
1357 qemu_coroutine_yield();
1358 }
1359
1360 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1361 return data.ret;
1362 }
1363
1364
1365 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1366 int64_t offset,
1367 int64_t bytes)
1368 {
1369 BDRVNVMeState *s = bs->opaque;
1370 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1371 NVMeRequest *req;
1372 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1373 QEMUIOVector local_qiov;
1374 int ret;
1375
1376 NvmeCmd cmd = {
1377 .opcode = NVME_CMD_DSM,
1378 .nsid = cpu_to_le32(s->nsid),
1379 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1380 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1381 };
1382
1383 NVMeCoData data = {
1384 .ctx = bdrv_get_aio_context(bs),
1385 .ret = -EINPROGRESS,
1386 };
1387
1388 if (!s->supports_discard) {
1389 return -ENOTSUP;
1390 }
1391
1392 assert(s->queue_count > 1);
1393
1394 /*
1395 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1396 * defined in nvme_refresh_limits().
1397 */
1398 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1399 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1400 assert((bytes >> s->blkshift) <= UINT32_MAX);
1401
1402 buf = qemu_try_memalign(s->page_size, s->page_size);
1403 if (!buf) {
1404 return -ENOMEM;
1405 }
1406 memset(buf, 0, s->page_size);
1407 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1408 buf->slba = cpu_to_le64(offset >> s->blkshift);
1409 buf->cattr = 0;
1410
1411 qemu_iovec_init(&local_qiov, 1);
1412 qemu_iovec_add(&local_qiov, buf, 4096);
1413
1414 req = nvme_get_free_req(ioq);
1415 assert(req);
1416
1417 qemu_co_mutex_lock(&s->dma_map_lock);
1418 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1419 qemu_co_mutex_unlock(&s->dma_map_lock);
1420
1421 if (ret) {
1422 nvme_put_free_req_and_wake(ioq, req);
1423 goto out;
1424 }
1425
1426 trace_nvme_dsm(s, offset, bytes);
1427
1428 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1429
1430 data.co = qemu_coroutine_self();
1431 while (data.ret == -EINPROGRESS) {
1432 qemu_coroutine_yield();
1433 }
1434
1435 qemu_co_mutex_lock(&s->dma_map_lock);
1436 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1437 qemu_co_mutex_unlock(&s->dma_map_lock);
1438
1439 if (ret) {
1440 goto out;
1441 }
1442
1443 ret = data.ret;
1444 trace_nvme_dsm_done(s, offset, bytes, ret);
1445 out:
1446 qemu_iovec_destroy(&local_qiov);
1447 return ret;
1448
1449 }
1450
1451 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1452 bool exact, PreallocMode prealloc,
1453 BdrvRequestFlags flags, Error **errp)
1454 {
1455 int64_t cur_length;
1456
1457 if (prealloc != PREALLOC_MODE_OFF) {
1458 error_setg(errp, "Unsupported preallocation mode '%s'",
1459 PreallocMode_str(prealloc));
1460 return -ENOTSUP;
1461 }
1462
1463 cur_length = nvme_getlength(bs);
1464 if (offset != cur_length && exact) {
1465 error_setg(errp, "Cannot resize NVMe devices");
1466 return -ENOTSUP;
1467 } else if (offset > cur_length) {
1468 error_setg(errp, "Cannot grow NVMe devices");
1469 return -EINVAL;
1470 }
1471
1472 return 0;
1473 }
1474
1475 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1476 BlockReopenQueue *queue, Error **errp)
1477 {
1478 return 0;
1479 }
1480
1481 static void nvme_refresh_filename(BlockDriverState *bs)
1482 {
1483 BDRVNVMeState *s = bs->opaque;
1484
1485 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1486 s->device, s->nsid);
1487 }
1488
1489 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1490 {
1491 BDRVNVMeState *s = bs->opaque;
1492
1493 bs->bl.opt_mem_alignment = s->page_size;
1494 bs->bl.request_alignment = s->page_size;
1495 bs->bl.max_transfer = s->max_transfer;
1496
1497 /*
1498 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1499 * at most 0xFFFF
1500 */
1501 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1502 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1503 1UL << s->blkshift);
1504
1505 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1506 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1507 1UL << s->blkshift);
1508 }
1509
1510 static void nvme_detach_aio_context(BlockDriverState *bs)
1511 {
1512 BDRVNVMeState *s = bs->opaque;
1513
1514 for (unsigned i = 0; i < s->queue_count; i++) {
1515 NVMeQueuePair *q = s->queues[i];
1516
1517 qemu_bh_delete(q->completion_bh);
1518 q->completion_bh = NULL;
1519 }
1520
1521 aio_set_event_notifier(bdrv_get_aio_context(bs),
1522 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1523 false, NULL, NULL);
1524 }
1525
1526 static void nvme_attach_aio_context(BlockDriverState *bs,
1527 AioContext *new_context)
1528 {
1529 BDRVNVMeState *s = bs->opaque;
1530
1531 s->aio_context = new_context;
1532 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1533 false, nvme_handle_event, nvme_poll_cb);
1534
1535 for (unsigned i = 0; i < s->queue_count; i++) {
1536 NVMeQueuePair *q = s->queues[i];
1537
1538 q->completion_bh =
1539 aio_bh_new(new_context, nvme_process_completion_bh, q);
1540 }
1541 }
1542
1543 static void nvme_aio_plug(BlockDriverState *bs)
1544 {
1545 BDRVNVMeState *s = bs->opaque;
1546 assert(!s->plugged);
1547 s->plugged = true;
1548 }
1549
1550 static void nvme_aio_unplug(BlockDriverState *bs)
1551 {
1552 BDRVNVMeState *s = bs->opaque;
1553 assert(s->plugged);
1554 s->plugged = false;
1555 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1556 NVMeQueuePair *q = s->queues[i];
1557 qemu_mutex_lock(&q->lock);
1558 nvme_kick(q);
1559 nvme_process_completion(q);
1560 qemu_mutex_unlock(&q->lock);
1561 }
1562 }
1563
1564 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1565 {
1566 int ret;
1567 Error *local_err = NULL;
1568 BDRVNVMeState *s = bs->opaque;
1569
1570 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
1571 if (ret) {
1572 /* FIXME: we may run out of IOVA addresses after repeated
1573 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1574 * doesn't reclaim addresses for fixed mappings. */
1575 error_reportf_err(local_err, "nvme_register_buf failed: ");
1576 }
1577 }
1578
1579 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1580 {
1581 BDRVNVMeState *s = bs->opaque;
1582
1583 qemu_vfio_dma_unmap(s->vfio, host);
1584 }
1585
1586 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1587 {
1588 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1589 BDRVNVMeState *s = bs->opaque;
1590
1591 stats->driver = BLOCKDEV_DRIVER_NVME;
1592 stats->u.nvme = (BlockStatsSpecificNvme) {
1593 .completion_errors = s->stats.completion_errors,
1594 .aligned_accesses = s->stats.aligned_accesses,
1595 .unaligned_accesses = s->stats.unaligned_accesses,
1596 };
1597
1598 return stats;
1599 }
1600
1601 static const char *const nvme_strong_runtime_opts[] = {
1602 NVME_BLOCK_OPT_DEVICE,
1603 NVME_BLOCK_OPT_NAMESPACE,
1604
1605 NULL
1606 };
1607
1608 static BlockDriver bdrv_nvme = {
1609 .format_name = "nvme",
1610 .protocol_name = "nvme",
1611 .instance_size = sizeof(BDRVNVMeState),
1612
1613 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1614 .create_opts = &bdrv_create_opts_simple,
1615
1616 .bdrv_parse_filename = nvme_parse_filename,
1617 .bdrv_file_open = nvme_file_open,
1618 .bdrv_close = nvme_close,
1619 .bdrv_getlength = nvme_getlength,
1620 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1621 .bdrv_co_truncate = nvme_co_truncate,
1622
1623 .bdrv_co_preadv = nvme_co_preadv,
1624 .bdrv_co_pwritev = nvme_co_pwritev,
1625
1626 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1627 .bdrv_co_pdiscard = nvme_co_pdiscard,
1628
1629 .bdrv_co_flush_to_disk = nvme_co_flush,
1630 .bdrv_reopen_prepare = nvme_reopen_prepare,
1631
1632 .bdrv_refresh_filename = nvme_refresh_filename,
1633 .bdrv_refresh_limits = nvme_refresh_limits,
1634 .strong_runtime_opts = nvme_strong_runtime_opts,
1635 .bdrv_get_specific_stats = nvme_get_specific_stats,
1636
1637 .bdrv_detach_aio_context = nvme_detach_aio_context,
1638 .bdrv_attach_aio_context = nvme_attach_aio_context,
1639
1640 .bdrv_io_plug = nvme_aio_plug,
1641 .bdrv_io_unplug = nvme_aio_unplug,
1642
1643 .bdrv_register_buf = nvme_register_buf,
1644 .bdrv_unregister_buf = nvme_unregister_buf,
1645 };
1646
1647 static void bdrv_nvme_init(void)
1648 {
1649 bdrv_register(&bdrv_nvme);
1650 }
1651
1652 block_init(bdrv_nvme_init);