]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
Merge tag 'for-upstream' of https://repo.or.cz/qemu/kevin into staging
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/module.h"
23 #include "qemu/cutils.h"
24 #include "qemu/option.h"
25 #include "qemu/memalign.h"
26 #include "qemu/vfio-helpers.h"
27 #include "block/block-io.h"
28 #include "block/block_int.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/replay.h"
31 #include "trace.h"
32
33 #include "block/nvme.h"
34
35 #define NVME_SQ_ENTRY_BYTES 64
36 #define NVME_CQ_ENTRY_BYTES 16
37 #define NVME_QUEUE_SIZE 128
38 #define NVME_DOORBELL_SIZE 4096
39
40 /*
41 * We have to leave one slot empty as that is the full queue case where
42 * head == tail + 1.
43 */
44 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
45
46 typedef struct BDRVNVMeState BDRVNVMeState;
47
48 /* Same index is used for queues and IRQs */
49 #define INDEX_ADMIN 0
50 #define INDEX_IO(n) (1 + n)
51
52 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
53 enum {
54 MSIX_SHARED_IRQ_IDX = 0,
55 MSIX_IRQ_COUNT = 1
56 };
57
58 typedef struct {
59 int32_t head, tail;
60 uint8_t *queue;
61 uint64_t iova;
62 /* Hardware MMIO register */
63 volatile uint32_t *doorbell;
64 } NVMeQueue;
65
66 typedef struct {
67 BlockCompletionFunc *cb;
68 void *opaque;
69 int cid;
70 void *prp_list_page;
71 uint64_t prp_list_iova;
72 int free_req_next; /* q->reqs[] index of next free req */
73 } NVMeRequest;
74
75 typedef struct {
76 QemuMutex lock;
77
78 /* Read from I/O code path, initialized under BQL */
79 BDRVNVMeState *s;
80 int index;
81
82 /* Fields protected by BQL */
83 uint8_t *prp_list_pages;
84
85 /* Fields protected by @lock */
86 CoQueue free_req_queue;
87 NVMeQueue sq, cq;
88 int cq_phase;
89 int free_req_head;
90 NVMeRequest reqs[NVME_NUM_REQS];
91 int need_kick;
92 int inflight;
93
94 /* Thread-safe, no lock necessary */
95 QEMUBH *completion_bh;
96 } NVMeQueuePair;
97
98 struct BDRVNVMeState {
99 AioContext *aio_context;
100 QEMUVFIOState *vfio;
101 void *bar0_wo_map;
102 /* Memory mapped registers */
103 volatile struct {
104 uint32_t sq_tail;
105 uint32_t cq_head;
106 } *doorbells;
107 /* The submission/completion queue pairs.
108 * [0]: admin queue.
109 * [1..]: io queues.
110 */
111 NVMeQueuePair **queues;
112 unsigned queue_count;
113 size_t page_size;
114 /* How many uint32_t elements does each doorbell entry take. */
115 size_t doorbell_scale;
116 bool write_cache_supported;
117 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
118
119 uint64_t nsze; /* Namespace size reported by identify command */
120 int nsid; /* The namespace id to read/write data. */
121 int blkshift;
122
123 uint64_t max_transfer;
124
125 bool supports_write_zeroes;
126 bool supports_discard;
127
128 CoMutex dma_map_lock;
129 CoQueue dma_flush_queue;
130
131 /* Total size of mapped qiov, accessed under dma_map_lock */
132 int dma_map_count;
133
134 /* PCI address (required for nvme_refresh_filename()) */
135 char *device;
136
137 struct {
138 uint64_t completion_errors;
139 uint64_t aligned_accesses;
140 uint64_t unaligned_accesses;
141 } stats;
142 };
143
144 #define NVME_BLOCK_OPT_DEVICE "device"
145 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
146
147 static void nvme_process_completion_bh(void *opaque);
148
149 static QemuOptsList runtime_opts = {
150 .name = "nvme",
151 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
152 .desc = {
153 {
154 .name = NVME_BLOCK_OPT_DEVICE,
155 .type = QEMU_OPT_STRING,
156 .help = "NVMe PCI device address",
157 },
158 {
159 .name = NVME_BLOCK_OPT_NAMESPACE,
160 .type = QEMU_OPT_NUMBER,
161 .help = "NVMe namespace",
162 },
163 { /* end of list */ }
164 },
165 };
166
167 /* Returns true on success, false on failure. */
168 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
169 unsigned nentries, size_t entry_bytes, Error **errp)
170 {
171 size_t bytes;
172 int r;
173
174 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
175 q->head = q->tail = 0;
176 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
177 if (!q->queue) {
178 error_setg(errp, "Cannot allocate queue");
179 return false;
180 }
181 memset(q->queue, 0, bytes);
182 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
183 if (r) {
184 error_prepend(errp, "Cannot map queue: ");
185 }
186 return r == 0;
187 }
188
189 static void nvme_free_queue(NVMeQueue *q)
190 {
191 qemu_vfree(q->queue);
192 }
193
194 static void nvme_free_queue_pair(NVMeQueuePair *q)
195 {
196 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
197 if (q->completion_bh) {
198 qemu_bh_delete(q->completion_bh);
199 }
200 nvme_free_queue(&q->sq);
201 nvme_free_queue(&q->cq);
202 qemu_vfree(q->prp_list_pages);
203 qemu_mutex_destroy(&q->lock);
204 g_free(q);
205 }
206
207 static void nvme_free_req_queue_cb(void *opaque)
208 {
209 NVMeQueuePair *q = opaque;
210
211 qemu_mutex_lock(&q->lock);
212 while (q->free_req_head != -1 &&
213 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
214 /* Retry waiting requests */
215 }
216 qemu_mutex_unlock(&q->lock);
217 }
218
219 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
220 AioContext *aio_context,
221 unsigned idx, size_t size,
222 Error **errp)
223 {
224 int i, r;
225 NVMeQueuePair *q;
226 uint64_t prp_list_iova;
227 size_t bytes;
228
229 q = g_try_new0(NVMeQueuePair, 1);
230 if (!q) {
231 error_setg(errp, "Cannot allocate queue pair");
232 return NULL;
233 }
234 trace_nvme_create_queue_pair(idx, q, size, aio_context,
235 event_notifier_get_fd(s->irq_notifier));
236 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
237 qemu_real_host_page_size());
238 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
239 if (!q->prp_list_pages) {
240 error_setg(errp, "Cannot allocate PRP page list");
241 goto fail;
242 }
243 memset(q->prp_list_pages, 0, bytes);
244 qemu_mutex_init(&q->lock);
245 q->s = s;
246 q->index = idx;
247 qemu_co_queue_init(&q->free_req_queue);
248 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
249 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
250 false, &prp_list_iova, errp);
251 if (r) {
252 error_prepend(errp, "Cannot map buffer for DMA: ");
253 goto fail;
254 }
255 q->free_req_head = -1;
256 for (i = 0; i < NVME_NUM_REQS; i++) {
257 NVMeRequest *req = &q->reqs[i];
258 req->cid = i + 1;
259 req->free_req_next = q->free_req_head;
260 q->free_req_head = i;
261 req->prp_list_page = q->prp_list_pages + i * s->page_size;
262 req->prp_list_iova = prp_list_iova + i * s->page_size;
263 }
264
265 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
266 goto fail;
267 }
268 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
269
270 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
271 goto fail;
272 }
273 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
274
275 return q;
276 fail:
277 nvme_free_queue_pair(q);
278 return NULL;
279 }
280
281 /* With q->lock */
282 static void nvme_kick(NVMeQueuePair *q)
283 {
284 BDRVNVMeState *s = q->s;
285
286 if (!q->need_kick) {
287 return;
288 }
289 trace_nvme_kick(s, q->index);
290 assert(!(q->sq.tail & 0xFF00));
291 /* Fence the write to submission queue entry before notifying the device. */
292 smp_wmb();
293 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
294 q->inflight += q->need_kick;
295 q->need_kick = 0;
296 }
297
298 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
299 {
300 NVMeRequest *req;
301
302 req = &q->reqs[q->free_req_head];
303 q->free_req_head = req->free_req_next;
304 req->free_req_next = -1;
305 return req;
306 }
307
308 /* Return a free request element if any, otherwise return NULL. */
309 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
310 {
311 QEMU_LOCK_GUARD(&q->lock);
312 if (q->free_req_head == -1) {
313 return NULL;
314 }
315 return nvme_get_free_req_nofail_locked(q);
316 }
317
318 /*
319 * Wait for a free request to become available if necessary, then
320 * return it.
321 */
322 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
323 {
324 QEMU_LOCK_GUARD(&q->lock);
325
326 while (q->free_req_head == -1) {
327 trace_nvme_free_req_queue_wait(q->s, q->index);
328 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
329 }
330
331 return nvme_get_free_req_nofail_locked(q);
332 }
333
334 /* With q->lock */
335 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
336 {
337 req->free_req_next = q->free_req_head;
338 q->free_req_head = req - q->reqs;
339 }
340
341 /* With q->lock */
342 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
343 {
344 if (!qemu_co_queue_empty(&q->free_req_queue)) {
345 replay_bh_schedule_oneshot_event(q->s->aio_context,
346 nvme_free_req_queue_cb, q);
347 }
348 }
349
350 /* Insert a request in the freelist and wake waiters */
351 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
352 {
353 qemu_mutex_lock(&q->lock);
354 nvme_put_free_req_locked(q, req);
355 nvme_wake_free_req_locked(q);
356 qemu_mutex_unlock(&q->lock);
357 }
358
359 static inline int nvme_translate_error(const NvmeCqe *c)
360 {
361 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
362 if (status) {
363 trace_nvme_error(le32_to_cpu(c->result),
364 le16_to_cpu(c->sq_head),
365 le16_to_cpu(c->sq_id),
366 le16_to_cpu(c->cid),
367 le16_to_cpu(status));
368 }
369 switch (status) {
370 case 0:
371 return 0;
372 case 1:
373 return -ENOSYS;
374 case 2:
375 return -EINVAL;
376 default:
377 return -EIO;
378 }
379 }
380
381 /* With q->lock */
382 static bool nvme_process_completion(NVMeQueuePair *q)
383 {
384 BDRVNVMeState *s = q->s;
385 bool progress = false;
386 NVMeRequest *preq;
387 NVMeRequest req;
388 NvmeCqe *c;
389
390 trace_nvme_process_completion(s, q->index, q->inflight);
391
392 /*
393 * Support re-entrancy when a request cb() function invokes aio_poll().
394 * Pending completions must be visible to aio_poll() so that a cb()
395 * function can wait for the completion of another request.
396 *
397 * The aio_poll() loop will execute our BH and we'll resume completion
398 * processing there.
399 */
400 qemu_bh_schedule(q->completion_bh);
401
402 assert(q->inflight >= 0);
403 while (q->inflight) {
404 int ret;
405 int16_t cid;
406
407 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
408 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
409 break;
410 }
411 ret = nvme_translate_error(c);
412 if (ret) {
413 s->stats.completion_errors++;
414 }
415 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
416 if (!q->cq.head) {
417 q->cq_phase = !q->cq_phase;
418 }
419 cid = le16_to_cpu(c->cid);
420 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
421 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
422 "queue size: %u", cid, NVME_QUEUE_SIZE);
423 continue;
424 }
425 trace_nvme_complete_command(s, q->index, cid);
426 preq = &q->reqs[cid - 1];
427 req = *preq;
428 assert(req.cid == cid);
429 assert(req.cb);
430 nvme_put_free_req_locked(q, preq);
431 preq->cb = preq->opaque = NULL;
432 q->inflight--;
433 qemu_mutex_unlock(&q->lock);
434 req.cb(req.opaque, ret);
435 qemu_mutex_lock(&q->lock);
436 progress = true;
437 }
438 if (progress) {
439 /* Notify the device so it can post more completions. */
440 smp_mb_release();
441 *q->cq.doorbell = cpu_to_le32(q->cq.head);
442 nvme_wake_free_req_locked(q);
443 }
444
445 qemu_bh_cancel(q->completion_bh);
446
447 return progress;
448 }
449
450 static void nvme_process_completion_bh(void *opaque)
451 {
452 NVMeQueuePair *q = opaque;
453
454 /*
455 * We're being invoked because a nvme_process_completion() cb() function
456 * called aio_poll(). The callback may be waiting for further completions
457 * so notify the device that it has space to fill in more completions now.
458 */
459 smp_mb_release();
460 *q->cq.doorbell = cpu_to_le32(q->cq.head);
461 nvme_wake_free_req_locked(q);
462
463 nvme_process_completion(q);
464 }
465
466 static void nvme_trace_command(const NvmeCmd *cmd)
467 {
468 int i;
469
470 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
471 return;
472 }
473 for (i = 0; i < 8; ++i) {
474 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
475 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
476 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
477 }
478 }
479
480 static void nvme_deferred_fn(void *opaque)
481 {
482 NVMeQueuePair *q = opaque;
483
484 QEMU_LOCK_GUARD(&q->lock);
485 nvme_kick(q);
486 nvme_process_completion(q);
487 }
488
489 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
490 NvmeCmd *cmd, BlockCompletionFunc cb,
491 void *opaque)
492 {
493 assert(!req->cb);
494 req->cb = cb;
495 req->opaque = opaque;
496 cmd->cid = cpu_to_le16(req->cid);
497
498 trace_nvme_submit_command(q->s, q->index, req->cid);
499 nvme_trace_command(cmd);
500 qemu_mutex_lock(&q->lock);
501 memcpy((uint8_t *)q->sq.queue +
502 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
503 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
504 q->need_kick++;
505 qemu_mutex_unlock(&q->lock);
506
507 defer_call(nvme_deferred_fn, q);
508 }
509
510 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
511 {
512 int *pret = opaque;
513 *pret = ret;
514 aio_wait_kick();
515 }
516
517 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
518 {
519 BDRVNVMeState *s = bs->opaque;
520 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
521 AioContext *aio_context = bdrv_get_aio_context(bs);
522 NVMeRequest *req;
523 int ret = -EINPROGRESS;
524 req = nvme_get_free_req_nowait(q);
525 if (!req) {
526 return -EBUSY;
527 }
528 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
529
530 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
531 return ret;
532 }
533
534 /* Returns true on success, false on failure. */
535 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
536 {
537 BDRVNVMeState *s = bs->opaque;
538 bool ret = false;
539 QEMU_AUTO_VFREE union {
540 NvmeIdCtrl ctrl;
541 NvmeIdNs ns;
542 } *id = NULL;
543 NvmeLBAF *lbaf;
544 uint16_t oncs;
545 int r;
546 uint64_t iova;
547 NvmeCmd cmd = {
548 .opcode = NVME_ADM_CMD_IDENTIFY,
549 .cdw10 = cpu_to_le32(0x1),
550 };
551 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
552
553 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
554 if (!id) {
555 error_setg(errp, "Cannot allocate buffer for identify response");
556 goto out;
557 }
558 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
559 if (r) {
560 error_prepend(errp, "Cannot map buffer for DMA: ");
561 goto out;
562 }
563
564 memset(id, 0, id_size);
565 cmd.dptr.prp1 = cpu_to_le64(iova);
566 if (nvme_admin_cmd_sync(bs, &cmd)) {
567 error_setg(errp, "Failed to identify controller");
568 goto out;
569 }
570
571 if (le32_to_cpu(id->ctrl.nn) < namespace) {
572 error_setg(errp, "Invalid namespace");
573 goto out;
574 }
575 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
576 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
577 /* For now the page list buffer per command is one page, to hold at most
578 * s->page_size / sizeof(uint64_t) entries. */
579 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
580 s->page_size / sizeof(uint64_t) * s->page_size);
581
582 oncs = le16_to_cpu(id->ctrl.oncs);
583 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
584 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
585
586 memset(id, 0, id_size);
587 cmd.cdw10 = 0;
588 cmd.nsid = cpu_to_le32(namespace);
589 if (nvme_admin_cmd_sync(bs, &cmd)) {
590 error_setg(errp, "Failed to identify namespace");
591 goto out;
592 }
593
594 s->nsze = le64_to_cpu(id->ns.nsze);
595 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
596
597 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
598 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
599 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
600 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
601 }
602
603 if (lbaf->ms) {
604 error_setg(errp, "Namespaces with metadata are not yet supported");
605 goto out;
606 }
607
608 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
609 (1 << lbaf->ds) > s->page_size)
610 {
611 error_setg(errp, "Namespace has unsupported block size (2^%d)",
612 lbaf->ds);
613 goto out;
614 }
615
616 ret = true;
617 s->blkshift = lbaf->ds;
618 out:
619 qemu_vfio_dma_unmap(s->vfio, id);
620
621 return ret;
622 }
623
624 static void nvme_poll_queue(NVMeQueuePair *q)
625 {
626 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
627 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
628
629 trace_nvme_poll_queue(q->s, q->index);
630 /*
631 * Do an early check for completions. q->lock isn't needed because
632 * nvme_process_completion() only runs in the event loop thread and
633 * cannot race with itself.
634 */
635 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
636 return;
637 }
638
639 qemu_mutex_lock(&q->lock);
640 while (nvme_process_completion(q)) {
641 /* Keep polling */
642 }
643 qemu_mutex_unlock(&q->lock);
644 }
645
646 static void nvme_poll_queues(BDRVNVMeState *s)
647 {
648 int i;
649
650 for (i = 0; i < s->queue_count; i++) {
651 nvme_poll_queue(s->queues[i]);
652 }
653 }
654
655 static void nvme_handle_event(EventNotifier *n)
656 {
657 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
658 irq_notifier[MSIX_SHARED_IRQ_IDX]);
659
660 trace_nvme_handle_event(s);
661 event_notifier_test_and_clear(n);
662 nvme_poll_queues(s);
663 }
664
665 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
666 {
667 BDRVNVMeState *s = bs->opaque;
668 unsigned n = s->queue_count;
669 NVMeQueuePair *q;
670 NvmeCmd cmd;
671 unsigned queue_size = NVME_QUEUE_SIZE;
672
673 assert(n <= UINT16_MAX);
674 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
675 n, queue_size, errp);
676 if (!q) {
677 return false;
678 }
679 cmd = (NvmeCmd) {
680 .opcode = NVME_ADM_CMD_CREATE_CQ,
681 .dptr.prp1 = cpu_to_le64(q->cq.iova),
682 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
683 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
684 };
685 if (nvme_admin_cmd_sync(bs, &cmd)) {
686 error_setg(errp, "Failed to create CQ io queue [%u]", n);
687 goto out_error;
688 }
689 cmd = (NvmeCmd) {
690 .opcode = NVME_ADM_CMD_CREATE_SQ,
691 .dptr.prp1 = cpu_to_le64(q->sq.iova),
692 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
693 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
694 };
695 if (nvme_admin_cmd_sync(bs, &cmd)) {
696 error_setg(errp, "Failed to create SQ io queue [%u]", n);
697 goto out_error;
698 }
699 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
700 s->queues[n] = q;
701 s->queue_count++;
702 return true;
703 out_error:
704 nvme_free_queue_pair(q);
705 return false;
706 }
707
708 static bool nvme_poll_cb(void *opaque)
709 {
710 EventNotifier *e = opaque;
711 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
712 irq_notifier[MSIX_SHARED_IRQ_IDX]);
713 int i;
714
715 for (i = 0; i < s->queue_count; i++) {
716 NVMeQueuePair *q = s->queues[i];
717 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
718 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
719
720 /*
721 * q->lock isn't needed because nvme_process_completion() only runs in
722 * the event loop thread and cannot race with itself.
723 */
724 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
725 return true;
726 }
727 }
728 return false;
729 }
730
731 static void nvme_poll_ready(EventNotifier *e)
732 {
733 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
734 irq_notifier[MSIX_SHARED_IRQ_IDX]);
735
736 nvme_poll_queues(s);
737 }
738
739 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
740 Error **errp)
741 {
742 BDRVNVMeState *s = bs->opaque;
743 NVMeQueuePair *q;
744 AioContext *aio_context = bdrv_get_aio_context(bs);
745 int ret;
746 uint64_t cap;
747 uint32_t ver;
748 uint64_t timeout_ms;
749 uint64_t deadline, now;
750 volatile NvmeBar *regs = NULL;
751
752 qemu_co_mutex_init(&s->dma_map_lock);
753 qemu_co_queue_init(&s->dma_flush_queue);
754 s->device = g_strdup(device);
755 s->nsid = namespace;
756 s->aio_context = bdrv_get_aio_context(bs);
757 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
758 if (ret) {
759 error_setg(errp, "Failed to init event notifier");
760 return ret;
761 }
762
763 s->vfio = qemu_vfio_open_pci(device, errp);
764 if (!s->vfio) {
765 ret = -EINVAL;
766 goto out;
767 }
768
769 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
770 PROT_READ | PROT_WRITE, errp);
771 if (!regs) {
772 ret = -EINVAL;
773 goto out;
774 }
775 /* Perform initialize sequence as described in NVMe spec "7.6.1
776 * Initialization". */
777
778 cap = le64_to_cpu(regs->cap);
779 trace_nvme_controller_capability_raw(cap);
780 trace_nvme_controller_capability("Maximum Queue Entries Supported",
781 1 + NVME_CAP_MQES(cap));
782 trace_nvme_controller_capability("Contiguous Queues Required",
783 NVME_CAP_CQR(cap));
784 trace_nvme_controller_capability("Doorbell Stride",
785 1 << (2 + NVME_CAP_DSTRD(cap)));
786 trace_nvme_controller_capability("Subsystem Reset Supported",
787 NVME_CAP_NSSRS(cap));
788 trace_nvme_controller_capability("Memory Page Size Minimum",
789 1 << (12 + NVME_CAP_MPSMIN(cap)));
790 trace_nvme_controller_capability("Memory Page Size Maximum",
791 1 << (12 + NVME_CAP_MPSMAX(cap)));
792 if (!NVME_CAP_CSS(cap)) {
793 error_setg(errp, "Device doesn't support NVMe command set");
794 ret = -EINVAL;
795 goto out;
796 }
797
798 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
799 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
800 bs->bl.opt_mem_alignment = s->page_size;
801 bs->bl.request_alignment = s->page_size;
802 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
803
804 ver = le32_to_cpu(regs->vs);
805 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
806 extract32(ver, 8, 8),
807 extract32(ver, 0, 8));
808
809 /* Reset device to get a clean state. */
810 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
811 /* Wait for CSTS.RDY = 0. */
812 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
813 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
814 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
815 error_setg(errp, "Timeout while waiting for device to reset (%"
816 PRId64 " ms)",
817 timeout_ms);
818 ret = -ETIMEDOUT;
819 goto out;
820 }
821 }
822
823 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
824 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
825 PROT_WRITE, errp);
826 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
827 if (!s->doorbells) {
828 ret = -EINVAL;
829 goto out;
830 }
831
832 /* Set up admin queue. */
833 s->queues = g_new(NVMeQueuePair *, 1);
834 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
835 if (!q) {
836 ret = -EINVAL;
837 goto out;
838 }
839 s->queues[INDEX_ADMIN] = q;
840 s->queue_count = 1;
841 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
842 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
843 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
844 regs->asq = cpu_to_le64(q->sq.iova);
845 regs->acq = cpu_to_le64(q->cq.iova);
846
847 /* After setting up all control registers we can enable device now. */
848 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
849 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
850 CC_EN_MASK);
851 /* Wait for CSTS.RDY = 1. */
852 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
853 deadline = now + timeout_ms * SCALE_MS;
854 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
855 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
856 error_setg(errp, "Timeout while waiting for device to start (%"
857 PRId64 " ms)",
858 timeout_ms);
859 ret = -ETIMEDOUT;
860 goto out;
861 }
862 }
863
864 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
865 VFIO_PCI_MSIX_IRQ_INDEX, errp);
866 if (ret) {
867 goto out;
868 }
869 aio_set_event_notifier(bdrv_get_aio_context(bs),
870 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
871 nvme_handle_event, nvme_poll_cb,
872 nvme_poll_ready);
873
874 if (!nvme_identify(bs, namespace, errp)) {
875 ret = -EIO;
876 goto out;
877 }
878
879 /* Set up command queues. */
880 if (!nvme_add_io_queue(bs, errp)) {
881 ret = -EIO;
882 }
883 out:
884 if (regs) {
885 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
886 }
887
888 /* Cleaning up is done in nvme_file_open() upon error. */
889 return ret;
890 }
891
892 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
893 *
894 * nvme://0000:44:00.0/1
895 *
896 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
897 * is the PCI address, and the last part is the namespace number starting from
898 * 1 according to the NVMe spec. */
899 static void nvme_parse_filename(const char *filename, QDict *options,
900 Error **errp)
901 {
902 int pref = strlen("nvme://");
903
904 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
905 const char *tmp = filename + pref;
906 char *device;
907 const char *namespace;
908 unsigned long ns;
909 const char *slash = strchr(tmp, '/');
910 if (!slash) {
911 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
912 return;
913 }
914 device = g_strndup(tmp, slash - tmp);
915 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
916 g_free(device);
917 namespace = slash + 1;
918 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
919 error_setg(errp, "Invalid namespace '%s', positive number expected",
920 namespace);
921 return;
922 }
923 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
924 *namespace ? namespace : "1");
925 }
926 }
927
928 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
929 Error **errp)
930 {
931 int ret;
932 BDRVNVMeState *s = bs->opaque;
933 NvmeCmd cmd = {
934 .opcode = NVME_ADM_CMD_SET_FEATURES,
935 .nsid = cpu_to_le32(s->nsid),
936 .cdw10 = cpu_to_le32(0x06),
937 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
938 };
939
940 ret = nvme_admin_cmd_sync(bs, &cmd);
941 if (ret) {
942 error_setg(errp, "Failed to configure NVMe write cache");
943 }
944 return ret;
945 }
946
947 static void nvme_close(BlockDriverState *bs)
948 {
949 BDRVNVMeState *s = bs->opaque;
950
951 for (unsigned i = 0; i < s->queue_count; ++i) {
952 nvme_free_queue_pair(s->queues[i]);
953 }
954 g_free(s->queues);
955 aio_set_event_notifier(bdrv_get_aio_context(bs),
956 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
957 NULL, NULL, NULL);
958 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
959 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
960 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
961 qemu_vfio_close(s->vfio);
962
963 g_free(s->device);
964 }
965
966 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
967 Error **errp)
968 {
969 const char *device;
970 QemuOpts *opts;
971 int namespace;
972 int ret;
973 BDRVNVMeState *s = bs->opaque;
974
975 bs->supported_write_flags = BDRV_REQ_FUA;
976
977 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
978 qemu_opts_absorb_qdict(opts, options, &error_abort);
979 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
980 if (!device) {
981 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
982 qemu_opts_del(opts);
983 return -EINVAL;
984 }
985
986 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
987 ret = nvme_init(bs, device, namespace, errp);
988 qemu_opts_del(opts);
989 if (ret) {
990 goto fail;
991 }
992 if (flags & BDRV_O_NOCACHE) {
993 if (!s->write_cache_supported) {
994 error_setg(errp,
995 "NVMe controller doesn't support write cache configuration");
996 ret = -EINVAL;
997 } else {
998 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
999 errp);
1000 }
1001 if (ret) {
1002 goto fail;
1003 }
1004 }
1005 return 0;
1006 fail:
1007 nvme_close(bs);
1008 return ret;
1009 }
1010
1011 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1012 {
1013 BDRVNVMeState *s = bs->opaque;
1014 return s->nsze << s->blkshift;
1015 }
1016
1017 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1018 {
1019 BDRVNVMeState *s = bs->opaque;
1020 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1021 return UINT32_C(1) << s->blkshift;
1022 }
1023
1024 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1025 {
1026 uint32_t blocksize = nvme_get_blocksize(bs);
1027 bsz->phys = blocksize;
1028 bsz->log = blocksize;
1029 return 0;
1030 }
1031
1032 /* Called with s->dma_map_lock */
1033 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1034 QEMUIOVector *qiov)
1035 {
1036 int r = 0;
1037 BDRVNVMeState *s = bs->opaque;
1038
1039 s->dma_map_count -= qiov->size;
1040 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1041 r = qemu_vfio_dma_reset_temporary(s->vfio);
1042 if (!r) {
1043 qemu_co_queue_restart_all(&s->dma_flush_queue);
1044 }
1045 }
1046 return r;
1047 }
1048
1049 /* Called with s->dma_map_lock */
1050 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1051 NVMeRequest *req, QEMUIOVector *qiov)
1052 {
1053 BDRVNVMeState *s = bs->opaque;
1054 uint64_t *pagelist = req->prp_list_page;
1055 int i, j, r;
1056 int entries = 0;
1057 Error *local_err = NULL, **errp = NULL;
1058
1059 assert(qiov->size);
1060 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1061 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1062 for (i = 0; i < qiov->niov; ++i) {
1063 bool retry = true;
1064 uint64_t iova;
1065 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1066 qemu_real_host_page_size());
1067 try_map:
1068 r = qemu_vfio_dma_map(s->vfio,
1069 qiov->iov[i].iov_base,
1070 len, true, &iova, errp);
1071 if (r == -ENOSPC) {
1072 /*
1073 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1074 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1075 * mappings available for a container since Linux kernel commit
1076 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1077 * April 2019, see CVE-2019-3882).
1078 *
1079 * This block driver already handles this error path by checking
1080 * for the -ENOMEM error, so we directly replace -ENOSPC by
1081 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1082 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1083 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1084 * to add more storage to the blockdev. Not something we can do
1085 * easily with an IOMMU :)
1086 */
1087 r = -ENOMEM;
1088 }
1089 if (r == -ENOMEM && retry) {
1090 /*
1091 * We exhausted the DMA mappings available for our container:
1092 * recycle the volatile IOVA mappings.
1093 */
1094 retry = false;
1095 trace_nvme_dma_flush_queue_wait(s);
1096 if (s->dma_map_count) {
1097 trace_nvme_dma_map_flush(s);
1098 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1099 } else {
1100 r = qemu_vfio_dma_reset_temporary(s->vfio);
1101 if (r) {
1102 goto fail;
1103 }
1104 }
1105 errp = &local_err;
1106
1107 goto try_map;
1108 }
1109 if (r) {
1110 goto fail;
1111 }
1112
1113 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1114 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1115 }
1116 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1117 qiov->iov[i].iov_len / s->page_size);
1118 }
1119
1120 s->dma_map_count += qiov->size;
1121
1122 assert(entries <= s->page_size / sizeof(uint64_t));
1123 switch (entries) {
1124 case 0:
1125 abort();
1126 case 1:
1127 cmd->dptr.prp1 = pagelist[0];
1128 cmd->dptr.prp2 = 0;
1129 break;
1130 case 2:
1131 cmd->dptr.prp1 = pagelist[0];
1132 cmd->dptr.prp2 = pagelist[1];
1133 break;
1134 default:
1135 cmd->dptr.prp1 = pagelist[0];
1136 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1137 break;
1138 }
1139 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1140 for (i = 0; i < entries; ++i) {
1141 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1142 }
1143 return 0;
1144 fail:
1145 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1146 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1147 * because they are already mapped before calling this function; for
1148 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1149 * calling qemu_vfio_dma_reset_temporary when necessary. */
1150 if (local_err) {
1151 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1152 }
1153 return r;
1154 }
1155
1156 typedef struct {
1157 Coroutine *co;
1158 int ret;
1159 AioContext *ctx;
1160 } NVMeCoData;
1161
1162 static void nvme_rw_cb_bh(void *opaque)
1163 {
1164 NVMeCoData *data = opaque;
1165 qemu_coroutine_enter(data->co);
1166 }
1167
1168 static void nvme_rw_cb(void *opaque, int ret)
1169 {
1170 NVMeCoData *data = opaque;
1171 data->ret = ret;
1172 if (!data->co) {
1173 /* The rw coroutine hasn't yielded, don't try to enter. */
1174 return;
1175 }
1176 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1177 }
1178
1179 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1180 uint64_t offset, uint64_t bytes,
1181 QEMUIOVector *qiov,
1182 bool is_write,
1183 int flags)
1184 {
1185 int r;
1186 BDRVNVMeState *s = bs->opaque;
1187 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1188 NVMeRequest *req;
1189
1190 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1191 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1192 NvmeCmd cmd = {
1193 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1194 .nsid = cpu_to_le32(s->nsid),
1195 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1196 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1197 .cdw12 = cpu_to_le32(cdw12),
1198 };
1199 NVMeCoData data = {
1200 .ctx = bdrv_get_aio_context(bs),
1201 .ret = -EINPROGRESS,
1202 };
1203
1204 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1205 assert(s->queue_count > 1);
1206 req = nvme_get_free_req(ioq);
1207 assert(req);
1208
1209 qemu_co_mutex_lock(&s->dma_map_lock);
1210 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1211 qemu_co_mutex_unlock(&s->dma_map_lock);
1212 if (r) {
1213 nvme_put_free_req_and_wake(ioq, req);
1214 return r;
1215 }
1216 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1217
1218 data.co = qemu_coroutine_self();
1219 while (data.ret == -EINPROGRESS) {
1220 qemu_coroutine_yield();
1221 }
1222
1223 qemu_co_mutex_lock(&s->dma_map_lock);
1224 r = nvme_cmd_unmap_qiov(bs, qiov);
1225 qemu_co_mutex_unlock(&s->dma_map_lock);
1226 if (r) {
1227 return r;
1228 }
1229
1230 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1231 return data.ret;
1232 }
1233
1234 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1235 const QEMUIOVector *qiov)
1236 {
1237 int i;
1238 BDRVNVMeState *s = bs->opaque;
1239
1240 for (i = 0; i < qiov->niov; ++i) {
1241 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1242 qemu_real_host_page_size()) ||
1243 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1244 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1245 qiov->iov[i].iov_len, s->page_size);
1246 return false;
1247 }
1248 }
1249 return true;
1250 }
1251
1252 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1253 uint64_t offset, uint64_t bytes,
1254 QEMUIOVector *qiov, bool is_write,
1255 int flags)
1256 {
1257 BDRVNVMeState *s = bs->opaque;
1258 int r;
1259 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1260 QEMUIOVector local_qiov;
1261 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1262 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1263 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1264 assert(bytes <= s->max_transfer);
1265 if (nvme_qiov_aligned(bs, qiov)) {
1266 s->stats.aligned_accesses++;
1267 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1268 }
1269 s->stats.unaligned_accesses++;
1270 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1271 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1272
1273 if (!buf) {
1274 return -ENOMEM;
1275 }
1276 qemu_iovec_init(&local_qiov, 1);
1277 if (is_write) {
1278 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1279 }
1280 qemu_iovec_add(&local_qiov, buf, bytes);
1281 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1282 qemu_iovec_destroy(&local_qiov);
1283 if (!r && !is_write) {
1284 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1285 }
1286 return r;
1287 }
1288
1289 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1290 int64_t offset, int64_t bytes,
1291 QEMUIOVector *qiov,
1292 BdrvRequestFlags flags)
1293 {
1294 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1295 }
1296
1297 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1298 int64_t offset, int64_t bytes,
1299 QEMUIOVector *qiov,
1300 BdrvRequestFlags flags)
1301 {
1302 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1303 }
1304
1305 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1306 {
1307 BDRVNVMeState *s = bs->opaque;
1308 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1309 NVMeRequest *req;
1310 NvmeCmd cmd = {
1311 .opcode = NVME_CMD_FLUSH,
1312 .nsid = cpu_to_le32(s->nsid),
1313 };
1314 NVMeCoData data = {
1315 .ctx = bdrv_get_aio_context(bs),
1316 .ret = -EINPROGRESS,
1317 };
1318
1319 assert(s->queue_count > 1);
1320 req = nvme_get_free_req(ioq);
1321 assert(req);
1322 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1323
1324 data.co = qemu_coroutine_self();
1325 if (data.ret == -EINPROGRESS) {
1326 qemu_coroutine_yield();
1327 }
1328
1329 return data.ret;
1330 }
1331
1332
1333 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1334 int64_t offset,
1335 int64_t bytes,
1336 BdrvRequestFlags flags)
1337 {
1338 BDRVNVMeState *s = bs->opaque;
1339 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1340 NVMeRequest *req;
1341 uint32_t cdw12;
1342
1343 if (!s->supports_write_zeroes) {
1344 return -ENOTSUP;
1345 }
1346
1347 if (bytes == 0) {
1348 return 0;
1349 }
1350
1351 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1352 /*
1353 * We should not lose information. pwrite_zeroes_alignment and
1354 * max_pwrite_zeroes guarantees it.
1355 */
1356 assert(((cdw12 + 1) << s->blkshift) == bytes);
1357
1358 NvmeCmd cmd = {
1359 .opcode = NVME_CMD_WRITE_ZEROES,
1360 .nsid = cpu_to_le32(s->nsid),
1361 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1362 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1363 };
1364
1365 NVMeCoData data = {
1366 .ctx = bdrv_get_aio_context(bs),
1367 .ret = -EINPROGRESS,
1368 };
1369
1370 if (flags & BDRV_REQ_MAY_UNMAP) {
1371 cdw12 |= (1 << 25);
1372 }
1373
1374 if (flags & BDRV_REQ_FUA) {
1375 cdw12 |= (1 << 30);
1376 }
1377
1378 cmd.cdw12 = cpu_to_le32(cdw12);
1379
1380 trace_nvme_write_zeroes(s, offset, bytes, flags);
1381 assert(s->queue_count > 1);
1382 req = nvme_get_free_req(ioq);
1383 assert(req);
1384
1385 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1386
1387 data.co = qemu_coroutine_self();
1388 while (data.ret == -EINPROGRESS) {
1389 qemu_coroutine_yield();
1390 }
1391
1392 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1393 return data.ret;
1394 }
1395
1396
1397 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1398 int64_t offset,
1399 int64_t bytes)
1400 {
1401 BDRVNVMeState *s = bs->opaque;
1402 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1403 NVMeRequest *req;
1404 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1405 QEMUIOVector local_qiov;
1406 int ret;
1407
1408 NvmeCmd cmd = {
1409 .opcode = NVME_CMD_DSM,
1410 .nsid = cpu_to_le32(s->nsid),
1411 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1412 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1413 };
1414
1415 NVMeCoData data = {
1416 .ctx = bdrv_get_aio_context(bs),
1417 .ret = -EINPROGRESS,
1418 };
1419
1420 if (!s->supports_discard) {
1421 return -ENOTSUP;
1422 }
1423
1424 assert(s->queue_count > 1);
1425
1426 /*
1427 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1428 * defined in nvme_refresh_limits().
1429 */
1430 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1431 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1432 assert((bytes >> s->blkshift) <= UINT32_MAX);
1433
1434 buf = qemu_try_memalign(s->page_size, s->page_size);
1435 if (!buf) {
1436 return -ENOMEM;
1437 }
1438 memset(buf, 0, s->page_size);
1439 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1440 buf->slba = cpu_to_le64(offset >> s->blkshift);
1441 buf->cattr = 0;
1442
1443 qemu_iovec_init(&local_qiov, 1);
1444 qemu_iovec_add(&local_qiov, buf, 4096);
1445
1446 req = nvme_get_free_req(ioq);
1447 assert(req);
1448
1449 qemu_co_mutex_lock(&s->dma_map_lock);
1450 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1451 qemu_co_mutex_unlock(&s->dma_map_lock);
1452
1453 if (ret) {
1454 nvme_put_free_req_and_wake(ioq, req);
1455 goto out;
1456 }
1457
1458 trace_nvme_dsm(s, offset, bytes);
1459
1460 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1461
1462 data.co = qemu_coroutine_self();
1463 while (data.ret == -EINPROGRESS) {
1464 qemu_coroutine_yield();
1465 }
1466
1467 qemu_co_mutex_lock(&s->dma_map_lock);
1468 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1469 qemu_co_mutex_unlock(&s->dma_map_lock);
1470
1471 if (ret) {
1472 goto out;
1473 }
1474
1475 ret = data.ret;
1476 trace_nvme_dsm_done(s, offset, bytes, ret);
1477 out:
1478 qemu_iovec_destroy(&local_qiov);
1479 return ret;
1480
1481 }
1482
1483 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1484 bool exact, PreallocMode prealloc,
1485 BdrvRequestFlags flags, Error **errp)
1486 {
1487 int64_t cur_length;
1488
1489 if (prealloc != PREALLOC_MODE_OFF) {
1490 error_setg(errp, "Unsupported preallocation mode '%s'",
1491 PreallocMode_str(prealloc));
1492 return -ENOTSUP;
1493 }
1494
1495 cur_length = nvme_co_getlength(bs);
1496 if (offset != cur_length && exact) {
1497 error_setg(errp, "Cannot resize NVMe devices");
1498 return -ENOTSUP;
1499 } else if (offset > cur_length) {
1500 error_setg(errp, "Cannot grow NVMe devices");
1501 return -EINVAL;
1502 }
1503
1504 return 0;
1505 }
1506
1507 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1508 BlockReopenQueue *queue, Error **errp)
1509 {
1510 return 0;
1511 }
1512
1513 static void nvme_refresh_filename(BlockDriverState *bs)
1514 {
1515 BDRVNVMeState *s = bs->opaque;
1516
1517 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1518 s->device, s->nsid);
1519 }
1520
1521 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1522 {
1523 BDRVNVMeState *s = bs->opaque;
1524
1525 bs->bl.opt_mem_alignment = s->page_size;
1526 bs->bl.request_alignment = s->page_size;
1527 bs->bl.max_transfer = s->max_transfer;
1528
1529 /*
1530 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1531 * at most 0xFFFF
1532 */
1533 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1534 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1535 1UL << s->blkshift);
1536
1537 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1538 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1539 1UL << s->blkshift);
1540 }
1541
1542 static void nvme_detach_aio_context(BlockDriverState *bs)
1543 {
1544 BDRVNVMeState *s = bs->opaque;
1545
1546 for (unsigned i = 0; i < s->queue_count; i++) {
1547 NVMeQueuePair *q = s->queues[i];
1548
1549 qemu_bh_delete(q->completion_bh);
1550 q->completion_bh = NULL;
1551 }
1552
1553 aio_set_event_notifier(bdrv_get_aio_context(bs),
1554 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1555 NULL, NULL, NULL);
1556 }
1557
1558 static void nvme_attach_aio_context(BlockDriverState *bs,
1559 AioContext *new_context)
1560 {
1561 BDRVNVMeState *s = bs->opaque;
1562
1563 s->aio_context = new_context;
1564 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1565 nvme_handle_event, nvme_poll_cb,
1566 nvme_poll_ready);
1567
1568 for (unsigned i = 0; i < s->queue_count; i++) {
1569 NVMeQueuePair *q = s->queues[i];
1570
1571 q->completion_bh =
1572 aio_bh_new(new_context, nvme_process_completion_bh, q);
1573 }
1574 }
1575
1576 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1577 Error **errp)
1578 {
1579 int ret;
1580 BDRVNVMeState *s = bs->opaque;
1581
1582 /*
1583 * FIXME: we may run out of IOVA addresses after repeated
1584 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1585 * doesn't reclaim addresses for fixed mappings.
1586 */
1587 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1588 return ret == 0;
1589 }
1590
1591 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1592 {
1593 BDRVNVMeState *s = bs->opaque;
1594
1595 qemu_vfio_dma_unmap(s->vfio, host);
1596 }
1597
1598 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1599 {
1600 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1601 BDRVNVMeState *s = bs->opaque;
1602
1603 stats->driver = BLOCKDEV_DRIVER_NVME;
1604 stats->u.nvme = (BlockStatsSpecificNvme) {
1605 .completion_errors = s->stats.completion_errors,
1606 .aligned_accesses = s->stats.aligned_accesses,
1607 .unaligned_accesses = s->stats.unaligned_accesses,
1608 };
1609
1610 return stats;
1611 }
1612
1613 static const char *const nvme_strong_runtime_opts[] = {
1614 NVME_BLOCK_OPT_DEVICE,
1615 NVME_BLOCK_OPT_NAMESPACE,
1616
1617 NULL
1618 };
1619
1620 static BlockDriver bdrv_nvme = {
1621 .format_name = "nvme",
1622 .protocol_name = "nvme",
1623 .instance_size = sizeof(BDRVNVMeState),
1624
1625 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1626 .create_opts = &bdrv_create_opts_simple,
1627
1628 .bdrv_parse_filename = nvme_parse_filename,
1629 .bdrv_file_open = nvme_file_open,
1630 .bdrv_close = nvme_close,
1631 .bdrv_co_getlength = nvme_co_getlength,
1632 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1633 .bdrv_co_truncate = nvme_co_truncate,
1634
1635 .bdrv_co_preadv = nvme_co_preadv,
1636 .bdrv_co_pwritev = nvme_co_pwritev,
1637
1638 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1639 .bdrv_co_pdiscard = nvme_co_pdiscard,
1640
1641 .bdrv_co_flush_to_disk = nvme_co_flush,
1642 .bdrv_reopen_prepare = nvme_reopen_prepare,
1643
1644 .bdrv_refresh_filename = nvme_refresh_filename,
1645 .bdrv_refresh_limits = nvme_refresh_limits,
1646 .strong_runtime_opts = nvme_strong_runtime_opts,
1647 .bdrv_get_specific_stats = nvme_get_specific_stats,
1648
1649 .bdrv_detach_aio_context = nvme_detach_aio_context,
1650 .bdrv_attach_aio_context = nvme_attach_aio_context,
1651
1652 .bdrv_register_buf = nvme_register_buf,
1653 .bdrv_unregister_buf = nvme_unregister_buf,
1654 };
1655
1656 static void bdrv_nvme_init(void)
1657 {
1658 bdrv_register(&bdrv_nvme);
1659 }
1660
1661 block_init(bdrv_nvme_init);