]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
Merge tag 'block-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/memalign.h"
25 #include "qemu/vfio-helpers.h"
26 #include "block/block-io.h"
27 #include "block/block_int.h"
28 #include "sysemu/block-backend.h"
29 #include "sysemu/replay.h"
30 #include "trace.h"
31
32 #include "block/nvme.h"
33
34 #define NVME_SQ_ENTRY_BYTES 64
35 #define NVME_CQ_ENTRY_BYTES 16
36 #define NVME_QUEUE_SIZE 128
37 #define NVME_DOORBELL_SIZE 4096
38
39 /*
40 * We have to leave one slot empty as that is the full queue case where
41 * head == tail + 1.
42 */
43 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
44
45 typedef struct BDRVNVMeState BDRVNVMeState;
46
47 /* Same index is used for queues and IRQs */
48 #define INDEX_ADMIN 0
49 #define INDEX_IO(n) (1 + n)
50
51 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
52 enum {
53 MSIX_SHARED_IRQ_IDX = 0,
54 MSIX_IRQ_COUNT = 1
55 };
56
57 typedef struct {
58 int32_t head, tail;
59 uint8_t *queue;
60 uint64_t iova;
61 /* Hardware MMIO register */
62 volatile uint32_t *doorbell;
63 } NVMeQueue;
64
65 typedef struct {
66 BlockCompletionFunc *cb;
67 void *opaque;
68 int cid;
69 void *prp_list_page;
70 uint64_t prp_list_iova;
71 int free_req_next; /* q->reqs[] index of next free req */
72 } NVMeRequest;
73
74 typedef struct {
75 QemuMutex lock;
76
77 /* Read from I/O code path, initialized under BQL */
78 BDRVNVMeState *s;
79 int index;
80
81 /* Fields protected by BQL */
82 uint8_t *prp_list_pages;
83
84 /* Fields protected by @lock */
85 CoQueue free_req_queue;
86 NVMeQueue sq, cq;
87 int cq_phase;
88 int free_req_head;
89 NVMeRequest reqs[NVME_NUM_REQS];
90 int need_kick;
91 int inflight;
92
93 /* Thread-safe, no lock necessary */
94 QEMUBH *completion_bh;
95 } NVMeQueuePair;
96
97 struct BDRVNVMeState {
98 AioContext *aio_context;
99 QEMUVFIOState *vfio;
100 void *bar0_wo_map;
101 /* Memory mapped registers */
102 volatile struct {
103 uint32_t sq_tail;
104 uint32_t cq_head;
105 } *doorbells;
106 /* The submission/completion queue pairs.
107 * [0]: admin queue.
108 * [1..]: io queues.
109 */
110 NVMeQueuePair **queues;
111 unsigned queue_count;
112 size_t page_size;
113 /* How many uint32_t elements does each doorbell entry take. */
114 size_t doorbell_scale;
115 bool write_cache_supported;
116 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
117
118 uint64_t nsze; /* Namespace size reported by identify command */
119 int nsid; /* The namespace id to read/write data. */
120 int blkshift;
121
122 uint64_t max_transfer;
123
124 bool supports_write_zeroes;
125 bool supports_discard;
126
127 CoMutex dma_map_lock;
128 CoQueue dma_flush_queue;
129
130 /* Total size of mapped qiov, accessed under dma_map_lock */
131 int dma_map_count;
132
133 /* PCI address (required for nvme_refresh_filename()) */
134 char *device;
135
136 struct {
137 uint64_t completion_errors;
138 uint64_t aligned_accesses;
139 uint64_t unaligned_accesses;
140 } stats;
141 };
142
143 #define NVME_BLOCK_OPT_DEVICE "device"
144 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
145
146 static void nvme_process_completion_bh(void *opaque);
147
148 static QemuOptsList runtime_opts = {
149 .name = "nvme",
150 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
151 .desc = {
152 {
153 .name = NVME_BLOCK_OPT_DEVICE,
154 .type = QEMU_OPT_STRING,
155 .help = "NVMe PCI device address",
156 },
157 {
158 .name = NVME_BLOCK_OPT_NAMESPACE,
159 .type = QEMU_OPT_NUMBER,
160 .help = "NVMe namespace",
161 },
162 { /* end of list */ }
163 },
164 };
165
166 /* Returns true on success, false on failure. */
167 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
168 unsigned nentries, size_t entry_bytes, Error **errp)
169 {
170 size_t bytes;
171 int r;
172
173 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
174 q->head = q->tail = 0;
175 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
176 if (!q->queue) {
177 error_setg(errp, "Cannot allocate queue");
178 return false;
179 }
180 memset(q->queue, 0, bytes);
181 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
182 if (r) {
183 error_prepend(errp, "Cannot map queue: ");
184 }
185 return r == 0;
186 }
187
188 static void nvme_free_queue(NVMeQueue *q)
189 {
190 qemu_vfree(q->queue);
191 }
192
193 static void nvme_free_queue_pair(NVMeQueuePair *q)
194 {
195 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
196 if (q->completion_bh) {
197 qemu_bh_delete(q->completion_bh);
198 }
199 nvme_free_queue(&q->sq);
200 nvme_free_queue(&q->cq);
201 qemu_vfree(q->prp_list_pages);
202 qemu_mutex_destroy(&q->lock);
203 g_free(q);
204 }
205
206 static void nvme_free_req_queue_cb(void *opaque)
207 {
208 NVMeQueuePair *q = opaque;
209
210 qemu_mutex_lock(&q->lock);
211 while (q->free_req_head != -1 &&
212 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
213 /* Retry waiting requests */
214 }
215 qemu_mutex_unlock(&q->lock);
216 }
217
218 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
219 AioContext *aio_context,
220 unsigned idx, size_t size,
221 Error **errp)
222 {
223 int i, r;
224 NVMeQueuePair *q;
225 uint64_t prp_list_iova;
226 size_t bytes;
227
228 q = g_try_new0(NVMeQueuePair, 1);
229 if (!q) {
230 error_setg(errp, "Cannot allocate queue pair");
231 return NULL;
232 }
233 trace_nvme_create_queue_pair(idx, q, size, aio_context,
234 event_notifier_get_fd(s->irq_notifier));
235 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
236 qemu_real_host_page_size());
237 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
238 if (!q->prp_list_pages) {
239 error_setg(errp, "Cannot allocate PRP page list");
240 goto fail;
241 }
242 memset(q->prp_list_pages, 0, bytes);
243 qemu_mutex_init(&q->lock);
244 q->s = s;
245 q->index = idx;
246 qemu_co_queue_init(&q->free_req_queue);
247 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
248 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
249 false, &prp_list_iova, errp);
250 if (r) {
251 error_prepend(errp, "Cannot map buffer for DMA: ");
252 goto fail;
253 }
254 q->free_req_head = -1;
255 for (i = 0; i < NVME_NUM_REQS; i++) {
256 NVMeRequest *req = &q->reqs[i];
257 req->cid = i + 1;
258 req->free_req_next = q->free_req_head;
259 q->free_req_head = i;
260 req->prp_list_page = q->prp_list_pages + i * s->page_size;
261 req->prp_list_iova = prp_list_iova + i * s->page_size;
262 }
263
264 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
265 goto fail;
266 }
267 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
268
269 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
270 goto fail;
271 }
272 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
273
274 return q;
275 fail:
276 nvme_free_queue_pair(q);
277 return NULL;
278 }
279
280 /* With q->lock */
281 static void nvme_kick(NVMeQueuePair *q)
282 {
283 BDRVNVMeState *s = q->s;
284
285 if (!q->need_kick) {
286 return;
287 }
288 trace_nvme_kick(s, q->index);
289 assert(!(q->sq.tail & 0xFF00));
290 /* Fence the write to submission queue entry before notifying the device. */
291 smp_wmb();
292 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
293 q->inflight += q->need_kick;
294 q->need_kick = 0;
295 }
296
297 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
298 {
299 NVMeRequest *req;
300
301 req = &q->reqs[q->free_req_head];
302 q->free_req_head = req->free_req_next;
303 req->free_req_next = -1;
304 return req;
305 }
306
307 /* Return a free request element if any, otherwise return NULL. */
308 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
309 {
310 QEMU_LOCK_GUARD(&q->lock);
311 if (q->free_req_head == -1) {
312 return NULL;
313 }
314 return nvme_get_free_req_nofail_locked(q);
315 }
316
317 /*
318 * Wait for a free request to become available if necessary, then
319 * return it.
320 */
321 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
322 {
323 QEMU_LOCK_GUARD(&q->lock);
324
325 while (q->free_req_head == -1) {
326 trace_nvme_free_req_queue_wait(q->s, q->index);
327 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
328 }
329
330 return nvme_get_free_req_nofail_locked(q);
331 }
332
333 /* With q->lock */
334 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
335 {
336 req->free_req_next = q->free_req_head;
337 q->free_req_head = req - q->reqs;
338 }
339
340 /* With q->lock */
341 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
342 {
343 if (!qemu_co_queue_empty(&q->free_req_queue)) {
344 replay_bh_schedule_oneshot_event(q->s->aio_context,
345 nvme_free_req_queue_cb, q);
346 }
347 }
348
349 /* Insert a request in the freelist and wake waiters */
350 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
351 {
352 qemu_mutex_lock(&q->lock);
353 nvme_put_free_req_locked(q, req);
354 nvme_wake_free_req_locked(q);
355 qemu_mutex_unlock(&q->lock);
356 }
357
358 static inline int nvme_translate_error(const NvmeCqe *c)
359 {
360 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
361 if (status) {
362 trace_nvme_error(le32_to_cpu(c->result),
363 le16_to_cpu(c->sq_head),
364 le16_to_cpu(c->sq_id),
365 le16_to_cpu(c->cid),
366 le16_to_cpu(status));
367 }
368 switch (status) {
369 case 0:
370 return 0;
371 case 1:
372 return -ENOSYS;
373 case 2:
374 return -EINVAL;
375 default:
376 return -EIO;
377 }
378 }
379
380 /* With q->lock */
381 static bool nvme_process_completion(NVMeQueuePair *q)
382 {
383 BDRVNVMeState *s = q->s;
384 bool progress = false;
385 NVMeRequest *preq;
386 NVMeRequest req;
387 NvmeCqe *c;
388
389 trace_nvme_process_completion(s, q->index, q->inflight);
390
391 /*
392 * Support re-entrancy when a request cb() function invokes aio_poll().
393 * Pending completions must be visible to aio_poll() so that a cb()
394 * function can wait for the completion of another request.
395 *
396 * The aio_poll() loop will execute our BH and we'll resume completion
397 * processing there.
398 */
399 qemu_bh_schedule(q->completion_bh);
400
401 assert(q->inflight >= 0);
402 while (q->inflight) {
403 int ret;
404 int16_t cid;
405
406 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
407 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
408 break;
409 }
410 ret = nvme_translate_error(c);
411 if (ret) {
412 s->stats.completion_errors++;
413 }
414 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
415 if (!q->cq.head) {
416 q->cq_phase = !q->cq_phase;
417 }
418 cid = le16_to_cpu(c->cid);
419 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
420 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
421 "queue size: %u", cid, NVME_QUEUE_SIZE);
422 continue;
423 }
424 trace_nvme_complete_command(s, q->index, cid);
425 preq = &q->reqs[cid - 1];
426 req = *preq;
427 assert(req.cid == cid);
428 assert(req.cb);
429 nvme_put_free_req_locked(q, preq);
430 preq->cb = preq->opaque = NULL;
431 q->inflight--;
432 qemu_mutex_unlock(&q->lock);
433 req.cb(req.opaque, ret);
434 qemu_mutex_lock(&q->lock);
435 progress = true;
436 }
437 if (progress) {
438 /* Notify the device so it can post more completions. */
439 smp_mb_release();
440 *q->cq.doorbell = cpu_to_le32(q->cq.head);
441 nvme_wake_free_req_locked(q);
442 }
443
444 qemu_bh_cancel(q->completion_bh);
445
446 return progress;
447 }
448
449 static void nvme_process_completion_bh(void *opaque)
450 {
451 NVMeQueuePair *q = opaque;
452
453 /*
454 * We're being invoked because a nvme_process_completion() cb() function
455 * called aio_poll(). The callback may be waiting for further completions
456 * so notify the device that it has space to fill in more completions now.
457 */
458 smp_mb_release();
459 *q->cq.doorbell = cpu_to_le32(q->cq.head);
460 nvme_wake_free_req_locked(q);
461
462 nvme_process_completion(q);
463 }
464
465 static void nvme_trace_command(const NvmeCmd *cmd)
466 {
467 int i;
468
469 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
470 return;
471 }
472 for (i = 0; i < 8; ++i) {
473 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
474 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
475 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
476 }
477 }
478
479 static void nvme_unplug_fn(void *opaque)
480 {
481 NVMeQueuePair *q = opaque;
482
483 QEMU_LOCK_GUARD(&q->lock);
484 nvme_kick(q);
485 nvme_process_completion(q);
486 }
487
488 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
489 NvmeCmd *cmd, BlockCompletionFunc cb,
490 void *opaque)
491 {
492 assert(!req->cb);
493 req->cb = cb;
494 req->opaque = opaque;
495 cmd->cid = cpu_to_le16(req->cid);
496
497 trace_nvme_submit_command(q->s, q->index, req->cid);
498 nvme_trace_command(cmd);
499 qemu_mutex_lock(&q->lock);
500 memcpy((uint8_t *)q->sq.queue +
501 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
502 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
503 q->need_kick++;
504 blk_io_plug_call(nvme_unplug_fn, q);
505 qemu_mutex_unlock(&q->lock);
506 }
507
508 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
509 {
510 int *pret = opaque;
511 *pret = ret;
512 aio_wait_kick();
513 }
514
515 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
516 {
517 BDRVNVMeState *s = bs->opaque;
518 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
519 AioContext *aio_context = bdrv_get_aio_context(bs);
520 NVMeRequest *req;
521 int ret = -EINPROGRESS;
522 req = nvme_get_free_req_nowait(q);
523 if (!req) {
524 return -EBUSY;
525 }
526 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
527
528 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
529 return ret;
530 }
531
532 /* Returns true on success, false on failure. */
533 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
534 {
535 BDRVNVMeState *s = bs->opaque;
536 bool ret = false;
537 QEMU_AUTO_VFREE union {
538 NvmeIdCtrl ctrl;
539 NvmeIdNs ns;
540 } *id = NULL;
541 NvmeLBAF *lbaf;
542 uint16_t oncs;
543 int r;
544 uint64_t iova;
545 NvmeCmd cmd = {
546 .opcode = NVME_ADM_CMD_IDENTIFY,
547 .cdw10 = cpu_to_le32(0x1),
548 };
549 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
550
551 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
552 if (!id) {
553 error_setg(errp, "Cannot allocate buffer for identify response");
554 goto out;
555 }
556 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
557 if (r) {
558 error_prepend(errp, "Cannot map buffer for DMA: ");
559 goto out;
560 }
561
562 memset(id, 0, id_size);
563 cmd.dptr.prp1 = cpu_to_le64(iova);
564 if (nvme_admin_cmd_sync(bs, &cmd)) {
565 error_setg(errp, "Failed to identify controller");
566 goto out;
567 }
568
569 if (le32_to_cpu(id->ctrl.nn) < namespace) {
570 error_setg(errp, "Invalid namespace");
571 goto out;
572 }
573 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
574 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
575 /* For now the page list buffer per command is one page, to hold at most
576 * s->page_size / sizeof(uint64_t) entries. */
577 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
578 s->page_size / sizeof(uint64_t) * s->page_size);
579
580 oncs = le16_to_cpu(id->ctrl.oncs);
581 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
582 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
583
584 memset(id, 0, id_size);
585 cmd.cdw10 = 0;
586 cmd.nsid = cpu_to_le32(namespace);
587 if (nvme_admin_cmd_sync(bs, &cmd)) {
588 error_setg(errp, "Failed to identify namespace");
589 goto out;
590 }
591
592 s->nsze = le64_to_cpu(id->ns.nsze);
593 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
594
595 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
596 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
597 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
598 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
599 }
600
601 if (lbaf->ms) {
602 error_setg(errp, "Namespaces with metadata are not yet supported");
603 goto out;
604 }
605
606 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
607 (1 << lbaf->ds) > s->page_size)
608 {
609 error_setg(errp, "Namespace has unsupported block size (2^%d)",
610 lbaf->ds);
611 goto out;
612 }
613
614 ret = true;
615 s->blkshift = lbaf->ds;
616 out:
617 qemu_vfio_dma_unmap(s->vfio, id);
618
619 return ret;
620 }
621
622 static void nvme_poll_queue(NVMeQueuePair *q)
623 {
624 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
625 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
626
627 trace_nvme_poll_queue(q->s, q->index);
628 /*
629 * Do an early check for completions. q->lock isn't needed because
630 * nvme_process_completion() only runs in the event loop thread and
631 * cannot race with itself.
632 */
633 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
634 return;
635 }
636
637 qemu_mutex_lock(&q->lock);
638 while (nvme_process_completion(q)) {
639 /* Keep polling */
640 }
641 qemu_mutex_unlock(&q->lock);
642 }
643
644 static void nvme_poll_queues(BDRVNVMeState *s)
645 {
646 int i;
647
648 for (i = 0; i < s->queue_count; i++) {
649 nvme_poll_queue(s->queues[i]);
650 }
651 }
652
653 static void nvme_handle_event(EventNotifier *n)
654 {
655 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
656 irq_notifier[MSIX_SHARED_IRQ_IDX]);
657
658 trace_nvme_handle_event(s);
659 event_notifier_test_and_clear(n);
660 nvme_poll_queues(s);
661 }
662
663 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
664 {
665 BDRVNVMeState *s = bs->opaque;
666 unsigned n = s->queue_count;
667 NVMeQueuePair *q;
668 NvmeCmd cmd;
669 unsigned queue_size = NVME_QUEUE_SIZE;
670
671 assert(n <= UINT16_MAX);
672 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
673 n, queue_size, errp);
674 if (!q) {
675 return false;
676 }
677 cmd = (NvmeCmd) {
678 .opcode = NVME_ADM_CMD_CREATE_CQ,
679 .dptr.prp1 = cpu_to_le64(q->cq.iova),
680 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
681 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
682 };
683 if (nvme_admin_cmd_sync(bs, &cmd)) {
684 error_setg(errp, "Failed to create CQ io queue [%u]", n);
685 goto out_error;
686 }
687 cmd = (NvmeCmd) {
688 .opcode = NVME_ADM_CMD_CREATE_SQ,
689 .dptr.prp1 = cpu_to_le64(q->sq.iova),
690 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
691 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
692 };
693 if (nvme_admin_cmd_sync(bs, &cmd)) {
694 error_setg(errp, "Failed to create SQ io queue [%u]", n);
695 goto out_error;
696 }
697 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
698 s->queues[n] = q;
699 s->queue_count++;
700 return true;
701 out_error:
702 nvme_free_queue_pair(q);
703 return false;
704 }
705
706 static bool nvme_poll_cb(void *opaque)
707 {
708 EventNotifier *e = opaque;
709 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
710 irq_notifier[MSIX_SHARED_IRQ_IDX]);
711 int i;
712
713 for (i = 0; i < s->queue_count; i++) {
714 NVMeQueuePair *q = s->queues[i];
715 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
716 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
717
718 /*
719 * q->lock isn't needed because nvme_process_completion() only runs in
720 * the event loop thread and cannot race with itself.
721 */
722 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
723 return true;
724 }
725 }
726 return false;
727 }
728
729 static void nvme_poll_ready(EventNotifier *e)
730 {
731 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
732 irq_notifier[MSIX_SHARED_IRQ_IDX]);
733
734 nvme_poll_queues(s);
735 }
736
737 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
738 Error **errp)
739 {
740 BDRVNVMeState *s = bs->opaque;
741 NVMeQueuePair *q;
742 AioContext *aio_context = bdrv_get_aio_context(bs);
743 int ret;
744 uint64_t cap;
745 uint32_t ver;
746 uint64_t timeout_ms;
747 uint64_t deadline, now;
748 volatile NvmeBar *regs = NULL;
749
750 qemu_co_mutex_init(&s->dma_map_lock);
751 qemu_co_queue_init(&s->dma_flush_queue);
752 s->device = g_strdup(device);
753 s->nsid = namespace;
754 s->aio_context = bdrv_get_aio_context(bs);
755 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
756 if (ret) {
757 error_setg(errp, "Failed to init event notifier");
758 return ret;
759 }
760
761 s->vfio = qemu_vfio_open_pci(device, errp);
762 if (!s->vfio) {
763 ret = -EINVAL;
764 goto out;
765 }
766
767 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
768 PROT_READ | PROT_WRITE, errp);
769 if (!regs) {
770 ret = -EINVAL;
771 goto out;
772 }
773 /* Perform initialize sequence as described in NVMe spec "7.6.1
774 * Initialization". */
775
776 cap = le64_to_cpu(regs->cap);
777 trace_nvme_controller_capability_raw(cap);
778 trace_nvme_controller_capability("Maximum Queue Entries Supported",
779 1 + NVME_CAP_MQES(cap));
780 trace_nvme_controller_capability("Contiguous Queues Required",
781 NVME_CAP_CQR(cap));
782 trace_nvme_controller_capability("Doorbell Stride",
783 1 << (2 + NVME_CAP_DSTRD(cap)));
784 trace_nvme_controller_capability("Subsystem Reset Supported",
785 NVME_CAP_NSSRS(cap));
786 trace_nvme_controller_capability("Memory Page Size Minimum",
787 1 << (12 + NVME_CAP_MPSMIN(cap)));
788 trace_nvme_controller_capability("Memory Page Size Maximum",
789 1 << (12 + NVME_CAP_MPSMAX(cap)));
790 if (!NVME_CAP_CSS(cap)) {
791 error_setg(errp, "Device doesn't support NVMe command set");
792 ret = -EINVAL;
793 goto out;
794 }
795
796 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
797 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
798 bs->bl.opt_mem_alignment = s->page_size;
799 bs->bl.request_alignment = s->page_size;
800 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
801
802 ver = le32_to_cpu(regs->vs);
803 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
804 extract32(ver, 8, 8),
805 extract32(ver, 0, 8));
806
807 /* Reset device to get a clean state. */
808 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
809 /* Wait for CSTS.RDY = 0. */
810 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
811 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
812 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
813 error_setg(errp, "Timeout while waiting for device to reset (%"
814 PRId64 " ms)",
815 timeout_ms);
816 ret = -ETIMEDOUT;
817 goto out;
818 }
819 }
820
821 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
822 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
823 PROT_WRITE, errp);
824 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
825 if (!s->doorbells) {
826 ret = -EINVAL;
827 goto out;
828 }
829
830 /* Set up admin queue. */
831 s->queues = g_new(NVMeQueuePair *, 1);
832 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
833 if (!q) {
834 ret = -EINVAL;
835 goto out;
836 }
837 s->queues[INDEX_ADMIN] = q;
838 s->queue_count = 1;
839 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
840 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
841 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
842 regs->asq = cpu_to_le64(q->sq.iova);
843 regs->acq = cpu_to_le64(q->cq.iova);
844
845 /* After setting up all control registers we can enable device now. */
846 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
847 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
848 CC_EN_MASK);
849 /* Wait for CSTS.RDY = 1. */
850 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
851 deadline = now + timeout_ms * SCALE_MS;
852 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
853 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
854 error_setg(errp, "Timeout while waiting for device to start (%"
855 PRId64 " ms)",
856 timeout_ms);
857 ret = -ETIMEDOUT;
858 goto out;
859 }
860 }
861
862 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
863 VFIO_PCI_MSIX_IRQ_INDEX, errp);
864 if (ret) {
865 goto out;
866 }
867 aio_set_event_notifier(bdrv_get_aio_context(bs),
868 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
869 nvme_handle_event, nvme_poll_cb,
870 nvme_poll_ready);
871
872 if (!nvme_identify(bs, namespace, errp)) {
873 ret = -EIO;
874 goto out;
875 }
876
877 /* Set up command queues. */
878 if (!nvme_add_io_queue(bs, errp)) {
879 ret = -EIO;
880 }
881 out:
882 if (regs) {
883 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
884 }
885
886 /* Cleaning up is done in nvme_file_open() upon error. */
887 return ret;
888 }
889
890 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
891 *
892 * nvme://0000:44:00.0/1
893 *
894 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
895 * is the PCI address, and the last part is the namespace number starting from
896 * 1 according to the NVMe spec. */
897 static void nvme_parse_filename(const char *filename, QDict *options,
898 Error **errp)
899 {
900 int pref = strlen("nvme://");
901
902 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
903 const char *tmp = filename + pref;
904 char *device;
905 const char *namespace;
906 unsigned long ns;
907 const char *slash = strchr(tmp, '/');
908 if (!slash) {
909 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
910 return;
911 }
912 device = g_strndup(tmp, slash - tmp);
913 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
914 g_free(device);
915 namespace = slash + 1;
916 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
917 error_setg(errp, "Invalid namespace '%s', positive number expected",
918 namespace);
919 return;
920 }
921 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
922 *namespace ? namespace : "1");
923 }
924 }
925
926 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
927 Error **errp)
928 {
929 int ret;
930 BDRVNVMeState *s = bs->opaque;
931 NvmeCmd cmd = {
932 .opcode = NVME_ADM_CMD_SET_FEATURES,
933 .nsid = cpu_to_le32(s->nsid),
934 .cdw10 = cpu_to_le32(0x06),
935 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
936 };
937
938 ret = nvme_admin_cmd_sync(bs, &cmd);
939 if (ret) {
940 error_setg(errp, "Failed to configure NVMe write cache");
941 }
942 return ret;
943 }
944
945 static void nvme_close(BlockDriverState *bs)
946 {
947 BDRVNVMeState *s = bs->opaque;
948
949 for (unsigned i = 0; i < s->queue_count; ++i) {
950 nvme_free_queue_pair(s->queues[i]);
951 }
952 g_free(s->queues);
953 aio_set_event_notifier(bdrv_get_aio_context(bs),
954 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
955 NULL, NULL, NULL);
956 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
957 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
958 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
959 qemu_vfio_close(s->vfio);
960
961 g_free(s->device);
962 }
963
964 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
965 Error **errp)
966 {
967 const char *device;
968 QemuOpts *opts;
969 int namespace;
970 int ret;
971 BDRVNVMeState *s = bs->opaque;
972
973 bs->supported_write_flags = BDRV_REQ_FUA;
974
975 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
976 qemu_opts_absorb_qdict(opts, options, &error_abort);
977 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
978 if (!device) {
979 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
980 qemu_opts_del(opts);
981 return -EINVAL;
982 }
983
984 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
985 ret = nvme_init(bs, device, namespace, errp);
986 qemu_opts_del(opts);
987 if (ret) {
988 goto fail;
989 }
990 if (flags & BDRV_O_NOCACHE) {
991 if (!s->write_cache_supported) {
992 error_setg(errp,
993 "NVMe controller doesn't support write cache configuration");
994 ret = -EINVAL;
995 } else {
996 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
997 errp);
998 }
999 if (ret) {
1000 goto fail;
1001 }
1002 }
1003 return 0;
1004 fail:
1005 nvme_close(bs);
1006 return ret;
1007 }
1008
1009 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1010 {
1011 BDRVNVMeState *s = bs->opaque;
1012 return s->nsze << s->blkshift;
1013 }
1014
1015 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1016 {
1017 BDRVNVMeState *s = bs->opaque;
1018 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1019 return UINT32_C(1) << s->blkshift;
1020 }
1021
1022 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1023 {
1024 uint32_t blocksize = nvme_get_blocksize(bs);
1025 bsz->phys = blocksize;
1026 bsz->log = blocksize;
1027 return 0;
1028 }
1029
1030 /* Called with s->dma_map_lock */
1031 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1032 QEMUIOVector *qiov)
1033 {
1034 int r = 0;
1035 BDRVNVMeState *s = bs->opaque;
1036
1037 s->dma_map_count -= qiov->size;
1038 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1039 r = qemu_vfio_dma_reset_temporary(s->vfio);
1040 if (!r) {
1041 qemu_co_queue_restart_all(&s->dma_flush_queue);
1042 }
1043 }
1044 return r;
1045 }
1046
1047 /* Called with s->dma_map_lock */
1048 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1049 NVMeRequest *req, QEMUIOVector *qiov)
1050 {
1051 BDRVNVMeState *s = bs->opaque;
1052 uint64_t *pagelist = req->prp_list_page;
1053 int i, j, r;
1054 int entries = 0;
1055 Error *local_err = NULL, **errp = NULL;
1056
1057 assert(qiov->size);
1058 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1059 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1060 for (i = 0; i < qiov->niov; ++i) {
1061 bool retry = true;
1062 uint64_t iova;
1063 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1064 qemu_real_host_page_size());
1065 try_map:
1066 r = qemu_vfio_dma_map(s->vfio,
1067 qiov->iov[i].iov_base,
1068 len, true, &iova, errp);
1069 if (r == -ENOSPC) {
1070 /*
1071 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1072 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1073 * mappings available for a container since Linux kernel commit
1074 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1075 * April 2019, see CVE-2019-3882).
1076 *
1077 * This block driver already handles this error path by checking
1078 * for the -ENOMEM error, so we directly replace -ENOSPC by
1079 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1080 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1081 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1082 * to add more storage to the blockdev. Not something we can do
1083 * easily with an IOMMU :)
1084 */
1085 r = -ENOMEM;
1086 }
1087 if (r == -ENOMEM && retry) {
1088 /*
1089 * We exhausted the DMA mappings available for our container:
1090 * recycle the volatile IOVA mappings.
1091 */
1092 retry = false;
1093 trace_nvme_dma_flush_queue_wait(s);
1094 if (s->dma_map_count) {
1095 trace_nvme_dma_map_flush(s);
1096 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1097 } else {
1098 r = qemu_vfio_dma_reset_temporary(s->vfio);
1099 if (r) {
1100 goto fail;
1101 }
1102 }
1103 errp = &local_err;
1104
1105 goto try_map;
1106 }
1107 if (r) {
1108 goto fail;
1109 }
1110
1111 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1112 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1113 }
1114 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1115 qiov->iov[i].iov_len / s->page_size);
1116 }
1117
1118 s->dma_map_count += qiov->size;
1119
1120 assert(entries <= s->page_size / sizeof(uint64_t));
1121 switch (entries) {
1122 case 0:
1123 abort();
1124 case 1:
1125 cmd->dptr.prp1 = pagelist[0];
1126 cmd->dptr.prp2 = 0;
1127 break;
1128 case 2:
1129 cmd->dptr.prp1 = pagelist[0];
1130 cmd->dptr.prp2 = pagelist[1];
1131 break;
1132 default:
1133 cmd->dptr.prp1 = pagelist[0];
1134 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1135 break;
1136 }
1137 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1138 for (i = 0; i < entries; ++i) {
1139 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1140 }
1141 return 0;
1142 fail:
1143 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1144 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1145 * because they are already mapped before calling this function; for
1146 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1147 * calling qemu_vfio_dma_reset_temporary when necessary. */
1148 if (local_err) {
1149 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1150 }
1151 return r;
1152 }
1153
1154 typedef struct {
1155 Coroutine *co;
1156 int ret;
1157 AioContext *ctx;
1158 } NVMeCoData;
1159
1160 static void nvme_rw_cb_bh(void *opaque)
1161 {
1162 NVMeCoData *data = opaque;
1163 qemu_coroutine_enter(data->co);
1164 }
1165
1166 static void nvme_rw_cb(void *opaque, int ret)
1167 {
1168 NVMeCoData *data = opaque;
1169 data->ret = ret;
1170 if (!data->co) {
1171 /* The rw coroutine hasn't yielded, don't try to enter. */
1172 return;
1173 }
1174 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1175 }
1176
1177 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1178 uint64_t offset, uint64_t bytes,
1179 QEMUIOVector *qiov,
1180 bool is_write,
1181 int flags)
1182 {
1183 int r;
1184 BDRVNVMeState *s = bs->opaque;
1185 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1186 NVMeRequest *req;
1187
1188 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1189 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1190 NvmeCmd cmd = {
1191 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1192 .nsid = cpu_to_le32(s->nsid),
1193 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1194 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1195 .cdw12 = cpu_to_le32(cdw12),
1196 };
1197 NVMeCoData data = {
1198 .ctx = bdrv_get_aio_context(bs),
1199 .ret = -EINPROGRESS,
1200 };
1201
1202 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1203 assert(s->queue_count > 1);
1204 req = nvme_get_free_req(ioq);
1205 assert(req);
1206
1207 qemu_co_mutex_lock(&s->dma_map_lock);
1208 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1209 qemu_co_mutex_unlock(&s->dma_map_lock);
1210 if (r) {
1211 nvme_put_free_req_and_wake(ioq, req);
1212 return r;
1213 }
1214 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1215
1216 data.co = qemu_coroutine_self();
1217 while (data.ret == -EINPROGRESS) {
1218 qemu_coroutine_yield();
1219 }
1220
1221 qemu_co_mutex_lock(&s->dma_map_lock);
1222 r = nvme_cmd_unmap_qiov(bs, qiov);
1223 qemu_co_mutex_unlock(&s->dma_map_lock);
1224 if (r) {
1225 return r;
1226 }
1227
1228 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1229 return data.ret;
1230 }
1231
1232 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1233 const QEMUIOVector *qiov)
1234 {
1235 int i;
1236 BDRVNVMeState *s = bs->opaque;
1237
1238 for (i = 0; i < qiov->niov; ++i) {
1239 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1240 qemu_real_host_page_size()) ||
1241 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1242 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1243 qiov->iov[i].iov_len, s->page_size);
1244 return false;
1245 }
1246 }
1247 return true;
1248 }
1249
1250 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1251 uint64_t offset, uint64_t bytes,
1252 QEMUIOVector *qiov, bool is_write,
1253 int flags)
1254 {
1255 BDRVNVMeState *s = bs->opaque;
1256 int r;
1257 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1258 QEMUIOVector local_qiov;
1259 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1260 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1261 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1262 assert(bytes <= s->max_transfer);
1263 if (nvme_qiov_aligned(bs, qiov)) {
1264 s->stats.aligned_accesses++;
1265 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1266 }
1267 s->stats.unaligned_accesses++;
1268 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1269 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1270
1271 if (!buf) {
1272 return -ENOMEM;
1273 }
1274 qemu_iovec_init(&local_qiov, 1);
1275 if (is_write) {
1276 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1277 }
1278 qemu_iovec_add(&local_qiov, buf, bytes);
1279 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1280 qemu_iovec_destroy(&local_qiov);
1281 if (!r && !is_write) {
1282 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1283 }
1284 return r;
1285 }
1286
1287 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1288 int64_t offset, int64_t bytes,
1289 QEMUIOVector *qiov,
1290 BdrvRequestFlags flags)
1291 {
1292 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1293 }
1294
1295 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1296 int64_t offset, int64_t bytes,
1297 QEMUIOVector *qiov,
1298 BdrvRequestFlags flags)
1299 {
1300 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1301 }
1302
1303 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1304 {
1305 BDRVNVMeState *s = bs->opaque;
1306 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1307 NVMeRequest *req;
1308 NvmeCmd cmd = {
1309 .opcode = NVME_CMD_FLUSH,
1310 .nsid = cpu_to_le32(s->nsid),
1311 };
1312 NVMeCoData data = {
1313 .ctx = bdrv_get_aio_context(bs),
1314 .ret = -EINPROGRESS,
1315 };
1316
1317 assert(s->queue_count > 1);
1318 req = nvme_get_free_req(ioq);
1319 assert(req);
1320 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1321
1322 data.co = qemu_coroutine_self();
1323 if (data.ret == -EINPROGRESS) {
1324 qemu_coroutine_yield();
1325 }
1326
1327 return data.ret;
1328 }
1329
1330
1331 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1332 int64_t offset,
1333 int64_t bytes,
1334 BdrvRequestFlags flags)
1335 {
1336 BDRVNVMeState *s = bs->opaque;
1337 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1338 NVMeRequest *req;
1339 uint32_t cdw12;
1340
1341 if (!s->supports_write_zeroes) {
1342 return -ENOTSUP;
1343 }
1344
1345 if (bytes == 0) {
1346 return 0;
1347 }
1348
1349 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1350 /*
1351 * We should not lose information. pwrite_zeroes_alignment and
1352 * max_pwrite_zeroes guarantees it.
1353 */
1354 assert(((cdw12 + 1) << s->blkshift) == bytes);
1355
1356 NvmeCmd cmd = {
1357 .opcode = NVME_CMD_WRITE_ZEROES,
1358 .nsid = cpu_to_le32(s->nsid),
1359 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1360 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1361 };
1362
1363 NVMeCoData data = {
1364 .ctx = bdrv_get_aio_context(bs),
1365 .ret = -EINPROGRESS,
1366 };
1367
1368 if (flags & BDRV_REQ_MAY_UNMAP) {
1369 cdw12 |= (1 << 25);
1370 }
1371
1372 if (flags & BDRV_REQ_FUA) {
1373 cdw12 |= (1 << 30);
1374 }
1375
1376 cmd.cdw12 = cpu_to_le32(cdw12);
1377
1378 trace_nvme_write_zeroes(s, offset, bytes, flags);
1379 assert(s->queue_count > 1);
1380 req = nvme_get_free_req(ioq);
1381 assert(req);
1382
1383 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1384
1385 data.co = qemu_coroutine_self();
1386 while (data.ret == -EINPROGRESS) {
1387 qemu_coroutine_yield();
1388 }
1389
1390 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1391 return data.ret;
1392 }
1393
1394
1395 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1396 int64_t offset,
1397 int64_t bytes)
1398 {
1399 BDRVNVMeState *s = bs->opaque;
1400 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1401 NVMeRequest *req;
1402 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1403 QEMUIOVector local_qiov;
1404 int ret;
1405
1406 NvmeCmd cmd = {
1407 .opcode = NVME_CMD_DSM,
1408 .nsid = cpu_to_le32(s->nsid),
1409 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1410 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1411 };
1412
1413 NVMeCoData data = {
1414 .ctx = bdrv_get_aio_context(bs),
1415 .ret = -EINPROGRESS,
1416 };
1417
1418 if (!s->supports_discard) {
1419 return -ENOTSUP;
1420 }
1421
1422 assert(s->queue_count > 1);
1423
1424 /*
1425 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1426 * defined in nvme_refresh_limits().
1427 */
1428 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1429 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1430 assert((bytes >> s->blkshift) <= UINT32_MAX);
1431
1432 buf = qemu_try_memalign(s->page_size, s->page_size);
1433 if (!buf) {
1434 return -ENOMEM;
1435 }
1436 memset(buf, 0, s->page_size);
1437 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1438 buf->slba = cpu_to_le64(offset >> s->blkshift);
1439 buf->cattr = 0;
1440
1441 qemu_iovec_init(&local_qiov, 1);
1442 qemu_iovec_add(&local_qiov, buf, 4096);
1443
1444 req = nvme_get_free_req(ioq);
1445 assert(req);
1446
1447 qemu_co_mutex_lock(&s->dma_map_lock);
1448 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1449 qemu_co_mutex_unlock(&s->dma_map_lock);
1450
1451 if (ret) {
1452 nvme_put_free_req_and_wake(ioq, req);
1453 goto out;
1454 }
1455
1456 trace_nvme_dsm(s, offset, bytes);
1457
1458 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1459
1460 data.co = qemu_coroutine_self();
1461 while (data.ret == -EINPROGRESS) {
1462 qemu_coroutine_yield();
1463 }
1464
1465 qemu_co_mutex_lock(&s->dma_map_lock);
1466 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1467 qemu_co_mutex_unlock(&s->dma_map_lock);
1468
1469 if (ret) {
1470 goto out;
1471 }
1472
1473 ret = data.ret;
1474 trace_nvme_dsm_done(s, offset, bytes, ret);
1475 out:
1476 qemu_iovec_destroy(&local_qiov);
1477 return ret;
1478
1479 }
1480
1481 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1482 bool exact, PreallocMode prealloc,
1483 BdrvRequestFlags flags, Error **errp)
1484 {
1485 int64_t cur_length;
1486
1487 if (prealloc != PREALLOC_MODE_OFF) {
1488 error_setg(errp, "Unsupported preallocation mode '%s'",
1489 PreallocMode_str(prealloc));
1490 return -ENOTSUP;
1491 }
1492
1493 cur_length = nvme_co_getlength(bs);
1494 if (offset != cur_length && exact) {
1495 error_setg(errp, "Cannot resize NVMe devices");
1496 return -ENOTSUP;
1497 } else if (offset > cur_length) {
1498 error_setg(errp, "Cannot grow NVMe devices");
1499 return -EINVAL;
1500 }
1501
1502 return 0;
1503 }
1504
1505 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1506 BlockReopenQueue *queue, Error **errp)
1507 {
1508 return 0;
1509 }
1510
1511 static void nvme_refresh_filename(BlockDriverState *bs)
1512 {
1513 BDRVNVMeState *s = bs->opaque;
1514
1515 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1516 s->device, s->nsid);
1517 }
1518
1519 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1520 {
1521 BDRVNVMeState *s = bs->opaque;
1522
1523 bs->bl.opt_mem_alignment = s->page_size;
1524 bs->bl.request_alignment = s->page_size;
1525 bs->bl.max_transfer = s->max_transfer;
1526
1527 /*
1528 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1529 * at most 0xFFFF
1530 */
1531 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1532 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1533 1UL << s->blkshift);
1534
1535 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1536 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1537 1UL << s->blkshift);
1538 }
1539
1540 static void nvme_detach_aio_context(BlockDriverState *bs)
1541 {
1542 BDRVNVMeState *s = bs->opaque;
1543
1544 for (unsigned i = 0; i < s->queue_count; i++) {
1545 NVMeQueuePair *q = s->queues[i];
1546
1547 qemu_bh_delete(q->completion_bh);
1548 q->completion_bh = NULL;
1549 }
1550
1551 aio_set_event_notifier(bdrv_get_aio_context(bs),
1552 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1553 NULL, NULL, NULL);
1554 }
1555
1556 static void nvme_attach_aio_context(BlockDriverState *bs,
1557 AioContext *new_context)
1558 {
1559 BDRVNVMeState *s = bs->opaque;
1560
1561 s->aio_context = new_context;
1562 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1563 nvme_handle_event, nvme_poll_cb,
1564 nvme_poll_ready);
1565
1566 for (unsigned i = 0; i < s->queue_count; i++) {
1567 NVMeQueuePair *q = s->queues[i];
1568
1569 q->completion_bh =
1570 aio_bh_new(new_context, nvme_process_completion_bh, q);
1571 }
1572 }
1573
1574 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1575 Error **errp)
1576 {
1577 int ret;
1578 BDRVNVMeState *s = bs->opaque;
1579
1580 /*
1581 * FIXME: we may run out of IOVA addresses after repeated
1582 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1583 * doesn't reclaim addresses for fixed mappings.
1584 */
1585 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1586 return ret == 0;
1587 }
1588
1589 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1590 {
1591 BDRVNVMeState *s = bs->opaque;
1592
1593 qemu_vfio_dma_unmap(s->vfio, host);
1594 }
1595
1596 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1597 {
1598 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1599 BDRVNVMeState *s = bs->opaque;
1600
1601 stats->driver = BLOCKDEV_DRIVER_NVME;
1602 stats->u.nvme = (BlockStatsSpecificNvme) {
1603 .completion_errors = s->stats.completion_errors,
1604 .aligned_accesses = s->stats.aligned_accesses,
1605 .unaligned_accesses = s->stats.unaligned_accesses,
1606 };
1607
1608 return stats;
1609 }
1610
1611 static const char *const nvme_strong_runtime_opts[] = {
1612 NVME_BLOCK_OPT_DEVICE,
1613 NVME_BLOCK_OPT_NAMESPACE,
1614
1615 NULL
1616 };
1617
1618 static BlockDriver bdrv_nvme = {
1619 .format_name = "nvme",
1620 .protocol_name = "nvme",
1621 .instance_size = sizeof(BDRVNVMeState),
1622
1623 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1624 .create_opts = &bdrv_create_opts_simple,
1625
1626 .bdrv_parse_filename = nvme_parse_filename,
1627 .bdrv_file_open = nvme_file_open,
1628 .bdrv_close = nvme_close,
1629 .bdrv_co_getlength = nvme_co_getlength,
1630 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1631 .bdrv_co_truncate = nvme_co_truncate,
1632
1633 .bdrv_co_preadv = nvme_co_preadv,
1634 .bdrv_co_pwritev = nvme_co_pwritev,
1635
1636 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1637 .bdrv_co_pdiscard = nvme_co_pdiscard,
1638
1639 .bdrv_co_flush_to_disk = nvme_co_flush,
1640 .bdrv_reopen_prepare = nvme_reopen_prepare,
1641
1642 .bdrv_refresh_filename = nvme_refresh_filename,
1643 .bdrv_refresh_limits = nvme_refresh_limits,
1644 .strong_runtime_opts = nvme_strong_runtime_opts,
1645 .bdrv_get_specific_stats = nvme_get_specific_stats,
1646
1647 .bdrv_detach_aio_context = nvme_detach_aio_context,
1648 .bdrv_attach_aio_context = nvme_attach_aio_context,
1649
1650 .bdrv_register_buf = nvme_register_buf,
1651 .bdrv_unregister_buf = nvme_unregister_buf,
1652 };
1653
1654 static void bdrv_nvme_init(void)
1655 {
1656 bdrv_register(&bdrv_nvme);
1657 }
1658
1659 block_init(bdrv_nvme_init);