]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
Merge remote-tracking branch 'remotes/quic/tags/pull-hex-20211103' into staging
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28
29 #include "block/nvme.h"
30
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
35
36 /*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
42 typedef struct BDRVNVMeState BDRVNVMeState;
43
44 /* Same index is used for queues and IRQs */
45 #define INDEX_ADMIN 0
46 #define INDEX_IO(n) (1 + n)
47
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
49 enum {
50 MSIX_SHARED_IRQ_IDX = 0,
51 MSIX_IRQ_COUNT = 1
52 };
53
54 typedef struct {
55 int32_t head, tail;
56 uint8_t *queue;
57 uint64_t iova;
58 /* Hardware MMIO register */
59 volatile uint32_t *doorbell;
60 } NVMeQueue;
61
62 typedef struct {
63 BlockCompletionFunc *cb;
64 void *opaque;
65 int cid;
66 void *prp_list_page;
67 uint64_t prp_list_iova;
68 int free_req_next; /* q->reqs[] index of next free req */
69 } NVMeRequest;
70
71 typedef struct {
72 QemuMutex lock;
73
74 /* Read from I/O code path, initialized under BQL */
75 BDRVNVMeState *s;
76 int index;
77
78 /* Fields protected by BQL */
79 uint8_t *prp_list_pages;
80
81 /* Fields protected by @lock */
82 CoQueue free_req_queue;
83 NVMeQueue sq, cq;
84 int cq_phase;
85 int free_req_head;
86 NVMeRequest reqs[NVME_NUM_REQS];
87 int need_kick;
88 int inflight;
89
90 /* Thread-safe, no lock necessary */
91 QEMUBH *completion_bh;
92 } NVMeQueuePair;
93
94 struct BDRVNVMeState {
95 AioContext *aio_context;
96 QEMUVFIOState *vfio;
97 void *bar0_wo_map;
98 /* Memory mapped registers */
99 volatile struct {
100 uint32_t sq_tail;
101 uint32_t cq_head;
102 } *doorbells;
103 /* The submission/completion queue pairs.
104 * [0]: admin queue.
105 * [1..]: io queues.
106 */
107 NVMeQueuePair **queues;
108 unsigned queue_count;
109 size_t page_size;
110 /* How many uint32_t elements does each doorbell entry take. */
111 size_t doorbell_scale;
112 bool write_cache_supported;
113 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
114
115 uint64_t nsze; /* Namespace size reported by identify command */
116 int nsid; /* The namespace id to read/write data. */
117 int blkshift;
118
119 uint64_t max_transfer;
120 bool plugged;
121
122 bool supports_write_zeroes;
123 bool supports_discard;
124
125 CoMutex dma_map_lock;
126 CoQueue dma_flush_queue;
127
128 /* Total size of mapped qiov, accessed under dma_map_lock */
129 int dma_map_count;
130
131 /* PCI address (required for nvme_refresh_filename()) */
132 char *device;
133
134 struct {
135 uint64_t completion_errors;
136 uint64_t aligned_accesses;
137 uint64_t unaligned_accesses;
138 } stats;
139 };
140
141 #define NVME_BLOCK_OPT_DEVICE "device"
142 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
143
144 static void nvme_process_completion_bh(void *opaque);
145
146 static QemuOptsList runtime_opts = {
147 .name = "nvme",
148 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
149 .desc = {
150 {
151 .name = NVME_BLOCK_OPT_DEVICE,
152 .type = QEMU_OPT_STRING,
153 .help = "NVMe PCI device address",
154 },
155 {
156 .name = NVME_BLOCK_OPT_NAMESPACE,
157 .type = QEMU_OPT_NUMBER,
158 .help = "NVMe namespace",
159 },
160 { /* end of list */ }
161 },
162 };
163
164 /* Returns true on success, false on failure. */
165 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
166 unsigned nentries, size_t entry_bytes, Error **errp)
167 {
168 size_t bytes;
169 int r;
170
171 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
172 q->head = q->tail = 0;
173 q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
174 if (!q->queue) {
175 error_setg(errp, "Cannot allocate queue");
176 return false;
177 }
178 memset(q->queue, 0, bytes);
179 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
180 if (r) {
181 error_prepend(errp, "Cannot map queue: ");
182 }
183 return r == 0;
184 }
185
186 static void nvme_free_queue(NVMeQueue *q)
187 {
188 qemu_vfree(q->queue);
189 }
190
191 static void nvme_free_queue_pair(NVMeQueuePair *q)
192 {
193 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
194 if (q->completion_bh) {
195 qemu_bh_delete(q->completion_bh);
196 }
197 nvme_free_queue(&q->sq);
198 nvme_free_queue(&q->cq);
199 qemu_vfree(q->prp_list_pages);
200 qemu_mutex_destroy(&q->lock);
201 g_free(q);
202 }
203
204 static void nvme_free_req_queue_cb(void *opaque)
205 {
206 NVMeQueuePair *q = opaque;
207
208 qemu_mutex_lock(&q->lock);
209 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
210 /* Retry all pending requests */
211 }
212 qemu_mutex_unlock(&q->lock);
213 }
214
215 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
216 AioContext *aio_context,
217 unsigned idx, size_t size,
218 Error **errp)
219 {
220 int i, r;
221 NVMeQueuePair *q;
222 uint64_t prp_list_iova;
223 size_t bytes;
224
225 q = g_try_new0(NVMeQueuePair, 1);
226 if (!q) {
227 error_setg(errp, "Cannot allocate queue pair");
228 return NULL;
229 }
230 trace_nvme_create_queue_pair(idx, q, size, aio_context,
231 event_notifier_get_fd(s->irq_notifier));
232 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
233 qemu_real_host_page_size);
234 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
235 if (!q->prp_list_pages) {
236 error_setg(errp, "Cannot allocate PRP page list");
237 goto fail;
238 }
239 memset(q->prp_list_pages, 0, bytes);
240 qemu_mutex_init(&q->lock);
241 q->s = s;
242 q->index = idx;
243 qemu_co_queue_init(&q->free_req_queue);
244 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
245 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
246 false, &prp_list_iova, errp);
247 if (r) {
248 error_prepend(errp, "Cannot map buffer for DMA: ");
249 goto fail;
250 }
251 q->free_req_head = -1;
252 for (i = 0; i < NVME_NUM_REQS; i++) {
253 NVMeRequest *req = &q->reqs[i];
254 req->cid = i + 1;
255 req->free_req_next = q->free_req_head;
256 q->free_req_head = i;
257 req->prp_list_page = q->prp_list_pages + i * s->page_size;
258 req->prp_list_iova = prp_list_iova + i * s->page_size;
259 }
260
261 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
262 goto fail;
263 }
264 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
265
266 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
267 goto fail;
268 }
269 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
270
271 return q;
272 fail:
273 nvme_free_queue_pair(q);
274 return NULL;
275 }
276
277 /* With q->lock */
278 static void nvme_kick(NVMeQueuePair *q)
279 {
280 BDRVNVMeState *s = q->s;
281
282 if (s->plugged || !q->need_kick) {
283 return;
284 }
285 trace_nvme_kick(s, q->index);
286 assert(!(q->sq.tail & 0xFF00));
287 /* Fence the write to submission queue entry before notifying the device. */
288 smp_wmb();
289 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
290 q->inflight += q->need_kick;
291 q->need_kick = 0;
292 }
293
294 /* Find a free request element if any, otherwise:
295 * a) if in coroutine context, try to wait for one to become available;
296 * b) if not in coroutine, return NULL;
297 */
298 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
299 {
300 NVMeRequest *req;
301
302 qemu_mutex_lock(&q->lock);
303
304 while (q->free_req_head == -1) {
305 if (qemu_in_coroutine()) {
306 trace_nvme_free_req_queue_wait(q->s, q->index);
307 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
308 } else {
309 qemu_mutex_unlock(&q->lock);
310 return NULL;
311 }
312 }
313
314 req = &q->reqs[q->free_req_head];
315 q->free_req_head = req->free_req_next;
316 req->free_req_next = -1;
317
318 qemu_mutex_unlock(&q->lock);
319 return req;
320 }
321
322 /* With q->lock */
323 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
324 {
325 req->free_req_next = q->free_req_head;
326 q->free_req_head = req - q->reqs;
327 }
328
329 /* With q->lock */
330 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
331 {
332 if (!qemu_co_queue_empty(&q->free_req_queue)) {
333 replay_bh_schedule_oneshot_event(q->s->aio_context,
334 nvme_free_req_queue_cb, q);
335 }
336 }
337
338 /* Insert a request in the freelist and wake waiters */
339 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
340 {
341 qemu_mutex_lock(&q->lock);
342 nvme_put_free_req_locked(q, req);
343 nvme_wake_free_req_locked(q);
344 qemu_mutex_unlock(&q->lock);
345 }
346
347 static inline int nvme_translate_error(const NvmeCqe *c)
348 {
349 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
350 if (status) {
351 trace_nvme_error(le32_to_cpu(c->result),
352 le16_to_cpu(c->sq_head),
353 le16_to_cpu(c->sq_id),
354 le16_to_cpu(c->cid),
355 le16_to_cpu(status));
356 }
357 switch (status) {
358 case 0:
359 return 0;
360 case 1:
361 return -ENOSYS;
362 case 2:
363 return -EINVAL;
364 default:
365 return -EIO;
366 }
367 }
368
369 /* With q->lock */
370 static bool nvme_process_completion(NVMeQueuePair *q)
371 {
372 BDRVNVMeState *s = q->s;
373 bool progress = false;
374 NVMeRequest *preq;
375 NVMeRequest req;
376 NvmeCqe *c;
377
378 trace_nvme_process_completion(s, q->index, q->inflight);
379 if (s->plugged) {
380 trace_nvme_process_completion_queue_plugged(s, q->index);
381 return false;
382 }
383
384 /*
385 * Support re-entrancy when a request cb() function invokes aio_poll().
386 * Pending completions must be visible to aio_poll() so that a cb()
387 * function can wait for the completion of another request.
388 *
389 * The aio_poll() loop will execute our BH and we'll resume completion
390 * processing there.
391 */
392 qemu_bh_schedule(q->completion_bh);
393
394 assert(q->inflight >= 0);
395 while (q->inflight) {
396 int ret;
397 int16_t cid;
398
399 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
400 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
401 break;
402 }
403 ret = nvme_translate_error(c);
404 if (ret) {
405 s->stats.completion_errors++;
406 }
407 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
408 if (!q->cq.head) {
409 q->cq_phase = !q->cq_phase;
410 }
411 cid = le16_to_cpu(c->cid);
412 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
413 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
414 "queue size: %u", cid, NVME_QUEUE_SIZE);
415 continue;
416 }
417 trace_nvme_complete_command(s, q->index, cid);
418 preq = &q->reqs[cid - 1];
419 req = *preq;
420 assert(req.cid == cid);
421 assert(req.cb);
422 nvme_put_free_req_locked(q, preq);
423 preq->cb = preq->opaque = NULL;
424 q->inflight--;
425 qemu_mutex_unlock(&q->lock);
426 req.cb(req.opaque, ret);
427 qemu_mutex_lock(&q->lock);
428 progress = true;
429 }
430 if (progress) {
431 /* Notify the device so it can post more completions. */
432 smp_mb_release();
433 *q->cq.doorbell = cpu_to_le32(q->cq.head);
434 nvme_wake_free_req_locked(q);
435 }
436
437 qemu_bh_cancel(q->completion_bh);
438
439 return progress;
440 }
441
442 static void nvme_process_completion_bh(void *opaque)
443 {
444 NVMeQueuePair *q = opaque;
445
446 /*
447 * We're being invoked because a nvme_process_completion() cb() function
448 * called aio_poll(). The callback may be waiting for further completions
449 * so notify the device that it has space to fill in more completions now.
450 */
451 smp_mb_release();
452 *q->cq.doorbell = cpu_to_le32(q->cq.head);
453 nvme_wake_free_req_locked(q);
454
455 nvme_process_completion(q);
456 }
457
458 static void nvme_trace_command(const NvmeCmd *cmd)
459 {
460 int i;
461
462 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
463 return;
464 }
465 for (i = 0; i < 8; ++i) {
466 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
467 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
468 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
469 }
470 }
471
472 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
473 NvmeCmd *cmd, BlockCompletionFunc cb,
474 void *opaque)
475 {
476 assert(!req->cb);
477 req->cb = cb;
478 req->opaque = opaque;
479 cmd->cid = cpu_to_le16(req->cid);
480
481 trace_nvme_submit_command(q->s, q->index, req->cid);
482 nvme_trace_command(cmd);
483 qemu_mutex_lock(&q->lock);
484 memcpy((uint8_t *)q->sq.queue +
485 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
486 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
487 q->need_kick++;
488 nvme_kick(q);
489 nvme_process_completion(q);
490 qemu_mutex_unlock(&q->lock);
491 }
492
493 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
494 {
495 int *pret = opaque;
496 *pret = ret;
497 aio_wait_kick();
498 }
499
500 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
501 {
502 BDRVNVMeState *s = bs->opaque;
503 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
504 AioContext *aio_context = bdrv_get_aio_context(bs);
505 NVMeRequest *req;
506 int ret = -EINPROGRESS;
507 req = nvme_get_free_req(q);
508 if (!req) {
509 return -EBUSY;
510 }
511 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
512
513 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
514 return ret;
515 }
516
517 /* Returns true on success, false on failure. */
518 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
519 {
520 BDRVNVMeState *s = bs->opaque;
521 bool ret = false;
522 QEMU_AUTO_VFREE union {
523 NvmeIdCtrl ctrl;
524 NvmeIdNs ns;
525 } *id = NULL;
526 NvmeLBAF *lbaf;
527 uint16_t oncs;
528 int r;
529 uint64_t iova;
530 NvmeCmd cmd = {
531 .opcode = NVME_ADM_CMD_IDENTIFY,
532 .cdw10 = cpu_to_le32(0x1),
533 };
534 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
535
536 id = qemu_try_memalign(qemu_real_host_page_size, id_size);
537 if (!id) {
538 error_setg(errp, "Cannot allocate buffer for identify response");
539 goto out;
540 }
541 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
542 if (r) {
543 error_prepend(errp, "Cannot map buffer for DMA: ");
544 goto out;
545 }
546
547 memset(id, 0, id_size);
548 cmd.dptr.prp1 = cpu_to_le64(iova);
549 if (nvme_admin_cmd_sync(bs, &cmd)) {
550 error_setg(errp, "Failed to identify controller");
551 goto out;
552 }
553
554 if (le32_to_cpu(id->ctrl.nn) < namespace) {
555 error_setg(errp, "Invalid namespace");
556 goto out;
557 }
558 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
559 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
560 /* For now the page list buffer per command is one page, to hold at most
561 * s->page_size / sizeof(uint64_t) entries. */
562 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
563 s->page_size / sizeof(uint64_t) * s->page_size);
564
565 oncs = le16_to_cpu(id->ctrl.oncs);
566 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
567 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
568
569 memset(id, 0, id_size);
570 cmd.cdw10 = 0;
571 cmd.nsid = cpu_to_le32(namespace);
572 if (nvme_admin_cmd_sync(bs, &cmd)) {
573 error_setg(errp, "Failed to identify namespace");
574 goto out;
575 }
576
577 s->nsze = le64_to_cpu(id->ns.nsze);
578 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
579
580 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
581 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
582 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
583 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
584 }
585
586 if (lbaf->ms) {
587 error_setg(errp, "Namespaces with metadata are not yet supported");
588 goto out;
589 }
590
591 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
592 (1 << lbaf->ds) > s->page_size)
593 {
594 error_setg(errp, "Namespace has unsupported block size (2^%d)",
595 lbaf->ds);
596 goto out;
597 }
598
599 ret = true;
600 s->blkshift = lbaf->ds;
601 out:
602 qemu_vfio_dma_unmap(s->vfio, id);
603
604 return ret;
605 }
606
607 static bool nvme_poll_queue(NVMeQueuePair *q)
608 {
609 bool progress = false;
610
611 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
612 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
613
614 trace_nvme_poll_queue(q->s, q->index);
615 /*
616 * Do an early check for completions. q->lock isn't needed because
617 * nvme_process_completion() only runs in the event loop thread and
618 * cannot race with itself.
619 */
620 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
621 return false;
622 }
623
624 qemu_mutex_lock(&q->lock);
625 while (nvme_process_completion(q)) {
626 /* Keep polling */
627 progress = true;
628 }
629 qemu_mutex_unlock(&q->lock);
630
631 return progress;
632 }
633
634 static bool nvme_poll_queues(BDRVNVMeState *s)
635 {
636 bool progress = false;
637 int i;
638
639 for (i = 0; i < s->queue_count; i++) {
640 if (nvme_poll_queue(s->queues[i])) {
641 progress = true;
642 }
643 }
644 return progress;
645 }
646
647 static void nvme_handle_event(EventNotifier *n)
648 {
649 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
650 irq_notifier[MSIX_SHARED_IRQ_IDX]);
651
652 trace_nvme_handle_event(s);
653 event_notifier_test_and_clear(n);
654 nvme_poll_queues(s);
655 }
656
657 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
658 {
659 BDRVNVMeState *s = bs->opaque;
660 unsigned n = s->queue_count;
661 NVMeQueuePair *q;
662 NvmeCmd cmd;
663 unsigned queue_size = NVME_QUEUE_SIZE;
664
665 assert(n <= UINT16_MAX);
666 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
667 n, queue_size, errp);
668 if (!q) {
669 return false;
670 }
671 cmd = (NvmeCmd) {
672 .opcode = NVME_ADM_CMD_CREATE_CQ,
673 .dptr.prp1 = cpu_to_le64(q->cq.iova),
674 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
675 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
676 };
677 if (nvme_admin_cmd_sync(bs, &cmd)) {
678 error_setg(errp, "Failed to create CQ io queue [%u]", n);
679 goto out_error;
680 }
681 cmd = (NvmeCmd) {
682 .opcode = NVME_ADM_CMD_CREATE_SQ,
683 .dptr.prp1 = cpu_to_le64(q->sq.iova),
684 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
685 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
686 };
687 if (nvme_admin_cmd_sync(bs, &cmd)) {
688 error_setg(errp, "Failed to create SQ io queue [%u]", n);
689 goto out_error;
690 }
691 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
692 s->queues[n] = q;
693 s->queue_count++;
694 return true;
695 out_error:
696 nvme_free_queue_pair(q);
697 return false;
698 }
699
700 static bool nvme_poll_cb(void *opaque)
701 {
702 EventNotifier *e = opaque;
703 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
704 irq_notifier[MSIX_SHARED_IRQ_IDX]);
705
706 return nvme_poll_queues(s);
707 }
708
709 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
710 Error **errp)
711 {
712 BDRVNVMeState *s = bs->opaque;
713 NVMeQueuePair *q;
714 AioContext *aio_context = bdrv_get_aio_context(bs);
715 int ret;
716 uint64_t cap;
717 uint32_t ver;
718 uint64_t timeout_ms;
719 uint64_t deadline, now;
720 volatile NvmeBar *regs = NULL;
721
722 qemu_co_mutex_init(&s->dma_map_lock);
723 qemu_co_queue_init(&s->dma_flush_queue);
724 s->device = g_strdup(device);
725 s->nsid = namespace;
726 s->aio_context = bdrv_get_aio_context(bs);
727 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
728 if (ret) {
729 error_setg(errp, "Failed to init event notifier");
730 return ret;
731 }
732
733 s->vfio = qemu_vfio_open_pci(device, errp);
734 if (!s->vfio) {
735 ret = -EINVAL;
736 goto out;
737 }
738
739 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
740 PROT_READ | PROT_WRITE, errp);
741 if (!regs) {
742 ret = -EINVAL;
743 goto out;
744 }
745 /* Perform initialize sequence as described in NVMe spec "7.6.1
746 * Initialization". */
747
748 cap = le64_to_cpu(regs->cap);
749 trace_nvme_controller_capability_raw(cap);
750 trace_nvme_controller_capability("Maximum Queue Entries Supported",
751 1 + NVME_CAP_MQES(cap));
752 trace_nvme_controller_capability("Contiguous Queues Required",
753 NVME_CAP_CQR(cap));
754 trace_nvme_controller_capability("Doorbell Stride",
755 1 << (2 + NVME_CAP_DSTRD(cap)));
756 trace_nvme_controller_capability("Subsystem Reset Supported",
757 NVME_CAP_NSSRS(cap));
758 trace_nvme_controller_capability("Memory Page Size Minimum",
759 1 << (12 + NVME_CAP_MPSMIN(cap)));
760 trace_nvme_controller_capability("Memory Page Size Maximum",
761 1 << (12 + NVME_CAP_MPSMAX(cap)));
762 if (!NVME_CAP_CSS(cap)) {
763 error_setg(errp, "Device doesn't support NVMe command set");
764 ret = -EINVAL;
765 goto out;
766 }
767
768 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
769 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
770 bs->bl.opt_mem_alignment = s->page_size;
771 bs->bl.request_alignment = s->page_size;
772 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
773
774 ver = le32_to_cpu(regs->vs);
775 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
776 extract32(ver, 8, 8),
777 extract32(ver, 0, 8));
778
779 /* Reset device to get a clean state. */
780 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
781 /* Wait for CSTS.RDY = 0. */
782 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
783 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
784 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
785 error_setg(errp, "Timeout while waiting for device to reset (%"
786 PRId64 " ms)",
787 timeout_ms);
788 ret = -ETIMEDOUT;
789 goto out;
790 }
791 }
792
793 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
794 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
795 PROT_WRITE, errp);
796 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
797 if (!s->doorbells) {
798 ret = -EINVAL;
799 goto out;
800 }
801
802 /* Set up admin queue. */
803 s->queues = g_new(NVMeQueuePair *, 1);
804 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
805 if (!q) {
806 ret = -EINVAL;
807 goto out;
808 }
809 s->queues[INDEX_ADMIN] = q;
810 s->queue_count = 1;
811 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
812 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
813 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
814 regs->asq = cpu_to_le64(q->sq.iova);
815 regs->acq = cpu_to_le64(q->cq.iova);
816
817 /* After setting up all control registers we can enable device now. */
818 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
819 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
820 CC_EN_MASK);
821 /* Wait for CSTS.RDY = 1. */
822 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
823 deadline = now + timeout_ms * SCALE_MS;
824 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
825 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
826 error_setg(errp, "Timeout while waiting for device to start (%"
827 PRId64 " ms)",
828 timeout_ms);
829 ret = -ETIMEDOUT;
830 goto out;
831 }
832 }
833
834 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
835 VFIO_PCI_MSIX_IRQ_INDEX, errp);
836 if (ret) {
837 goto out;
838 }
839 aio_set_event_notifier(bdrv_get_aio_context(bs),
840 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
841 false, nvme_handle_event, nvme_poll_cb);
842
843 if (!nvme_identify(bs, namespace, errp)) {
844 ret = -EIO;
845 goto out;
846 }
847
848 /* Set up command queues. */
849 if (!nvme_add_io_queue(bs, errp)) {
850 ret = -EIO;
851 }
852 out:
853 if (regs) {
854 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
855 }
856
857 /* Cleaning up is done in nvme_file_open() upon error. */
858 return ret;
859 }
860
861 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
862 *
863 * nvme://0000:44:00.0/1
864 *
865 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
866 * is the PCI address, and the last part is the namespace number starting from
867 * 1 according to the NVMe spec. */
868 static void nvme_parse_filename(const char *filename, QDict *options,
869 Error **errp)
870 {
871 int pref = strlen("nvme://");
872
873 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
874 const char *tmp = filename + pref;
875 char *device;
876 const char *namespace;
877 unsigned long ns;
878 const char *slash = strchr(tmp, '/');
879 if (!slash) {
880 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
881 return;
882 }
883 device = g_strndup(tmp, slash - tmp);
884 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
885 g_free(device);
886 namespace = slash + 1;
887 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
888 error_setg(errp, "Invalid namespace '%s', positive number expected",
889 namespace);
890 return;
891 }
892 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
893 *namespace ? namespace : "1");
894 }
895 }
896
897 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
898 Error **errp)
899 {
900 int ret;
901 BDRVNVMeState *s = bs->opaque;
902 NvmeCmd cmd = {
903 .opcode = NVME_ADM_CMD_SET_FEATURES,
904 .nsid = cpu_to_le32(s->nsid),
905 .cdw10 = cpu_to_le32(0x06),
906 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
907 };
908
909 ret = nvme_admin_cmd_sync(bs, &cmd);
910 if (ret) {
911 error_setg(errp, "Failed to configure NVMe write cache");
912 }
913 return ret;
914 }
915
916 static void nvme_close(BlockDriverState *bs)
917 {
918 BDRVNVMeState *s = bs->opaque;
919
920 for (unsigned i = 0; i < s->queue_count; ++i) {
921 nvme_free_queue_pair(s->queues[i]);
922 }
923 g_free(s->queues);
924 aio_set_event_notifier(bdrv_get_aio_context(bs),
925 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
926 false, NULL, NULL);
927 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
928 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
929 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
930 qemu_vfio_close(s->vfio);
931
932 g_free(s->device);
933 }
934
935 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
936 Error **errp)
937 {
938 const char *device;
939 QemuOpts *opts;
940 int namespace;
941 int ret;
942 BDRVNVMeState *s = bs->opaque;
943
944 bs->supported_write_flags = BDRV_REQ_FUA;
945
946 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
947 qemu_opts_absorb_qdict(opts, options, &error_abort);
948 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
949 if (!device) {
950 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
951 qemu_opts_del(opts);
952 return -EINVAL;
953 }
954
955 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
956 ret = nvme_init(bs, device, namespace, errp);
957 qemu_opts_del(opts);
958 if (ret) {
959 goto fail;
960 }
961 if (flags & BDRV_O_NOCACHE) {
962 if (!s->write_cache_supported) {
963 error_setg(errp,
964 "NVMe controller doesn't support write cache configuration");
965 ret = -EINVAL;
966 } else {
967 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
968 errp);
969 }
970 if (ret) {
971 goto fail;
972 }
973 }
974 return 0;
975 fail:
976 nvme_close(bs);
977 return ret;
978 }
979
980 static int64_t nvme_getlength(BlockDriverState *bs)
981 {
982 BDRVNVMeState *s = bs->opaque;
983 return s->nsze << s->blkshift;
984 }
985
986 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
987 {
988 BDRVNVMeState *s = bs->opaque;
989 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
990 return UINT32_C(1) << s->blkshift;
991 }
992
993 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
994 {
995 uint32_t blocksize = nvme_get_blocksize(bs);
996 bsz->phys = blocksize;
997 bsz->log = blocksize;
998 return 0;
999 }
1000
1001 /* Called with s->dma_map_lock */
1002 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1003 QEMUIOVector *qiov)
1004 {
1005 int r = 0;
1006 BDRVNVMeState *s = bs->opaque;
1007
1008 s->dma_map_count -= qiov->size;
1009 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1010 r = qemu_vfio_dma_reset_temporary(s->vfio);
1011 if (!r) {
1012 qemu_co_queue_restart_all(&s->dma_flush_queue);
1013 }
1014 }
1015 return r;
1016 }
1017
1018 /* Called with s->dma_map_lock */
1019 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1020 NVMeRequest *req, QEMUIOVector *qiov)
1021 {
1022 BDRVNVMeState *s = bs->opaque;
1023 uint64_t *pagelist = req->prp_list_page;
1024 int i, j, r;
1025 int entries = 0;
1026 Error *local_err = NULL, **errp = NULL;
1027
1028 assert(qiov->size);
1029 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1030 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1031 for (i = 0; i < qiov->niov; ++i) {
1032 bool retry = true;
1033 uint64_t iova;
1034 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1035 qemu_real_host_page_size);
1036 try_map:
1037 r = qemu_vfio_dma_map(s->vfio,
1038 qiov->iov[i].iov_base,
1039 len, true, &iova, errp);
1040 if (r == -ENOSPC) {
1041 /*
1042 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1043 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1044 * mappings available for a container since Linux kernel commit
1045 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1046 * April 2019, see CVE-2019-3882).
1047 *
1048 * This block driver already handles this error path by checking
1049 * for the -ENOMEM error, so we directly replace -ENOSPC by
1050 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1051 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1052 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1053 * to add more storage to the blockdev. Not something we can do
1054 * easily with an IOMMU :)
1055 */
1056 r = -ENOMEM;
1057 }
1058 if (r == -ENOMEM && retry) {
1059 /*
1060 * We exhausted the DMA mappings available for our container:
1061 * recycle the volatile IOVA mappings.
1062 */
1063 retry = false;
1064 trace_nvme_dma_flush_queue_wait(s);
1065 if (s->dma_map_count) {
1066 trace_nvme_dma_map_flush(s);
1067 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1068 } else {
1069 r = qemu_vfio_dma_reset_temporary(s->vfio);
1070 if (r) {
1071 goto fail;
1072 }
1073 }
1074 errp = &local_err;
1075
1076 goto try_map;
1077 }
1078 if (r) {
1079 goto fail;
1080 }
1081
1082 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1083 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1084 }
1085 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1086 qiov->iov[i].iov_len / s->page_size);
1087 }
1088
1089 s->dma_map_count += qiov->size;
1090
1091 assert(entries <= s->page_size / sizeof(uint64_t));
1092 switch (entries) {
1093 case 0:
1094 abort();
1095 case 1:
1096 cmd->dptr.prp1 = pagelist[0];
1097 cmd->dptr.prp2 = 0;
1098 break;
1099 case 2:
1100 cmd->dptr.prp1 = pagelist[0];
1101 cmd->dptr.prp2 = pagelist[1];
1102 break;
1103 default:
1104 cmd->dptr.prp1 = pagelist[0];
1105 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1106 break;
1107 }
1108 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1109 for (i = 0; i < entries; ++i) {
1110 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1111 }
1112 return 0;
1113 fail:
1114 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1115 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1116 * because they are already mapped before calling this function; for
1117 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1118 * calling qemu_vfio_dma_reset_temporary when necessary. */
1119 if (local_err) {
1120 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1121 }
1122 return r;
1123 }
1124
1125 typedef struct {
1126 Coroutine *co;
1127 int ret;
1128 AioContext *ctx;
1129 } NVMeCoData;
1130
1131 static void nvme_rw_cb_bh(void *opaque)
1132 {
1133 NVMeCoData *data = opaque;
1134 qemu_coroutine_enter(data->co);
1135 }
1136
1137 static void nvme_rw_cb(void *opaque, int ret)
1138 {
1139 NVMeCoData *data = opaque;
1140 data->ret = ret;
1141 if (!data->co) {
1142 /* The rw coroutine hasn't yielded, don't try to enter. */
1143 return;
1144 }
1145 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1146 }
1147
1148 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1149 uint64_t offset, uint64_t bytes,
1150 QEMUIOVector *qiov,
1151 bool is_write,
1152 int flags)
1153 {
1154 int r;
1155 BDRVNVMeState *s = bs->opaque;
1156 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1157 NVMeRequest *req;
1158
1159 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1160 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1161 NvmeCmd cmd = {
1162 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1163 .nsid = cpu_to_le32(s->nsid),
1164 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1165 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1166 .cdw12 = cpu_to_le32(cdw12),
1167 };
1168 NVMeCoData data = {
1169 .ctx = bdrv_get_aio_context(bs),
1170 .ret = -EINPROGRESS,
1171 };
1172
1173 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1174 assert(s->queue_count > 1);
1175 req = nvme_get_free_req(ioq);
1176 assert(req);
1177
1178 qemu_co_mutex_lock(&s->dma_map_lock);
1179 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1180 qemu_co_mutex_unlock(&s->dma_map_lock);
1181 if (r) {
1182 nvme_put_free_req_and_wake(ioq, req);
1183 return r;
1184 }
1185 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1186
1187 data.co = qemu_coroutine_self();
1188 while (data.ret == -EINPROGRESS) {
1189 qemu_coroutine_yield();
1190 }
1191
1192 qemu_co_mutex_lock(&s->dma_map_lock);
1193 r = nvme_cmd_unmap_qiov(bs, qiov);
1194 qemu_co_mutex_unlock(&s->dma_map_lock);
1195 if (r) {
1196 return r;
1197 }
1198
1199 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1200 return data.ret;
1201 }
1202
1203 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1204 const QEMUIOVector *qiov)
1205 {
1206 int i;
1207 BDRVNVMeState *s = bs->opaque;
1208
1209 for (i = 0; i < qiov->niov; ++i) {
1210 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1211 qemu_real_host_page_size) ||
1212 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1213 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1214 qiov->iov[i].iov_len, s->page_size);
1215 return false;
1216 }
1217 }
1218 return true;
1219 }
1220
1221 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1222 QEMUIOVector *qiov, bool is_write, int flags)
1223 {
1224 BDRVNVMeState *s = bs->opaque;
1225 int r;
1226 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1227 QEMUIOVector local_qiov;
1228 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1229 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1230 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1231 assert(bytes <= s->max_transfer);
1232 if (nvme_qiov_aligned(bs, qiov)) {
1233 s->stats.aligned_accesses++;
1234 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1235 }
1236 s->stats.unaligned_accesses++;
1237 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1238 buf = qemu_try_memalign(qemu_real_host_page_size, len);
1239
1240 if (!buf) {
1241 return -ENOMEM;
1242 }
1243 qemu_iovec_init(&local_qiov, 1);
1244 if (is_write) {
1245 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1246 }
1247 qemu_iovec_add(&local_qiov, buf, bytes);
1248 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1249 qemu_iovec_destroy(&local_qiov);
1250 if (!r && !is_write) {
1251 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1252 }
1253 return r;
1254 }
1255
1256 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1257 int64_t offset, int64_t bytes,
1258 QEMUIOVector *qiov,
1259 BdrvRequestFlags flags)
1260 {
1261 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1262 }
1263
1264 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1265 int64_t offset, int64_t bytes,
1266 QEMUIOVector *qiov,
1267 BdrvRequestFlags flags)
1268 {
1269 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1270 }
1271
1272 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1273 {
1274 BDRVNVMeState *s = bs->opaque;
1275 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1276 NVMeRequest *req;
1277 NvmeCmd cmd = {
1278 .opcode = NVME_CMD_FLUSH,
1279 .nsid = cpu_to_le32(s->nsid),
1280 };
1281 NVMeCoData data = {
1282 .ctx = bdrv_get_aio_context(bs),
1283 .ret = -EINPROGRESS,
1284 };
1285
1286 assert(s->queue_count > 1);
1287 req = nvme_get_free_req(ioq);
1288 assert(req);
1289 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1290
1291 data.co = qemu_coroutine_self();
1292 if (data.ret == -EINPROGRESS) {
1293 qemu_coroutine_yield();
1294 }
1295
1296 return data.ret;
1297 }
1298
1299
1300 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1301 int64_t offset,
1302 int64_t bytes,
1303 BdrvRequestFlags flags)
1304 {
1305 BDRVNVMeState *s = bs->opaque;
1306 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1307 NVMeRequest *req;
1308 uint32_t cdw12;
1309
1310 if (!s->supports_write_zeroes) {
1311 return -ENOTSUP;
1312 }
1313
1314 if (bytes == 0) {
1315 return 0;
1316 }
1317
1318 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1319 /*
1320 * We should not lose information. pwrite_zeroes_alignment and
1321 * max_pwrite_zeroes guarantees it.
1322 */
1323 assert(((cdw12 + 1) << s->blkshift) == bytes);
1324
1325 NvmeCmd cmd = {
1326 .opcode = NVME_CMD_WRITE_ZEROES,
1327 .nsid = cpu_to_le32(s->nsid),
1328 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1329 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1330 };
1331
1332 NVMeCoData data = {
1333 .ctx = bdrv_get_aio_context(bs),
1334 .ret = -EINPROGRESS,
1335 };
1336
1337 if (flags & BDRV_REQ_MAY_UNMAP) {
1338 cdw12 |= (1 << 25);
1339 }
1340
1341 if (flags & BDRV_REQ_FUA) {
1342 cdw12 |= (1 << 30);
1343 }
1344
1345 cmd.cdw12 = cpu_to_le32(cdw12);
1346
1347 trace_nvme_write_zeroes(s, offset, bytes, flags);
1348 assert(s->queue_count > 1);
1349 req = nvme_get_free_req(ioq);
1350 assert(req);
1351
1352 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1353
1354 data.co = qemu_coroutine_self();
1355 while (data.ret == -EINPROGRESS) {
1356 qemu_coroutine_yield();
1357 }
1358
1359 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1360 return data.ret;
1361 }
1362
1363
1364 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1365 int64_t offset,
1366 int64_t bytes)
1367 {
1368 BDRVNVMeState *s = bs->opaque;
1369 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1370 NVMeRequest *req;
1371 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1372 QEMUIOVector local_qiov;
1373 int ret;
1374
1375 NvmeCmd cmd = {
1376 .opcode = NVME_CMD_DSM,
1377 .nsid = cpu_to_le32(s->nsid),
1378 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1379 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1380 };
1381
1382 NVMeCoData data = {
1383 .ctx = bdrv_get_aio_context(bs),
1384 .ret = -EINPROGRESS,
1385 };
1386
1387 if (!s->supports_discard) {
1388 return -ENOTSUP;
1389 }
1390
1391 assert(s->queue_count > 1);
1392
1393 /*
1394 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1395 * defined in nvme_refresh_limits().
1396 */
1397 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1398 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1399 assert((bytes >> s->blkshift) <= UINT32_MAX);
1400
1401 buf = qemu_try_memalign(s->page_size, s->page_size);
1402 if (!buf) {
1403 return -ENOMEM;
1404 }
1405 memset(buf, 0, s->page_size);
1406 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1407 buf->slba = cpu_to_le64(offset >> s->blkshift);
1408 buf->cattr = 0;
1409
1410 qemu_iovec_init(&local_qiov, 1);
1411 qemu_iovec_add(&local_qiov, buf, 4096);
1412
1413 req = nvme_get_free_req(ioq);
1414 assert(req);
1415
1416 qemu_co_mutex_lock(&s->dma_map_lock);
1417 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1418 qemu_co_mutex_unlock(&s->dma_map_lock);
1419
1420 if (ret) {
1421 nvme_put_free_req_and_wake(ioq, req);
1422 goto out;
1423 }
1424
1425 trace_nvme_dsm(s, offset, bytes);
1426
1427 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1428
1429 data.co = qemu_coroutine_self();
1430 while (data.ret == -EINPROGRESS) {
1431 qemu_coroutine_yield();
1432 }
1433
1434 qemu_co_mutex_lock(&s->dma_map_lock);
1435 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1436 qemu_co_mutex_unlock(&s->dma_map_lock);
1437
1438 if (ret) {
1439 goto out;
1440 }
1441
1442 ret = data.ret;
1443 trace_nvme_dsm_done(s, offset, bytes, ret);
1444 out:
1445 qemu_iovec_destroy(&local_qiov);
1446 return ret;
1447
1448 }
1449
1450 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1451 bool exact, PreallocMode prealloc,
1452 BdrvRequestFlags flags, Error **errp)
1453 {
1454 int64_t cur_length;
1455
1456 if (prealloc != PREALLOC_MODE_OFF) {
1457 error_setg(errp, "Unsupported preallocation mode '%s'",
1458 PreallocMode_str(prealloc));
1459 return -ENOTSUP;
1460 }
1461
1462 cur_length = nvme_getlength(bs);
1463 if (offset != cur_length && exact) {
1464 error_setg(errp, "Cannot resize NVMe devices");
1465 return -ENOTSUP;
1466 } else if (offset > cur_length) {
1467 error_setg(errp, "Cannot grow NVMe devices");
1468 return -EINVAL;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1475 BlockReopenQueue *queue, Error **errp)
1476 {
1477 return 0;
1478 }
1479
1480 static void nvme_refresh_filename(BlockDriverState *bs)
1481 {
1482 BDRVNVMeState *s = bs->opaque;
1483
1484 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1485 s->device, s->nsid);
1486 }
1487
1488 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1489 {
1490 BDRVNVMeState *s = bs->opaque;
1491
1492 bs->bl.opt_mem_alignment = s->page_size;
1493 bs->bl.request_alignment = s->page_size;
1494 bs->bl.max_transfer = s->max_transfer;
1495
1496 /*
1497 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1498 * at most 0xFFFF
1499 */
1500 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1501 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1502 1UL << s->blkshift);
1503
1504 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1505 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1506 1UL << s->blkshift);
1507 }
1508
1509 static void nvme_detach_aio_context(BlockDriverState *bs)
1510 {
1511 BDRVNVMeState *s = bs->opaque;
1512
1513 for (unsigned i = 0; i < s->queue_count; i++) {
1514 NVMeQueuePair *q = s->queues[i];
1515
1516 qemu_bh_delete(q->completion_bh);
1517 q->completion_bh = NULL;
1518 }
1519
1520 aio_set_event_notifier(bdrv_get_aio_context(bs),
1521 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1522 false, NULL, NULL);
1523 }
1524
1525 static void nvme_attach_aio_context(BlockDriverState *bs,
1526 AioContext *new_context)
1527 {
1528 BDRVNVMeState *s = bs->opaque;
1529
1530 s->aio_context = new_context;
1531 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1532 false, nvme_handle_event, nvme_poll_cb);
1533
1534 for (unsigned i = 0; i < s->queue_count; i++) {
1535 NVMeQueuePair *q = s->queues[i];
1536
1537 q->completion_bh =
1538 aio_bh_new(new_context, nvme_process_completion_bh, q);
1539 }
1540 }
1541
1542 static void nvme_aio_plug(BlockDriverState *bs)
1543 {
1544 BDRVNVMeState *s = bs->opaque;
1545 assert(!s->plugged);
1546 s->plugged = true;
1547 }
1548
1549 static void nvme_aio_unplug(BlockDriverState *bs)
1550 {
1551 BDRVNVMeState *s = bs->opaque;
1552 assert(s->plugged);
1553 s->plugged = false;
1554 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1555 NVMeQueuePair *q = s->queues[i];
1556 qemu_mutex_lock(&q->lock);
1557 nvme_kick(q);
1558 nvme_process_completion(q);
1559 qemu_mutex_unlock(&q->lock);
1560 }
1561 }
1562
1563 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1564 {
1565 int ret;
1566 Error *local_err = NULL;
1567 BDRVNVMeState *s = bs->opaque;
1568
1569 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
1570 if (ret) {
1571 /* FIXME: we may run out of IOVA addresses after repeated
1572 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1573 * doesn't reclaim addresses for fixed mappings. */
1574 error_reportf_err(local_err, "nvme_register_buf failed: ");
1575 }
1576 }
1577
1578 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1579 {
1580 BDRVNVMeState *s = bs->opaque;
1581
1582 qemu_vfio_dma_unmap(s->vfio, host);
1583 }
1584
1585 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1586 {
1587 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1588 BDRVNVMeState *s = bs->opaque;
1589
1590 stats->driver = BLOCKDEV_DRIVER_NVME;
1591 stats->u.nvme = (BlockStatsSpecificNvme) {
1592 .completion_errors = s->stats.completion_errors,
1593 .aligned_accesses = s->stats.aligned_accesses,
1594 .unaligned_accesses = s->stats.unaligned_accesses,
1595 };
1596
1597 return stats;
1598 }
1599
1600 static const char *const nvme_strong_runtime_opts[] = {
1601 NVME_BLOCK_OPT_DEVICE,
1602 NVME_BLOCK_OPT_NAMESPACE,
1603
1604 NULL
1605 };
1606
1607 static BlockDriver bdrv_nvme = {
1608 .format_name = "nvme",
1609 .protocol_name = "nvme",
1610 .instance_size = sizeof(BDRVNVMeState),
1611
1612 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1613 .create_opts = &bdrv_create_opts_simple,
1614
1615 .bdrv_parse_filename = nvme_parse_filename,
1616 .bdrv_file_open = nvme_file_open,
1617 .bdrv_close = nvme_close,
1618 .bdrv_getlength = nvme_getlength,
1619 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1620 .bdrv_co_truncate = nvme_co_truncate,
1621
1622 .bdrv_co_preadv = nvme_co_preadv,
1623 .bdrv_co_pwritev = nvme_co_pwritev,
1624
1625 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1626 .bdrv_co_pdiscard = nvme_co_pdiscard,
1627
1628 .bdrv_co_flush_to_disk = nvme_co_flush,
1629 .bdrv_reopen_prepare = nvme_reopen_prepare,
1630
1631 .bdrv_refresh_filename = nvme_refresh_filename,
1632 .bdrv_refresh_limits = nvme_refresh_limits,
1633 .strong_runtime_opts = nvme_strong_runtime_opts,
1634 .bdrv_get_specific_stats = nvme_get_specific_stats,
1635
1636 .bdrv_detach_aio_context = nvme_detach_aio_context,
1637 .bdrv_attach_aio_context = nvme_attach_aio_context,
1638
1639 .bdrv_io_plug = nvme_aio_plug,
1640 .bdrv_io_unplug = nvme_aio_unplug,
1641
1642 .bdrv_register_buf = nvme_register_buf,
1643 .bdrv_unregister_buf = nvme_unregister_buf,
1644 };
1645
1646 static void bdrv_nvme_init(void)
1647 {
1648 bdrv_register(&bdrv_nvme);
1649 }
1650
1651 block_init(bdrv_nvme_init);