]> git.proxmox.com Git - mirror_qemu.git/blob - block/nvme.c
block/nvme: Trace NVMe spec version supported by the controller
[mirror_qemu.git] / block / nvme.c
1 /*
2 * NVMe block driver based on vfio
3 *
4 * Copyright 2016 - 2018 Red Hat, Inc.
5 *
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
28
29 #include "block/nvme.h"
30
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
35
36 /*
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
39 */
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
41
42 typedef struct BDRVNVMeState BDRVNVMeState;
43
44 /* Same index is used for queues and IRQs */
45 #define INDEX_ADMIN 0
46 #define INDEX_IO(n) (1 + n)
47
48 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
49 enum {
50 MSIX_SHARED_IRQ_IDX = 0,
51 MSIX_IRQ_COUNT = 1
52 };
53
54 typedef struct {
55 int32_t head, tail;
56 uint8_t *queue;
57 uint64_t iova;
58 /* Hardware MMIO register */
59 volatile uint32_t *doorbell;
60 } NVMeQueue;
61
62 typedef struct {
63 BlockCompletionFunc *cb;
64 void *opaque;
65 int cid;
66 void *prp_list_page;
67 uint64_t prp_list_iova;
68 int free_req_next; /* q->reqs[] index of next free req */
69 } NVMeRequest;
70
71 typedef struct {
72 QemuMutex lock;
73
74 /* Read from I/O code path, initialized under BQL */
75 BDRVNVMeState *s;
76 int index;
77
78 /* Fields protected by BQL */
79 uint8_t *prp_list_pages;
80
81 /* Fields protected by @lock */
82 CoQueue free_req_queue;
83 NVMeQueue sq, cq;
84 int cq_phase;
85 int free_req_head;
86 NVMeRequest reqs[NVME_NUM_REQS];
87 int need_kick;
88 int inflight;
89
90 /* Thread-safe, no lock necessary */
91 QEMUBH *completion_bh;
92 } NVMeQueuePair;
93
94 struct BDRVNVMeState {
95 AioContext *aio_context;
96 QEMUVFIOState *vfio;
97 void *bar0_wo_map;
98 /* Memory mapped registers */
99 volatile struct {
100 uint32_t sq_tail;
101 uint32_t cq_head;
102 } *doorbells;
103 /* The submission/completion queue pairs.
104 * [0]: admin queue.
105 * [1..]: io queues.
106 */
107 NVMeQueuePair **queues;
108 unsigned queue_count;
109 size_t page_size;
110 /* How many uint32_t elements does each doorbell entry take. */
111 size_t doorbell_scale;
112 bool write_cache_supported;
113 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
114
115 uint64_t nsze; /* Namespace size reported by identify command */
116 int nsid; /* The namespace id to read/write data. */
117 int blkshift;
118
119 uint64_t max_transfer;
120 bool plugged;
121
122 bool supports_write_zeroes;
123 bool supports_discard;
124
125 CoMutex dma_map_lock;
126 CoQueue dma_flush_queue;
127
128 /* Total size of mapped qiov, accessed under dma_map_lock */
129 int dma_map_count;
130
131 /* PCI address (required for nvme_refresh_filename()) */
132 char *device;
133
134 struct {
135 uint64_t completion_errors;
136 uint64_t aligned_accesses;
137 uint64_t unaligned_accesses;
138 } stats;
139 };
140
141 #define NVME_BLOCK_OPT_DEVICE "device"
142 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
143
144 static void nvme_process_completion_bh(void *opaque);
145
146 static QemuOptsList runtime_opts = {
147 .name = "nvme",
148 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
149 .desc = {
150 {
151 .name = NVME_BLOCK_OPT_DEVICE,
152 .type = QEMU_OPT_STRING,
153 .help = "NVMe PCI device address",
154 },
155 {
156 .name = NVME_BLOCK_OPT_NAMESPACE,
157 .type = QEMU_OPT_NUMBER,
158 .help = "NVMe namespace",
159 },
160 { /* end of list */ }
161 },
162 };
163
164 /* Returns true on success, false on failure. */
165 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
166 unsigned nentries, size_t entry_bytes, Error **errp)
167 {
168 size_t bytes;
169 int r;
170
171 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
172 q->head = q->tail = 0;
173 q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
174 if (!q->queue) {
175 error_setg(errp, "Cannot allocate queue");
176 return false;
177 }
178 memset(q->queue, 0, bytes);
179 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
180 if (r) {
181 error_setg(errp, "Cannot map queue");
182 return false;
183 }
184 return true;
185 }
186
187 static void nvme_free_queue_pair(NVMeQueuePair *q)
188 {
189 trace_nvme_free_queue_pair(q->index, q);
190 if (q->completion_bh) {
191 qemu_bh_delete(q->completion_bh);
192 }
193 qemu_vfree(q->prp_list_pages);
194 qemu_vfree(q->sq.queue);
195 qemu_vfree(q->cq.queue);
196 qemu_mutex_destroy(&q->lock);
197 g_free(q);
198 }
199
200 static void nvme_free_req_queue_cb(void *opaque)
201 {
202 NVMeQueuePair *q = opaque;
203
204 qemu_mutex_lock(&q->lock);
205 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
206 /* Retry all pending requests */
207 }
208 qemu_mutex_unlock(&q->lock);
209 }
210
211 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
212 AioContext *aio_context,
213 unsigned idx, size_t size,
214 Error **errp)
215 {
216 int i, r;
217 NVMeQueuePair *q;
218 uint64_t prp_list_iova;
219 size_t bytes;
220
221 q = g_try_new0(NVMeQueuePair, 1);
222 if (!q) {
223 return NULL;
224 }
225 trace_nvme_create_queue_pair(idx, q, size, aio_context,
226 event_notifier_get_fd(s->irq_notifier));
227 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
228 qemu_real_host_page_size);
229 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
230 if (!q->prp_list_pages) {
231 goto fail;
232 }
233 memset(q->prp_list_pages, 0, bytes);
234 qemu_mutex_init(&q->lock);
235 q->s = s;
236 q->index = idx;
237 qemu_co_queue_init(&q->free_req_queue);
238 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
239 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
240 false, &prp_list_iova);
241 if (r) {
242 goto fail;
243 }
244 q->free_req_head = -1;
245 for (i = 0; i < NVME_NUM_REQS; i++) {
246 NVMeRequest *req = &q->reqs[i];
247 req->cid = i + 1;
248 req->free_req_next = q->free_req_head;
249 q->free_req_head = i;
250 req->prp_list_page = q->prp_list_pages + i * s->page_size;
251 req->prp_list_iova = prp_list_iova + i * s->page_size;
252 }
253
254 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
255 goto fail;
256 }
257 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
258
259 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
260 goto fail;
261 }
262 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
263
264 return q;
265 fail:
266 nvme_free_queue_pair(q);
267 return NULL;
268 }
269
270 /* With q->lock */
271 static void nvme_kick(NVMeQueuePair *q)
272 {
273 BDRVNVMeState *s = q->s;
274
275 if (s->plugged || !q->need_kick) {
276 return;
277 }
278 trace_nvme_kick(s, q->index);
279 assert(!(q->sq.tail & 0xFF00));
280 /* Fence the write to submission queue entry before notifying the device. */
281 smp_wmb();
282 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
283 q->inflight += q->need_kick;
284 q->need_kick = 0;
285 }
286
287 /* Find a free request element if any, otherwise:
288 * a) if in coroutine context, try to wait for one to become available;
289 * b) if not in coroutine, return NULL;
290 */
291 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
292 {
293 NVMeRequest *req;
294
295 qemu_mutex_lock(&q->lock);
296
297 while (q->free_req_head == -1) {
298 if (qemu_in_coroutine()) {
299 trace_nvme_free_req_queue_wait(q->s, q->index);
300 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
301 } else {
302 qemu_mutex_unlock(&q->lock);
303 return NULL;
304 }
305 }
306
307 req = &q->reqs[q->free_req_head];
308 q->free_req_head = req->free_req_next;
309 req->free_req_next = -1;
310
311 qemu_mutex_unlock(&q->lock);
312 return req;
313 }
314
315 /* With q->lock */
316 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
317 {
318 req->free_req_next = q->free_req_head;
319 q->free_req_head = req - q->reqs;
320 }
321
322 /* With q->lock */
323 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
324 {
325 if (!qemu_co_queue_empty(&q->free_req_queue)) {
326 replay_bh_schedule_oneshot_event(q->s->aio_context,
327 nvme_free_req_queue_cb, q);
328 }
329 }
330
331 /* Insert a request in the freelist and wake waiters */
332 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
333 {
334 qemu_mutex_lock(&q->lock);
335 nvme_put_free_req_locked(q, req);
336 nvme_wake_free_req_locked(q);
337 qemu_mutex_unlock(&q->lock);
338 }
339
340 static inline int nvme_translate_error(const NvmeCqe *c)
341 {
342 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
343 if (status) {
344 trace_nvme_error(le32_to_cpu(c->result),
345 le16_to_cpu(c->sq_head),
346 le16_to_cpu(c->sq_id),
347 le16_to_cpu(c->cid),
348 le16_to_cpu(status));
349 }
350 switch (status) {
351 case 0:
352 return 0;
353 case 1:
354 return -ENOSYS;
355 case 2:
356 return -EINVAL;
357 default:
358 return -EIO;
359 }
360 }
361
362 /* With q->lock */
363 static bool nvme_process_completion(NVMeQueuePair *q)
364 {
365 BDRVNVMeState *s = q->s;
366 bool progress = false;
367 NVMeRequest *preq;
368 NVMeRequest req;
369 NvmeCqe *c;
370
371 trace_nvme_process_completion(s, q->index, q->inflight);
372 if (s->plugged) {
373 trace_nvme_process_completion_queue_plugged(s, q->index);
374 return false;
375 }
376
377 /*
378 * Support re-entrancy when a request cb() function invokes aio_poll().
379 * Pending completions must be visible to aio_poll() so that a cb()
380 * function can wait for the completion of another request.
381 *
382 * The aio_poll() loop will execute our BH and we'll resume completion
383 * processing there.
384 */
385 qemu_bh_schedule(q->completion_bh);
386
387 assert(q->inflight >= 0);
388 while (q->inflight) {
389 int ret;
390 int16_t cid;
391
392 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
393 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
394 break;
395 }
396 ret = nvme_translate_error(c);
397 if (ret) {
398 s->stats.completion_errors++;
399 }
400 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
401 if (!q->cq.head) {
402 q->cq_phase = !q->cq_phase;
403 }
404 cid = le16_to_cpu(c->cid);
405 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
406 warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
407 "queue size: %u", cid, NVME_QUEUE_SIZE);
408 continue;
409 }
410 trace_nvme_complete_command(s, q->index, cid);
411 preq = &q->reqs[cid - 1];
412 req = *preq;
413 assert(req.cid == cid);
414 assert(req.cb);
415 nvme_put_free_req_locked(q, preq);
416 preq->cb = preq->opaque = NULL;
417 q->inflight--;
418 qemu_mutex_unlock(&q->lock);
419 req.cb(req.opaque, ret);
420 qemu_mutex_lock(&q->lock);
421 progress = true;
422 }
423 if (progress) {
424 /* Notify the device so it can post more completions. */
425 smp_mb_release();
426 *q->cq.doorbell = cpu_to_le32(q->cq.head);
427 nvme_wake_free_req_locked(q);
428 }
429
430 qemu_bh_cancel(q->completion_bh);
431
432 return progress;
433 }
434
435 static void nvme_process_completion_bh(void *opaque)
436 {
437 NVMeQueuePair *q = opaque;
438
439 /*
440 * We're being invoked because a nvme_process_completion() cb() function
441 * called aio_poll(). The callback may be waiting for further completions
442 * so notify the device that it has space to fill in more completions now.
443 */
444 smp_mb_release();
445 *q->cq.doorbell = cpu_to_le32(q->cq.head);
446 nvme_wake_free_req_locked(q);
447
448 nvme_process_completion(q);
449 }
450
451 static void nvme_trace_command(const NvmeCmd *cmd)
452 {
453 int i;
454
455 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
456 return;
457 }
458 for (i = 0; i < 8; ++i) {
459 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
460 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
461 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
462 }
463 }
464
465 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
466 NvmeCmd *cmd, BlockCompletionFunc cb,
467 void *opaque)
468 {
469 assert(!req->cb);
470 req->cb = cb;
471 req->opaque = opaque;
472 cmd->cid = cpu_to_le16(req->cid);
473
474 trace_nvme_submit_command(q->s, q->index, req->cid);
475 nvme_trace_command(cmd);
476 qemu_mutex_lock(&q->lock);
477 memcpy((uint8_t *)q->sq.queue +
478 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
479 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
480 q->need_kick++;
481 nvme_kick(q);
482 nvme_process_completion(q);
483 qemu_mutex_unlock(&q->lock);
484 }
485
486 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
487 {
488 int *pret = opaque;
489 *pret = ret;
490 aio_wait_kick();
491 }
492
493 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
494 {
495 BDRVNVMeState *s = bs->opaque;
496 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
497 AioContext *aio_context = bdrv_get_aio_context(bs);
498 NVMeRequest *req;
499 int ret = -EINPROGRESS;
500 req = nvme_get_free_req(q);
501 if (!req) {
502 return -EBUSY;
503 }
504 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
505
506 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
507 return ret;
508 }
509
510 /* Returns true on success, false on failure. */
511 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
512 {
513 BDRVNVMeState *s = bs->opaque;
514 bool ret = false;
515 union {
516 NvmeIdCtrl ctrl;
517 NvmeIdNs ns;
518 } *id;
519 NvmeLBAF *lbaf;
520 uint16_t oncs;
521 int r;
522 uint64_t iova;
523 NvmeCmd cmd = {
524 .opcode = NVME_ADM_CMD_IDENTIFY,
525 .cdw10 = cpu_to_le32(0x1),
526 };
527 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
528
529 id = qemu_try_memalign(qemu_real_host_page_size, id_size);
530 if (!id) {
531 error_setg(errp, "Cannot allocate buffer for identify response");
532 goto out;
533 }
534 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova);
535 if (r) {
536 error_setg(errp, "Cannot map buffer for DMA");
537 goto out;
538 }
539
540 memset(id, 0, id_size);
541 cmd.dptr.prp1 = cpu_to_le64(iova);
542 if (nvme_admin_cmd_sync(bs, &cmd)) {
543 error_setg(errp, "Failed to identify controller");
544 goto out;
545 }
546
547 if (le32_to_cpu(id->ctrl.nn) < namespace) {
548 error_setg(errp, "Invalid namespace");
549 goto out;
550 }
551 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
552 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
553 /* For now the page list buffer per command is one page, to hold at most
554 * s->page_size / sizeof(uint64_t) entries. */
555 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
556 s->page_size / sizeof(uint64_t) * s->page_size);
557
558 oncs = le16_to_cpu(id->ctrl.oncs);
559 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
560 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
561
562 memset(id, 0, id_size);
563 cmd.cdw10 = 0;
564 cmd.nsid = cpu_to_le32(namespace);
565 if (nvme_admin_cmd_sync(bs, &cmd)) {
566 error_setg(errp, "Failed to identify namespace");
567 goto out;
568 }
569
570 s->nsze = le64_to_cpu(id->ns.nsze);
571 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
572
573 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
574 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
575 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
576 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
577 }
578
579 if (lbaf->ms) {
580 error_setg(errp, "Namespaces with metadata are not yet supported");
581 goto out;
582 }
583
584 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
585 (1 << lbaf->ds) > s->page_size)
586 {
587 error_setg(errp, "Namespace has unsupported block size (2^%d)",
588 lbaf->ds);
589 goto out;
590 }
591
592 ret = true;
593 s->blkshift = lbaf->ds;
594 out:
595 qemu_vfio_dma_unmap(s->vfio, id);
596 qemu_vfree(id);
597
598 return ret;
599 }
600
601 static bool nvme_poll_queue(NVMeQueuePair *q)
602 {
603 bool progress = false;
604
605 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
606 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
607
608 trace_nvme_poll_queue(q->s, q->index);
609 /*
610 * Do an early check for completions. q->lock isn't needed because
611 * nvme_process_completion() only runs in the event loop thread and
612 * cannot race with itself.
613 */
614 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
615 return false;
616 }
617
618 qemu_mutex_lock(&q->lock);
619 while (nvme_process_completion(q)) {
620 /* Keep polling */
621 progress = true;
622 }
623 qemu_mutex_unlock(&q->lock);
624
625 return progress;
626 }
627
628 static bool nvme_poll_queues(BDRVNVMeState *s)
629 {
630 bool progress = false;
631 int i;
632
633 for (i = 0; i < s->queue_count; i++) {
634 if (nvme_poll_queue(s->queues[i])) {
635 progress = true;
636 }
637 }
638 return progress;
639 }
640
641 static void nvme_handle_event(EventNotifier *n)
642 {
643 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
644 irq_notifier[MSIX_SHARED_IRQ_IDX]);
645
646 trace_nvme_handle_event(s);
647 event_notifier_test_and_clear(n);
648 nvme_poll_queues(s);
649 }
650
651 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
652 {
653 BDRVNVMeState *s = bs->opaque;
654 unsigned n = s->queue_count;
655 NVMeQueuePair *q;
656 NvmeCmd cmd;
657 unsigned queue_size = NVME_QUEUE_SIZE;
658
659 assert(n <= UINT16_MAX);
660 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
661 n, queue_size, errp);
662 if (!q) {
663 return false;
664 }
665 cmd = (NvmeCmd) {
666 .opcode = NVME_ADM_CMD_CREATE_CQ,
667 .dptr.prp1 = cpu_to_le64(q->cq.iova),
668 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
669 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
670 };
671 if (nvme_admin_cmd_sync(bs, &cmd)) {
672 error_setg(errp, "Failed to create CQ io queue [%u]", n);
673 goto out_error;
674 }
675 cmd = (NvmeCmd) {
676 .opcode = NVME_ADM_CMD_CREATE_SQ,
677 .dptr.prp1 = cpu_to_le64(q->sq.iova),
678 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
679 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
680 };
681 if (nvme_admin_cmd_sync(bs, &cmd)) {
682 error_setg(errp, "Failed to create SQ io queue [%u]", n);
683 goto out_error;
684 }
685 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
686 s->queues[n] = q;
687 s->queue_count++;
688 return true;
689 out_error:
690 nvme_free_queue_pair(q);
691 return false;
692 }
693
694 static bool nvme_poll_cb(void *opaque)
695 {
696 EventNotifier *e = opaque;
697 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
698 irq_notifier[MSIX_SHARED_IRQ_IDX]);
699
700 return nvme_poll_queues(s);
701 }
702
703 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
704 Error **errp)
705 {
706 BDRVNVMeState *s = bs->opaque;
707 NVMeQueuePair *q;
708 AioContext *aio_context = bdrv_get_aio_context(bs);
709 int ret;
710 uint64_t cap;
711 uint32_t ver;
712 uint64_t timeout_ms;
713 uint64_t deadline, now;
714 volatile NvmeBar *regs = NULL;
715
716 qemu_co_mutex_init(&s->dma_map_lock);
717 qemu_co_queue_init(&s->dma_flush_queue);
718 s->device = g_strdup(device);
719 s->nsid = namespace;
720 s->aio_context = bdrv_get_aio_context(bs);
721 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
722 if (ret) {
723 error_setg(errp, "Failed to init event notifier");
724 return ret;
725 }
726
727 s->vfio = qemu_vfio_open_pci(device, errp);
728 if (!s->vfio) {
729 ret = -EINVAL;
730 goto out;
731 }
732
733 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
734 PROT_READ | PROT_WRITE, errp);
735 if (!regs) {
736 ret = -EINVAL;
737 goto out;
738 }
739 /* Perform initialize sequence as described in NVMe spec "7.6.1
740 * Initialization". */
741
742 cap = le64_to_cpu(regs->cap);
743 trace_nvme_controller_capability_raw(cap);
744 trace_nvme_controller_capability("Maximum Queue Entries Supported",
745 1 + NVME_CAP_MQES(cap));
746 trace_nvme_controller_capability("Contiguous Queues Required",
747 NVME_CAP_CQR(cap));
748 trace_nvme_controller_capability("Doorbell Stride",
749 1 << (2 + NVME_CAP_DSTRD(cap)));
750 trace_nvme_controller_capability("Subsystem Reset Supported",
751 NVME_CAP_NSSRS(cap));
752 trace_nvme_controller_capability("Memory Page Size Minimum",
753 1 << (12 + NVME_CAP_MPSMIN(cap)));
754 trace_nvme_controller_capability("Memory Page Size Maximum",
755 1 << (12 + NVME_CAP_MPSMAX(cap)));
756 if (!NVME_CAP_CSS(cap)) {
757 error_setg(errp, "Device doesn't support NVMe command set");
758 ret = -EINVAL;
759 goto out;
760 }
761
762 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
763 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
764 bs->bl.opt_mem_alignment = s->page_size;
765 bs->bl.request_alignment = s->page_size;
766 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
767
768 ver = le32_to_cpu(regs->vs);
769 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
770 extract32(ver, 8, 8),
771 extract32(ver, 0, 8));
772
773 /* Reset device to get a clean state. */
774 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
775 /* Wait for CSTS.RDY = 0. */
776 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
777 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
778 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
779 error_setg(errp, "Timeout while waiting for device to reset (%"
780 PRId64 " ms)",
781 timeout_ms);
782 ret = -ETIMEDOUT;
783 goto out;
784 }
785 }
786
787 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
788 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
789 PROT_WRITE, errp);
790 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
791 if (!s->doorbells) {
792 ret = -EINVAL;
793 goto out;
794 }
795
796 /* Set up admin queue. */
797 s->queues = g_new(NVMeQueuePair *, 1);
798 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
799 if (!q) {
800 ret = -EINVAL;
801 goto out;
802 }
803 s->queues[INDEX_ADMIN] = q;
804 s->queue_count = 1;
805 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
806 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
807 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
808 regs->asq = cpu_to_le64(q->sq.iova);
809 regs->acq = cpu_to_le64(q->cq.iova);
810
811 /* After setting up all control registers we can enable device now. */
812 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
813 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
814 CC_EN_MASK);
815 /* Wait for CSTS.RDY = 1. */
816 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
817 deadline = now + timeout_ms * SCALE_MS;
818 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
819 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
820 error_setg(errp, "Timeout while waiting for device to start (%"
821 PRId64 " ms)",
822 timeout_ms);
823 ret = -ETIMEDOUT;
824 goto out;
825 }
826 }
827
828 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
829 VFIO_PCI_MSIX_IRQ_INDEX, errp);
830 if (ret) {
831 goto out;
832 }
833 aio_set_event_notifier(bdrv_get_aio_context(bs),
834 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
835 false, nvme_handle_event, nvme_poll_cb);
836
837 if (!nvme_identify(bs, namespace, errp)) {
838 ret = -EIO;
839 goto out;
840 }
841
842 /* Set up command queues. */
843 if (!nvme_add_io_queue(bs, errp)) {
844 ret = -EIO;
845 }
846 out:
847 if (regs) {
848 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
849 }
850
851 /* Cleaning up is done in nvme_file_open() upon error. */
852 return ret;
853 }
854
855 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
856 *
857 * nvme://0000:44:00.0/1
858 *
859 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
860 * is the PCI address, and the last part is the namespace number starting from
861 * 1 according to the NVMe spec. */
862 static void nvme_parse_filename(const char *filename, QDict *options,
863 Error **errp)
864 {
865 int pref = strlen("nvme://");
866
867 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
868 const char *tmp = filename + pref;
869 char *device;
870 const char *namespace;
871 unsigned long ns;
872 const char *slash = strchr(tmp, '/');
873 if (!slash) {
874 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
875 return;
876 }
877 device = g_strndup(tmp, slash - tmp);
878 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
879 g_free(device);
880 namespace = slash + 1;
881 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
882 error_setg(errp, "Invalid namespace '%s', positive number expected",
883 namespace);
884 return;
885 }
886 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
887 *namespace ? namespace : "1");
888 }
889 }
890
891 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
892 Error **errp)
893 {
894 int ret;
895 BDRVNVMeState *s = bs->opaque;
896 NvmeCmd cmd = {
897 .opcode = NVME_ADM_CMD_SET_FEATURES,
898 .nsid = cpu_to_le32(s->nsid),
899 .cdw10 = cpu_to_le32(0x06),
900 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
901 };
902
903 ret = nvme_admin_cmd_sync(bs, &cmd);
904 if (ret) {
905 error_setg(errp, "Failed to configure NVMe write cache");
906 }
907 return ret;
908 }
909
910 static void nvme_close(BlockDriverState *bs)
911 {
912 BDRVNVMeState *s = bs->opaque;
913
914 for (unsigned i = 0; i < s->queue_count; ++i) {
915 nvme_free_queue_pair(s->queues[i]);
916 }
917 g_free(s->queues);
918 aio_set_event_notifier(bdrv_get_aio_context(bs),
919 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
920 false, NULL, NULL);
921 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
922 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
923 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
924 qemu_vfio_close(s->vfio);
925
926 g_free(s->device);
927 }
928
929 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
930 Error **errp)
931 {
932 const char *device;
933 QemuOpts *opts;
934 int namespace;
935 int ret;
936 BDRVNVMeState *s = bs->opaque;
937
938 bs->supported_write_flags = BDRV_REQ_FUA;
939
940 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
941 qemu_opts_absorb_qdict(opts, options, &error_abort);
942 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
943 if (!device) {
944 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
945 qemu_opts_del(opts);
946 return -EINVAL;
947 }
948
949 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
950 ret = nvme_init(bs, device, namespace, errp);
951 qemu_opts_del(opts);
952 if (ret) {
953 goto fail;
954 }
955 if (flags & BDRV_O_NOCACHE) {
956 if (!s->write_cache_supported) {
957 error_setg(errp,
958 "NVMe controller doesn't support write cache configuration");
959 ret = -EINVAL;
960 } else {
961 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
962 errp);
963 }
964 if (ret) {
965 goto fail;
966 }
967 }
968 return 0;
969 fail:
970 nvme_close(bs);
971 return ret;
972 }
973
974 static int64_t nvme_getlength(BlockDriverState *bs)
975 {
976 BDRVNVMeState *s = bs->opaque;
977 return s->nsze << s->blkshift;
978 }
979
980 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
981 {
982 BDRVNVMeState *s = bs->opaque;
983 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
984 return UINT32_C(1) << s->blkshift;
985 }
986
987 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
988 {
989 uint32_t blocksize = nvme_get_blocksize(bs);
990 bsz->phys = blocksize;
991 bsz->log = blocksize;
992 return 0;
993 }
994
995 /* Called with s->dma_map_lock */
996 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
997 QEMUIOVector *qiov)
998 {
999 int r = 0;
1000 BDRVNVMeState *s = bs->opaque;
1001
1002 s->dma_map_count -= qiov->size;
1003 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1004 r = qemu_vfio_dma_reset_temporary(s->vfio);
1005 if (!r) {
1006 qemu_co_queue_restart_all(&s->dma_flush_queue);
1007 }
1008 }
1009 return r;
1010 }
1011
1012 /* Called with s->dma_map_lock */
1013 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1014 NVMeRequest *req, QEMUIOVector *qiov)
1015 {
1016 BDRVNVMeState *s = bs->opaque;
1017 uint64_t *pagelist = req->prp_list_page;
1018 int i, j, r;
1019 int entries = 0;
1020
1021 assert(qiov->size);
1022 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1023 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1024 for (i = 0; i < qiov->niov; ++i) {
1025 bool retry = true;
1026 uint64_t iova;
1027 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1028 qemu_real_host_page_size);
1029 try_map:
1030 r = qemu_vfio_dma_map(s->vfio,
1031 qiov->iov[i].iov_base,
1032 len, true, &iova);
1033 if (r == -ENOMEM && retry) {
1034 retry = false;
1035 trace_nvme_dma_flush_queue_wait(s);
1036 if (s->dma_map_count) {
1037 trace_nvme_dma_map_flush(s);
1038 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1039 } else {
1040 r = qemu_vfio_dma_reset_temporary(s->vfio);
1041 if (r) {
1042 goto fail;
1043 }
1044 }
1045 goto try_map;
1046 }
1047 if (r) {
1048 goto fail;
1049 }
1050
1051 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1052 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1053 }
1054 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1055 qiov->iov[i].iov_len / s->page_size);
1056 }
1057
1058 s->dma_map_count += qiov->size;
1059
1060 assert(entries <= s->page_size / sizeof(uint64_t));
1061 switch (entries) {
1062 case 0:
1063 abort();
1064 case 1:
1065 cmd->dptr.prp1 = pagelist[0];
1066 cmd->dptr.prp2 = 0;
1067 break;
1068 case 2:
1069 cmd->dptr.prp1 = pagelist[0];
1070 cmd->dptr.prp2 = pagelist[1];
1071 break;
1072 default:
1073 cmd->dptr.prp1 = pagelist[0];
1074 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1075 break;
1076 }
1077 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1078 for (i = 0; i < entries; ++i) {
1079 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1080 }
1081 return 0;
1082 fail:
1083 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1084 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1085 * because they are already mapped before calling this function; for
1086 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1087 * calling qemu_vfio_dma_reset_temporary when necessary. */
1088 return r;
1089 }
1090
1091 typedef struct {
1092 Coroutine *co;
1093 int ret;
1094 AioContext *ctx;
1095 } NVMeCoData;
1096
1097 static void nvme_rw_cb_bh(void *opaque)
1098 {
1099 NVMeCoData *data = opaque;
1100 qemu_coroutine_enter(data->co);
1101 }
1102
1103 static void nvme_rw_cb(void *opaque, int ret)
1104 {
1105 NVMeCoData *data = opaque;
1106 data->ret = ret;
1107 if (!data->co) {
1108 /* The rw coroutine hasn't yielded, don't try to enter. */
1109 return;
1110 }
1111 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1112 }
1113
1114 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1115 uint64_t offset, uint64_t bytes,
1116 QEMUIOVector *qiov,
1117 bool is_write,
1118 int flags)
1119 {
1120 int r;
1121 BDRVNVMeState *s = bs->opaque;
1122 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1123 NVMeRequest *req;
1124
1125 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1126 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1127 NvmeCmd cmd = {
1128 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1129 .nsid = cpu_to_le32(s->nsid),
1130 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1131 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1132 .cdw12 = cpu_to_le32(cdw12),
1133 };
1134 NVMeCoData data = {
1135 .ctx = bdrv_get_aio_context(bs),
1136 .ret = -EINPROGRESS,
1137 };
1138
1139 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1140 assert(s->queue_count > 1);
1141 req = nvme_get_free_req(ioq);
1142 assert(req);
1143
1144 qemu_co_mutex_lock(&s->dma_map_lock);
1145 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1146 qemu_co_mutex_unlock(&s->dma_map_lock);
1147 if (r) {
1148 nvme_put_free_req_and_wake(ioq, req);
1149 return r;
1150 }
1151 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1152
1153 data.co = qemu_coroutine_self();
1154 while (data.ret == -EINPROGRESS) {
1155 qemu_coroutine_yield();
1156 }
1157
1158 qemu_co_mutex_lock(&s->dma_map_lock);
1159 r = nvme_cmd_unmap_qiov(bs, qiov);
1160 qemu_co_mutex_unlock(&s->dma_map_lock);
1161 if (r) {
1162 return r;
1163 }
1164
1165 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1166 return data.ret;
1167 }
1168
1169 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1170 const QEMUIOVector *qiov)
1171 {
1172 int i;
1173 BDRVNVMeState *s = bs->opaque;
1174
1175 for (i = 0; i < qiov->niov; ++i) {
1176 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1177 qemu_real_host_page_size) ||
1178 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
1179 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1180 qiov->iov[i].iov_len, s->page_size);
1181 return false;
1182 }
1183 }
1184 return true;
1185 }
1186
1187 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1188 QEMUIOVector *qiov, bool is_write, int flags)
1189 {
1190 BDRVNVMeState *s = bs->opaque;
1191 int r;
1192 uint8_t *buf = NULL;
1193 QEMUIOVector local_qiov;
1194 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
1195 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1196 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1197 assert(bytes <= s->max_transfer);
1198 if (nvme_qiov_aligned(bs, qiov)) {
1199 s->stats.aligned_accesses++;
1200 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1201 }
1202 s->stats.unaligned_accesses++;
1203 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1204 buf = qemu_try_memalign(qemu_real_host_page_size, len);
1205
1206 if (!buf) {
1207 return -ENOMEM;
1208 }
1209 qemu_iovec_init(&local_qiov, 1);
1210 if (is_write) {
1211 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1212 }
1213 qemu_iovec_add(&local_qiov, buf, bytes);
1214 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1215 qemu_iovec_destroy(&local_qiov);
1216 if (!r && !is_write) {
1217 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1218 }
1219 qemu_vfree(buf);
1220 return r;
1221 }
1222
1223 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1224 uint64_t offset, uint64_t bytes,
1225 QEMUIOVector *qiov, int flags)
1226 {
1227 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1228 }
1229
1230 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1231 uint64_t offset, uint64_t bytes,
1232 QEMUIOVector *qiov, int flags)
1233 {
1234 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1235 }
1236
1237 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1238 {
1239 BDRVNVMeState *s = bs->opaque;
1240 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1241 NVMeRequest *req;
1242 NvmeCmd cmd = {
1243 .opcode = NVME_CMD_FLUSH,
1244 .nsid = cpu_to_le32(s->nsid),
1245 };
1246 NVMeCoData data = {
1247 .ctx = bdrv_get_aio_context(bs),
1248 .ret = -EINPROGRESS,
1249 };
1250
1251 assert(s->queue_count > 1);
1252 req = nvme_get_free_req(ioq);
1253 assert(req);
1254 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1255
1256 data.co = qemu_coroutine_self();
1257 if (data.ret == -EINPROGRESS) {
1258 qemu_coroutine_yield();
1259 }
1260
1261 return data.ret;
1262 }
1263
1264
1265 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1266 int64_t offset,
1267 int bytes,
1268 BdrvRequestFlags flags)
1269 {
1270 BDRVNVMeState *s = bs->opaque;
1271 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1272 NVMeRequest *req;
1273
1274 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1275
1276 if (!s->supports_write_zeroes) {
1277 return -ENOTSUP;
1278 }
1279
1280 NvmeCmd cmd = {
1281 .opcode = NVME_CMD_WRITE_ZEROES,
1282 .nsid = cpu_to_le32(s->nsid),
1283 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1284 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1285 };
1286
1287 NVMeCoData data = {
1288 .ctx = bdrv_get_aio_context(bs),
1289 .ret = -EINPROGRESS,
1290 };
1291
1292 if (flags & BDRV_REQ_MAY_UNMAP) {
1293 cdw12 |= (1 << 25);
1294 }
1295
1296 if (flags & BDRV_REQ_FUA) {
1297 cdw12 |= (1 << 30);
1298 }
1299
1300 cmd.cdw12 = cpu_to_le32(cdw12);
1301
1302 trace_nvme_write_zeroes(s, offset, bytes, flags);
1303 assert(s->queue_count > 1);
1304 req = nvme_get_free_req(ioq);
1305 assert(req);
1306
1307 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1308
1309 data.co = qemu_coroutine_self();
1310 while (data.ret == -EINPROGRESS) {
1311 qemu_coroutine_yield();
1312 }
1313
1314 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1315 return data.ret;
1316 }
1317
1318
1319 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1320 int64_t offset,
1321 int bytes)
1322 {
1323 BDRVNVMeState *s = bs->opaque;
1324 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1325 NVMeRequest *req;
1326 NvmeDsmRange *buf;
1327 QEMUIOVector local_qiov;
1328 int ret;
1329
1330 NvmeCmd cmd = {
1331 .opcode = NVME_CMD_DSM,
1332 .nsid = cpu_to_le32(s->nsid),
1333 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1334 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1335 };
1336
1337 NVMeCoData data = {
1338 .ctx = bdrv_get_aio_context(bs),
1339 .ret = -EINPROGRESS,
1340 };
1341
1342 if (!s->supports_discard) {
1343 return -ENOTSUP;
1344 }
1345
1346 assert(s->queue_count > 1);
1347
1348 buf = qemu_try_memalign(s->page_size, s->page_size);
1349 if (!buf) {
1350 return -ENOMEM;
1351 }
1352 memset(buf, 0, s->page_size);
1353 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1354 buf->slba = cpu_to_le64(offset >> s->blkshift);
1355 buf->cattr = 0;
1356
1357 qemu_iovec_init(&local_qiov, 1);
1358 qemu_iovec_add(&local_qiov, buf, 4096);
1359
1360 req = nvme_get_free_req(ioq);
1361 assert(req);
1362
1363 qemu_co_mutex_lock(&s->dma_map_lock);
1364 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1365 qemu_co_mutex_unlock(&s->dma_map_lock);
1366
1367 if (ret) {
1368 nvme_put_free_req_and_wake(ioq, req);
1369 goto out;
1370 }
1371
1372 trace_nvme_dsm(s, offset, bytes);
1373
1374 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1375
1376 data.co = qemu_coroutine_self();
1377 while (data.ret == -EINPROGRESS) {
1378 qemu_coroutine_yield();
1379 }
1380
1381 qemu_co_mutex_lock(&s->dma_map_lock);
1382 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1383 qemu_co_mutex_unlock(&s->dma_map_lock);
1384
1385 if (ret) {
1386 goto out;
1387 }
1388
1389 ret = data.ret;
1390 trace_nvme_dsm_done(s, offset, bytes, ret);
1391 out:
1392 qemu_iovec_destroy(&local_qiov);
1393 qemu_vfree(buf);
1394 return ret;
1395
1396 }
1397
1398 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1399 bool exact, PreallocMode prealloc,
1400 BdrvRequestFlags flags, Error **errp)
1401 {
1402 int64_t cur_length;
1403
1404 if (prealloc != PREALLOC_MODE_OFF) {
1405 error_setg(errp, "Unsupported preallocation mode '%s'",
1406 PreallocMode_str(prealloc));
1407 return -ENOTSUP;
1408 }
1409
1410 cur_length = nvme_getlength(bs);
1411 if (offset != cur_length && exact) {
1412 error_setg(errp, "Cannot resize NVMe devices");
1413 return -ENOTSUP;
1414 } else if (offset > cur_length) {
1415 error_setg(errp, "Cannot grow NVMe devices");
1416 return -EINVAL;
1417 }
1418
1419 return 0;
1420 }
1421
1422 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1423 BlockReopenQueue *queue, Error **errp)
1424 {
1425 return 0;
1426 }
1427
1428 static void nvme_refresh_filename(BlockDriverState *bs)
1429 {
1430 BDRVNVMeState *s = bs->opaque;
1431
1432 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1433 s->device, s->nsid);
1434 }
1435
1436 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1437 {
1438 BDRVNVMeState *s = bs->opaque;
1439
1440 bs->bl.opt_mem_alignment = s->page_size;
1441 bs->bl.request_alignment = s->page_size;
1442 bs->bl.max_transfer = s->max_transfer;
1443 }
1444
1445 static void nvme_detach_aio_context(BlockDriverState *bs)
1446 {
1447 BDRVNVMeState *s = bs->opaque;
1448
1449 for (unsigned i = 0; i < s->queue_count; i++) {
1450 NVMeQueuePair *q = s->queues[i];
1451
1452 qemu_bh_delete(q->completion_bh);
1453 q->completion_bh = NULL;
1454 }
1455
1456 aio_set_event_notifier(bdrv_get_aio_context(bs),
1457 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1458 false, NULL, NULL);
1459 }
1460
1461 static void nvme_attach_aio_context(BlockDriverState *bs,
1462 AioContext *new_context)
1463 {
1464 BDRVNVMeState *s = bs->opaque;
1465
1466 s->aio_context = new_context;
1467 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1468 false, nvme_handle_event, nvme_poll_cb);
1469
1470 for (unsigned i = 0; i < s->queue_count; i++) {
1471 NVMeQueuePair *q = s->queues[i];
1472
1473 q->completion_bh =
1474 aio_bh_new(new_context, nvme_process_completion_bh, q);
1475 }
1476 }
1477
1478 static void nvme_aio_plug(BlockDriverState *bs)
1479 {
1480 BDRVNVMeState *s = bs->opaque;
1481 assert(!s->plugged);
1482 s->plugged = true;
1483 }
1484
1485 static void nvme_aio_unplug(BlockDriverState *bs)
1486 {
1487 BDRVNVMeState *s = bs->opaque;
1488 assert(s->plugged);
1489 s->plugged = false;
1490 for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1491 NVMeQueuePair *q = s->queues[i];
1492 qemu_mutex_lock(&q->lock);
1493 nvme_kick(q);
1494 nvme_process_completion(q);
1495 qemu_mutex_unlock(&q->lock);
1496 }
1497 }
1498
1499 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1500 {
1501 int ret;
1502 BDRVNVMeState *s = bs->opaque;
1503
1504 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1505 if (ret) {
1506 /* FIXME: we may run out of IOVA addresses after repeated
1507 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1508 * doesn't reclaim addresses for fixed mappings. */
1509 error_report("nvme_register_buf failed: %s", strerror(-ret));
1510 }
1511 }
1512
1513 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1514 {
1515 BDRVNVMeState *s = bs->opaque;
1516
1517 qemu_vfio_dma_unmap(s->vfio, host);
1518 }
1519
1520 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1521 {
1522 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1523 BDRVNVMeState *s = bs->opaque;
1524
1525 stats->driver = BLOCKDEV_DRIVER_NVME;
1526 stats->u.nvme = (BlockStatsSpecificNvme) {
1527 .completion_errors = s->stats.completion_errors,
1528 .aligned_accesses = s->stats.aligned_accesses,
1529 .unaligned_accesses = s->stats.unaligned_accesses,
1530 };
1531
1532 return stats;
1533 }
1534
1535 static const char *const nvme_strong_runtime_opts[] = {
1536 NVME_BLOCK_OPT_DEVICE,
1537 NVME_BLOCK_OPT_NAMESPACE,
1538
1539 NULL
1540 };
1541
1542 static BlockDriver bdrv_nvme = {
1543 .format_name = "nvme",
1544 .protocol_name = "nvme",
1545 .instance_size = sizeof(BDRVNVMeState),
1546
1547 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1548 .create_opts = &bdrv_create_opts_simple,
1549
1550 .bdrv_parse_filename = nvme_parse_filename,
1551 .bdrv_file_open = nvme_file_open,
1552 .bdrv_close = nvme_close,
1553 .bdrv_getlength = nvme_getlength,
1554 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1555 .bdrv_co_truncate = nvme_co_truncate,
1556
1557 .bdrv_co_preadv = nvme_co_preadv,
1558 .bdrv_co_pwritev = nvme_co_pwritev,
1559
1560 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1561 .bdrv_co_pdiscard = nvme_co_pdiscard,
1562
1563 .bdrv_co_flush_to_disk = nvme_co_flush,
1564 .bdrv_reopen_prepare = nvme_reopen_prepare,
1565
1566 .bdrv_refresh_filename = nvme_refresh_filename,
1567 .bdrv_refresh_limits = nvme_refresh_limits,
1568 .strong_runtime_opts = nvme_strong_runtime_opts,
1569 .bdrv_get_specific_stats = nvme_get_specific_stats,
1570
1571 .bdrv_detach_aio_context = nvme_detach_aio_context,
1572 .bdrv_attach_aio_context = nvme_attach_aio_context,
1573
1574 .bdrv_io_plug = nvme_aio_plug,
1575 .bdrv_io_unplug = nvme_aio_unplug,
1576
1577 .bdrv_register_buf = nvme_register_buf,
1578 .bdrv_unregister_buf = nvme_unregister_buf,
1579 };
1580
1581 static void bdrv_nvme_init(void)
1582 {
1583 bdrv_register(&bdrv_nvme);
1584 }
1585
1586 block_init(bdrv_nvme_init);