]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-cluster.c
target/riscv: Create function to test if FP is enabled
[mirror_qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27
28 #include "qapi/error.h"
29 #include "qcow2.h"
30 #include "qemu/bswap.h"
31 #include "trace.h"
32
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34 {
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size, i, ret;
37
38 if (exact_size >= s->l1_size) {
39 return 0;
40 }
41
42 new_l1_size = exact_size;
43
44 #ifdef DEBUG_ALLOC2
45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46 #endif
47
48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50 new_l1_size * sizeof(uint64_t),
51 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
52 if (ret < 0) {
53 goto fail;
54 }
55
56 ret = bdrv_flush(bs->file->bs);
57 if (ret < 0) {
58 goto fail;
59 }
60
61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64 continue;
65 }
66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67 s->cluster_size, QCOW2_DISCARD_ALWAYS);
68 s->l1_table[i] = 0;
69 }
70 return 0;
71
72 fail:
73 /*
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
77 */
78 memset(s->l1_table + new_l1_size, 0,
79 (s->l1_size - new_l1_size) * sizeof(uint64_t));
80 return ret;
81 }
82
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84 bool exact_size)
85 {
86 BDRVQcow2State *s = bs->opaque;
87 int new_l1_size2, ret, i;
88 uint64_t *new_l1_table;
89 int64_t old_l1_table_offset, old_l1_size;
90 int64_t new_l1_table_offset, new_l1_size;
91 uint8_t data[12];
92
93 if (min_size <= s->l1_size)
94 return 0;
95
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
98 * new_l1_size) */
99 if (min_size > INT_MAX / sizeof(uint64_t)) {
100 return -EFBIG;
101 }
102
103 if (exact_size) {
104 new_l1_size = min_size;
105 } else {
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size = s->l1_size;
108 if (new_l1_size == 0) {
109 new_l1_size = 1;
110 }
111 while (min_size > new_l1_size) {
112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
113 }
114 }
115
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
118 return -EFBIG;
119 }
120
121 #ifdef DEBUG_ALLOC2
122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123 s->l1_size, new_l1_size);
124 #endif
125
126 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
127 new_l1_table = qemu_try_blockalign(bs->file->bs,
128 ROUND_UP(new_l1_size2, 512));
129 if (new_l1_table == NULL) {
130 return -ENOMEM;
131 }
132 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
133
134 if (s->l1_size) {
135 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
136 }
137
138 /* write new table (align to cluster) */
139 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
140 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
141 if (new_l1_table_offset < 0) {
142 qemu_vfree(new_l1_table);
143 return new_l1_table_offset;
144 }
145
146 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
147 if (ret < 0) {
148 goto fail;
149 }
150
151 /* the L1 position has not yet been updated, so these clusters must
152 * indeed be completely free */
153 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
154 new_l1_size2, false);
155 if (ret < 0) {
156 goto fail;
157 }
158
159 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
160 for(i = 0; i < s->l1_size; i++)
161 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
162 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
163 new_l1_table, new_l1_size2);
164 if (ret < 0)
165 goto fail;
166 for(i = 0; i < s->l1_size; i++)
167 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
168
169 /* set new table */
170 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
171 stl_be_p(data, new_l1_size);
172 stq_be_p(data + 4, new_l1_table_offset);
173 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
174 data, sizeof(data));
175 if (ret < 0) {
176 goto fail;
177 }
178 qemu_vfree(s->l1_table);
179 old_l1_table_offset = s->l1_table_offset;
180 s->l1_table_offset = new_l1_table_offset;
181 s->l1_table = new_l1_table;
182 old_l1_size = s->l1_size;
183 s->l1_size = new_l1_size;
184 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
185 QCOW2_DISCARD_OTHER);
186 return 0;
187 fail:
188 qemu_vfree(new_l1_table);
189 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
190 QCOW2_DISCARD_OTHER);
191 return ret;
192 }
193
194 /*
195 * l2_load
196 *
197 * @bs: The BlockDriverState
198 * @offset: A guest offset, used to calculate what slice of the L2
199 * table to load.
200 * @l2_offset: Offset to the L2 table in the image file.
201 * @l2_slice: Location to store the pointer to the L2 slice.
202 *
203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
204 * that are loaded by the qcow2 cache). If the slice is in the cache,
205 * the cache is used; otherwise the L2 slice is loaded from the image
206 * file.
207 */
208 static int l2_load(BlockDriverState *bs, uint64_t offset,
209 uint64_t l2_offset, uint64_t **l2_slice)
210 {
211 BDRVQcow2State *s = bs->opaque;
212 int start_of_slice = sizeof(uint64_t) *
213 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
214
215 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
216 (void **)l2_slice);
217 }
218
219 /*
220 * Writes one sector of the L1 table to the disk (can't update single entries
221 * and we really don't want bdrv_pread to perform a read-modify-write)
222 */
223 #define L1_ENTRIES_PER_SECTOR (512 / 8)
224 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
225 {
226 BDRVQcow2State *s = bs->opaque;
227 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
228 int l1_start_index;
229 int i, ret;
230
231 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
232 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
233 i++)
234 {
235 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
236 }
237
238 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
239 s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
240 if (ret < 0) {
241 return ret;
242 }
243
244 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
245 ret = bdrv_pwrite_sync(bs->file,
246 s->l1_table_offset + 8 * l1_start_index,
247 buf, sizeof(buf));
248 if (ret < 0) {
249 return ret;
250 }
251
252 return 0;
253 }
254
255 /*
256 * l2_allocate
257 *
258 * Allocate a new l2 entry in the file. If l1_index points to an already
259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
260 * table) copy the contents of the old L2 table into the newly allocated one.
261 * Otherwise the new table is initialized with zeros.
262 *
263 */
264
265 static int l2_allocate(BlockDriverState *bs, int l1_index)
266 {
267 BDRVQcow2State *s = bs->opaque;
268 uint64_t old_l2_offset;
269 uint64_t *l2_slice = NULL;
270 unsigned slice, slice_size2, n_slices;
271 int64_t l2_offset;
272 int ret;
273
274 old_l2_offset = s->l1_table[l1_index];
275
276 trace_qcow2_l2_allocate(bs, l1_index);
277
278 /* allocate a new l2 entry */
279
280 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
281 if (l2_offset < 0) {
282 ret = l2_offset;
283 goto fail;
284 }
285
286 /* The offset must fit in the offset field of the L1 table entry */
287 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
288
289 /* If we're allocating the table at offset 0 then something is wrong */
290 if (l2_offset == 0) {
291 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
292 "allocation of L2 table at offset 0");
293 ret = -EIO;
294 goto fail;
295 }
296
297 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
298 if (ret < 0) {
299 goto fail;
300 }
301
302 /* allocate a new entry in the l2 cache */
303
304 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
305 n_slices = s->cluster_size / slice_size2;
306
307 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
308 for (slice = 0; slice < n_slices; slice++) {
309 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
310 l2_offset + slice * slice_size2,
311 (void **) &l2_slice);
312 if (ret < 0) {
313 goto fail;
314 }
315
316 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
317 /* if there was no old l2 table, clear the new slice */
318 memset(l2_slice, 0, slice_size2);
319 } else {
320 uint64_t *old_slice;
321 uint64_t old_l2_slice_offset =
322 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
323
324 /* if there was an old l2 table, read a slice from the disk */
325 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
326 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
327 (void **) &old_slice);
328 if (ret < 0) {
329 goto fail;
330 }
331
332 memcpy(l2_slice, old_slice, slice_size2);
333
334 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
335 }
336
337 /* write the l2 slice to the file */
338 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
339
340 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
341 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
342 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
343 }
344
345 ret = qcow2_cache_flush(bs, s->l2_table_cache);
346 if (ret < 0) {
347 goto fail;
348 }
349
350 /* update the L1 entry */
351 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
352 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
353 ret = qcow2_write_l1_entry(bs, l1_index);
354 if (ret < 0) {
355 goto fail;
356 }
357
358 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
359 return 0;
360
361 fail:
362 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
363 if (l2_slice != NULL) {
364 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
365 }
366 s->l1_table[l1_index] = old_l2_offset;
367 if (l2_offset > 0) {
368 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
369 QCOW2_DISCARD_ALWAYS);
370 }
371 return ret;
372 }
373
374 /*
375 * Checks how many clusters in a given L2 slice are contiguous in the image
376 * file. As soon as one of the flags in the bitmask stop_flags changes compared
377 * to the first cluster, the search is stopped and the cluster is not counted
378 * as contiguous. (This allows it, for example, to stop at the first compressed
379 * cluster which may require a different handling)
380 */
381 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
382 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
383 {
384 int i;
385 QCow2ClusterType first_cluster_type;
386 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
387 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
388 uint64_t offset = first_entry & mask;
389
390 first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
391 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
392 return 0;
393 }
394
395 /* must be allocated */
396 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
397 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
398
399 for (i = 0; i < nb_clusters; i++) {
400 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
401 if (offset + (uint64_t) i * cluster_size != l2_entry) {
402 break;
403 }
404 }
405
406 return i;
407 }
408
409 /*
410 * Checks how many consecutive unallocated clusters in a given L2
411 * slice have the same cluster type.
412 */
413 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
414 int nb_clusters,
415 uint64_t *l2_slice,
416 QCow2ClusterType wanted_type)
417 {
418 int i;
419
420 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
421 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
422 for (i = 0; i < nb_clusters; i++) {
423 uint64_t entry = be64_to_cpu(l2_slice[i]);
424 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
425
426 if (type != wanted_type) {
427 break;
428 }
429 }
430
431 return i;
432 }
433
434 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
435 uint64_t src_cluster_offset,
436 unsigned offset_in_cluster,
437 QEMUIOVector *qiov)
438 {
439 int ret;
440
441 if (qiov->size == 0) {
442 return 0;
443 }
444
445 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
446
447 if (!bs->drv) {
448 return -ENOMEDIUM;
449 }
450
451 /* Call .bdrv_co_readv() directly instead of using the public block-layer
452 * interface. This avoids double I/O throttling and request tracking,
453 * which can lead to deadlock when block layer copy-on-read is enabled.
454 */
455 ret = bs->drv->bdrv_co_preadv_part(bs,
456 src_cluster_offset + offset_in_cluster,
457 qiov->size, qiov, 0, 0);
458 if (ret < 0) {
459 return ret;
460 }
461
462 return 0;
463 }
464
465 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
466 uint64_t cluster_offset,
467 unsigned offset_in_cluster,
468 QEMUIOVector *qiov)
469 {
470 BDRVQcow2State *s = bs->opaque;
471 int ret;
472
473 if (qiov->size == 0) {
474 return 0;
475 }
476
477 ret = qcow2_pre_write_overlap_check(bs, 0,
478 cluster_offset + offset_in_cluster, qiov->size, true);
479 if (ret < 0) {
480 return ret;
481 }
482
483 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
484 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
485 qiov->size, qiov, 0);
486 if (ret < 0) {
487 return ret;
488 }
489
490 return 0;
491 }
492
493
494 /*
495 * get_cluster_offset
496 *
497 * For a given offset of the virtual disk, find the cluster type and offset in
498 * the qcow2 file. The offset is stored in *cluster_offset.
499 *
500 * On entry, *bytes is the maximum number of contiguous bytes starting at
501 * offset that we are interested in.
502 *
503 * On exit, *bytes is the number of bytes starting at offset that have the same
504 * cluster type and (if applicable) are stored contiguously in the image file.
505 * Compressed clusters are always returned one by one.
506 *
507 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
508 * cases.
509 */
510 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
511 unsigned int *bytes, uint64_t *cluster_offset)
512 {
513 BDRVQcow2State *s = bs->opaque;
514 unsigned int l2_index;
515 uint64_t l1_index, l2_offset, *l2_slice;
516 int c;
517 unsigned int offset_in_cluster;
518 uint64_t bytes_available, bytes_needed, nb_clusters;
519 QCow2ClusterType type;
520 int ret;
521
522 offset_in_cluster = offset_into_cluster(s, offset);
523 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
524
525 /* compute how many bytes there are between the start of the cluster
526 * containing offset and the end of the l2 slice that contains
527 * the entry pointing to it */
528 bytes_available =
529 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
530 << s->cluster_bits;
531
532 if (bytes_needed > bytes_available) {
533 bytes_needed = bytes_available;
534 }
535
536 *cluster_offset = 0;
537
538 /* seek to the l2 offset in the l1 table */
539
540 l1_index = offset_to_l1_index(s, offset);
541 if (l1_index >= s->l1_size) {
542 type = QCOW2_CLUSTER_UNALLOCATED;
543 goto out;
544 }
545
546 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
547 if (!l2_offset) {
548 type = QCOW2_CLUSTER_UNALLOCATED;
549 goto out;
550 }
551
552 if (offset_into_cluster(s, l2_offset)) {
553 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
554 " unaligned (L1 index: %#" PRIx64 ")",
555 l2_offset, l1_index);
556 return -EIO;
557 }
558
559 /* load the l2 slice in memory */
560
561 ret = l2_load(bs, offset, l2_offset, &l2_slice);
562 if (ret < 0) {
563 return ret;
564 }
565
566 /* find the cluster offset for the given disk offset */
567
568 l2_index = offset_to_l2_slice_index(s, offset);
569 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
570
571 nb_clusters = size_to_clusters(s, bytes_needed);
572 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
573 * integers; the minimum cluster size is 512, so this assertion is always
574 * true */
575 assert(nb_clusters <= INT_MAX);
576
577 type = qcow2_get_cluster_type(bs, *cluster_offset);
578 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
579 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
580 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
581 " in pre-v3 image (L2 offset: %#" PRIx64
582 ", L2 index: %#x)", l2_offset, l2_index);
583 ret = -EIO;
584 goto fail;
585 }
586 switch (type) {
587 case QCOW2_CLUSTER_COMPRESSED:
588 if (has_data_file(bs)) {
589 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
590 "entry found in image with external data "
591 "file (L2 offset: %#" PRIx64 ", L2 index: "
592 "%#x)", l2_offset, l2_index);
593 ret = -EIO;
594 goto fail;
595 }
596 /* Compressed clusters can only be processed one by one */
597 c = 1;
598 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
599 break;
600 case QCOW2_CLUSTER_ZERO_PLAIN:
601 case QCOW2_CLUSTER_UNALLOCATED:
602 /* how many empty clusters ? */
603 c = count_contiguous_clusters_unallocated(bs, nb_clusters,
604 &l2_slice[l2_index], type);
605 *cluster_offset = 0;
606 break;
607 case QCOW2_CLUSTER_ZERO_ALLOC:
608 case QCOW2_CLUSTER_NORMAL:
609 /* how many allocated clusters ? */
610 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
611 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
612 *cluster_offset &= L2E_OFFSET_MASK;
613 if (offset_into_cluster(s, *cluster_offset)) {
614 qcow2_signal_corruption(bs, true, -1, -1,
615 "Cluster allocation offset %#"
616 PRIx64 " unaligned (L2 offset: %#" PRIx64
617 ", L2 index: %#x)", *cluster_offset,
618 l2_offset, l2_index);
619 ret = -EIO;
620 goto fail;
621 }
622 if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
623 {
624 qcow2_signal_corruption(bs, true, -1, -1,
625 "External data file host cluster offset %#"
626 PRIx64 " does not match guest cluster "
627 "offset: %#" PRIx64
628 ", L2 index: %#x)", *cluster_offset,
629 offset - offset_in_cluster, l2_index);
630 ret = -EIO;
631 goto fail;
632 }
633 break;
634 default:
635 abort();
636 }
637
638 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
639
640 bytes_available = (int64_t)c * s->cluster_size;
641
642 out:
643 if (bytes_available > bytes_needed) {
644 bytes_available = bytes_needed;
645 }
646
647 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
648 * subtracting offset_in_cluster will therefore definitely yield something
649 * not exceeding UINT_MAX */
650 assert(bytes_available - offset_in_cluster <= UINT_MAX);
651 *bytes = bytes_available - offset_in_cluster;
652
653 return type;
654
655 fail:
656 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
657 return ret;
658 }
659
660 /*
661 * get_cluster_table
662 *
663 * for a given disk offset, load (and allocate if needed)
664 * the appropriate slice of its l2 table.
665 *
666 * the cluster index in the l2 slice is given to the caller.
667 *
668 * Returns 0 on success, -errno in failure case
669 */
670 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
671 uint64_t **new_l2_slice,
672 int *new_l2_index)
673 {
674 BDRVQcow2State *s = bs->opaque;
675 unsigned int l2_index;
676 uint64_t l1_index, l2_offset;
677 uint64_t *l2_slice = NULL;
678 int ret;
679
680 /* seek to the l2 offset in the l1 table */
681
682 l1_index = offset_to_l1_index(s, offset);
683 if (l1_index >= s->l1_size) {
684 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
685 if (ret < 0) {
686 return ret;
687 }
688 }
689
690 assert(l1_index < s->l1_size);
691 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
692 if (offset_into_cluster(s, l2_offset)) {
693 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
694 " unaligned (L1 index: %#" PRIx64 ")",
695 l2_offset, l1_index);
696 return -EIO;
697 }
698
699 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
700 /* First allocate a new L2 table (and do COW if needed) */
701 ret = l2_allocate(bs, l1_index);
702 if (ret < 0) {
703 return ret;
704 }
705
706 /* Then decrease the refcount of the old table */
707 if (l2_offset) {
708 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
709 QCOW2_DISCARD_OTHER);
710 }
711
712 /* Get the offset of the newly-allocated l2 table */
713 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
714 assert(offset_into_cluster(s, l2_offset) == 0);
715 }
716
717 /* load the l2 slice in memory */
718 ret = l2_load(bs, offset, l2_offset, &l2_slice);
719 if (ret < 0) {
720 return ret;
721 }
722
723 /* find the cluster offset for the given disk offset */
724
725 l2_index = offset_to_l2_slice_index(s, offset);
726
727 *new_l2_slice = l2_slice;
728 *new_l2_index = l2_index;
729
730 return 0;
731 }
732
733 /*
734 * alloc_compressed_cluster_offset
735 *
736 * For a given offset on the virtual disk, allocate a new compressed cluster
737 * and put the host offset of the cluster into *host_offset. If a cluster is
738 * already allocated at the offset, return an error.
739 *
740 * Return 0 on success and -errno in error cases
741 */
742 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
743 uint64_t offset,
744 int compressed_size,
745 uint64_t *host_offset)
746 {
747 BDRVQcow2State *s = bs->opaque;
748 int l2_index, ret;
749 uint64_t *l2_slice;
750 int64_t cluster_offset;
751 int nb_csectors;
752
753 if (has_data_file(bs)) {
754 return 0;
755 }
756
757 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
758 if (ret < 0) {
759 return ret;
760 }
761
762 /* Compression can't overwrite anything. Fail if the cluster was already
763 * allocated. */
764 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
765 if (cluster_offset & L2E_OFFSET_MASK) {
766 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
767 return -EIO;
768 }
769
770 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
771 if (cluster_offset < 0) {
772 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
773 return cluster_offset;
774 }
775
776 nb_csectors =
777 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
778 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
779
780 cluster_offset |= QCOW_OFLAG_COMPRESSED |
781 ((uint64_t)nb_csectors << s->csize_shift);
782
783 /* update L2 table */
784
785 /* compressed clusters never have the copied flag */
786
787 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
788 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
789 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
790 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
791
792 *host_offset = cluster_offset & s->cluster_offset_mask;
793 return 0;
794 }
795
796 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
797 {
798 BDRVQcow2State *s = bs->opaque;
799 Qcow2COWRegion *start = &m->cow_start;
800 Qcow2COWRegion *end = &m->cow_end;
801 unsigned buffer_size;
802 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
803 bool merge_reads;
804 uint8_t *start_buffer, *end_buffer;
805 QEMUIOVector qiov;
806 int ret;
807
808 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
809 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
810 assert(start->offset + start->nb_bytes <= end->offset);
811
812 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
813 return 0;
814 }
815
816 /* If we have to read both the start and end COW regions and the
817 * middle region is not too large then perform just one read
818 * operation */
819 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
820 if (merge_reads) {
821 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
822 } else {
823 /* If we have to do two reads, add some padding in the middle
824 * if necessary to make sure that the end region is optimally
825 * aligned. */
826 size_t align = bdrv_opt_mem_align(bs);
827 assert(align > 0 && align <= UINT_MAX);
828 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
829 UINT_MAX - end->nb_bytes);
830 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
831 }
832
833 /* Reserve a buffer large enough to store all the data that we're
834 * going to read */
835 start_buffer = qemu_try_blockalign(bs, buffer_size);
836 if (start_buffer == NULL) {
837 return -ENOMEM;
838 }
839 /* The part of the buffer where the end region is located */
840 end_buffer = start_buffer + buffer_size - end->nb_bytes;
841
842 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
843 qemu_iovec_subvec_niov(m->data_qiov,
844 m->data_qiov_offset,
845 data_bytes)
846 : 0));
847
848 qemu_co_mutex_unlock(&s->lock);
849 /* First we read the existing data from both COW regions. We
850 * either read the whole region in one go, or the start and end
851 * regions separately. */
852 if (merge_reads) {
853 qemu_iovec_add(&qiov, start_buffer, buffer_size);
854 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
855 } else {
856 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
857 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
858 if (ret < 0) {
859 goto fail;
860 }
861
862 qemu_iovec_reset(&qiov);
863 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
864 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
865 }
866 if (ret < 0) {
867 goto fail;
868 }
869
870 /* Encrypt the data if necessary before writing it */
871 if (bs->encrypted) {
872 ret = qcow2_co_encrypt(bs,
873 m->alloc_offset + start->offset,
874 m->offset + start->offset,
875 start_buffer, start->nb_bytes);
876 if (ret < 0) {
877 goto fail;
878 }
879
880 ret = qcow2_co_encrypt(bs,
881 m->alloc_offset + end->offset,
882 m->offset + end->offset,
883 end_buffer, end->nb_bytes);
884 if (ret < 0) {
885 goto fail;
886 }
887 }
888
889 /* And now we can write everything. If we have the guest data we
890 * can write everything in one single operation */
891 if (m->data_qiov) {
892 qemu_iovec_reset(&qiov);
893 if (start->nb_bytes) {
894 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
895 }
896 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
897 if (end->nb_bytes) {
898 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
899 }
900 /* NOTE: we have a write_aio blkdebug event here followed by
901 * a cow_write one in do_perform_cow_write(), but there's only
902 * one single I/O operation */
903 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
904 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
905 } else {
906 /* If there's no guest data then write both COW regions separately */
907 qemu_iovec_reset(&qiov);
908 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
909 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
910 if (ret < 0) {
911 goto fail;
912 }
913
914 qemu_iovec_reset(&qiov);
915 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
916 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
917 }
918
919 fail:
920 qemu_co_mutex_lock(&s->lock);
921
922 /*
923 * Before we update the L2 table to actually point to the new cluster, we
924 * need to be sure that the refcounts have been increased and COW was
925 * handled.
926 */
927 if (ret == 0) {
928 qcow2_cache_depends_on_flush(s->l2_table_cache);
929 }
930
931 qemu_vfree(start_buffer);
932 qemu_iovec_destroy(&qiov);
933 return ret;
934 }
935
936 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
937 {
938 BDRVQcow2State *s = bs->opaque;
939 int i, j = 0, l2_index, ret;
940 uint64_t *old_cluster, *l2_slice;
941 uint64_t cluster_offset = m->alloc_offset;
942
943 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
944 assert(m->nb_clusters > 0);
945
946 old_cluster = g_try_new(uint64_t, m->nb_clusters);
947 if (old_cluster == NULL) {
948 ret = -ENOMEM;
949 goto err;
950 }
951
952 /* copy content of unmodified sectors */
953 ret = perform_cow(bs, m);
954 if (ret < 0) {
955 goto err;
956 }
957
958 /* Update L2 table. */
959 if (s->use_lazy_refcounts) {
960 qcow2_mark_dirty(bs);
961 }
962 if (qcow2_need_accurate_refcounts(s)) {
963 qcow2_cache_set_dependency(bs, s->l2_table_cache,
964 s->refcount_block_cache);
965 }
966
967 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
968 if (ret < 0) {
969 goto err;
970 }
971 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
972
973 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
974 for (i = 0; i < m->nb_clusters; i++) {
975 /* if two concurrent writes happen to the same unallocated cluster
976 * each write allocates separate cluster and writes data concurrently.
977 * The first one to complete updates l2 table with pointer to its
978 * cluster the second one has to do RMW (which is done above by
979 * perform_cow()), update l2 table with its cluster pointer and free
980 * old cluster. This is what this loop does */
981 if (l2_slice[l2_index + i] != 0) {
982 old_cluster[j++] = l2_slice[l2_index + i];
983 }
984
985 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
986 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
987 }
988
989
990 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
991
992 /*
993 * If this was a COW, we need to decrease the refcount of the old cluster.
994 *
995 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
996 * clusters), the next write will reuse them anyway.
997 */
998 if (!m->keep_old_clusters && j != 0) {
999 for (i = 0; i < j; i++) {
1000 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1001 QCOW2_DISCARD_NEVER);
1002 }
1003 }
1004
1005 ret = 0;
1006 err:
1007 g_free(old_cluster);
1008 return ret;
1009 }
1010
1011 /**
1012 * Frees the allocated clusters because the request failed and they won't
1013 * actually be linked.
1014 */
1015 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1016 {
1017 BDRVQcow2State *s = bs->opaque;
1018 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1019 QCOW2_DISCARD_NEVER);
1020 }
1021
1022 /*
1023 * Returns the number of contiguous clusters that can be used for an allocating
1024 * write, but require COW to be performed (this includes yet unallocated space,
1025 * which must copy from the backing file)
1026 */
1027 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1028 uint64_t *l2_slice, int l2_index)
1029 {
1030 int i;
1031
1032 for (i = 0; i < nb_clusters; i++) {
1033 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1034 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1035
1036 switch(cluster_type) {
1037 case QCOW2_CLUSTER_NORMAL:
1038 if (l2_entry & QCOW_OFLAG_COPIED) {
1039 goto out;
1040 }
1041 break;
1042 case QCOW2_CLUSTER_UNALLOCATED:
1043 case QCOW2_CLUSTER_COMPRESSED:
1044 case QCOW2_CLUSTER_ZERO_PLAIN:
1045 case QCOW2_CLUSTER_ZERO_ALLOC:
1046 break;
1047 default:
1048 abort();
1049 }
1050 }
1051
1052 out:
1053 assert(i <= nb_clusters);
1054 return i;
1055 }
1056
1057 /*
1058 * Check if there already is an AIO write request in flight which allocates
1059 * the same cluster. In this case we need to wait until the previous
1060 * request has completed and updated the L2 table accordingly.
1061 *
1062 * Returns:
1063 * 0 if there was no dependency. *cur_bytes indicates the number of
1064 * bytes from guest_offset that can be read before the next
1065 * dependency must be processed (or the request is complete)
1066 *
1067 * -EAGAIN if we had to wait for another request, previously gathered
1068 * information on cluster allocation may be invalid now. The caller
1069 * must start over anyway, so consider *cur_bytes undefined.
1070 */
1071 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1072 uint64_t *cur_bytes, QCowL2Meta **m)
1073 {
1074 BDRVQcow2State *s = bs->opaque;
1075 QCowL2Meta *old_alloc;
1076 uint64_t bytes = *cur_bytes;
1077
1078 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1079
1080 uint64_t start = guest_offset;
1081 uint64_t end = start + bytes;
1082 uint64_t old_start = l2meta_cow_start(old_alloc);
1083 uint64_t old_end = l2meta_cow_end(old_alloc);
1084
1085 if (end <= old_start || start >= old_end) {
1086 /* No intersection */
1087 } else {
1088 if (start < old_start) {
1089 /* Stop at the start of a running allocation */
1090 bytes = old_start - start;
1091 } else {
1092 bytes = 0;
1093 }
1094
1095 /* Stop if already an l2meta exists. After yielding, it wouldn't
1096 * be valid any more, so we'd have to clean up the old L2Metas
1097 * and deal with requests depending on them before starting to
1098 * gather new ones. Not worth the trouble. */
1099 if (bytes == 0 && *m) {
1100 *cur_bytes = 0;
1101 return 0;
1102 }
1103
1104 if (bytes == 0) {
1105 /* Wait for the dependency to complete. We need to recheck
1106 * the free/allocated clusters when we continue. */
1107 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1108 return -EAGAIN;
1109 }
1110 }
1111 }
1112
1113 /* Make sure that existing clusters and new allocations are only used up to
1114 * the next dependency if we shortened the request above */
1115 *cur_bytes = bytes;
1116
1117 return 0;
1118 }
1119
1120 /*
1121 * Checks how many already allocated clusters that don't require a copy on
1122 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1123 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1124 * offset are counted.
1125 *
1126 * Note that guest_offset may not be cluster aligned. In this case, the
1127 * returned *host_offset points to exact byte referenced by guest_offset and
1128 * therefore isn't cluster aligned as well.
1129 *
1130 * Returns:
1131 * 0: if no allocated clusters are available at the given offset.
1132 * *bytes is normally unchanged. It is set to 0 if the cluster
1133 * is allocated and doesn't need COW, but doesn't have the right
1134 * physical offset.
1135 *
1136 * 1: if allocated clusters that don't require a COW are available at
1137 * the requested offset. *bytes may have decreased and describes
1138 * the length of the area that can be written to.
1139 *
1140 * -errno: in error cases
1141 */
1142 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1143 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1144 {
1145 BDRVQcow2State *s = bs->opaque;
1146 int l2_index;
1147 uint64_t cluster_offset;
1148 uint64_t *l2_slice;
1149 uint64_t nb_clusters;
1150 unsigned int keep_clusters;
1151 int ret;
1152
1153 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1154 *bytes);
1155
1156 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1157 == offset_into_cluster(s, *host_offset));
1158
1159 /*
1160 * Calculate the number of clusters to look for. We stop at L2 slice
1161 * boundaries to keep things simple.
1162 */
1163 nb_clusters =
1164 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1165
1166 l2_index = offset_to_l2_slice_index(s, guest_offset);
1167 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1168 assert(nb_clusters <= INT_MAX);
1169
1170 /* Find L2 entry for the first involved cluster */
1171 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1172 if (ret < 0) {
1173 return ret;
1174 }
1175
1176 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1177
1178 /* Check how many clusters are already allocated and don't need COW */
1179 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1180 && (cluster_offset & QCOW_OFLAG_COPIED))
1181 {
1182 /* If a specific host_offset is required, check it */
1183 bool offset_matches =
1184 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1185
1186 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1187 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1188 "%#llx unaligned (guest offset: %#" PRIx64
1189 ")", cluster_offset & L2E_OFFSET_MASK,
1190 guest_offset);
1191 ret = -EIO;
1192 goto out;
1193 }
1194
1195 if (*host_offset != INV_OFFSET && !offset_matches) {
1196 *bytes = 0;
1197 ret = 0;
1198 goto out;
1199 }
1200
1201 /* We keep all QCOW_OFLAG_COPIED clusters */
1202 keep_clusters =
1203 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1204 &l2_slice[l2_index],
1205 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1206 assert(keep_clusters <= nb_clusters);
1207
1208 *bytes = MIN(*bytes,
1209 keep_clusters * s->cluster_size
1210 - offset_into_cluster(s, guest_offset));
1211
1212 ret = 1;
1213 } else {
1214 ret = 0;
1215 }
1216
1217 /* Cleanup */
1218 out:
1219 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1220
1221 /* Only return a host offset if we actually made progress. Otherwise we
1222 * would make requirements for handle_alloc() that it can't fulfill */
1223 if (ret > 0) {
1224 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1225 + offset_into_cluster(s, guest_offset);
1226 }
1227
1228 return ret;
1229 }
1230
1231 /*
1232 * Allocates new clusters for the given guest_offset.
1233 *
1234 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1235 * contain the number of clusters that have been allocated and are contiguous
1236 * in the image file.
1237 *
1238 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1239 * at which the new clusters must start. *nb_clusters can be 0 on return in
1240 * this case if the cluster at host_offset is already in use. If *host_offset
1241 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1242 *
1243 * *host_offset is updated to contain the offset into the image file at which
1244 * the first allocated cluster starts.
1245 *
1246 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1247 * function has been waiting for another request and the allocation must be
1248 * restarted, but the whole request should not be failed.
1249 */
1250 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1251 uint64_t *host_offset, uint64_t *nb_clusters)
1252 {
1253 BDRVQcow2State *s = bs->opaque;
1254
1255 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1256 *host_offset, *nb_clusters);
1257
1258 if (has_data_file(bs)) {
1259 assert(*host_offset == INV_OFFSET ||
1260 *host_offset == start_of_cluster(s, guest_offset));
1261 *host_offset = start_of_cluster(s, guest_offset);
1262 return 0;
1263 }
1264
1265 /* Allocate new clusters */
1266 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1267 if (*host_offset == INV_OFFSET) {
1268 int64_t cluster_offset =
1269 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1270 if (cluster_offset < 0) {
1271 return cluster_offset;
1272 }
1273 *host_offset = cluster_offset;
1274 return 0;
1275 } else {
1276 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1277 if (ret < 0) {
1278 return ret;
1279 }
1280 *nb_clusters = ret;
1281 return 0;
1282 }
1283 }
1284
1285 /*
1286 * Allocates new clusters for an area that either is yet unallocated or needs a
1287 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1288 * allocated if the new allocation can match the specified host offset.
1289 *
1290 * Note that guest_offset may not be cluster aligned. In this case, the
1291 * returned *host_offset points to exact byte referenced by guest_offset and
1292 * therefore isn't cluster aligned as well.
1293 *
1294 * Returns:
1295 * 0: if no clusters could be allocated. *bytes is set to 0,
1296 * *host_offset is left unchanged.
1297 *
1298 * 1: if new clusters were allocated. *bytes may be decreased if the
1299 * new allocation doesn't cover all of the requested area.
1300 * *host_offset is updated to contain the host offset of the first
1301 * newly allocated cluster.
1302 *
1303 * -errno: in error cases
1304 */
1305 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1306 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1307 {
1308 BDRVQcow2State *s = bs->opaque;
1309 int l2_index;
1310 uint64_t *l2_slice;
1311 uint64_t entry;
1312 uint64_t nb_clusters;
1313 int ret;
1314 bool keep_old_clusters = false;
1315
1316 uint64_t alloc_cluster_offset = INV_OFFSET;
1317
1318 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1319 *bytes);
1320 assert(*bytes > 0);
1321
1322 /*
1323 * Calculate the number of clusters to look for. We stop at L2 slice
1324 * boundaries to keep things simple.
1325 */
1326 nb_clusters =
1327 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1328
1329 l2_index = offset_to_l2_slice_index(s, guest_offset);
1330 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1331 assert(nb_clusters <= INT_MAX);
1332
1333 /* Find L2 entry for the first involved cluster */
1334 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1335 if (ret < 0) {
1336 return ret;
1337 }
1338
1339 entry = be64_to_cpu(l2_slice[l2_index]);
1340 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1341
1342 /* This function is only called when there were no non-COW clusters, so if
1343 * we can't find any unallocated or COW clusters either, something is
1344 * wrong with our code. */
1345 assert(nb_clusters > 0);
1346
1347 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1348 (entry & QCOW_OFLAG_COPIED) &&
1349 (*host_offset == INV_OFFSET ||
1350 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1351 {
1352 int preallocated_nb_clusters;
1353
1354 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1355 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1356 "cluster offset %#llx unaligned (guest "
1357 "offset: %#" PRIx64 ")",
1358 entry & L2E_OFFSET_MASK, guest_offset);
1359 ret = -EIO;
1360 goto fail;
1361 }
1362
1363 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1364 * would be fine, too, but count_cow_clusters() above has limited
1365 * nb_clusters already to a range of COW clusters */
1366 preallocated_nb_clusters =
1367 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1368 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1369 assert(preallocated_nb_clusters > 0);
1370
1371 nb_clusters = preallocated_nb_clusters;
1372 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1373
1374 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1375 * should not free them. */
1376 keep_old_clusters = true;
1377 }
1378
1379 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1380
1381 if (alloc_cluster_offset == INV_OFFSET) {
1382 /* Allocate, if necessary at a given offset in the image file */
1383 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1384 start_of_cluster(s, *host_offset);
1385 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1386 &nb_clusters);
1387 if (ret < 0) {
1388 goto fail;
1389 }
1390
1391 /* Can't extend contiguous allocation */
1392 if (nb_clusters == 0) {
1393 *bytes = 0;
1394 return 0;
1395 }
1396
1397 assert(alloc_cluster_offset != INV_OFFSET);
1398 }
1399
1400 /*
1401 * Save info needed for meta data update.
1402 *
1403 * requested_bytes: Number of bytes from the start of the first
1404 * newly allocated cluster to the end of the (possibly shortened
1405 * before) write request.
1406 *
1407 * avail_bytes: Number of bytes from the start of the first
1408 * newly allocated to the end of the last newly allocated cluster.
1409 *
1410 * nb_bytes: The number of bytes from the start of the first
1411 * newly allocated cluster to the end of the area that the write
1412 * request actually writes to (excluding COW at the end)
1413 */
1414 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1415 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1416 int nb_bytes = MIN(requested_bytes, avail_bytes);
1417 QCowL2Meta *old_m = *m;
1418
1419 *m = g_malloc0(sizeof(**m));
1420
1421 **m = (QCowL2Meta) {
1422 .next = old_m,
1423
1424 .alloc_offset = alloc_cluster_offset,
1425 .offset = start_of_cluster(s, guest_offset),
1426 .nb_clusters = nb_clusters,
1427
1428 .keep_old_clusters = keep_old_clusters,
1429
1430 .cow_start = {
1431 .offset = 0,
1432 .nb_bytes = offset_into_cluster(s, guest_offset),
1433 },
1434 .cow_end = {
1435 .offset = nb_bytes,
1436 .nb_bytes = avail_bytes - nb_bytes,
1437 },
1438 };
1439 qemu_co_queue_init(&(*m)->dependent_requests);
1440 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1441
1442 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1443 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1444 assert(*bytes != 0);
1445
1446 return 1;
1447
1448 fail:
1449 if (*m && (*m)->nb_clusters > 0) {
1450 QLIST_REMOVE(*m, next_in_flight);
1451 }
1452 return ret;
1453 }
1454
1455 /*
1456 * alloc_cluster_offset
1457 *
1458 * For a given offset on the virtual disk, find the cluster offset in qcow2
1459 * file. If the offset is not found, allocate a new cluster.
1460 *
1461 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1462 * other fields in m are meaningless.
1463 *
1464 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1465 * contiguous clusters that have been allocated. In this case, the other
1466 * fields of m are valid and contain information about the first allocated
1467 * cluster.
1468 *
1469 * If the request conflicts with another write request in flight, the coroutine
1470 * is queued and will be reentered when the dependency has completed.
1471 *
1472 * Return 0 on success and -errno in error cases
1473 */
1474 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1475 unsigned int *bytes, uint64_t *host_offset,
1476 QCowL2Meta **m)
1477 {
1478 BDRVQcow2State *s = bs->opaque;
1479 uint64_t start, remaining;
1480 uint64_t cluster_offset;
1481 uint64_t cur_bytes;
1482 int ret;
1483
1484 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1485
1486 again:
1487 start = offset;
1488 remaining = *bytes;
1489 cluster_offset = INV_OFFSET;
1490 *host_offset = INV_OFFSET;
1491 cur_bytes = 0;
1492 *m = NULL;
1493
1494 while (true) {
1495
1496 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1497 *host_offset = start_of_cluster(s, cluster_offset);
1498 }
1499
1500 assert(remaining >= cur_bytes);
1501
1502 start += cur_bytes;
1503 remaining -= cur_bytes;
1504
1505 if (cluster_offset != INV_OFFSET) {
1506 cluster_offset += cur_bytes;
1507 }
1508
1509 if (remaining == 0) {
1510 break;
1511 }
1512
1513 cur_bytes = remaining;
1514
1515 /*
1516 * Now start gathering as many contiguous clusters as possible:
1517 *
1518 * 1. Check for overlaps with in-flight allocations
1519 *
1520 * a) Overlap not in the first cluster -> shorten this request and
1521 * let the caller handle the rest in its next loop iteration.
1522 *
1523 * b) Real overlaps of two requests. Yield and restart the search
1524 * for contiguous clusters (the situation could have changed
1525 * while we were sleeping)
1526 *
1527 * c) TODO: Request starts in the same cluster as the in-flight
1528 * allocation ends. Shorten the COW of the in-fight allocation,
1529 * set cluster_offset to write to the same cluster and set up
1530 * the right synchronisation between the in-flight request and
1531 * the new one.
1532 */
1533 ret = handle_dependencies(bs, start, &cur_bytes, m);
1534 if (ret == -EAGAIN) {
1535 /* Currently handle_dependencies() doesn't yield if we already had
1536 * an allocation. If it did, we would have to clean up the L2Meta
1537 * structs before starting over. */
1538 assert(*m == NULL);
1539 goto again;
1540 } else if (ret < 0) {
1541 return ret;
1542 } else if (cur_bytes == 0) {
1543 break;
1544 } else {
1545 /* handle_dependencies() may have decreased cur_bytes (shortened
1546 * the allocations below) so that the next dependency is processed
1547 * correctly during the next loop iteration. */
1548 }
1549
1550 /*
1551 * 2. Count contiguous COPIED clusters.
1552 */
1553 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1554 if (ret < 0) {
1555 return ret;
1556 } else if (ret) {
1557 continue;
1558 } else if (cur_bytes == 0) {
1559 break;
1560 }
1561
1562 /*
1563 * 3. If the request still hasn't completed, allocate new clusters,
1564 * considering any cluster_offset of steps 1c or 2.
1565 */
1566 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1567 if (ret < 0) {
1568 return ret;
1569 } else if (ret) {
1570 continue;
1571 } else {
1572 assert(cur_bytes == 0);
1573 break;
1574 }
1575 }
1576
1577 *bytes -= remaining;
1578 assert(*bytes > 0);
1579 assert(*host_offset != INV_OFFSET);
1580
1581 return 0;
1582 }
1583
1584 /*
1585 * This discards as many clusters of nb_clusters as possible at once (i.e.
1586 * all clusters in the same L2 slice) and returns the number of discarded
1587 * clusters.
1588 */
1589 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1590 uint64_t nb_clusters,
1591 enum qcow2_discard_type type, bool full_discard)
1592 {
1593 BDRVQcow2State *s = bs->opaque;
1594 uint64_t *l2_slice;
1595 int l2_index;
1596 int ret;
1597 int i;
1598
1599 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1600 if (ret < 0) {
1601 return ret;
1602 }
1603
1604 /* Limit nb_clusters to one L2 slice */
1605 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1606 assert(nb_clusters <= INT_MAX);
1607
1608 for (i = 0; i < nb_clusters; i++) {
1609 uint64_t old_l2_entry;
1610
1611 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1612
1613 /*
1614 * If full_discard is false, make sure that a discarded area reads back
1615 * as zeroes for v3 images (we cannot do it for v2 without actually
1616 * writing a zero-filled buffer). We can skip the operation if the
1617 * cluster is already marked as zero, or if it's unallocated and we
1618 * don't have a backing file.
1619 *
1620 * TODO We might want to use bdrv_block_status(bs) here, but we're
1621 * holding s->lock, so that doesn't work today.
1622 *
1623 * If full_discard is true, the sector should not read back as zeroes,
1624 * but rather fall through to the backing file.
1625 */
1626 switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1627 case QCOW2_CLUSTER_UNALLOCATED:
1628 if (full_discard || !bs->backing) {
1629 continue;
1630 }
1631 break;
1632
1633 case QCOW2_CLUSTER_ZERO_PLAIN:
1634 if (!full_discard) {
1635 continue;
1636 }
1637 break;
1638
1639 case QCOW2_CLUSTER_ZERO_ALLOC:
1640 case QCOW2_CLUSTER_NORMAL:
1641 case QCOW2_CLUSTER_COMPRESSED:
1642 break;
1643
1644 default:
1645 abort();
1646 }
1647
1648 /* First remove L2 entries */
1649 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1650 if (!full_discard && s->qcow_version >= 3) {
1651 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1652 } else {
1653 l2_slice[l2_index + i] = cpu_to_be64(0);
1654 }
1655
1656 /* Then decrease the refcount */
1657 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1658 }
1659
1660 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1661
1662 return nb_clusters;
1663 }
1664
1665 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1666 uint64_t bytes, enum qcow2_discard_type type,
1667 bool full_discard)
1668 {
1669 BDRVQcow2State *s = bs->opaque;
1670 uint64_t end_offset = offset + bytes;
1671 uint64_t nb_clusters;
1672 int64_t cleared;
1673 int ret;
1674
1675 /* Caller must pass aligned values, except at image end */
1676 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1677 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1678 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1679
1680 nb_clusters = size_to_clusters(s, bytes);
1681
1682 s->cache_discards = true;
1683
1684 /* Each L2 slice is handled by its own loop iteration */
1685 while (nb_clusters > 0) {
1686 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1687 full_discard);
1688 if (cleared < 0) {
1689 ret = cleared;
1690 goto fail;
1691 }
1692
1693 nb_clusters -= cleared;
1694 offset += (cleared * s->cluster_size);
1695 }
1696
1697 ret = 0;
1698 fail:
1699 s->cache_discards = false;
1700 qcow2_process_discards(bs, ret);
1701
1702 return ret;
1703 }
1704
1705 /*
1706 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1707 * all clusters in the same L2 slice) and returns the number of zeroed
1708 * clusters.
1709 */
1710 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1711 uint64_t nb_clusters, int flags)
1712 {
1713 BDRVQcow2State *s = bs->opaque;
1714 uint64_t *l2_slice;
1715 int l2_index;
1716 int ret;
1717 int i;
1718 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1719
1720 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1721 if (ret < 0) {
1722 return ret;
1723 }
1724
1725 /* Limit nb_clusters to one L2 slice */
1726 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1727 assert(nb_clusters <= INT_MAX);
1728
1729 for (i = 0; i < nb_clusters; i++) {
1730 uint64_t old_offset;
1731 QCow2ClusterType cluster_type;
1732
1733 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1734
1735 /*
1736 * Minimize L2 changes if the cluster already reads back as
1737 * zeroes with correct allocation.
1738 */
1739 cluster_type = qcow2_get_cluster_type(bs, old_offset);
1740 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1741 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1742 continue;
1743 }
1744
1745 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1746 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1747 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1748 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1749 } else {
1750 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1751 }
1752 }
1753
1754 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1755
1756 return nb_clusters;
1757 }
1758
1759 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1760 uint64_t bytes, int flags)
1761 {
1762 BDRVQcow2State *s = bs->opaque;
1763 uint64_t end_offset = offset + bytes;
1764 uint64_t nb_clusters;
1765 int64_t cleared;
1766 int ret;
1767
1768 /* If we have to stay in sync with an external data file, zero out
1769 * s->data_file first. */
1770 if (data_file_is_raw(bs)) {
1771 assert(has_data_file(bs));
1772 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1773 if (ret < 0) {
1774 return ret;
1775 }
1776 }
1777
1778 /* Caller must pass aligned values, except at image end */
1779 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1780 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1781 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1782
1783 /* The zero flag is only supported by version 3 and newer */
1784 if (s->qcow_version < 3) {
1785 return -ENOTSUP;
1786 }
1787
1788 /* Each L2 slice is handled by its own loop iteration */
1789 nb_clusters = size_to_clusters(s, bytes);
1790
1791 s->cache_discards = true;
1792
1793 while (nb_clusters > 0) {
1794 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1795 if (cleared < 0) {
1796 ret = cleared;
1797 goto fail;
1798 }
1799
1800 nb_clusters -= cleared;
1801 offset += (cleared * s->cluster_size);
1802 }
1803
1804 ret = 0;
1805 fail:
1806 s->cache_discards = false;
1807 qcow2_process_discards(bs, ret);
1808
1809 return ret;
1810 }
1811
1812 /*
1813 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1814 * non-backed non-pre-allocated zero clusters).
1815 *
1816 * l1_entries and *visited_l1_entries are used to keep track of progress for
1817 * status_cb(). l1_entries contains the total number of L1 entries and
1818 * *visited_l1_entries counts all visited L1 entries.
1819 */
1820 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1821 int l1_size, int64_t *visited_l1_entries,
1822 int64_t l1_entries,
1823 BlockDriverAmendStatusCB *status_cb,
1824 void *cb_opaque)
1825 {
1826 BDRVQcow2State *s = bs->opaque;
1827 bool is_active_l1 = (l1_table == s->l1_table);
1828 uint64_t *l2_slice = NULL;
1829 unsigned slice, slice_size2, n_slices;
1830 int ret;
1831 int i, j;
1832
1833 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1834 n_slices = s->cluster_size / slice_size2;
1835
1836 if (!is_active_l1) {
1837 /* inactive L2 tables require a buffer to be stored in when loading
1838 * them from disk */
1839 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1840 if (l2_slice == NULL) {
1841 return -ENOMEM;
1842 }
1843 }
1844
1845 for (i = 0; i < l1_size; i++) {
1846 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1847 uint64_t l2_refcount;
1848
1849 if (!l2_offset) {
1850 /* unallocated */
1851 (*visited_l1_entries)++;
1852 if (status_cb) {
1853 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1854 }
1855 continue;
1856 }
1857
1858 if (offset_into_cluster(s, l2_offset)) {
1859 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1860 PRIx64 " unaligned (L1 index: %#x)",
1861 l2_offset, i);
1862 ret = -EIO;
1863 goto fail;
1864 }
1865
1866 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1867 &l2_refcount);
1868 if (ret < 0) {
1869 goto fail;
1870 }
1871
1872 for (slice = 0; slice < n_slices; slice++) {
1873 uint64_t slice_offset = l2_offset + slice * slice_size2;
1874 bool l2_dirty = false;
1875 if (is_active_l1) {
1876 /* get active L2 tables from cache */
1877 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1878 (void **)&l2_slice);
1879 } else {
1880 /* load inactive L2 tables from disk */
1881 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1882 }
1883 if (ret < 0) {
1884 goto fail;
1885 }
1886
1887 for (j = 0; j < s->l2_slice_size; j++) {
1888 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1889 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1890 QCow2ClusterType cluster_type =
1891 qcow2_get_cluster_type(bs, l2_entry);
1892
1893 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1894 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1895 continue;
1896 }
1897
1898 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1899 if (!bs->backing) {
1900 /* not backed; therefore we can simply deallocate the
1901 * cluster */
1902 l2_slice[j] = 0;
1903 l2_dirty = true;
1904 continue;
1905 }
1906
1907 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1908 if (offset < 0) {
1909 ret = offset;
1910 goto fail;
1911 }
1912
1913 if (l2_refcount > 1) {
1914 /* For shared L2 tables, set the refcount accordingly
1915 * (it is already 1 and needs to be l2_refcount) */
1916 ret = qcow2_update_cluster_refcount(
1917 bs, offset >> s->cluster_bits,
1918 refcount_diff(1, l2_refcount), false,
1919 QCOW2_DISCARD_OTHER);
1920 if (ret < 0) {
1921 qcow2_free_clusters(bs, offset, s->cluster_size,
1922 QCOW2_DISCARD_OTHER);
1923 goto fail;
1924 }
1925 }
1926 }
1927
1928 if (offset_into_cluster(s, offset)) {
1929 int l2_index = slice * s->l2_slice_size + j;
1930 qcow2_signal_corruption(
1931 bs, true, -1, -1,
1932 "Cluster allocation offset "
1933 "%#" PRIx64 " unaligned (L2 offset: %#"
1934 PRIx64 ", L2 index: %#x)", offset,
1935 l2_offset, l2_index);
1936 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1937 qcow2_free_clusters(bs, offset, s->cluster_size,
1938 QCOW2_DISCARD_ALWAYS);
1939 }
1940 ret = -EIO;
1941 goto fail;
1942 }
1943
1944 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1945 s->cluster_size, true);
1946 if (ret < 0) {
1947 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1948 qcow2_free_clusters(bs, offset, s->cluster_size,
1949 QCOW2_DISCARD_ALWAYS);
1950 }
1951 goto fail;
1952 }
1953
1954 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1955 s->cluster_size, 0);
1956 if (ret < 0) {
1957 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1958 qcow2_free_clusters(bs, offset, s->cluster_size,
1959 QCOW2_DISCARD_ALWAYS);
1960 }
1961 goto fail;
1962 }
1963
1964 if (l2_refcount == 1) {
1965 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1966 } else {
1967 l2_slice[j] = cpu_to_be64(offset);
1968 }
1969 l2_dirty = true;
1970 }
1971
1972 if (is_active_l1) {
1973 if (l2_dirty) {
1974 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1975 qcow2_cache_depends_on_flush(s->l2_table_cache);
1976 }
1977 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1978 } else {
1979 if (l2_dirty) {
1980 ret = qcow2_pre_write_overlap_check(
1981 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
1982 slice_offset, slice_size2, false);
1983 if (ret < 0) {
1984 goto fail;
1985 }
1986
1987 ret = bdrv_pwrite(bs->file, slice_offset,
1988 l2_slice, slice_size2);
1989 if (ret < 0) {
1990 goto fail;
1991 }
1992 }
1993 }
1994 }
1995
1996 (*visited_l1_entries)++;
1997 if (status_cb) {
1998 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1999 }
2000 }
2001
2002 ret = 0;
2003
2004 fail:
2005 if (l2_slice) {
2006 if (!is_active_l1) {
2007 qemu_vfree(l2_slice);
2008 } else {
2009 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2010 }
2011 }
2012 return ret;
2013 }
2014
2015 /*
2016 * For backed images, expands all zero clusters on the image. For non-backed
2017 * images, deallocates all non-pre-allocated zero clusters (and claims the
2018 * allocation for pre-allocated ones). This is important for downgrading to a
2019 * qcow2 version which doesn't yet support metadata zero clusters.
2020 */
2021 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2022 BlockDriverAmendStatusCB *status_cb,
2023 void *cb_opaque)
2024 {
2025 BDRVQcow2State *s = bs->opaque;
2026 uint64_t *l1_table = NULL;
2027 int64_t l1_entries = 0, visited_l1_entries = 0;
2028 int ret;
2029 int i, j;
2030
2031 if (status_cb) {
2032 l1_entries = s->l1_size;
2033 for (i = 0; i < s->nb_snapshots; i++) {
2034 l1_entries += s->snapshots[i].l1_size;
2035 }
2036 }
2037
2038 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2039 &visited_l1_entries, l1_entries,
2040 status_cb, cb_opaque);
2041 if (ret < 0) {
2042 goto fail;
2043 }
2044
2045 /* Inactive L1 tables may point to active L2 tables - therefore it is
2046 * necessary to flush the L2 table cache before trying to access the L2
2047 * tables pointed to by inactive L1 entries (else we might try to expand
2048 * zero clusters that have already been expanded); furthermore, it is also
2049 * necessary to empty the L2 table cache, since it may contain tables which
2050 * are now going to be modified directly on disk, bypassing the cache.
2051 * qcow2_cache_empty() does both for us. */
2052 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2053 if (ret < 0) {
2054 goto fail;
2055 }
2056
2057 for (i = 0; i < s->nb_snapshots; i++) {
2058 int l1_size2;
2059 uint64_t *new_l1_table;
2060 Error *local_err = NULL;
2061
2062 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2063 s->snapshots[i].l1_size, sizeof(uint64_t),
2064 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2065 &local_err);
2066 if (ret < 0) {
2067 error_report_err(local_err);
2068 goto fail;
2069 }
2070
2071 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2072 new_l1_table = g_try_realloc(l1_table, l1_size2);
2073
2074 if (!new_l1_table) {
2075 ret = -ENOMEM;
2076 goto fail;
2077 }
2078
2079 l1_table = new_l1_table;
2080
2081 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2082 l1_table, l1_size2);
2083 if (ret < 0) {
2084 goto fail;
2085 }
2086
2087 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2088 be64_to_cpus(&l1_table[j]);
2089 }
2090
2091 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2092 &visited_l1_entries, l1_entries,
2093 status_cb, cb_opaque);
2094 if (ret < 0) {
2095 goto fail;
2096 }
2097 }
2098
2099 ret = 0;
2100
2101 fail:
2102 g_free(l1_table);
2103 return ret;
2104 }