]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
cbd224dc469ffe018e761120b470da8121b3ead7
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 {
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
39
40 if (min_size <= s->l1_size)
41 return 0;
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
54 }
55
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
70 }
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
75 }
76
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
93 }
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
104 }
105
106 /*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
118 {
119 BDRVQcowState *s = bs->opaque;
120 int ret;
121
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123
124 return ret;
125 }
126
127 /*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 {
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
149 }
150
151 return 0;
152 }
153
154 /*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 {
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
171
172 old_l2_offset = s->l1_table[l1_index];
173
174 trace_qcow2_l2_allocate(bs, l1_index);
175
176 /* allocate a new l2 entry */
177
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
181 }
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
187
188 /* allocate a new entry in the l2 cache */
189
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
197
198 if (old_l2_offset == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
203
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
207 (void**) &old_table);
208 if (ret < 0) {
209 goto fail;
210 }
211
212 memcpy(l2_table, old_table, s->cluster_size);
213
214 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
215 if (ret < 0) {
216 goto fail;
217 }
218 }
219
220 /* write the l2 table to the file */
221 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
222
223 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
224 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
225 ret = qcow2_cache_flush(bs, s->l2_table_cache);
226 if (ret < 0) {
227 goto fail;
228 }
229
230 /* update the L1 entry */
231 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
232 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
233 ret = write_l1_entry(bs, l1_index);
234 if (ret < 0) {
235 goto fail;
236 }
237
238 *table = l2_table;
239 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
240 return 0;
241
242 fail:
243 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
244 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
245 s->l1_table[l1_index] = old_l2_offset;
246 return ret;
247 }
248
249 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
250 uint64_t *l2_table, uint64_t start, uint64_t mask)
251 {
252 int i;
253 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
254
255 if (!offset)
256 return 0;
257
258 for (i = start; i < start + nb_clusters; i++)
259 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
260 break;
261
262 return (i - start);
263 }
264
265 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
266 {
267 int i = 0;
268
269 while(nb_clusters-- && l2_table[i] == 0)
270 i++;
271
272 return i;
273 }
274
275 /* The crypt function is compatible with the linux cryptoloop
276 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
277 supported */
278 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
279 uint8_t *out_buf, const uint8_t *in_buf,
280 int nb_sectors, int enc,
281 const AES_KEY *key)
282 {
283 union {
284 uint64_t ll[2];
285 uint8_t b[16];
286 } ivec;
287 int i;
288
289 for(i = 0; i < nb_sectors; i++) {
290 ivec.ll[0] = cpu_to_le64(sector_num);
291 ivec.ll[1] = 0;
292 AES_cbc_encrypt(in_buf, out_buf, 512, key,
293 ivec.b, enc);
294 sector_num++;
295 in_buf += 512;
296 out_buf += 512;
297 }
298 }
299
300 static int coroutine_fn copy_sectors(BlockDriverState *bs,
301 uint64_t start_sect,
302 uint64_t cluster_offset,
303 int n_start, int n_end)
304 {
305 BDRVQcowState *s = bs->opaque;
306 QEMUIOVector qiov;
307 struct iovec iov;
308 int n, ret;
309
310 /*
311 * If this is the last cluster and it is only partially used, we must only
312 * copy until the end of the image, or bdrv_check_request will fail for the
313 * bdrv_read/write calls below.
314 */
315 if (start_sect + n_end > bs->total_sectors) {
316 n_end = bs->total_sectors - start_sect;
317 }
318
319 n = n_end - n_start;
320 if (n <= 0) {
321 return 0;
322 }
323
324 iov.iov_len = n * BDRV_SECTOR_SIZE;
325 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
326
327 qemu_iovec_init_external(&qiov, &iov, 1);
328
329 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
330
331 /* Call .bdrv_co_readv() directly instead of using the public block-layer
332 * interface. This avoids double I/O throttling and request tracking,
333 * which can lead to deadlock when block layer copy-on-read is enabled.
334 */
335 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
336 if (ret < 0) {
337 goto out;
338 }
339
340 if (s->crypt_method) {
341 qcow2_encrypt_sectors(s, start_sect + n_start,
342 iov.iov_base, iov.iov_base, n, 1,
343 &s->aes_encrypt_key);
344 }
345
346 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
347 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
348 if (ret < 0) {
349 goto out;
350 }
351
352 ret = 0;
353 out:
354 qemu_vfree(iov.iov_base);
355 return ret;
356 }
357
358
359 /*
360 * get_cluster_offset
361 *
362 * For a given offset of the disk image, find the cluster offset in
363 * qcow2 file. The offset is stored in *cluster_offset.
364 *
365 * on entry, *num is the number of contiguous sectors we'd like to
366 * access following offset.
367 *
368 * on exit, *num is the number of contiguous sectors we can read.
369 *
370 * Return 0, if the offset is found
371 * Return -errno, otherwise.
372 *
373 */
374
375 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
376 int *num, uint64_t *cluster_offset)
377 {
378 BDRVQcowState *s = bs->opaque;
379 unsigned int l1_index, l2_index;
380 uint64_t l2_offset, *l2_table;
381 int l1_bits, c;
382 unsigned int index_in_cluster, nb_clusters;
383 uint64_t nb_available, nb_needed;
384 int ret;
385
386 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
387 nb_needed = *num + index_in_cluster;
388
389 l1_bits = s->l2_bits + s->cluster_bits;
390
391 /* compute how many bytes there are between the offset and
392 * the end of the l1 entry
393 */
394
395 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
396
397 /* compute the number of available sectors */
398
399 nb_available = (nb_available >> 9) + index_in_cluster;
400
401 if (nb_needed > nb_available) {
402 nb_needed = nb_available;
403 }
404
405 *cluster_offset = 0;
406
407 /* seek the the l2 offset in the l1 table */
408
409 l1_index = offset >> l1_bits;
410 if (l1_index >= s->l1_size)
411 goto out;
412
413 l2_offset = s->l1_table[l1_index];
414
415 /* seek the l2 table of the given l2 offset */
416
417 if (!l2_offset)
418 goto out;
419
420 /* load the l2 table in memory */
421
422 l2_offset &= ~QCOW_OFLAG_COPIED;
423 ret = l2_load(bs, l2_offset, &l2_table);
424 if (ret < 0) {
425 return ret;
426 }
427
428 /* find the cluster offset for the given disk offset */
429
430 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
431 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
432 nb_clusters = size_to_clusters(s, nb_needed << 9);
433
434 if (!*cluster_offset) {
435 /* how many empty clusters ? */
436 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
437 } else {
438 /* how many allocated clusters ? */
439 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
440 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
441 }
442
443 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
444
445 nb_available = (c * s->cluster_sectors);
446 out:
447 if (nb_available > nb_needed)
448 nb_available = nb_needed;
449
450 *num = nb_available - index_in_cluster;
451
452 *cluster_offset &=~QCOW_OFLAG_COPIED;
453 return 0;
454 }
455
456 /*
457 * get_cluster_table
458 *
459 * for a given disk offset, load (and allocate if needed)
460 * the l2 table.
461 *
462 * the l2 table offset in the qcow2 file and the cluster index
463 * in the l2 table are given to the caller.
464 *
465 * Returns 0 on success, -errno in failure case
466 */
467 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
468 uint64_t **new_l2_table,
469 int *new_l2_index)
470 {
471 BDRVQcowState *s = bs->opaque;
472 unsigned int l1_index, l2_index;
473 uint64_t l2_offset;
474 uint64_t *l2_table = NULL;
475 int ret;
476
477 /* seek the the l2 offset in the l1 table */
478
479 l1_index = offset >> (s->l2_bits + s->cluster_bits);
480 if (l1_index >= s->l1_size) {
481 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
482 if (ret < 0) {
483 return ret;
484 }
485 }
486 l2_offset = s->l1_table[l1_index];
487
488 /* seek the l2 table of the given l2 offset */
489
490 if (l2_offset & QCOW_OFLAG_COPIED) {
491 /* load the l2 table in memory */
492 l2_offset &= ~QCOW_OFLAG_COPIED;
493 ret = l2_load(bs, l2_offset, &l2_table);
494 if (ret < 0) {
495 return ret;
496 }
497 } else {
498 /* First allocate a new L2 table (and do COW if needed) */
499 ret = l2_allocate(bs, l1_index, &l2_table);
500 if (ret < 0) {
501 return ret;
502 }
503
504 /* Then decrease the refcount of the old table */
505 if (l2_offset) {
506 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
507 }
508 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
509 }
510
511 /* find the cluster offset for the given disk offset */
512
513 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
514
515 *new_l2_table = l2_table;
516 *new_l2_index = l2_index;
517
518 return 0;
519 }
520
521 /*
522 * alloc_compressed_cluster_offset
523 *
524 * For a given offset of the disk image, return cluster offset in
525 * qcow2 file.
526 *
527 * If the offset is not found, allocate a new compressed cluster.
528 *
529 * Return the cluster offset if successful,
530 * Return 0, otherwise.
531 *
532 */
533
534 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
535 uint64_t offset,
536 int compressed_size)
537 {
538 BDRVQcowState *s = bs->opaque;
539 int l2_index, ret;
540 uint64_t *l2_table;
541 int64_t cluster_offset;
542 int nb_csectors;
543
544 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
545 if (ret < 0) {
546 return 0;
547 }
548
549 cluster_offset = be64_to_cpu(l2_table[l2_index]);
550 if (cluster_offset & QCOW_OFLAG_COPIED) {
551 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
552 return 0;
553 }
554
555 if (cluster_offset)
556 qcow2_free_any_clusters(bs, cluster_offset, 1);
557
558 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
559 if (cluster_offset < 0) {
560 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
561 return 0;
562 }
563
564 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
565 (cluster_offset >> 9);
566
567 cluster_offset |= QCOW_OFLAG_COMPRESSED |
568 ((uint64_t)nb_csectors << s->csize_shift);
569
570 /* update L2 table */
571
572 /* compressed clusters never have the copied flag */
573
574 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
575 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
576 l2_table[l2_index] = cpu_to_be64(cluster_offset);
577 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
578 if (ret < 0) {
579 return 0;
580 }
581
582 return cluster_offset;
583 }
584
585 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
586 {
587 BDRVQcowState *s = bs->opaque;
588 int i, j = 0, l2_index, ret;
589 uint64_t *old_cluster, start_sect, *l2_table;
590 uint64_t cluster_offset = m->alloc_offset;
591 bool cow = false;
592
593 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
594
595 if (m->nb_clusters == 0)
596 return 0;
597
598 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
599
600 /* copy content of unmodified sectors */
601 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
602 if (m->n_start) {
603 cow = true;
604 qemu_co_mutex_unlock(&s->lock);
605 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
606 qemu_co_mutex_lock(&s->lock);
607 if (ret < 0)
608 goto err;
609 }
610
611 if (m->nb_available & (s->cluster_sectors - 1)) {
612 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
613 cow = true;
614 qemu_co_mutex_unlock(&s->lock);
615 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
616 m->nb_available - end, s->cluster_sectors);
617 qemu_co_mutex_lock(&s->lock);
618 if (ret < 0)
619 goto err;
620 }
621
622 /*
623 * Update L2 table.
624 *
625 * Before we update the L2 table to actually point to the new cluster, we
626 * need to be sure that the refcounts have been increased and COW was
627 * handled.
628 */
629 if (cow) {
630 qcow2_cache_depends_on_flush(s->l2_table_cache);
631 }
632
633 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
634 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
635 if (ret < 0) {
636 goto err;
637 }
638 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
639
640 for (i = 0; i < m->nb_clusters; i++) {
641 /* if two concurrent writes happen to the same unallocated cluster
642 * each write allocates separate cluster and writes data concurrently.
643 * The first one to complete updates l2 table with pointer to its
644 * cluster the second one has to do RMW (which is done above by
645 * copy_sectors()), update l2 table with its cluster pointer and free
646 * old cluster. This is what this loop does */
647 if(l2_table[l2_index + i] != 0)
648 old_cluster[j++] = l2_table[l2_index + i];
649
650 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
651 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
652 }
653
654
655 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
656 if (ret < 0) {
657 goto err;
658 }
659
660 /*
661 * If this was a COW, we need to decrease the refcount of the old cluster.
662 * Also flush bs->file to get the right order for L2 and refcount update.
663 */
664 if (j != 0) {
665 for (i = 0; i < j; i++) {
666 qcow2_free_any_clusters(bs,
667 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
668 }
669 }
670
671 ret = 0;
672 err:
673 g_free(old_cluster);
674 return ret;
675 }
676
677 /*
678 * Returns the number of contiguous clusters that can be used for an allocating
679 * write, but require COW to be performed (this includes yet unallocated space,
680 * which must copy from the backing file)
681 */
682 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
683 uint64_t *l2_table, int l2_index)
684 {
685 int i = 0;
686 uint64_t cluster_offset;
687
688 while (i < nb_clusters) {
689 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
690 &l2_table[l2_index], i, 0);
691 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
692 break;
693 }
694
695 i += count_contiguous_free_clusters(nb_clusters - i,
696 &l2_table[l2_index + i]);
697 if (i >= nb_clusters) {
698 break;
699 }
700
701 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
702
703 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
704 (cluster_offset & QCOW_OFLAG_COMPRESSED))
705 break;
706 }
707
708 assert(i <= nb_clusters);
709 return i;
710 }
711
712 /*
713 * Allocates new clusters for the given guest_offset.
714 *
715 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
716 * contain the number of clusters that have been allocated and are contiguous
717 * in the image file.
718 *
719 * If *host_offset is non-zero, it specifies the offset in the image file at
720 * which the new clusters must start. *nb_clusters can be 0 on return in this
721 * case if the cluster at host_offset is already in use. If *host_offset is
722 * zero, the clusters can be allocated anywhere in the image file.
723 *
724 * *host_offset is updated to contain the offset into the image file at which
725 * the first allocated cluster starts.
726 *
727 * Return 0 on success and -errno in error cases. -EAGAIN means that the
728 * function has been waiting for another request and the allocation must be
729 * restarted, but the whole request should not be failed.
730 */
731 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
732 uint64_t *host_offset, unsigned int *nb_clusters, uint64_t *l2_table)
733 {
734 BDRVQcowState *s = bs->opaque;
735 int64_t cluster_offset;
736 QCowL2Meta *old_alloc;
737
738 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
739 *host_offset, *nb_clusters);
740
741 /*
742 * Check if there already is an AIO write request in flight which allocates
743 * the same cluster. In this case we need to wait until the previous
744 * request has completed and updated the L2 table accordingly.
745 */
746 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
747
748 uint64_t start = guest_offset >> s->cluster_bits;
749 uint64_t end = start + *nb_clusters;
750 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
751 uint64_t old_end = old_start + old_alloc->nb_clusters;
752
753 if (end < old_start || start > old_end) {
754 /* No intersection */
755 } else {
756 if (start < old_start) {
757 /* Stop at the start of a running allocation */
758 *nb_clusters = old_start - start;
759 } else {
760 *nb_clusters = 0;
761 }
762
763 if (*nb_clusters == 0) {
764 /* Wait for the dependency to complete. We need to recheck
765 * the free/allocated clusters when we continue. */
766 qemu_co_mutex_unlock(&s->lock);
767 qemu_co_queue_wait(&old_alloc->dependent_requests);
768 qemu_co_mutex_lock(&s->lock);
769 return -EAGAIN;
770 }
771 }
772 }
773
774 if (!*nb_clusters) {
775 abort();
776 }
777
778 /* Allocate new clusters */
779 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
780 if (*host_offset == 0) {
781 cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
782 } else {
783 cluster_offset = *host_offset;
784 *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
785 }
786
787 if (cluster_offset < 0) {
788 return cluster_offset;
789 }
790 *host_offset = cluster_offset;
791 return 0;
792 }
793
794 /*
795 * alloc_cluster_offset
796 *
797 * For a given offset on the virtual disk, find the cluster offset in qcow2
798 * file. If the offset is not found, allocate a new cluster.
799 *
800 * If the cluster was already allocated, m->nb_clusters is set to 0 and
801 * other fields in m are meaningless.
802 *
803 * If the cluster is newly allocated, m->nb_clusters is set to the number of
804 * contiguous clusters that have been allocated. In this case, the other
805 * fields of m are valid and contain information about the first allocated
806 * cluster.
807 *
808 * If the request conflicts with another write request in flight, the coroutine
809 * is queued and will be reentered when the dependency has completed.
810 *
811 * Return 0 on success and -errno in error cases
812 */
813 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
814 int n_start, int n_end, int *num, QCowL2Meta *m)
815 {
816 BDRVQcowState *s = bs->opaque;
817 int l2_index, ret, sectors;
818 uint64_t *l2_table;
819 unsigned int nb_clusters, keep_clusters;
820 uint64_t cluster_offset;
821
822 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
823 n_start, n_end);
824
825 /* Find L2 entry for the first involved cluster */
826 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
827 if (ret < 0) {
828 return ret;
829 }
830
831 /*
832 * Calculate the number of clusters to look for. We stop at L2 table
833 * boundaries to keep things simple.
834 */
835 again:
836 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
837 s->l2_size - l2_index);
838
839 cluster_offset = be64_to_cpu(l2_table[l2_index]);
840
841 /*
842 * Check how many clusters are already allocated and don't need COW, and how
843 * many need a new allocation.
844 */
845 if (cluster_offset & QCOW_OFLAG_COPIED) {
846 /* We keep all QCOW_OFLAG_COPIED clusters */
847 keep_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
848 &l2_table[l2_index], 0, 0);
849 assert(keep_clusters <= nb_clusters);
850 nb_clusters -= keep_clusters;
851 } else {
852 /* For the moment, overwrite compressed clusters one by one */
853 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
854 nb_clusters = 1;
855 } else {
856 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
857 }
858
859 keep_clusters = 0;
860 cluster_offset = 0;
861 }
862
863 cluster_offset &= ~QCOW_OFLAG_COPIED;
864
865 /* If there is something left to allocate, do that now */
866 *m = (QCowL2Meta) {
867 .cluster_offset = cluster_offset,
868 .nb_clusters = 0,
869 };
870 qemu_co_queue_init(&m->dependent_requests);
871
872 if (nb_clusters > 0) {
873 uint64_t alloc_offset;
874 uint64_t alloc_cluster_offset;
875 uint64_t keep_bytes = keep_clusters * s->cluster_size;
876
877 /* Calculate start and size of allocation */
878 alloc_offset = offset + keep_bytes;
879
880 if (keep_clusters == 0) {
881 alloc_cluster_offset = 0;
882 } else {
883 alloc_cluster_offset = cluster_offset + keep_bytes;
884 }
885
886 /* Allocate, if necessary at a given offset in the image file */
887 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
888 &nb_clusters, l2_table);
889 if (ret == -EAGAIN) {
890 goto again;
891 } else if (ret < 0) {
892 goto fail;
893 }
894
895 /* save info needed for meta data update */
896 if (nb_clusters > 0) {
897 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
898 int avail_sectors = (keep_clusters + nb_clusters)
899 << (s->cluster_bits - BDRV_SECTOR_BITS);
900
901 *m = (QCowL2Meta) {
902 .cluster_offset = keep_clusters == 0 ?
903 alloc_cluster_offset : cluster_offset,
904 .alloc_offset = alloc_cluster_offset,
905 .offset = alloc_offset,
906 .n_start = keep_clusters == 0 ? n_start : 0,
907 .nb_clusters = nb_clusters,
908 .nb_available = MIN(requested_sectors, avail_sectors),
909 };
910 qemu_co_queue_init(&m->dependent_requests);
911 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
912 }
913 }
914
915 /* Some cleanup work */
916 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
917 if (ret < 0) {
918 goto fail_put;
919 }
920
921 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
922 if (sectors > n_end) {
923 sectors = n_end;
924 }
925
926 assert(sectors > n_start);
927 *num = sectors - n_start;
928
929 return 0;
930
931 fail:
932 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
933 fail_put:
934 if (nb_clusters > 0) {
935 QLIST_REMOVE(m, next_in_flight);
936 }
937 return ret;
938 }
939
940 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
941 const uint8_t *buf, int buf_size)
942 {
943 z_stream strm1, *strm = &strm1;
944 int ret, out_len;
945
946 memset(strm, 0, sizeof(*strm));
947
948 strm->next_in = (uint8_t *)buf;
949 strm->avail_in = buf_size;
950 strm->next_out = out_buf;
951 strm->avail_out = out_buf_size;
952
953 ret = inflateInit2(strm, -12);
954 if (ret != Z_OK)
955 return -1;
956 ret = inflate(strm, Z_FINISH);
957 out_len = strm->next_out - out_buf;
958 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
959 out_len != out_buf_size) {
960 inflateEnd(strm);
961 return -1;
962 }
963 inflateEnd(strm);
964 return 0;
965 }
966
967 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
968 {
969 BDRVQcowState *s = bs->opaque;
970 int ret, csize, nb_csectors, sector_offset;
971 uint64_t coffset;
972
973 coffset = cluster_offset & s->cluster_offset_mask;
974 if (s->cluster_cache_offset != coffset) {
975 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
976 sector_offset = coffset & 511;
977 csize = nb_csectors * 512 - sector_offset;
978 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
979 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
980 if (ret < 0) {
981 return ret;
982 }
983 if (decompress_buffer(s->cluster_cache, s->cluster_size,
984 s->cluster_data + sector_offset, csize) < 0) {
985 return -EIO;
986 }
987 s->cluster_cache_offset = coffset;
988 }
989 return 0;
990 }
991
992 /*
993 * This discards as many clusters of nb_clusters as possible at once (i.e.
994 * all clusters in the same L2 table) and returns the number of discarded
995 * clusters.
996 */
997 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
998 unsigned int nb_clusters)
999 {
1000 BDRVQcowState *s = bs->opaque;
1001 uint64_t *l2_table;
1002 int l2_index;
1003 int ret;
1004 int i;
1005
1006 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1007 if (ret < 0) {
1008 return ret;
1009 }
1010
1011 /* Limit nb_clusters to one L2 table */
1012 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1013
1014 for (i = 0; i < nb_clusters; i++) {
1015 uint64_t old_offset;
1016
1017 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1018 old_offset &= ~QCOW_OFLAG_COPIED;
1019
1020 if (old_offset == 0) {
1021 continue;
1022 }
1023
1024 /* First remove L2 entries */
1025 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1026 l2_table[l2_index + i] = cpu_to_be64(0);
1027
1028 /* Then decrease the refcount */
1029 qcow2_free_any_clusters(bs, old_offset, 1);
1030 }
1031
1032 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1033 if (ret < 0) {
1034 return ret;
1035 }
1036
1037 return nb_clusters;
1038 }
1039
1040 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1041 int nb_sectors)
1042 {
1043 BDRVQcowState *s = bs->opaque;
1044 uint64_t end_offset;
1045 unsigned int nb_clusters;
1046 int ret;
1047
1048 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1049
1050 /* Round start up and end down */
1051 offset = align_offset(offset, s->cluster_size);
1052 end_offset &= ~(s->cluster_size - 1);
1053
1054 if (offset > end_offset) {
1055 return 0;
1056 }
1057
1058 nb_clusters = size_to_clusters(s, end_offset - offset);
1059
1060 /* Each L2 table is handled by its own loop iteration */
1061 while (nb_clusters > 0) {
1062 ret = discard_single_l2(bs, offset, nb_clusters);
1063 if (ret < 0) {
1064 return ret;
1065 }
1066
1067 nb_clusters -= ret;
1068 offset += (ret * s->cluster_size);
1069 }
1070
1071 return 0;
1072 }