]> git.proxmox.com Git - qemu.git/blob - block/qcow2-cluster.c
d72d063e6d628241b5460d356db4d9edee78f89f
[qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 {
34 BDRVQcowState *s = bs->opaque;
35 int new_l1_size, new_l1_size2, ret, i;
36 uint64_t *new_l1_table;
37 int64_t new_l1_table_offset;
38 uint8_t data[12];
39
40 if (min_size <= s->l1_size)
41 return 0;
42
43 if (exact_size) {
44 new_l1_size = min_size;
45 } else {
46 /* Bump size up to reduce the number of times we have to grow */
47 new_l1_size = s->l1_size;
48 if (new_l1_size == 0) {
49 new_l1_size = 1;
50 }
51 while (min_size > new_l1_size) {
52 new_l1_size = (new_l1_size * 3 + 1) / 2;
53 }
54 }
55
56 #ifdef DEBUG_ALLOC2
57 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58 #endif
59
60 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63
64 /* write new table (align to cluster) */
65 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67 if (new_l1_table_offset < 0) {
68 g_free(new_l1_table);
69 return new_l1_table_offset;
70 }
71
72 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73 if (ret < 0) {
74 goto fail;
75 }
76
77 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78 for(i = 0; i < s->l1_size; i++)
79 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81 if (ret < 0)
82 goto fail;
83 for(i = 0; i < s->l1_size; i++)
84 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85
86 /* set new table */
87 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88 cpu_to_be32w((uint32_t*)data, new_l1_size);
89 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91 if (ret < 0) {
92 goto fail;
93 }
94 g_free(s->l1_table);
95 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96 s->l1_table_offset = new_l1_table_offset;
97 s->l1_table = new_l1_table;
98 s->l1_size = new_l1_size;
99 return 0;
100 fail:
101 g_free(new_l1_table);
102 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103 return ret;
104 }
105
106 /*
107 * l2_load
108 *
109 * Loads a L2 table into memory. If the table is in the cache, the cache
110 * is used; otherwise the L2 table is loaded from the image file.
111 *
112 * Returns a pointer to the L2 table on success, or NULL if the read from
113 * the image file failed.
114 */
115
116 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117 uint64_t **l2_table)
118 {
119 BDRVQcowState *s = bs->opaque;
120 int ret;
121
122 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123
124 return ret;
125 }
126
127 /*
128 * Writes one sector of the L1 table to the disk (can't update single entries
129 * and we really don't want bdrv_pread to perform a read-modify-write)
130 */
131 #define L1_ENTRIES_PER_SECTOR (512 / 8)
132 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 {
134 BDRVQcowState *s = bs->opaque;
135 uint64_t buf[L1_ENTRIES_PER_SECTOR];
136 int l1_start_index;
137 int i, ret;
138
139 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142 }
143
144 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146 buf, sizeof(buf));
147 if (ret < 0) {
148 return ret;
149 }
150
151 return 0;
152 }
153
154 /*
155 * l2_allocate
156 *
157 * Allocate a new l2 entry in the file. If l1_index points to an already
158 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159 * table) copy the contents of the old L2 table into the newly allocated one.
160 * Otherwise the new table is initialized with zeros.
161 *
162 */
163
164 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 {
166 BDRVQcowState *s = bs->opaque;
167 uint64_t old_l2_offset;
168 uint64_t *l2_table;
169 int64_t l2_offset;
170 int ret;
171
172 old_l2_offset = s->l1_table[l1_index];
173
174 trace_qcow2_l2_allocate(bs, l1_index);
175
176 /* allocate a new l2 entry */
177
178 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179 if (l2_offset < 0) {
180 return l2_offset;
181 }
182
183 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184 if (ret < 0) {
185 goto fail;
186 }
187
188 /* allocate a new entry in the l2 cache */
189
190 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192 if (ret < 0) {
193 return ret;
194 }
195
196 l2_table = *table;
197
198 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
199 /* if there was no old l2 table, clear the new table */
200 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201 } else {
202 uint64_t* old_table;
203
204 /* if there was an old l2 table, read it from the disk */
205 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206 ret = qcow2_cache_get(bs, s->l2_table_cache,
207 old_l2_offset & L1E_OFFSET_MASK,
208 (void**) &old_table);
209 if (ret < 0) {
210 goto fail;
211 }
212
213 memcpy(l2_table, old_table, s->cluster_size);
214
215 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
216 if (ret < 0) {
217 goto fail;
218 }
219 }
220
221 /* write the l2 table to the file */
222 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
223
224 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
225 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226 ret = qcow2_cache_flush(bs, s->l2_table_cache);
227 if (ret < 0) {
228 goto fail;
229 }
230
231 /* update the L1 entry */
232 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
233 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234 ret = write_l1_entry(bs, l1_index);
235 if (ret < 0) {
236 goto fail;
237 }
238
239 *table = l2_table;
240 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
241 return 0;
242
243 fail:
244 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
245 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
246 s->l1_table[l1_index] = old_l2_offset;
247 return ret;
248 }
249
250 /*
251 * Checks how many clusters in a given L2 table are contiguous in the image
252 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253 * to the first cluster, the search is stopped and the cluster is not counted
254 * as contiguous. (This allows it, for example, to stop at the first compressed
255 * cluster which may require a different handling)
256 */
257 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
259 {
260 int i;
261 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
263
264 if (!offset)
265 return 0;
266
267 for (i = start; i < start + nb_clusters; i++) {
268 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269 if (offset + (uint64_t) i * cluster_size != l2_entry) {
270 break;
271 }
272 }
273
274 return (i - start);
275 }
276
277 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278 {
279 int i;
280
281 for (i = 0; i < nb_clusters; i++) {
282 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
283
284 if (type != QCOW2_CLUSTER_UNALLOCATED) {
285 break;
286 }
287 }
288
289 return i;
290 }
291
292 /* The crypt function is compatible with the linux cryptoloop
293 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294 supported */
295 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296 uint8_t *out_buf, const uint8_t *in_buf,
297 int nb_sectors, int enc,
298 const AES_KEY *key)
299 {
300 union {
301 uint64_t ll[2];
302 uint8_t b[16];
303 } ivec;
304 int i;
305
306 for(i = 0; i < nb_sectors; i++) {
307 ivec.ll[0] = cpu_to_le64(sector_num);
308 ivec.ll[1] = 0;
309 AES_cbc_encrypt(in_buf, out_buf, 512, key,
310 ivec.b, enc);
311 sector_num++;
312 in_buf += 512;
313 out_buf += 512;
314 }
315 }
316
317 static int coroutine_fn copy_sectors(BlockDriverState *bs,
318 uint64_t start_sect,
319 uint64_t cluster_offset,
320 int n_start, int n_end)
321 {
322 BDRVQcowState *s = bs->opaque;
323 QEMUIOVector qiov;
324 struct iovec iov;
325 int n, ret;
326
327 /*
328 * If this is the last cluster and it is only partially used, we must only
329 * copy until the end of the image, or bdrv_check_request will fail for the
330 * bdrv_read/write calls below.
331 */
332 if (start_sect + n_end > bs->total_sectors) {
333 n_end = bs->total_sectors - start_sect;
334 }
335
336 n = n_end - n_start;
337 if (n <= 0) {
338 return 0;
339 }
340
341 iov.iov_len = n * BDRV_SECTOR_SIZE;
342 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343
344 qemu_iovec_init_external(&qiov, &iov, 1);
345
346 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
347
348 /* Call .bdrv_co_readv() directly instead of using the public block-layer
349 * interface. This avoids double I/O throttling and request tracking,
350 * which can lead to deadlock when block layer copy-on-read is enabled.
351 */
352 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
353 if (ret < 0) {
354 goto out;
355 }
356
357 if (s->crypt_method) {
358 qcow2_encrypt_sectors(s, start_sect + n_start,
359 iov.iov_base, iov.iov_base, n, 1,
360 &s->aes_encrypt_key);
361 }
362
363 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
364 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
365 if (ret < 0) {
366 goto out;
367 }
368
369 ret = 0;
370 out:
371 qemu_vfree(iov.iov_base);
372 return ret;
373 }
374
375
376 /*
377 * get_cluster_offset
378 *
379 * For a given offset of the disk image, find the cluster offset in
380 * qcow2 file. The offset is stored in *cluster_offset.
381 *
382 * on entry, *num is the number of contiguous sectors we'd like to
383 * access following offset.
384 *
385 * on exit, *num is the number of contiguous sectors we can read.
386 *
387 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388 * cases.
389 */
390 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391 int *num, uint64_t *cluster_offset)
392 {
393 BDRVQcowState *s = bs->opaque;
394 unsigned int l1_index, l2_index;
395 uint64_t l2_offset, *l2_table;
396 int l1_bits, c;
397 unsigned int index_in_cluster, nb_clusters;
398 uint64_t nb_available, nb_needed;
399 int ret;
400
401 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402 nb_needed = *num + index_in_cluster;
403
404 l1_bits = s->l2_bits + s->cluster_bits;
405
406 /* compute how many bytes there are between the offset and
407 * the end of the l1 entry
408 */
409
410 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
411
412 /* compute the number of available sectors */
413
414 nb_available = (nb_available >> 9) + index_in_cluster;
415
416 if (nb_needed > nb_available) {
417 nb_needed = nb_available;
418 }
419
420 *cluster_offset = 0;
421
422 /* seek the the l2 offset in the l1 table */
423
424 l1_index = offset >> l1_bits;
425 if (l1_index >= s->l1_size) {
426 ret = QCOW2_CLUSTER_UNALLOCATED;
427 goto out;
428 }
429
430 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431 if (!l2_offset) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
433 goto out;
434 }
435
436 /* load the l2 table in memory */
437
438 ret = l2_load(bs, l2_offset, &l2_table);
439 if (ret < 0) {
440 return ret;
441 }
442
443 /* find the cluster offset for the given disk offset */
444
445 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
446 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
447 nb_clusters = size_to_clusters(s, nb_needed << 9);
448
449 ret = qcow2_get_cluster_type(*cluster_offset);
450 switch (ret) {
451 case QCOW2_CLUSTER_COMPRESSED:
452 /* Compressed clusters can only be processed one by one */
453 c = 1;
454 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455 break;
456 case QCOW2_CLUSTER_ZERO:
457 if (s->qcow_version < 3) {
458 return -EIO;
459 }
460 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
461 &l2_table[l2_index], 0,
462 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
463 *cluster_offset = 0;
464 break;
465 case QCOW2_CLUSTER_UNALLOCATED:
466 /* how many empty clusters ? */
467 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
468 *cluster_offset = 0;
469 break;
470 case QCOW2_CLUSTER_NORMAL:
471 /* how many allocated clusters ? */
472 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
473 &l2_table[l2_index], 0,
474 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
475 *cluster_offset &= L2E_OFFSET_MASK;
476 break;
477 default:
478 abort();
479 }
480
481 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
482
483 nb_available = (c * s->cluster_sectors);
484
485 out:
486 if (nb_available > nb_needed)
487 nb_available = nb_needed;
488
489 *num = nb_available - index_in_cluster;
490
491 return ret;
492 }
493
494 /*
495 * get_cluster_table
496 *
497 * for a given disk offset, load (and allocate if needed)
498 * the l2 table.
499 *
500 * the l2 table offset in the qcow2 file and the cluster index
501 * in the l2 table are given to the caller.
502 *
503 * Returns 0 on success, -errno in failure case
504 */
505 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
506 uint64_t **new_l2_table,
507 int *new_l2_index)
508 {
509 BDRVQcowState *s = bs->opaque;
510 unsigned int l1_index, l2_index;
511 uint64_t l2_offset;
512 uint64_t *l2_table = NULL;
513 int ret;
514
515 /* seek the the l2 offset in the l1 table */
516
517 l1_index = offset >> (s->l2_bits + s->cluster_bits);
518 if (l1_index >= s->l1_size) {
519 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
520 if (ret < 0) {
521 return ret;
522 }
523 }
524
525 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
526
527 /* seek the l2 table of the given l2 offset */
528
529 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
530 /* load the l2 table in memory */
531 ret = l2_load(bs, l2_offset, &l2_table);
532 if (ret < 0) {
533 return ret;
534 }
535 } else {
536 /* First allocate a new L2 table (and do COW if needed) */
537 ret = l2_allocate(bs, l1_index, &l2_table);
538 if (ret < 0) {
539 return ret;
540 }
541
542 /* Then decrease the refcount of the old table */
543 if (l2_offset) {
544 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
545 }
546 }
547
548 /* find the cluster offset for the given disk offset */
549
550 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
551
552 *new_l2_table = l2_table;
553 *new_l2_index = l2_index;
554
555 return 0;
556 }
557
558 /*
559 * alloc_compressed_cluster_offset
560 *
561 * For a given offset of the disk image, return cluster offset in
562 * qcow2 file.
563 *
564 * If the offset is not found, allocate a new compressed cluster.
565 *
566 * Return the cluster offset if successful,
567 * Return 0, otherwise.
568 *
569 */
570
571 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
572 uint64_t offset,
573 int compressed_size)
574 {
575 BDRVQcowState *s = bs->opaque;
576 int l2_index, ret;
577 uint64_t *l2_table;
578 int64_t cluster_offset;
579 int nb_csectors;
580
581 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
582 if (ret < 0) {
583 return 0;
584 }
585
586 /* Compression can't overwrite anything. Fail if the cluster was already
587 * allocated. */
588 cluster_offset = be64_to_cpu(l2_table[l2_index]);
589 if (cluster_offset & L2E_OFFSET_MASK) {
590 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
591 return 0;
592 }
593
594 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
595 if (cluster_offset < 0) {
596 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
597 return 0;
598 }
599
600 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
601 (cluster_offset >> 9);
602
603 cluster_offset |= QCOW_OFLAG_COMPRESSED |
604 ((uint64_t)nb_csectors << s->csize_shift);
605
606 /* update L2 table */
607
608 /* compressed clusters never have the copied flag */
609
610 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
611 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
612 l2_table[l2_index] = cpu_to_be64(cluster_offset);
613 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
614 if (ret < 0) {
615 return 0;
616 }
617
618 return cluster_offset;
619 }
620
621 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
622 {
623 BDRVQcowState *s = bs->opaque;
624 int ret;
625
626 if (r->nb_sectors == 0) {
627 return 0;
628 }
629
630 qemu_co_mutex_unlock(&s->lock);
631 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
632 r->offset / BDRV_SECTOR_SIZE,
633 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
634 qemu_co_mutex_lock(&s->lock);
635
636 if (ret < 0) {
637 return ret;
638 }
639
640 /*
641 * Before we update the L2 table to actually point to the new cluster, we
642 * need to be sure that the refcounts have been increased and COW was
643 * handled.
644 */
645 qcow2_cache_depends_on_flush(s->l2_table_cache);
646
647 return 0;
648 }
649
650 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
651 {
652 BDRVQcowState *s = bs->opaque;
653 int i, j = 0, l2_index, ret;
654 uint64_t *old_cluster, *l2_table;
655 uint64_t cluster_offset = m->alloc_offset;
656
657 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
658 assert(m->nb_clusters > 0);
659
660 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
661
662 /* copy content of unmodified sectors */
663 ret = perform_cow(bs, m, &m->cow_start);
664 if (ret < 0) {
665 goto err;
666 }
667
668 ret = perform_cow(bs, m, &m->cow_end);
669 if (ret < 0) {
670 goto err;
671 }
672
673 /* Update L2 table. */
674 if (s->use_lazy_refcounts) {
675 qcow2_mark_dirty(bs);
676 }
677 if (qcow2_need_accurate_refcounts(s)) {
678 qcow2_cache_set_dependency(bs, s->l2_table_cache,
679 s->refcount_block_cache);
680 }
681
682 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
683 if (ret < 0) {
684 goto err;
685 }
686 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
687
688 for (i = 0; i < m->nb_clusters; i++) {
689 /* if two concurrent writes happen to the same unallocated cluster
690 * each write allocates separate cluster and writes data concurrently.
691 * The first one to complete updates l2 table with pointer to its
692 * cluster the second one has to do RMW (which is done above by
693 * copy_sectors()), update l2 table with its cluster pointer and free
694 * old cluster. This is what this loop does */
695 if(l2_table[l2_index + i] != 0)
696 old_cluster[j++] = l2_table[l2_index + i];
697
698 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
699 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
700 }
701
702
703 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
704 if (ret < 0) {
705 goto err;
706 }
707
708 /*
709 * If this was a COW, we need to decrease the refcount of the old cluster.
710 * Also flush bs->file to get the right order for L2 and refcount update.
711 */
712 if (j != 0) {
713 for (i = 0; i < j; i++) {
714 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
715 }
716 }
717
718 ret = 0;
719 err:
720 g_free(old_cluster);
721 return ret;
722 }
723
724 /*
725 * Returns the number of contiguous clusters that can be used for an allocating
726 * write, but require COW to be performed (this includes yet unallocated space,
727 * which must copy from the backing file)
728 */
729 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
730 uint64_t *l2_table, int l2_index)
731 {
732 int i;
733
734 for (i = 0; i < nb_clusters; i++) {
735 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
736 int cluster_type = qcow2_get_cluster_type(l2_entry);
737
738 switch(cluster_type) {
739 case QCOW2_CLUSTER_NORMAL:
740 if (l2_entry & QCOW_OFLAG_COPIED) {
741 goto out;
742 }
743 break;
744 case QCOW2_CLUSTER_UNALLOCATED:
745 case QCOW2_CLUSTER_COMPRESSED:
746 case QCOW2_CLUSTER_ZERO:
747 break;
748 default:
749 abort();
750 }
751 }
752
753 out:
754 assert(i <= nb_clusters);
755 return i;
756 }
757
758 /*
759 * Check if there already is an AIO write request in flight which allocates
760 * the same cluster. In this case we need to wait until the previous
761 * request has completed and updated the L2 table accordingly.
762 */
763 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
764 unsigned int *nb_clusters)
765 {
766 BDRVQcowState *s = bs->opaque;
767 QCowL2Meta *old_alloc;
768
769 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
770
771 uint64_t start = guest_offset >> s->cluster_bits;
772 uint64_t end = start + *nb_clusters;
773 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
774 uint64_t old_end = old_start + old_alloc->nb_clusters;
775
776 if (end < old_start || start > old_end) {
777 /* No intersection */
778 } else {
779 if (start < old_start) {
780 /* Stop at the start of a running allocation */
781 *nb_clusters = old_start - start;
782 } else {
783 *nb_clusters = 0;
784 }
785
786 if (*nb_clusters == 0) {
787 /* Wait for the dependency to complete. We need to recheck
788 * the free/allocated clusters when we continue. */
789 qemu_co_mutex_unlock(&s->lock);
790 qemu_co_queue_wait(&old_alloc->dependent_requests);
791 qemu_co_mutex_lock(&s->lock);
792 return -EAGAIN;
793 }
794 }
795 }
796
797 if (!*nb_clusters) {
798 abort();
799 }
800
801 return 0;
802 }
803
804 /*
805 * Allocates new clusters for the given guest_offset.
806 *
807 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
808 * contain the number of clusters that have been allocated and are contiguous
809 * in the image file.
810 *
811 * If *host_offset is non-zero, it specifies the offset in the image file at
812 * which the new clusters must start. *nb_clusters can be 0 on return in this
813 * case if the cluster at host_offset is already in use. If *host_offset is
814 * zero, the clusters can be allocated anywhere in the image file.
815 *
816 * *host_offset is updated to contain the offset into the image file at which
817 * the first allocated cluster starts.
818 *
819 * Return 0 on success and -errno in error cases. -EAGAIN means that the
820 * function has been waiting for another request and the allocation must be
821 * restarted, but the whole request should not be failed.
822 */
823 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
824 uint64_t *host_offset, unsigned int *nb_clusters)
825 {
826 BDRVQcowState *s = bs->opaque;
827 int ret;
828
829 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
830 *host_offset, *nb_clusters);
831
832 ret = handle_dependencies(bs, guest_offset, nb_clusters);
833 if (ret < 0) {
834 return ret;
835 }
836
837 /* Allocate new clusters */
838 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
839 if (*host_offset == 0) {
840 int64_t cluster_offset =
841 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
842 if (cluster_offset < 0) {
843 return cluster_offset;
844 }
845 *host_offset = cluster_offset;
846 return 0;
847 } else {
848 ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
849 if (ret < 0) {
850 return ret;
851 }
852 *nb_clusters = ret;
853 return 0;
854 }
855 }
856
857 /*
858 * alloc_cluster_offset
859 *
860 * For a given offset on the virtual disk, find the cluster offset in qcow2
861 * file. If the offset is not found, allocate a new cluster.
862 *
863 * If the cluster was already allocated, m->nb_clusters is set to 0 and
864 * other fields in m are meaningless.
865 *
866 * If the cluster is newly allocated, m->nb_clusters is set to the number of
867 * contiguous clusters that have been allocated. In this case, the other
868 * fields of m are valid and contain information about the first allocated
869 * cluster.
870 *
871 * If the request conflicts with another write request in flight, the coroutine
872 * is queued and will be reentered when the dependency has completed.
873 *
874 * Return 0 on success and -errno in error cases
875 */
876 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
877 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
878 {
879 BDRVQcowState *s = bs->opaque;
880 int l2_index, ret, sectors;
881 uint64_t *l2_table;
882 unsigned int nb_clusters, keep_clusters;
883 uint64_t cluster_offset;
884
885 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
886 n_start, n_end);
887
888 /* Find L2 entry for the first involved cluster */
889 again:
890 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
891 if (ret < 0) {
892 return ret;
893 }
894
895 /*
896 * Calculate the number of clusters to look for. We stop at L2 table
897 * boundaries to keep things simple.
898 */
899 nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
900 s->l2_size - l2_index);
901
902 cluster_offset = be64_to_cpu(l2_table[l2_index]);
903
904 /*
905 * Check how many clusters are already allocated and don't need COW, and how
906 * many need a new allocation.
907 */
908 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
909 && (cluster_offset & QCOW_OFLAG_COPIED))
910 {
911 /* We keep all QCOW_OFLAG_COPIED clusters */
912 keep_clusters =
913 count_contiguous_clusters(nb_clusters, s->cluster_size,
914 &l2_table[l2_index], 0,
915 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
916 assert(keep_clusters <= nb_clusters);
917 nb_clusters -= keep_clusters;
918 } else {
919 keep_clusters = 0;
920 cluster_offset = 0;
921 }
922
923 if (nb_clusters > 0) {
924 /* For the moment, overwrite compressed clusters one by one */
925 uint64_t entry = be64_to_cpu(l2_table[l2_index + keep_clusters]);
926 if (entry & QCOW_OFLAG_COMPRESSED) {
927 nb_clusters = 1;
928 } else {
929 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table,
930 l2_index + keep_clusters);
931 }
932 }
933
934 cluster_offset &= L2E_OFFSET_MASK;
935
936 /*
937 * The L2 table isn't used any more after this. As long as the cache works
938 * synchronously, it's important to release it before calling
939 * do_alloc_cluster_offset, which may yield if we need to wait for another
940 * request to complete. If we still had the reference, we could use up the
941 * whole cache with sleeping requests.
942 */
943 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
944 if (ret < 0) {
945 return ret;
946 }
947
948 /* If there is something left to allocate, do that now */
949 if (nb_clusters > 0) {
950 uint64_t alloc_offset;
951 uint64_t alloc_cluster_offset;
952 uint64_t keep_bytes = keep_clusters * s->cluster_size;
953
954 /* Calculate start and size of allocation */
955 alloc_offset = offset + keep_bytes;
956
957 if (keep_clusters == 0) {
958 alloc_cluster_offset = 0;
959 } else {
960 alloc_cluster_offset = cluster_offset + keep_bytes;
961 }
962
963 /* Allocate, if necessary at a given offset in the image file */
964 ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
965 &nb_clusters);
966 if (ret == -EAGAIN) {
967 goto again;
968 } else if (ret < 0) {
969 goto fail;
970 }
971
972 /* save info needed for meta data update */
973 if (nb_clusters > 0) {
974 /*
975 * requested_sectors: Number of sectors from the start of the first
976 * newly allocated cluster to the end of the (possibly shortened
977 * before) write request.
978 *
979 * avail_sectors: Number of sectors from the start of the first
980 * newly allocated to the end of the last newly allocated cluster.
981 *
982 * nb_sectors: The number of sectors from the start of the first
983 * newly allocated cluster to the end of the aread that the write
984 * request actually writes to (excluding COW at the end)
985 */
986 int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
987 int avail_sectors = nb_clusters
988 << (s->cluster_bits - BDRV_SECTOR_BITS);
989 int alloc_n_start = keep_clusters == 0 ? n_start : 0;
990 int nb_sectors = MIN(requested_sectors, avail_sectors);
991
992 if (keep_clusters == 0) {
993 cluster_offset = alloc_cluster_offset;
994 }
995
996 *m = g_malloc0(sizeof(**m));
997
998 **m = (QCowL2Meta) {
999 .alloc_offset = alloc_cluster_offset,
1000 .offset = alloc_offset & ~(s->cluster_size - 1),
1001 .nb_clusters = nb_clusters,
1002 .nb_available = nb_sectors,
1003
1004 .cow_start = {
1005 .offset = 0,
1006 .nb_sectors = alloc_n_start,
1007 },
1008 .cow_end = {
1009 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1010 .nb_sectors = avail_sectors - nb_sectors,
1011 },
1012 };
1013 qemu_co_queue_init(&(*m)->dependent_requests);
1014 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1015 }
1016 }
1017
1018 /* Some cleanup work */
1019 sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
1020 if (sectors > n_end) {
1021 sectors = n_end;
1022 }
1023
1024 assert(sectors > n_start);
1025 *num = sectors - n_start;
1026 *host_offset = cluster_offset;
1027
1028 return 0;
1029
1030 fail:
1031 if (*m && (*m)->nb_clusters > 0) {
1032 QLIST_REMOVE(*m, next_in_flight);
1033 }
1034 return ret;
1035 }
1036
1037 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1038 const uint8_t *buf, int buf_size)
1039 {
1040 z_stream strm1, *strm = &strm1;
1041 int ret, out_len;
1042
1043 memset(strm, 0, sizeof(*strm));
1044
1045 strm->next_in = (uint8_t *)buf;
1046 strm->avail_in = buf_size;
1047 strm->next_out = out_buf;
1048 strm->avail_out = out_buf_size;
1049
1050 ret = inflateInit2(strm, -12);
1051 if (ret != Z_OK)
1052 return -1;
1053 ret = inflate(strm, Z_FINISH);
1054 out_len = strm->next_out - out_buf;
1055 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1056 out_len != out_buf_size) {
1057 inflateEnd(strm);
1058 return -1;
1059 }
1060 inflateEnd(strm);
1061 return 0;
1062 }
1063
1064 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1065 {
1066 BDRVQcowState *s = bs->opaque;
1067 int ret, csize, nb_csectors, sector_offset;
1068 uint64_t coffset;
1069
1070 coffset = cluster_offset & s->cluster_offset_mask;
1071 if (s->cluster_cache_offset != coffset) {
1072 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1073 sector_offset = coffset & 511;
1074 csize = nb_csectors * 512 - sector_offset;
1075 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1076 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1077 if (ret < 0) {
1078 return ret;
1079 }
1080 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1081 s->cluster_data + sector_offset, csize) < 0) {
1082 return -EIO;
1083 }
1084 s->cluster_cache_offset = coffset;
1085 }
1086 return 0;
1087 }
1088
1089 /*
1090 * This discards as many clusters of nb_clusters as possible at once (i.e.
1091 * all clusters in the same L2 table) and returns the number of discarded
1092 * clusters.
1093 */
1094 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1095 unsigned int nb_clusters)
1096 {
1097 BDRVQcowState *s = bs->opaque;
1098 uint64_t *l2_table;
1099 int l2_index;
1100 int ret;
1101 int i;
1102
1103 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1104 if (ret < 0) {
1105 return ret;
1106 }
1107
1108 /* Limit nb_clusters to one L2 table */
1109 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1110
1111 for (i = 0; i < nb_clusters; i++) {
1112 uint64_t old_offset;
1113
1114 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1115 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1116 continue;
1117 }
1118
1119 /* First remove L2 entries */
1120 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1121 l2_table[l2_index + i] = cpu_to_be64(0);
1122
1123 /* Then decrease the refcount */
1124 qcow2_free_any_clusters(bs, old_offset, 1);
1125 }
1126
1127 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1128 if (ret < 0) {
1129 return ret;
1130 }
1131
1132 return nb_clusters;
1133 }
1134
1135 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1136 int nb_sectors)
1137 {
1138 BDRVQcowState *s = bs->opaque;
1139 uint64_t end_offset;
1140 unsigned int nb_clusters;
1141 int ret;
1142
1143 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1144
1145 /* Round start up and end down */
1146 offset = align_offset(offset, s->cluster_size);
1147 end_offset &= ~(s->cluster_size - 1);
1148
1149 if (offset > end_offset) {
1150 return 0;
1151 }
1152
1153 nb_clusters = size_to_clusters(s, end_offset - offset);
1154
1155 /* Each L2 table is handled by its own loop iteration */
1156 while (nb_clusters > 0) {
1157 ret = discard_single_l2(bs, offset, nb_clusters);
1158 if (ret < 0) {
1159 return ret;
1160 }
1161
1162 nb_clusters -= ret;
1163 offset += (ret * s->cluster_size);
1164 }
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1171 * all clusters in the same L2 table) and returns the number of zeroed
1172 * clusters.
1173 */
1174 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1175 unsigned int nb_clusters)
1176 {
1177 BDRVQcowState *s = bs->opaque;
1178 uint64_t *l2_table;
1179 int l2_index;
1180 int ret;
1181 int i;
1182
1183 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1184 if (ret < 0) {
1185 return ret;
1186 }
1187
1188 /* Limit nb_clusters to one L2 table */
1189 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1190
1191 for (i = 0; i < nb_clusters; i++) {
1192 uint64_t old_offset;
1193
1194 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1195
1196 /* Update L2 entries */
1197 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1198 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1199 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1200 qcow2_free_any_clusters(bs, old_offset, 1);
1201 } else {
1202 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1203 }
1204 }
1205
1206 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1207 if (ret < 0) {
1208 return ret;
1209 }
1210
1211 return nb_clusters;
1212 }
1213
1214 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1215 {
1216 BDRVQcowState *s = bs->opaque;
1217 unsigned int nb_clusters;
1218 int ret;
1219
1220 /* The zero flag is only supported by version 3 and newer */
1221 if (s->qcow_version < 3) {
1222 return -ENOTSUP;
1223 }
1224
1225 /* Each L2 table is handled by its own loop iteration */
1226 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1227
1228 while (nb_clusters > 0) {
1229 ret = zero_single_l2(bs, offset, nb_clusters);
1230 if (ret < 0) {
1231 return ret;
1232 }
1233
1234 nb_clusters -= ret;
1235 offset += (ret * s->cluster_size);
1236 }
1237
1238 return 0;
1239 }