]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-cluster.c
qcow2: Update handle_alloc() to support L2 slices
[mirror_qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27
28 #include "qemu-common.h"
29 #include "block/block_int.h"
30 #include "block/qcow2.h"
31 #include "qemu/bswap.h"
32 #include "trace.h"
33
34 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
35 {
36 BDRVQcow2State *s = bs->opaque;
37 int new_l1_size, i, ret;
38
39 if (exact_size >= s->l1_size) {
40 return 0;
41 }
42
43 new_l1_size = exact_size;
44
45 #ifdef DEBUG_ALLOC2
46 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
47 #endif
48
49 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
50 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
51 new_l1_size * sizeof(uint64_t),
52 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
53 if (ret < 0) {
54 goto fail;
55 }
56
57 ret = bdrv_flush(bs->file->bs);
58 if (ret < 0) {
59 goto fail;
60 }
61
62 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
63 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
64 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
65 continue;
66 }
67 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
68 s->cluster_size, QCOW2_DISCARD_ALWAYS);
69 s->l1_table[i] = 0;
70 }
71 return 0;
72
73 fail:
74 /*
75 * If the write in the l1_table failed the image may contain a partially
76 * overwritten l1_table. In this case it would be better to clear the
77 * l1_table in memory to avoid possible image corruption.
78 */
79 memset(s->l1_table + new_l1_size, 0,
80 (s->l1_size - new_l1_size) * sizeof(uint64_t));
81 return ret;
82 }
83
84 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
85 bool exact_size)
86 {
87 BDRVQcow2State *s = bs->opaque;
88 int new_l1_size2, ret, i;
89 uint64_t *new_l1_table;
90 int64_t old_l1_table_offset, old_l1_size;
91 int64_t new_l1_table_offset, new_l1_size;
92 uint8_t data[12];
93
94 if (min_size <= s->l1_size)
95 return 0;
96
97 /* Do a sanity check on min_size before trying to calculate new_l1_size
98 * (this prevents overflows during the while loop for the calculation of
99 * new_l1_size) */
100 if (min_size > INT_MAX / sizeof(uint64_t)) {
101 return -EFBIG;
102 }
103
104 if (exact_size) {
105 new_l1_size = min_size;
106 } else {
107 /* Bump size up to reduce the number of times we have to grow */
108 new_l1_size = s->l1_size;
109 if (new_l1_size == 0) {
110 new_l1_size = 1;
111 }
112 while (min_size > new_l1_size) {
113 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
114 }
115 }
116
117 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
118 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
119 return -EFBIG;
120 }
121
122 #ifdef DEBUG_ALLOC2
123 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
124 s->l1_size, new_l1_size);
125 #endif
126
127 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
128 new_l1_table = qemu_try_blockalign(bs->file->bs,
129 align_offset(new_l1_size2, 512));
130 if (new_l1_table == NULL) {
131 return -ENOMEM;
132 }
133 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
134
135 if (s->l1_size) {
136 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
137 }
138
139 /* write new table (align to cluster) */
140 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
141 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
142 if (new_l1_table_offset < 0) {
143 qemu_vfree(new_l1_table);
144 return new_l1_table_offset;
145 }
146
147 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
148 if (ret < 0) {
149 goto fail;
150 }
151
152 /* the L1 position has not yet been updated, so these clusters must
153 * indeed be completely free */
154 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
155 new_l1_size2);
156 if (ret < 0) {
157 goto fail;
158 }
159
160 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
161 for(i = 0; i < s->l1_size; i++)
162 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
163 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
164 new_l1_table, new_l1_size2);
165 if (ret < 0)
166 goto fail;
167 for(i = 0; i < s->l1_size; i++)
168 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
169
170 /* set new table */
171 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
172 stl_be_p(data, new_l1_size);
173 stq_be_p(data + 4, new_l1_table_offset);
174 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
175 data, sizeof(data));
176 if (ret < 0) {
177 goto fail;
178 }
179 qemu_vfree(s->l1_table);
180 old_l1_table_offset = s->l1_table_offset;
181 s->l1_table_offset = new_l1_table_offset;
182 s->l1_table = new_l1_table;
183 old_l1_size = s->l1_size;
184 s->l1_size = new_l1_size;
185 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
186 QCOW2_DISCARD_OTHER);
187 return 0;
188 fail:
189 qemu_vfree(new_l1_table);
190 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
191 QCOW2_DISCARD_OTHER);
192 return ret;
193 }
194
195 /*
196 * l2_load
197 *
198 * @bs: The BlockDriverState
199 * @offset: A guest offset, used to calculate what slice of the L2
200 * table to load.
201 * @l2_offset: Offset to the L2 table in the image file.
202 * @l2_slice: Location to store the pointer to the L2 slice.
203 *
204 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
205 * that are loaded by the qcow2 cache). If the slice is in the cache,
206 * the cache is used; otherwise the L2 slice is loaded from the image
207 * file.
208 */
209 static int l2_load(BlockDriverState *bs, uint64_t offset,
210 uint64_t l2_offset, uint64_t **l2_slice)
211 {
212 BDRVQcow2State *s = bs->opaque;
213 int start_of_slice = sizeof(uint64_t) *
214 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
215
216 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
217 (void **)l2_slice);
218 }
219
220 /*
221 * Writes one sector of the L1 table to the disk (can't update single entries
222 * and we really don't want bdrv_pread to perform a read-modify-write)
223 */
224 #define L1_ENTRIES_PER_SECTOR (512 / 8)
225 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
226 {
227 BDRVQcow2State *s = bs->opaque;
228 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
229 int l1_start_index;
230 int i, ret;
231
232 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
233 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
234 i++)
235 {
236 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
237 }
238
239 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
240 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
241 if (ret < 0) {
242 return ret;
243 }
244
245 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
246 ret = bdrv_pwrite_sync(bs->file,
247 s->l1_table_offset + 8 * l1_start_index,
248 buf, sizeof(buf));
249 if (ret < 0) {
250 return ret;
251 }
252
253 return 0;
254 }
255
256 /*
257 * l2_allocate
258 *
259 * Allocate a new l2 entry in the file. If l1_index points to an already
260 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
261 * table) copy the contents of the old L2 table into the newly allocated one.
262 * Otherwise the new table is initialized with zeros.
263 *
264 */
265
266 static int l2_allocate(BlockDriverState *bs, int l1_index)
267 {
268 BDRVQcow2State *s = bs->opaque;
269 uint64_t old_l2_offset;
270 uint64_t *l2_slice = NULL;
271 unsigned slice, slice_size2, n_slices;
272 int64_t l2_offset;
273 int ret;
274
275 old_l2_offset = s->l1_table[l1_index];
276
277 trace_qcow2_l2_allocate(bs, l1_index);
278
279 /* allocate a new l2 entry */
280
281 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
282 if (l2_offset < 0) {
283 ret = l2_offset;
284 goto fail;
285 }
286
287 /* If we're allocating the table at offset 0 then something is wrong */
288 if (l2_offset == 0) {
289 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
290 "allocation of L2 table at offset 0");
291 ret = -EIO;
292 goto fail;
293 }
294
295 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
296 if (ret < 0) {
297 goto fail;
298 }
299
300 /* allocate a new entry in the l2 cache */
301
302 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
303 n_slices = s->cluster_size / slice_size2;
304
305 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
306 for (slice = 0; slice < n_slices; slice++) {
307 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
308 l2_offset + slice * slice_size2,
309 (void **) &l2_slice);
310 if (ret < 0) {
311 goto fail;
312 }
313
314 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
315 /* if there was no old l2 table, clear the new slice */
316 memset(l2_slice, 0, slice_size2);
317 } else {
318 uint64_t *old_slice;
319 uint64_t old_l2_slice_offset =
320 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
321
322 /* if there was an old l2 table, read a slice from the disk */
323 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
324 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
325 (void **) &old_slice);
326 if (ret < 0) {
327 goto fail;
328 }
329
330 memcpy(l2_slice, old_slice, slice_size2);
331
332 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
333 }
334
335 /* write the l2 slice to the file */
336 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
337
338 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
339 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
340 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
341 }
342
343 ret = qcow2_cache_flush(bs, s->l2_table_cache);
344 if (ret < 0) {
345 goto fail;
346 }
347
348 /* update the L1 entry */
349 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
350 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
351 ret = qcow2_write_l1_entry(bs, l1_index);
352 if (ret < 0) {
353 goto fail;
354 }
355
356 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
357 return 0;
358
359 fail:
360 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
361 if (l2_slice != NULL) {
362 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
363 }
364 s->l1_table[l1_index] = old_l2_offset;
365 if (l2_offset > 0) {
366 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
367 QCOW2_DISCARD_ALWAYS);
368 }
369 return ret;
370 }
371
372 /*
373 * Checks how many clusters in a given L2 table are contiguous in the image
374 * file. As soon as one of the flags in the bitmask stop_flags changes compared
375 * to the first cluster, the search is stopped and the cluster is not counted
376 * as contiguous. (This allows it, for example, to stop at the first compressed
377 * cluster which may require a different handling)
378 */
379 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
380 uint64_t *l2_table, uint64_t stop_flags)
381 {
382 int i;
383 QCow2ClusterType first_cluster_type;
384 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
385 uint64_t first_entry = be64_to_cpu(l2_table[0]);
386 uint64_t offset = first_entry & mask;
387
388 if (!offset) {
389 return 0;
390 }
391
392 /* must be allocated */
393 first_cluster_type = qcow2_get_cluster_type(first_entry);
394 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
395 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
396
397 for (i = 0; i < nb_clusters; i++) {
398 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
399 if (offset + (uint64_t) i * cluster_size != l2_entry) {
400 break;
401 }
402 }
403
404 return i;
405 }
406
407 /*
408 * Checks how many consecutive unallocated clusters in a given L2
409 * table have the same cluster type.
410 */
411 static int count_contiguous_clusters_unallocated(int nb_clusters,
412 uint64_t *l2_table,
413 QCow2ClusterType wanted_type)
414 {
415 int i;
416
417 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
418 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
419 for (i = 0; i < nb_clusters; i++) {
420 uint64_t entry = be64_to_cpu(l2_table[i]);
421 QCow2ClusterType type = qcow2_get_cluster_type(entry);
422
423 if (type != wanted_type) {
424 break;
425 }
426 }
427
428 return i;
429 }
430
431 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
432 uint64_t src_cluster_offset,
433 unsigned offset_in_cluster,
434 QEMUIOVector *qiov)
435 {
436 int ret;
437
438 if (qiov->size == 0) {
439 return 0;
440 }
441
442 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
443
444 if (!bs->drv) {
445 return -ENOMEDIUM;
446 }
447
448 /* Call .bdrv_co_readv() directly instead of using the public block-layer
449 * interface. This avoids double I/O throttling and request tracking,
450 * which can lead to deadlock when block layer copy-on-read is enabled.
451 */
452 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
453 qiov->size, qiov, 0);
454 if (ret < 0) {
455 return ret;
456 }
457
458 return 0;
459 }
460
461 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
462 uint64_t src_cluster_offset,
463 uint64_t cluster_offset,
464 unsigned offset_in_cluster,
465 uint8_t *buffer,
466 unsigned bytes)
467 {
468 if (bytes && bs->encrypted) {
469 BDRVQcow2State *s = bs->opaque;
470 int64_t offset = (s->crypt_physical_offset ?
471 (cluster_offset + offset_in_cluster) :
472 (src_cluster_offset + offset_in_cluster));
473 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
474 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
475 assert(s->crypto);
476 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
477 return false;
478 }
479 }
480 return true;
481 }
482
483 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
484 uint64_t cluster_offset,
485 unsigned offset_in_cluster,
486 QEMUIOVector *qiov)
487 {
488 int ret;
489
490 if (qiov->size == 0) {
491 return 0;
492 }
493
494 ret = qcow2_pre_write_overlap_check(bs, 0,
495 cluster_offset + offset_in_cluster, qiov->size);
496 if (ret < 0) {
497 return ret;
498 }
499
500 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
501 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
502 qiov->size, qiov, 0);
503 if (ret < 0) {
504 return ret;
505 }
506
507 return 0;
508 }
509
510
511 /*
512 * get_cluster_offset
513 *
514 * For a given offset of the virtual disk, find the cluster type and offset in
515 * the qcow2 file. The offset is stored in *cluster_offset.
516 *
517 * On entry, *bytes is the maximum number of contiguous bytes starting at
518 * offset that we are interested in.
519 *
520 * On exit, *bytes is the number of bytes starting at offset that have the same
521 * cluster type and (if applicable) are stored contiguously in the image file.
522 * Compressed clusters are always returned one by one.
523 *
524 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
525 * cases.
526 */
527 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
528 unsigned int *bytes, uint64_t *cluster_offset)
529 {
530 BDRVQcow2State *s = bs->opaque;
531 unsigned int l2_index;
532 uint64_t l1_index, l2_offset, *l2_slice;
533 int c;
534 unsigned int offset_in_cluster;
535 uint64_t bytes_available, bytes_needed, nb_clusters;
536 QCow2ClusterType type;
537 int ret;
538
539 offset_in_cluster = offset_into_cluster(s, offset);
540 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
541
542 /* compute how many bytes there are between the start of the cluster
543 * containing offset and the end of the l2 slice that contains
544 * the entry pointing to it */
545 bytes_available =
546 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
547 << s->cluster_bits;
548
549 if (bytes_needed > bytes_available) {
550 bytes_needed = bytes_available;
551 }
552
553 *cluster_offset = 0;
554
555 /* seek to the l2 offset in the l1 table */
556
557 l1_index = offset_to_l1_index(s, offset);
558 if (l1_index >= s->l1_size) {
559 type = QCOW2_CLUSTER_UNALLOCATED;
560 goto out;
561 }
562
563 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
564 if (!l2_offset) {
565 type = QCOW2_CLUSTER_UNALLOCATED;
566 goto out;
567 }
568
569 if (offset_into_cluster(s, l2_offset)) {
570 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
571 " unaligned (L1 index: %#" PRIx64 ")",
572 l2_offset, l1_index);
573 return -EIO;
574 }
575
576 /* load the l2 slice in memory */
577
578 ret = l2_load(bs, offset, l2_offset, &l2_slice);
579 if (ret < 0) {
580 return ret;
581 }
582
583 /* find the cluster offset for the given disk offset */
584
585 l2_index = offset_to_l2_slice_index(s, offset);
586 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
587
588 nb_clusters = size_to_clusters(s, bytes_needed);
589 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
590 * integers; the minimum cluster size is 512, so this assertion is always
591 * true */
592 assert(nb_clusters <= INT_MAX);
593
594 type = qcow2_get_cluster_type(*cluster_offset);
595 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
596 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
597 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
598 " in pre-v3 image (L2 offset: %#" PRIx64
599 ", L2 index: %#x)", l2_offset, l2_index);
600 ret = -EIO;
601 goto fail;
602 }
603 switch (type) {
604 case QCOW2_CLUSTER_COMPRESSED:
605 /* Compressed clusters can only be processed one by one */
606 c = 1;
607 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
608 break;
609 case QCOW2_CLUSTER_ZERO_PLAIN:
610 case QCOW2_CLUSTER_UNALLOCATED:
611 /* how many empty clusters ? */
612 c = count_contiguous_clusters_unallocated(nb_clusters,
613 &l2_slice[l2_index], type);
614 *cluster_offset = 0;
615 break;
616 case QCOW2_CLUSTER_ZERO_ALLOC:
617 case QCOW2_CLUSTER_NORMAL:
618 /* how many allocated clusters ? */
619 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
620 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
621 *cluster_offset &= L2E_OFFSET_MASK;
622 if (offset_into_cluster(s, *cluster_offset)) {
623 qcow2_signal_corruption(bs, true, -1, -1,
624 "Cluster allocation offset %#"
625 PRIx64 " unaligned (L2 offset: %#" PRIx64
626 ", L2 index: %#x)", *cluster_offset,
627 l2_offset, l2_index);
628 ret = -EIO;
629 goto fail;
630 }
631 break;
632 default:
633 abort();
634 }
635
636 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
637
638 bytes_available = (int64_t)c * s->cluster_size;
639
640 out:
641 if (bytes_available > bytes_needed) {
642 bytes_available = bytes_needed;
643 }
644
645 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
646 * subtracting offset_in_cluster will therefore definitely yield something
647 * not exceeding UINT_MAX */
648 assert(bytes_available - offset_in_cluster <= UINT_MAX);
649 *bytes = bytes_available - offset_in_cluster;
650
651 return type;
652
653 fail:
654 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
655 return ret;
656 }
657
658 /*
659 * get_cluster_table
660 *
661 * for a given disk offset, load (and allocate if needed)
662 * the appropriate slice of its l2 table.
663 *
664 * the cluster index in the l2 slice is given to the caller.
665 *
666 * Returns 0 on success, -errno in failure case
667 */
668 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
669 uint64_t **new_l2_slice,
670 int *new_l2_index)
671 {
672 BDRVQcow2State *s = bs->opaque;
673 unsigned int l2_index;
674 uint64_t l1_index, l2_offset;
675 uint64_t *l2_slice = NULL;
676 int ret;
677
678 /* seek to the l2 offset in the l1 table */
679
680 l1_index = offset_to_l1_index(s, offset);
681 if (l1_index >= s->l1_size) {
682 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
683 if (ret < 0) {
684 return ret;
685 }
686 }
687
688 assert(l1_index < s->l1_size);
689 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
690 if (offset_into_cluster(s, l2_offset)) {
691 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
692 " unaligned (L1 index: %#" PRIx64 ")",
693 l2_offset, l1_index);
694 return -EIO;
695 }
696
697 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
698 /* First allocate a new L2 table (and do COW if needed) */
699 ret = l2_allocate(bs, l1_index);
700 if (ret < 0) {
701 return ret;
702 }
703
704 /* Then decrease the refcount of the old table */
705 if (l2_offset) {
706 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
707 QCOW2_DISCARD_OTHER);
708 }
709
710 /* Get the offset of the newly-allocated l2 table */
711 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
712 assert(offset_into_cluster(s, l2_offset) == 0);
713 }
714
715 /* load the l2 slice in memory */
716 ret = l2_load(bs, offset, l2_offset, &l2_slice);
717 if (ret < 0) {
718 return ret;
719 }
720
721 /* find the cluster offset for the given disk offset */
722
723 l2_index = offset_to_l2_slice_index(s, offset);
724
725 *new_l2_slice = l2_slice;
726 *new_l2_index = l2_index;
727
728 return 0;
729 }
730
731 /*
732 * alloc_compressed_cluster_offset
733 *
734 * For a given offset of the disk image, return cluster offset in
735 * qcow2 file.
736 *
737 * If the offset is not found, allocate a new compressed cluster.
738 *
739 * Return the cluster offset if successful,
740 * Return 0, otherwise.
741 *
742 */
743
744 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
745 uint64_t offset,
746 int compressed_size)
747 {
748 BDRVQcow2State *s = bs->opaque;
749 int l2_index, ret;
750 uint64_t *l2_table;
751 int64_t cluster_offset;
752 int nb_csectors;
753
754 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
755 if (ret < 0) {
756 return 0;
757 }
758
759 /* Compression can't overwrite anything. Fail if the cluster was already
760 * allocated. */
761 cluster_offset = be64_to_cpu(l2_table[l2_index]);
762 if (cluster_offset & L2E_OFFSET_MASK) {
763 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
764 return 0;
765 }
766
767 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
768 if (cluster_offset < 0) {
769 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
770 return 0;
771 }
772
773 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
774 (cluster_offset >> 9);
775
776 cluster_offset |= QCOW_OFLAG_COMPRESSED |
777 ((uint64_t)nb_csectors << s->csize_shift);
778
779 /* update L2 table */
780
781 /* compressed clusters never have the copied flag */
782
783 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
784 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
785 l2_table[l2_index] = cpu_to_be64(cluster_offset);
786 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
787
788 return cluster_offset;
789 }
790
791 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
792 {
793 BDRVQcow2State *s = bs->opaque;
794 Qcow2COWRegion *start = &m->cow_start;
795 Qcow2COWRegion *end = &m->cow_end;
796 unsigned buffer_size;
797 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
798 bool merge_reads;
799 uint8_t *start_buffer, *end_buffer;
800 QEMUIOVector qiov;
801 int ret;
802
803 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
804 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
805 assert(start->offset + start->nb_bytes <= end->offset);
806 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
807
808 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
809 return 0;
810 }
811
812 /* If we have to read both the start and end COW regions and the
813 * middle region is not too large then perform just one read
814 * operation */
815 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
816 if (merge_reads) {
817 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
818 } else {
819 /* If we have to do two reads, add some padding in the middle
820 * if necessary to make sure that the end region is optimally
821 * aligned. */
822 size_t align = bdrv_opt_mem_align(bs);
823 assert(align > 0 && align <= UINT_MAX);
824 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
825 UINT_MAX - end->nb_bytes);
826 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
827 }
828
829 /* Reserve a buffer large enough to store all the data that we're
830 * going to read */
831 start_buffer = qemu_try_blockalign(bs, buffer_size);
832 if (start_buffer == NULL) {
833 return -ENOMEM;
834 }
835 /* The part of the buffer where the end region is located */
836 end_buffer = start_buffer + buffer_size - end->nb_bytes;
837
838 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
839
840 qemu_co_mutex_unlock(&s->lock);
841 /* First we read the existing data from both COW regions. We
842 * either read the whole region in one go, or the start and end
843 * regions separately. */
844 if (merge_reads) {
845 qemu_iovec_add(&qiov, start_buffer, buffer_size);
846 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
847 } else {
848 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
849 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
850 if (ret < 0) {
851 goto fail;
852 }
853
854 qemu_iovec_reset(&qiov);
855 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
856 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
857 }
858 if (ret < 0) {
859 goto fail;
860 }
861
862 /* Encrypt the data if necessary before writing it */
863 if (bs->encrypted) {
864 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
865 start->offset, start_buffer,
866 start->nb_bytes) ||
867 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
868 end->offset, end_buffer, end->nb_bytes)) {
869 ret = -EIO;
870 goto fail;
871 }
872 }
873
874 /* And now we can write everything. If we have the guest data we
875 * can write everything in one single operation */
876 if (m->data_qiov) {
877 qemu_iovec_reset(&qiov);
878 if (start->nb_bytes) {
879 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
880 }
881 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
882 if (end->nb_bytes) {
883 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
884 }
885 /* NOTE: we have a write_aio blkdebug event here followed by
886 * a cow_write one in do_perform_cow_write(), but there's only
887 * one single I/O operation */
888 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
889 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
890 } else {
891 /* If there's no guest data then write both COW regions separately */
892 qemu_iovec_reset(&qiov);
893 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
894 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
895 if (ret < 0) {
896 goto fail;
897 }
898
899 qemu_iovec_reset(&qiov);
900 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
901 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
902 }
903
904 fail:
905 qemu_co_mutex_lock(&s->lock);
906
907 /*
908 * Before we update the L2 table to actually point to the new cluster, we
909 * need to be sure that the refcounts have been increased and COW was
910 * handled.
911 */
912 if (ret == 0) {
913 qcow2_cache_depends_on_flush(s->l2_table_cache);
914 }
915
916 qemu_vfree(start_buffer);
917 qemu_iovec_destroy(&qiov);
918 return ret;
919 }
920
921 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
922 {
923 BDRVQcow2State *s = bs->opaque;
924 int i, j = 0, l2_index, ret;
925 uint64_t *old_cluster, *l2_slice;
926 uint64_t cluster_offset = m->alloc_offset;
927
928 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
929 assert(m->nb_clusters > 0);
930
931 old_cluster = g_try_new(uint64_t, m->nb_clusters);
932 if (old_cluster == NULL) {
933 ret = -ENOMEM;
934 goto err;
935 }
936
937 /* copy content of unmodified sectors */
938 ret = perform_cow(bs, m);
939 if (ret < 0) {
940 goto err;
941 }
942
943 /* Update L2 table. */
944 if (s->use_lazy_refcounts) {
945 qcow2_mark_dirty(bs);
946 }
947 if (qcow2_need_accurate_refcounts(s)) {
948 qcow2_cache_set_dependency(bs, s->l2_table_cache,
949 s->refcount_block_cache);
950 }
951
952 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
953 if (ret < 0) {
954 goto err;
955 }
956 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
957
958 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
959 for (i = 0; i < m->nb_clusters; i++) {
960 /* if two concurrent writes happen to the same unallocated cluster
961 * each write allocates separate cluster and writes data concurrently.
962 * The first one to complete updates l2 table with pointer to its
963 * cluster the second one has to do RMW (which is done above by
964 * perform_cow()), update l2 table with its cluster pointer and free
965 * old cluster. This is what this loop does */
966 if (l2_slice[l2_index + i] != 0) {
967 old_cluster[j++] = l2_slice[l2_index + i];
968 }
969
970 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
971 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
972 }
973
974
975 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
976
977 /*
978 * If this was a COW, we need to decrease the refcount of the old cluster.
979 *
980 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
981 * clusters), the next write will reuse them anyway.
982 */
983 if (!m->keep_old_clusters && j != 0) {
984 for (i = 0; i < j; i++) {
985 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
986 QCOW2_DISCARD_NEVER);
987 }
988 }
989
990 ret = 0;
991 err:
992 g_free(old_cluster);
993 return ret;
994 }
995
996 /*
997 * Returns the number of contiguous clusters that can be used for an allocating
998 * write, but require COW to be performed (this includes yet unallocated space,
999 * which must copy from the backing file)
1000 */
1001 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
1002 uint64_t *l2_table, int l2_index)
1003 {
1004 int i;
1005
1006 for (i = 0; i < nb_clusters; i++) {
1007 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1008 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1009
1010 switch(cluster_type) {
1011 case QCOW2_CLUSTER_NORMAL:
1012 if (l2_entry & QCOW_OFLAG_COPIED) {
1013 goto out;
1014 }
1015 break;
1016 case QCOW2_CLUSTER_UNALLOCATED:
1017 case QCOW2_CLUSTER_COMPRESSED:
1018 case QCOW2_CLUSTER_ZERO_PLAIN:
1019 case QCOW2_CLUSTER_ZERO_ALLOC:
1020 break;
1021 default:
1022 abort();
1023 }
1024 }
1025
1026 out:
1027 assert(i <= nb_clusters);
1028 return i;
1029 }
1030
1031 /*
1032 * Check if there already is an AIO write request in flight which allocates
1033 * the same cluster. In this case we need to wait until the previous
1034 * request has completed and updated the L2 table accordingly.
1035 *
1036 * Returns:
1037 * 0 if there was no dependency. *cur_bytes indicates the number of
1038 * bytes from guest_offset that can be read before the next
1039 * dependency must be processed (or the request is complete)
1040 *
1041 * -EAGAIN if we had to wait for another request, previously gathered
1042 * information on cluster allocation may be invalid now. The caller
1043 * must start over anyway, so consider *cur_bytes undefined.
1044 */
1045 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1046 uint64_t *cur_bytes, QCowL2Meta **m)
1047 {
1048 BDRVQcow2State *s = bs->opaque;
1049 QCowL2Meta *old_alloc;
1050 uint64_t bytes = *cur_bytes;
1051
1052 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1053
1054 uint64_t start = guest_offset;
1055 uint64_t end = start + bytes;
1056 uint64_t old_start = l2meta_cow_start(old_alloc);
1057 uint64_t old_end = l2meta_cow_end(old_alloc);
1058
1059 if (end <= old_start || start >= old_end) {
1060 /* No intersection */
1061 } else {
1062 if (start < old_start) {
1063 /* Stop at the start of a running allocation */
1064 bytes = old_start - start;
1065 } else {
1066 bytes = 0;
1067 }
1068
1069 /* Stop if already an l2meta exists. After yielding, it wouldn't
1070 * be valid any more, so we'd have to clean up the old L2Metas
1071 * and deal with requests depending on them before starting to
1072 * gather new ones. Not worth the trouble. */
1073 if (bytes == 0 && *m) {
1074 *cur_bytes = 0;
1075 return 0;
1076 }
1077
1078 if (bytes == 0) {
1079 /* Wait for the dependency to complete. We need to recheck
1080 * the free/allocated clusters when we continue. */
1081 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1082 return -EAGAIN;
1083 }
1084 }
1085 }
1086
1087 /* Make sure that existing clusters and new allocations are only used up to
1088 * the next dependency if we shortened the request above */
1089 *cur_bytes = bytes;
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * Checks how many already allocated clusters that don't require a copy on
1096 * write there are at the given guest_offset (up to *bytes). If
1097 * *host_offset is not zero, only physically contiguous clusters beginning at
1098 * this host offset are counted.
1099 *
1100 * Note that guest_offset may not be cluster aligned. In this case, the
1101 * returned *host_offset points to exact byte referenced by guest_offset and
1102 * therefore isn't cluster aligned as well.
1103 *
1104 * Returns:
1105 * 0: if no allocated clusters are available at the given offset.
1106 * *bytes is normally unchanged. It is set to 0 if the cluster
1107 * is allocated and doesn't need COW, but doesn't have the right
1108 * physical offset.
1109 *
1110 * 1: if allocated clusters that don't require a COW are available at
1111 * the requested offset. *bytes may have decreased and describes
1112 * the length of the area that can be written to.
1113 *
1114 * -errno: in error cases
1115 */
1116 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1117 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1118 {
1119 BDRVQcow2State *s = bs->opaque;
1120 int l2_index;
1121 uint64_t cluster_offset;
1122 uint64_t *l2_slice;
1123 uint64_t nb_clusters;
1124 unsigned int keep_clusters;
1125 int ret;
1126
1127 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1128 *bytes);
1129
1130 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
1131 == offset_into_cluster(s, *host_offset));
1132
1133 /*
1134 * Calculate the number of clusters to look for. We stop at L2 slice
1135 * boundaries to keep things simple.
1136 */
1137 nb_clusters =
1138 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1139
1140 l2_index = offset_to_l2_slice_index(s, guest_offset);
1141 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1142 assert(nb_clusters <= INT_MAX);
1143
1144 /* Find L2 entry for the first involved cluster */
1145 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1146 if (ret < 0) {
1147 return ret;
1148 }
1149
1150 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1151
1152 /* Check how many clusters are already allocated and don't need COW */
1153 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1154 && (cluster_offset & QCOW_OFLAG_COPIED))
1155 {
1156 /* If a specific host_offset is required, check it */
1157 bool offset_matches =
1158 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1159
1160 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1161 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1162 "%#llx unaligned (guest offset: %#" PRIx64
1163 ")", cluster_offset & L2E_OFFSET_MASK,
1164 guest_offset);
1165 ret = -EIO;
1166 goto out;
1167 }
1168
1169 if (*host_offset != 0 && !offset_matches) {
1170 *bytes = 0;
1171 ret = 0;
1172 goto out;
1173 }
1174
1175 /* We keep all QCOW_OFLAG_COPIED clusters */
1176 keep_clusters =
1177 count_contiguous_clusters(nb_clusters, s->cluster_size,
1178 &l2_slice[l2_index],
1179 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1180 assert(keep_clusters <= nb_clusters);
1181
1182 *bytes = MIN(*bytes,
1183 keep_clusters * s->cluster_size
1184 - offset_into_cluster(s, guest_offset));
1185
1186 ret = 1;
1187 } else {
1188 ret = 0;
1189 }
1190
1191 /* Cleanup */
1192 out:
1193 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1194
1195 /* Only return a host offset if we actually made progress. Otherwise we
1196 * would make requirements for handle_alloc() that it can't fulfill */
1197 if (ret > 0) {
1198 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1199 + offset_into_cluster(s, guest_offset);
1200 }
1201
1202 return ret;
1203 }
1204
1205 /*
1206 * Allocates new clusters for the given guest_offset.
1207 *
1208 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1209 * contain the number of clusters that have been allocated and are contiguous
1210 * in the image file.
1211 *
1212 * If *host_offset is non-zero, it specifies the offset in the image file at
1213 * which the new clusters must start. *nb_clusters can be 0 on return in this
1214 * case if the cluster at host_offset is already in use. If *host_offset is
1215 * zero, the clusters can be allocated anywhere in the image file.
1216 *
1217 * *host_offset is updated to contain the offset into the image file at which
1218 * the first allocated cluster starts.
1219 *
1220 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1221 * function has been waiting for another request and the allocation must be
1222 * restarted, but the whole request should not be failed.
1223 */
1224 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1225 uint64_t *host_offset, uint64_t *nb_clusters)
1226 {
1227 BDRVQcow2State *s = bs->opaque;
1228
1229 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1230 *host_offset, *nb_clusters);
1231
1232 /* Allocate new clusters */
1233 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1234 if (*host_offset == 0) {
1235 int64_t cluster_offset =
1236 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1237 if (cluster_offset < 0) {
1238 return cluster_offset;
1239 }
1240 *host_offset = cluster_offset;
1241 return 0;
1242 } else {
1243 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1244 if (ret < 0) {
1245 return ret;
1246 }
1247 *nb_clusters = ret;
1248 return 0;
1249 }
1250 }
1251
1252 /*
1253 * Allocates new clusters for an area that either is yet unallocated or needs a
1254 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1255 * the new allocation can match the specified host offset.
1256 *
1257 * Note that guest_offset may not be cluster aligned. In this case, the
1258 * returned *host_offset points to exact byte referenced by guest_offset and
1259 * therefore isn't cluster aligned as well.
1260 *
1261 * Returns:
1262 * 0: if no clusters could be allocated. *bytes is set to 0,
1263 * *host_offset is left unchanged.
1264 *
1265 * 1: if new clusters were allocated. *bytes may be decreased if the
1266 * new allocation doesn't cover all of the requested area.
1267 * *host_offset is updated to contain the host offset of the first
1268 * newly allocated cluster.
1269 *
1270 * -errno: in error cases
1271 */
1272 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1273 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1274 {
1275 BDRVQcow2State *s = bs->opaque;
1276 int l2_index;
1277 uint64_t *l2_slice;
1278 uint64_t entry;
1279 uint64_t nb_clusters;
1280 int ret;
1281 bool keep_old_clusters = false;
1282
1283 uint64_t alloc_cluster_offset = 0;
1284
1285 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1286 *bytes);
1287 assert(*bytes > 0);
1288
1289 /*
1290 * Calculate the number of clusters to look for. We stop at L2 slice
1291 * boundaries to keep things simple.
1292 */
1293 nb_clusters =
1294 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1295
1296 l2_index = offset_to_l2_slice_index(s, guest_offset);
1297 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1298 assert(nb_clusters <= INT_MAX);
1299
1300 /* Find L2 entry for the first involved cluster */
1301 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1302 if (ret < 0) {
1303 return ret;
1304 }
1305
1306 entry = be64_to_cpu(l2_slice[l2_index]);
1307
1308 /* For the moment, overwrite compressed clusters one by one */
1309 if (entry & QCOW_OFLAG_COMPRESSED) {
1310 nb_clusters = 1;
1311 } else {
1312 nb_clusters = count_cow_clusters(s, nb_clusters, l2_slice, l2_index);
1313 }
1314
1315 /* This function is only called when there were no non-COW clusters, so if
1316 * we can't find any unallocated or COW clusters either, something is
1317 * wrong with our code. */
1318 assert(nb_clusters > 0);
1319
1320 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1321 (entry & QCOW_OFLAG_COPIED) &&
1322 (!*host_offset ||
1323 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1324 {
1325 int preallocated_nb_clusters;
1326
1327 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1328 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1329 "cluster offset %#llx unaligned (guest "
1330 "offset: %#" PRIx64 ")",
1331 entry & L2E_OFFSET_MASK, guest_offset);
1332 ret = -EIO;
1333 goto fail;
1334 }
1335
1336 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1337 * would be fine, too, but count_cow_clusters() above has limited
1338 * nb_clusters already to a range of COW clusters */
1339 preallocated_nb_clusters =
1340 count_contiguous_clusters(nb_clusters, s->cluster_size,
1341 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1342 assert(preallocated_nb_clusters > 0);
1343
1344 nb_clusters = preallocated_nb_clusters;
1345 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1346
1347 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1348 * should not free them. */
1349 keep_old_clusters = true;
1350 }
1351
1352 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1353
1354 if (!alloc_cluster_offset) {
1355 /* Allocate, if necessary at a given offset in the image file */
1356 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1357 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1358 &nb_clusters);
1359 if (ret < 0) {
1360 goto fail;
1361 }
1362
1363 /* Can't extend contiguous allocation */
1364 if (nb_clusters == 0) {
1365 *bytes = 0;
1366 return 0;
1367 }
1368
1369 /* !*host_offset would overwrite the image header and is reserved for
1370 * "no host offset preferred". If 0 was a valid host offset, it'd
1371 * trigger the following overlap check; do that now to avoid having an
1372 * invalid value in *host_offset. */
1373 if (!alloc_cluster_offset) {
1374 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1375 nb_clusters * s->cluster_size);
1376 assert(ret < 0);
1377 goto fail;
1378 }
1379 }
1380
1381 /*
1382 * Save info needed for meta data update.
1383 *
1384 * requested_bytes: Number of bytes from the start of the first
1385 * newly allocated cluster to the end of the (possibly shortened
1386 * before) write request.
1387 *
1388 * avail_bytes: Number of bytes from the start of the first
1389 * newly allocated to the end of the last newly allocated cluster.
1390 *
1391 * nb_bytes: The number of bytes from the start of the first
1392 * newly allocated cluster to the end of the area that the write
1393 * request actually writes to (excluding COW at the end)
1394 */
1395 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1396 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1397 int nb_bytes = MIN(requested_bytes, avail_bytes);
1398 QCowL2Meta *old_m = *m;
1399
1400 *m = g_malloc0(sizeof(**m));
1401
1402 **m = (QCowL2Meta) {
1403 .next = old_m,
1404
1405 .alloc_offset = alloc_cluster_offset,
1406 .offset = start_of_cluster(s, guest_offset),
1407 .nb_clusters = nb_clusters,
1408
1409 .keep_old_clusters = keep_old_clusters,
1410
1411 .cow_start = {
1412 .offset = 0,
1413 .nb_bytes = offset_into_cluster(s, guest_offset),
1414 },
1415 .cow_end = {
1416 .offset = nb_bytes,
1417 .nb_bytes = avail_bytes - nb_bytes,
1418 },
1419 };
1420 qemu_co_queue_init(&(*m)->dependent_requests);
1421 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1422
1423 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1424 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1425 assert(*bytes != 0);
1426
1427 return 1;
1428
1429 fail:
1430 if (*m && (*m)->nb_clusters > 0) {
1431 QLIST_REMOVE(*m, next_in_flight);
1432 }
1433 return ret;
1434 }
1435
1436 /*
1437 * alloc_cluster_offset
1438 *
1439 * For a given offset on the virtual disk, find the cluster offset in qcow2
1440 * file. If the offset is not found, allocate a new cluster.
1441 *
1442 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1443 * other fields in m are meaningless.
1444 *
1445 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1446 * contiguous clusters that have been allocated. In this case, the other
1447 * fields of m are valid and contain information about the first allocated
1448 * cluster.
1449 *
1450 * If the request conflicts with another write request in flight, the coroutine
1451 * is queued and will be reentered when the dependency has completed.
1452 *
1453 * Return 0 on success and -errno in error cases
1454 */
1455 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1456 unsigned int *bytes, uint64_t *host_offset,
1457 QCowL2Meta **m)
1458 {
1459 BDRVQcow2State *s = bs->opaque;
1460 uint64_t start, remaining;
1461 uint64_t cluster_offset;
1462 uint64_t cur_bytes;
1463 int ret;
1464
1465 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1466
1467 again:
1468 start = offset;
1469 remaining = *bytes;
1470 cluster_offset = 0;
1471 *host_offset = 0;
1472 cur_bytes = 0;
1473 *m = NULL;
1474
1475 while (true) {
1476
1477 if (!*host_offset) {
1478 *host_offset = start_of_cluster(s, cluster_offset);
1479 }
1480
1481 assert(remaining >= cur_bytes);
1482
1483 start += cur_bytes;
1484 remaining -= cur_bytes;
1485 cluster_offset += cur_bytes;
1486
1487 if (remaining == 0) {
1488 break;
1489 }
1490
1491 cur_bytes = remaining;
1492
1493 /*
1494 * Now start gathering as many contiguous clusters as possible:
1495 *
1496 * 1. Check for overlaps with in-flight allocations
1497 *
1498 * a) Overlap not in the first cluster -> shorten this request and
1499 * let the caller handle the rest in its next loop iteration.
1500 *
1501 * b) Real overlaps of two requests. Yield and restart the search
1502 * for contiguous clusters (the situation could have changed
1503 * while we were sleeping)
1504 *
1505 * c) TODO: Request starts in the same cluster as the in-flight
1506 * allocation ends. Shorten the COW of the in-fight allocation,
1507 * set cluster_offset to write to the same cluster and set up
1508 * the right synchronisation between the in-flight request and
1509 * the new one.
1510 */
1511 ret = handle_dependencies(bs, start, &cur_bytes, m);
1512 if (ret == -EAGAIN) {
1513 /* Currently handle_dependencies() doesn't yield if we already had
1514 * an allocation. If it did, we would have to clean up the L2Meta
1515 * structs before starting over. */
1516 assert(*m == NULL);
1517 goto again;
1518 } else if (ret < 0) {
1519 return ret;
1520 } else if (cur_bytes == 0) {
1521 break;
1522 } else {
1523 /* handle_dependencies() may have decreased cur_bytes (shortened
1524 * the allocations below) so that the next dependency is processed
1525 * correctly during the next loop iteration. */
1526 }
1527
1528 /*
1529 * 2. Count contiguous COPIED clusters.
1530 */
1531 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1532 if (ret < 0) {
1533 return ret;
1534 } else if (ret) {
1535 continue;
1536 } else if (cur_bytes == 0) {
1537 break;
1538 }
1539
1540 /*
1541 * 3. If the request still hasn't completed, allocate new clusters,
1542 * considering any cluster_offset of steps 1c or 2.
1543 */
1544 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1545 if (ret < 0) {
1546 return ret;
1547 } else if (ret) {
1548 continue;
1549 } else {
1550 assert(cur_bytes == 0);
1551 break;
1552 }
1553 }
1554
1555 *bytes -= remaining;
1556 assert(*bytes > 0);
1557 assert(*host_offset != 0);
1558
1559 return 0;
1560 }
1561
1562 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1563 const uint8_t *buf, int buf_size)
1564 {
1565 z_stream strm1, *strm = &strm1;
1566 int ret, out_len;
1567
1568 memset(strm, 0, sizeof(*strm));
1569
1570 strm->next_in = (uint8_t *)buf;
1571 strm->avail_in = buf_size;
1572 strm->next_out = out_buf;
1573 strm->avail_out = out_buf_size;
1574
1575 ret = inflateInit2(strm, -12);
1576 if (ret != Z_OK)
1577 return -1;
1578 ret = inflate(strm, Z_FINISH);
1579 out_len = strm->next_out - out_buf;
1580 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1581 out_len != out_buf_size) {
1582 inflateEnd(strm);
1583 return -1;
1584 }
1585 inflateEnd(strm);
1586 return 0;
1587 }
1588
1589 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1590 {
1591 BDRVQcow2State *s = bs->opaque;
1592 int ret, csize, nb_csectors, sector_offset;
1593 uint64_t coffset;
1594
1595 coffset = cluster_offset & s->cluster_offset_mask;
1596 if (s->cluster_cache_offset != coffset) {
1597 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1598 sector_offset = coffset & 511;
1599 csize = nb_csectors * 512 - sector_offset;
1600
1601 /* Allocate buffers on first decompress operation, most images are
1602 * uncompressed and the memory overhead can be avoided. The buffers
1603 * are freed in .bdrv_close().
1604 */
1605 if (!s->cluster_data) {
1606 /* one more sector for decompressed data alignment */
1607 s->cluster_data = qemu_try_blockalign(bs->file->bs,
1608 QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1609 if (!s->cluster_data) {
1610 return -ENOMEM;
1611 }
1612 }
1613 if (!s->cluster_cache) {
1614 s->cluster_cache = g_malloc(s->cluster_size);
1615 }
1616
1617 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1618 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1619 nb_csectors);
1620 if (ret < 0) {
1621 return ret;
1622 }
1623 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1624 s->cluster_data + sector_offset, csize) < 0) {
1625 return -EIO;
1626 }
1627 s->cluster_cache_offset = coffset;
1628 }
1629 return 0;
1630 }
1631
1632 /*
1633 * This discards as many clusters of nb_clusters as possible at once (i.e.
1634 * all clusters in the same L2 table) and returns the number of discarded
1635 * clusters.
1636 */
1637 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1638 uint64_t nb_clusters, enum qcow2_discard_type type,
1639 bool full_discard)
1640 {
1641 BDRVQcow2State *s = bs->opaque;
1642 uint64_t *l2_table;
1643 int l2_index;
1644 int ret;
1645 int i;
1646
1647 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1648 if (ret < 0) {
1649 return ret;
1650 }
1651
1652 /* Limit nb_clusters to one L2 table */
1653 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1654 assert(nb_clusters <= INT_MAX);
1655
1656 for (i = 0; i < nb_clusters; i++) {
1657 uint64_t old_l2_entry;
1658
1659 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1660
1661 /*
1662 * If full_discard is false, make sure that a discarded area reads back
1663 * as zeroes for v3 images (we cannot do it for v2 without actually
1664 * writing a zero-filled buffer). We can skip the operation if the
1665 * cluster is already marked as zero, or if it's unallocated and we
1666 * don't have a backing file.
1667 *
1668 * TODO We might want to use bdrv_block_status(bs) here, but we're
1669 * holding s->lock, so that doesn't work today.
1670 *
1671 * If full_discard is true, the sector should not read back as zeroes,
1672 * but rather fall through to the backing file.
1673 */
1674 switch (qcow2_get_cluster_type(old_l2_entry)) {
1675 case QCOW2_CLUSTER_UNALLOCATED:
1676 if (full_discard || !bs->backing) {
1677 continue;
1678 }
1679 break;
1680
1681 case QCOW2_CLUSTER_ZERO_PLAIN:
1682 if (!full_discard) {
1683 continue;
1684 }
1685 break;
1686
1687 case QCOW2_CLUSTER_ZERO_ALLOC:
1688 case QCOW2_CLUSTER_NORMAL:
1689 case QCOW2_CLUSTER_COMPRESSED:
1690 break;
1691
1692 default:
1693 abort();
1694 }
1695
1696 /* First remove L2 entries */
1697 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1698 if (!full_discard && s->qcow_version >= 3) {
1699 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1700 } else {
1701 l2_table[l2_index + i] = cpu_to_be64(0);
1702 }
1703
1704 /* Then decrease the refcount */
1705 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1706 }
1707
1708 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
1709
1710 return nb_clusters;
1711 }
1712
1713 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1714 uint64_t bytes, enum qcow2_discard_type type,
1715 bool full_discard)
1716 {
1717 BDRVQcow2State *s = bs->opaque;
1718 uint64_t end_offset = offset + bytes;
1719 uint64_t nb_clusters;
1720 int64_t cleared;
1721 int ret;
1722
1723 /* Caller must pass aligned values, except at image end */
1724 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1725 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1726 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1727
1728 nb_clusters = size_to_clusters(s, bytes);
1729
1730 s->cache_discards = true;
1731
1732 /* Each L2 table is handled by its own loop iteration */
1733 while (nb_clusters > 0) {
1734 cleared = discard_single_l2(bs, offset, nb_clusters, type,
1735 full_discard);
1736 if (cleared < 0) {
1737 ret = cleared;
1738 goto fail;
1739 }
1740
1741 nb_clusters -= cleared;
1742 offset += (cleared * s->cluster_size);
1743 }
1744
1745 ret = 0;
1746 fail:
1747 s->cache_discards = false;
1748 qcow2_process_discards(bs, ret);
1749
1750 return ret;
1751 }
1752
1753 /*
1754 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1755 * all clusters in the same L2 table) and returns the number of zeroed
1756 * clusters.
1757 */
1758 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1759 uint64_t nb_clusters, int flags)
1760 {
1761 BDRVQcow2State *s = bs->opaque;
1762 uint64_t *l2_table;
1763 int l2_index;
1764 int ret;
1765 int i;
1766 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1767
1768 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1769 if (ret < 0) {
1770 return ret;
1771 }
1772
1773 /* Limit nb_clusters to one L2 table */
1774 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1775 assert(nb_clusters <= INT_MAX);
1776
1777 for (i = 0; i < nb_clusters; i++) {
1778 uint64_t old_offset;
1779 QCow2ClusterType cluster_type;
1780
1781 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1782
1783 /*
1784 * Minimize L2 changes if the cluster already reads back as
1785 * zeroes with correct allocation.
1786 */
1787 cluster_type = qcow2_get_cluster_type(old_offset);
1788 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1789 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1790 continue;
1791 }
1792
1793 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1794 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1795 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1796 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1797 } else {
1798 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1799 }
1800 }
1801
1802 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
1803
1804 return nb_clusters;
1805 }
1806
1807 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1808 uint64_t bytes, int flags)
1809 {
1810 BDRVQcow2State *s = bs->opaque;
1811 uint64_t end_offset = offset + bytes;
1812 uint64_t nb_clusters;
1813 int64_t cleared;
1814 int ret;
1815
1816 /* Caller must pass aligned values, except at image end */
1817 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1818 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1819 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1820
1821 /* The zero flag is only supported by version 3 and newer */
1822 if (s->qcow_version < 3) {
1823 return -ENOTSUP;
1824 }
1825
1826 /* Each L2 table is handled by its own loop iteration */
1827 nb_clusters = size_to_clusters(s, bytes);
1828
1829 s->cache_discards = true;
1830
1831 while (nb_clusters > 0) {
1832 cleared = zero_single_l2(bs, offset, nb_clusters, flags);
1833 if (cleared < 0) {
1834 ret = cleared;
1835 goto fail;
1836 }
1837
1838 nb_clusters -= cleared;
1839 offset += (cleared * s->cluster_size);
1840 }
1841
1842 ret = 0;
1843 fail:
1844 s->cache_discards = false;
1845 qcow2_process_discards(bs, ret);
1846
1847 return ret;
1848 }
1849
1850 /*
1851 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1852 * non-backed non-pre-allocated zero clusters).
1853 *
1854 * l1_entries and *visited_l1_entries are used to keep track of progress for
1855 * status_cb(). l1_entries contains the total number of L1 entries and
1856 * *visited_l1_entries counts all visited L1 entries.
1857 */
1858 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1859 int l1_size, int64_t *visited_l1_entries,
1860 int64_t l1_entries,
1861 BlockDriverAmendStatusCB *status_cb,
1862 void *cb_opaque)
1863 {
1864 BDRVQcow2State *s = bs->opaque;
1865 bool is_active_l1 = (l1_table == s->l1_table);
1866 uint64_t *l2_table = NULL;
1867 int ret;
1868 int i, j;
1869
1870 if (!is_active_l1) {
1871 /* inactive L2 tables require a buffer to be stored in when loading
1872 * them from disk */
1873 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1874 if (l2_table == NULL) {
1875 return -ENOMEM;
1876 }
1877 }
1878
1879 for (i = 0; i < l1_size; i++) {
1880 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1881 bool l2_dirty = false;
1882 uint64_t l2_refcount;
1883
1884 if (!l2_offset) {
1885 /* unallocated */
1886 (*visited_l1_entries)++;
1887 if (status_cb) {
1888 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1889 }
1890 continue;
1891 }
1892
1893 if (offset_into_cluster(s, l2_offset)) {
1894 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1895 PRIx64 " unaligned (L1 index: %#x)",
1896 l2_offset, i);
1897 ret = -EIO;
1898 goto fail;
1899 }
1900
1901 if (is_active_l1) {
1902 /* get active L2 tables from cache */
1903 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1904 (void **)&l2_table);
1905 } else {
1906 /* load inactive L2 tables from disk */
1907 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1908 (void *)l2_table, s->cluster_sectors);
1909 }
1910 if (ret < 0) {
1911 goto fail;
1912 }
1913
1914 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1915 &l2_refcount);
1916 if (ret < 0) {
1917 goto fail;
1918 }
1919
1920 for (j = 0; j < s->l2_size; j++) {
1921 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1922 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1923 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1924
1925 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1926 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1927 continue;
1928 }
1929
1930 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1931 if (!bs->backing) {
1932 /* not backed; therefore we can simply deallocate the
1933 * cluster */
1934 l2_table[j] = 0;
1935 l2_dirty = true;
1936 continue;
1937 }
1938
1939 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1940 if (offset < 0) {
1941 ret = offset;
1942 goto fail;
1943 }
1944
1945 if (l2_refcount > 1) {
1946 /* For shared L2 tables, set the refcount accordingly (it is
1947 * already 1 and needs to be l2_refcount) */
1948 ret = qcow2_update_cluster_refcount(bs,
1949 offset >> s->cluster_bits,
1950 refcount_diff(1, l2_refcount), false,
1951 QCOW2_DISCARD_OTHER);
1952 if (ret < 0) {
1953 qcow2_free_clusters(bs, offset, s->cluster_size,
1954 QCOW2_DISCARD_OTHER);
1955 goto fail;
1956 }
1957 }
1958 }
1959
1960 if (offset_into_cluster(s, offset)) {
1961 qcow2_signal_corruption(bs, true, -1, -1,
1962 "Cluster allocation offset "
1963 "%#" PRIx64 " unaligned (L2 offset: %#"
1964 PRIx64 ", L2 index: %#x)", offset,
1965 l2_offset, j);
1966 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1967 qcow2_free_clusters(bs, offset, s->cluster_size,
1968 QCOW2_DISCARD_ALWAYS);
1969 }
1970 ret = -EIO;
1971 goto fail;
1972 }
1973
1974 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1975 if (ret < 0) {
1976 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1977 qcow2_free_clusters(bs, offset, s->cluster_size,
1978 QCOW2_DISCARD_ALWAYS);
1979 }
1980 goto fail;
1981 }
1982
1983 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1984 if (ret < 0) {
1985 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1986 qcow2_free_clusters(bs, offset, s->cluster_size,
1987 QCOW2_DISCARD_ALWAYS);
1988 }
1989 goto fail;
1990 }
1991
1992 if (l2_refcount == 1) {
1993 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1994 } else {
1995 l2_table[j] = cpu_to_be64(offset);
1996 }
1997 l2_dirty = true;
1998 }
1999
2000 if (is_active_l1) {
2001 if (l2_dirty) {
2002 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
2003 qcow2_cache_depends_on_flush(s->l2_table_cache);
2004 }
2005 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
2006 } else {
2007 if (l2_dirty) {
2008 ret = qcow2_pre_write_overlap_check(bs,
2009 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
2010 s->cluster_size);
2011 if (ret < 0) {
2012 goto fail;
2013 }
2014
2015 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
2016 (void *)l2_table, s->cluster_sectors);
2017 if (ret < 0) {
2018 goto fail;
2019 }
2020 }
2021 }
2022
2023 (*visited_l1_entries)++;
2024 if (status_cb) {
2025 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2026 }
2027 }
2028
2029 ret = 0;
2030
2031 fail:
2032 if (l2_table) {
2033 if (!is_active_l1) {
2034 qemu_vfree(l2_table);
2035 } else {
2036 qcow2_cache_put(s->l2_table_cache, (void **) &l2_table);
2037 }
2038 }
2039 return ret;
2040 }
2041
2042 /*
2043 * For backed images, expands all zero clusters on the image. For non-backed
2044 * images, deallocates all non-pre-allocated zero clusters (and claims the
2045 * allocation for pre-allocated ones). This is important for downgrading to a
2046 * qcow2 version which doesn't yet support metadata zero clusters.
2047 */
2048 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2049 BlockDriverAmendStatusCB *status_cb,
2050 void *cb_opaque)
2051 {
2052 BDRVQcow2State *s = bs->opaque;
2053 uint64_t *l1_table = NULL;
2054 int64_t l1_entries = 0, visited_l1_entries = 0;
2055 int ret;
2056 int i, j;
2057
2058 if (status_cb) {
2059 l1_entries = s->l1_size;
2060 for (i = 0; i < s->nb_snapshots; i++) {
2061 l1_entries += s->snapshots[i].l1_size;
2062 }
2063 }
2064
2065 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2066 &visited_l1_entries, l1_entries,
2067 status_cb, cb_opaque);
2068 if (ret < 0) {
2069 goto fail;
2070 }
2071
2072 /* Inactive L1 tables may point to active L2 tables - therefore it is
2073 * necessary to flush the L2 table cache before trying to access the L2
2074 * tables pointed to by inactive L1 entries (else we might try to expand
2075 * zero clusters that have already been expanded); furthermore, it is also
2076 * necessary to empty the L2 table cache, since it may contain tables which
2077 * are now going to be modified directly on disk, bypassing the cache.
2078 * qcow2_cache_empty() does both for us. */
2079 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2080 if (ret < 0) {
2081 goto fail;
2082 }
2083
2084 for (i = 0; i < s->nb_snapshots; i++) {
2085 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
2086 sizeof(uint64_t), BDRV_SECTOR_SIZE);
2087
2088 uint64_t *new_l1_table =
2089 g_try_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
2090
2091 if (!new_l1_table) {
2092 ret = -ENOMEM;
2093 goto fail;
2094 }
2095
2096 l1_table = new_l1_table;
2097
2098 ret = bdrv_read(bs->file,
2099 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
2100 (void *)l1_table, l1_sectors);
2101 if (ret < 0) {
2102 goto fail;
2103 }
2104
2105 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2106 be64_to_cpus(&l1_table[j]);
2107 }
2108
2109 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2110 &visited_l1_entries, l1_entries,
2111 status_cb, cb_opaque);
2112 if (ret < 0) {
2113 goto fail;
2114 }
2115 }
2116
2117 ret = 0;
2118
2119 fail:
2120 g_free(l1_table);
2121 return ret;
2122 }