]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-cluster.c
block: Convert bs->backing_hd to BdrvChild
[mirror_qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include <zlib.h>
26
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
31
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
34 {
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t old_l1_table_offset, old_l1_size;
39 int64_t new_l1_table_offset, new_l1_size;
40 uint8_t data[12];
41
42 if (min_size <= s->l1_size)
43 return 0;
44
45 /* Do a sanity check on min_size before trying to calculate new_l1_size
46 * (this prevents overflows during the while loop for the calculation of
47 * new_l1_size) */
48 if (min_size > INT_MAX / sizeof(uint64_t)) {
49 return -EFBIG;
50 }
51
52 if (exact_size) {
53 new_l1_size = min_size;
54 } else {
55 /* Bump size up to reduce the number of times we have to grow */
56 new_l1_size = s->l1_size;
57 if (new_l1_size == 0) {
58 new_l1_size = 1;
59 }
60 while (min_size > new_l1_size) {
61 new_l1_size = (new_l1_size * 3 + 1) / 2;
62 }
63 }
64
65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66 return -EFBIG;
67 }
68
69 #ifdef DEBUG_ALLOC2
70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71 s->l1_size, new_l1_size);
72 #endif
73
74 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75 new_l1_table = qemu_try_blockalign(bs->file->bs,
76 align_offset(new_l1_size2, 512));
77 if (new_l1_table == NULL) {
78 return -ENOMEM;
79 }
80 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
81
82 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
83
84 /* write new table (align to cluster) */
85 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87 if (new_l1_table_offset < 0) {
88 qemu_vfree(new_l1_table);
89 return new_l1_table_offset;
90 }
91
92 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93 if (ret < 0) {
94 goto fail;
95 }
96
97 /* the L1 position has not yet been updated, so these clusters must
98 * indeed be completely free */
99 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100 new_l1_size2);
101 if (ret < 0) {
102 goto fail;
103 }
104
105 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106 for(i = 0; i < s->l1_size; i++)
107 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108 ret = bdrv_pwrite_sync(bs->file->bs, new_l1_table_offset,
109 new_l1_table, new_l1_size2);
110 if (ret < 0)
111 goto fail;
112 for(i = 0; i < s->l1_size; i++)
113 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
114
115 /* set new table */
116 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
117 cpu_to_be32w((uint32_t*)data, new_l1_size);
118 stq_be_p(data + 4, new_l1_table_offset);
119 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader, l1_size),
120 data, sizeof(data));
121 if (ret < 0) {
122 goto fail;
123 }
124 qemu_vfree(s->l1_table);
125 old_l1_table_offset = s->l1_table_offset;
126 s->l1_table_offset = new_l1_table_offset;
127 s->l1_table = new_l1_table;
128 old_l1_size = s->l1_size;
129 s->l1_size = new_l1_size;
130 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
131 QCOW2_DISCARD_OTHER);
132 return 0;
133 fail:
134 qemu_vfree(new_l1_table);
135 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
136 QCOW2_DISCARD_OTHER);
137 return ret;
138 }
139
140 /*
141 * l2_load
142 *
143 * Loads a L2 table into memory. If the table is in the cache, the cache
144 * is used; otherwise the L2 table is loaded from the image file.
145 *
146 * Returns a pointer to the L2 table on success, or NULL if the read from
147 * the image file failed.
148 */
149
150 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
151 uint64_t **l2_table)
152 {
153 BDRVQcow2State *s = bs->opaque;
154 int ret;
155
156 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
157
158 return ret;
159 }
160
161 /*
162 * Writes one sector of the L1 table to the disk (can't update single entries
163 * and we really don't want bdrv_pread to perform a read-modify-write)
164 */
165 #define L1_ENTRIES_PER_SECTOR (512 / 8)
166 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
167 {
168 BDRVQcow2State *s = bs->opaque;
169 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
170 int l1_start_index;
171 int i, ret;
172
173 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
174 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
175 i++)
176 {
177 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
178 }
179
180 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
181 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
182 if (ret < 0) {
183 return ret;
184 }
185
186 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
187 ret = bdrv_pwrite_sync(bs->file->bs,
188 s->l1_table_offset + 8 * l1_start_index,
189 buf, sizeof(buf));
190 if (ret < 0) {
191 return ret;
192 }
193
194 return 0;
195 }
196
197 /*
198 * l2_allocate
199 *
200 * Allocate a new l2 entry in the file. If l1_index points to an already
201 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
202 * table) copy the contents of the old L2 table into the newly allocated one.
203 * Otherwise the new table is initialized with zeros.
204 *
205 */
206
207 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
208 {
209 BDRVQcow2State *s = bs->opaque;
210 uint64_t old_l2_offset;
211 uint64_t *l2_table = NULL;
212 int64_t l2_offset;
213 int ret;
214
215 old_l2_offset = s->l1_table[l1_index];
216
217 trace_qcow2_l2_allocate(bs, l1_index);
218
219 /* allocate a new l2 entry */
220
221 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
222 if (l2_offset < 0) {
223 ret = l2_offset;
224 goto fail;
225 }
226
227 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
228 if (ret < 0) {
229 goto fail;
230 }
231
232 /* allocate a new entry in the l2 cache */
233
234 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
235 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
236 if (ret < 0) {
237 goto fail;
238 }
239
240 l2_table = *table;
241
242 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
243 /* if there was no old l2 table, clear the new table */
244 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
245 } else {
246 uint64_t* old_table;
247
248 /* if there was an old l2 table, read it from the disk */
249 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
250 ret = qcow2_cache_get(bs, s->l2_table_cache,
251 old_l2_offset & L1E_OFFSET_MASK,
252 (void**) &old_table);
253 if (ret < 0) {
254 goto fail;
255 }
256
257 memcpy(l2_table, old_table, s->cluster_size);
258
259 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
260 }
261
262 /* write the l2 table to the file */
263 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
264
265 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
266 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
267 ret = qcow2_cache_flush(bs, s->l2_table_cache);
268 if (ret < 0) {
269 goto fail;
270 }
271
272 /* update the L1 entry */
273 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
274 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
275 ret = qcow2_write_l1_entry(bs, l1_index);
276 if (ret < 0) {
277 goto fail;
278 }
279
280 *table = l2_table;
281 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
282 return 0;
283
284 fail:
285 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
286 if (l2_table != NULL) {
287 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
288 }
289 s->l1_table[l1_index] = old_l2_offset;
290 if (l2_offset > 0) {
291 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
292 QCOW2_DISCARD_ALWAYS);
293 }
294 return ret;
295 }
296
297 /*
298 * Checks how many clusters in a given L2 table are contiguous in the image
299 * file. As soon as one of the flags in the bitmask stop_flags changes compared
300 * to the first cluster, the search is stopped and the cluster is not counted
301 * as contiguous. (This allows it, for example, to stop at the first compressed
302 * cluster which may require a different handling)
303 */
304 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
305 uint64_t *l2_table, uint64_t stop_flags)
306 {
307 int i;
308 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
309 uint64_t first_entry = be64_to_cpu(l2_table[0]);
310 uint64_t offset = first_entry & mask;
311
312 if (!offset)
313 return 0;
314
315 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
316
317 for (i = 0; i < nb_clusters; i++) {
318 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
319 if (offset + (uint64_t) i * cluster_size != l2_entry) {
320 break;
321 }
322 }
323
324 return i;
325 }
326
327 static int count_contiguous_free_clusters(int nb_clusters, uint64_t *l2_table)
328 {
329 int i;
330
331 for (i = 0; i < nb_clusters; i++) {
332 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
333
334 if (type != QCOW2_CLUSTER_UNALLOCATED) {
335 break;
336 }
337 }
338
339 return i;
340 }
341
342 /* The crypt function is compatible with the linux cryptoloop
343 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
344 supported */
345 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
346 uint8_t *out_buf, const uint8_t *in_buf,
347 int nb_sectors, bool enc,
348 Error **errp)
349 {
350 union {
351 uint64_t ll[2];
352 uint8_t b[16];
353 } ivec;
354 int i;
355 int ret;
356
357 for(i = 0; i < nb_sectors; i++) {
358 ivec.ll[0] = cpu_to_le64(sector_num);
359 ivec.ll[1] = 0;
360 if (qcrypto_cipher_setiv(s->cipher,
361 ivec.b, G_N_ELEMENTS(ivec.b),
362 errp) < 0) {
363 return -1;
364 }
365 if (enc) {
366 ret = qcrypto_cipher_encrypt(s->cipher,
367 in_buf,
368 out_buf,
369 512,
370 errp);
371 } else {
372 ret = qcrypto_cipher_decrypt(s->cipher,
373 in_buf,
374 out_buf,
375 512,
376 errp);
377 }
378 if (ret < 0) {
379 return -1;
380 }
381 sector_num++;
382 in_buf += 512;
383 out_buf += 512;
384 }
385 return 0;
386 }
387
388 static int coroutine_fn copy_sectors(BlockDriverState *bs,
389 uint64_t start_sect,
390 uint64_t cluster_offset,
391 int n_start, int n_end)
392 {
393 BDRVQcow2State *s = bs->opaque;
394 QEMUIOVector qiov;
395 struct iovec iov;
396 int n, ret;
397
398 n = n_end - n_start;
399 if (n <= 0) {
400 return 0;
401 }
402
403 iov.iov_len = n * BDRV_SECTOR_SIZE;
404 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
405 if (iov.iov_base == NULL) {
406 return -ENOMEM;
407 }
408
409 qemu_iovec_init_external(&qiov, &iov, 1);
410
411 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
412
413 if (!bs->drv) {
414 ret = -ENOMEDIUM;
415 goto out;
416 }
417
418 /* Call .bdrv_co_readv() directly instead of using the public block-layer
419 * interface. This avoids double I/O throttling and request tracking,
420 * which can lead to deadlock when block layer copy-on-read is enabled.
421 */
422 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
423 if (ret < 0) {
424 goto out;
425 }
426
427 if (bs->encrypted) {
428 Error *err = NULL;
429 assert(s->cipher);
430 if (qcow2_encrypt_sectors(s, start_sect + n_start,
431 iov.iov_base, iov.iov_base, n,
432 true, &err) < 0) {
433 ret = -EIO;
434 error_free(err);
435 goto out;
436 }
437 }
438
439 ret = qcow2_pre_write_overlap_check(bs, 0,
440 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
441 if (ret < 0) {
442 goto out;
443 }
444
445 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
446 ret = bdrv_co_writev(bs->file->bs, (cluster_offset >> 9) + n_start, n,
447 &qiov);
448 if (ret < 0) {
449 goto out;
450 }
451
452 ret = 0;
453 out:
454 qemu_vfree(iov.iov_base);
455 return ret;
456 }
457
458
459 /*
460 * get_cluster_offset
461 *
462 * For a given offset of the disk image, find the cluster offset in
463 * qcow2 file. The offset is stored in *cluster_offset.
464 *
465 * on entry, *num is the number of contiguous sectors we'd like to
466 * access following offset.
467 *
468 * on exit, *num is the number of contiguous sectors we can read.
469 *
470 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
471 * cases.
472 */
473 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
474 int *num, uint64_t *cluster_offset)
475 {
476 BDRVQcow2State *s = bs->opaque;
477 unsigned int l2_index;
478 uint64_t l1_index, l2_offset, *l2_table;
479 int l1_bits, c;
480 unsigned int index_in_cluster, nb_clusters;
481 uint64_t nb_available, nb_needed;
482 int ret;
483
484 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
485 nb_needed = *num + index_in_cluster;
486
487 l1_bits = s->l2_bits + s->cluster_bits;
488
489 /* compute how many bytes there are between the offset and
490 * the end of the l1 entry
491 */
492
493 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
494
495 /* compute the number of available sectors */
496
497 nb_available = (nb_available >> 9) + index_in_cluster;
498
499 if (nb_needed > nb_available) {
500 nb_needed = nb_available;
501 }
502 assert(nb_needed <= INT_MAX);
503
504 *cluster_offset = 0;
505
506 /* seek to the l2 offset in the l1 table */
507
508 l1_index = offset >> l1_bits;
509 if (l1_index >= s->l1_size) {
510 ret = QCOW2_CLUSTER_UNALLOCATED;
511 goto out;
512 }
513
514 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
515 if (!l2_offset) {
516 ret = QCOW2_CLUSTER_UNALLOCATED;
517 goto out;
518 }
519
520 if (offset_into_cluster(s, l2_offset)) {
521 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
522 " unaligned (L1 index: %#" PRIx64 ")",
523 l2_offset, l1_index);
524 return -EIO;
525 }
526
527 /* load the l2 table in memory */
528
529 ret = l2_load(bs, l2_offset, &l2_table);
530 if (ret < 0) {
531 return ret;
532 }
533
534 /* find the cluster offset for the given disk offset */
535
536 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
537 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
538
539 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
540 nb_clusters = size_to_clusters(s, nb_needed << 9);
541
542 ret = qcow2_get_cluster_type(*cluster_offset);
543 switch (ret) {
544 case QCOW2_CLUSTER_COMPRESSED:
545 /* Compressed clusters can only be processed one by one */
546 c = 1;
547 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
548 break;
549 case QCOW2_CLUSTER_ZERO:
550 if (s->qcow_version < 3) {
551 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
552 " in pre-v3 image (L2 offset: %#" PRIx64
553 ", L2 index: %#x)", l2_offset, l2_index);
554 ret = -EIO;
555 goto fail;
556 }
557 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
558 &l2_table[l2_index], QCOW_OFLAG_ZERO);
559 *cluster_offset = 0;
560 break;
561 case QCOW2_CLUSTER_UNALLOCATED:
562 /* how many empty clusters ? */
563 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
564 *cluster_offset = 0;
565 break;
566 case QCOW2_CLUSTER_NORMAL:
567 /* how many allocated clusters ? */
568 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
569 &l2_table[l2_index], QCOW_OFLAG_ZERO);
570 *cluster_offset &= L2E_OFFSET_MASK;
571 if (offset_into_cluster(s, *cluster_offset)) {
572 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
573 PRIx64 " unaligned (L2 offset: %#" PRIx64
574 ", L2 index: %#x)", *cluster_offset,
575 l2_offset, l2_index);
576 ret = -EIO;
577 goto fail;
578 }
579 break;
580 default:
581 abort();
582 }
583
584 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
585
586 nb_available = (c * s->cluster_sectors);
587
588 out:
589 if (nb_available > nb_needed)
590 nb_available = nb_needed;
591
592 *num = nb_available - index_in_cluster;
593
594 return ret;
595
596 fail:
597 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
598 return ret;
599 }
600
601 /*
602 * get_cluster_table
603 *
604 * for a given disk offset, load (and allocate if needed)
605 * the l2 table.
606 *
607 * the l2 table offset in the qcow2 file and the cluster index
608 * in the l2 table are given to the caller.
609 *
610 * Returns 0 on success, -errno in failure case
611 */
612 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
613 uint64_t **new_l2_table,
614 int *new_l2_index)
615 {
616 BDRVQcow2State *s = bs->opaque;
617 unsigned int l2_index;
618 uint64_t l1_index, l2_offset;
619 uint64_t *l2_table = NULL;
620 int ret;
621
622 /* seek to the l2 offset in the l1 table */
623
624 l1_index = offset >> (s->l2_bits + s->cluster_bits);
625 if (l1_index >= s->l1_size) {
626 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
627 if (ret < 0) {
628 return ret;
629 }
630 }
631
632 assert(l1_index < s->l1_size);
633 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
634 if (offset_into_cluster(s, l2_offset)) {
635 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
636 " unaligned (L1 index: %#" PRIx64 ")",
637 l2_offset, l1_index);
638 return -EIO;
639 }
640
641 /* seek the l2 table of the given l2 offset */
642
643 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
644 /* load the l2 table in memory */
645 ret = l2_load(bs, l2_offset, &l2_table);
646 if (ret < 0) {
647 return ret;
648 }
649 } else {
650 /* First allocate a new L2 table (and do COW if needed) */
651 ret = l2_allocate(bs, l1_index, &l2_table);
652 if (ret < 0) {
653 return ret;
654 }
655
656 /* Then decrease the refcount of the old table */
657 if (l2_offset) {
658 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
659 QCOW2_DISCARD_OTHER);
660 }
661 }
662
663 /* find the cluster offset for the given disk offset */
664
665 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
666
667 *new_l2_table = l2_table;
668 *new_l2_index = l2_index;
669
670 return 0;
671 }
672
673 /*
674 * alloc_compressed_cluster_offset
675 *
676 * For a given offset of the disk image, return cluster offset in
677 * qcow2 file.
678 *
679 * If the offset is not found, allocate a new compressed cluster.
680 *
681 * Return the cluster offset if successful,
682 * Return 0, otherwise.
683 *
684 */
685
686 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
687 uint64_t offset,
688 int compressed_size)
689 {
690 BDRVQcow2State *s = bs->opaque;
691 int l2_index, ret;
692 uint64_t *l2_table;
693 int64_t cluster_offset;
694 int nb_csectors;
695
696 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
697 if (ret < 0) {
698 return 0;
699 }
700
701 /* Compression can't overwrite anything. Fail if the cluster was already
702 * allocated. */
703 cluster_offset = be64_to_cpu(l2_table[l2_index]);
704 if (cluster_offset & L2E_OFFSET_MASK) {
705 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
706 return 0;
707 }
708
709 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
710 if (cluster_offset < 0) {
711 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
712 return 0;
713 }
714
715 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
716 (cluster_offset >> 9);
717
718 cluster_offset |= QCOW_OFLAG_COMPRESSED |
719 ((uint64_t)nb_csectors << s->csize_shift);
720
721 /* update L2 table */
722
723 /* compressed clusters never have the copied flag */
724
725 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
726 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
727 l2_table[l2_index] = cpu_to_be64(cluster_offset);
728 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
729
730 return cluster_offset;
731 }
732
733 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
734 {
735 BDRVQcow2State *s = bs->opaque;
736 int ret;
737
738 if (r->nb_sectors == 0) {
739 return 0;
740 }
741
742 qemu_co_mutex_unlock(&s->lock);
743 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
744 r->offset / BDRV_SECTOR_SIZE,
745 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
746 qemu_co_mutex_lock(&s->lock);
747
748 if (ret < 0) {
749 return ret;
750 }
751
752 /*
753 * Before we update the L2 table to actually point to the new cluster, we
754 * need to be sure that the refcounts have been increased and COW was
755 * handled.
756 */
757 qcow2_cache_depends_on_flush(s->l2_table_cache);
758
759 return 0;
760 }
761
762 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
763 {
764 BDRVQcow2State *s = bs->opaque;
765 int i, j = 0, l2_index, ret;
766 uint64_t *old_cluster, *l2_table;
767 uint64_t cluster_offset = m->alloc_offset;
768
769 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
770 assert(m->nb_clusters > 0);
771
772 old_cluster = g_try_new(uint64_t, m->nb_clusters);
773 if (old_cluster == NULL) {
774 ret = -ENOMEM;
775 goto err;
776 }
777
778 /* copy content of unmodified sectors */
779 ret = perform_cow(bs, m, &m->cow_start);
780 if (ret < 0) {
781 goto err;
782 }
783
784 ret = perform_cow(bs, m, &m->cow_end);
785 if (ret < 0) {
786 goto err;
787 }
788
789 /* Update L2 table. */
790 if (s->use_lazy_refcounts) {
791 qcow2_mark_dirty(bs);
792 }
793 if (qcow2_need_accurate_refcounts(s)) {
794 qcow2_cache_set_dependency(bs, s->l2_table_cache,
795 s->refcount_block_cache);
796 }
797
798 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
799 if (ret < 0) {
800 goto err;
801 }
802 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
803
804 assert(l2_index + m->nb_clusters <= s->l2_size);
805 for (i = 0; i < m->nb_clusters; i++) {
806 /* if two concurrent writes happen to the same unallocated cluster
807 * each write allocates separate cluster and writes data concurrently.
808 * The first one to complete updates l2 table with pointer to its
809 * cluster the second one has to do RMW (which is done above by
810 * copy_sectors()), update l2 table with its cluster pointer and free
811 * old cluster. This is what this loop does */
812 if(l2_table[l2_index + i] != 0)
813 old_cluster[j++] = l2_table[l2_index + i];
814
815 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
816 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
817 }
818
819
820 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
821
822 /*
823 * If this was a COW, we need to decrease the refcount of the old cluster.
824 *
825 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
826 * clusters), the next write will reuse them anyway.
827 */
828 if (j != 0) {
829 for (i = 0; i < j; i++) {
830 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
831 QCOW2_DISCARD_NEVER);
832 }
833 }
834
835 ret = 0;
836 err:
837 g_free(old_cluster);
838 return ret;
839 }
840
841 /*
842 * Returns the number of contiguous clusters that can be used for an allocating
843 * write, but require COW to be performed (this includes yet unallocated space,
844 * which must copy from the backing file)
845 */
846 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
847 uint64_t *l2_table, int l2_index)
848 {
849 int i;
850
851 for (i = 0; i < nb_clusters; i++) {
852 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
853 int cluster_type = qcow2_get_cluster_type(l2_entry);
854
855 switch(cluster_type) {
856 case QCOW2_CLUSTER_NORMAL:
857 if (l2_entry & QCOW_OFLAG_COPIED) {
858 goto out;
859 }
860 break;
861 case QCOW2_CLUSTER_UNALLOCATED:
862 case QCOW2_CLUSTER_COMPRESSED:
863 case QCOW2_CLUSTER_ZERO:
864 break;
865 default:
866 abort();
867 }
868 }
869
870 out:
871 assert(i <= nb_clusters);
872 return i;
873 }
874
875 /*
876 * Check if there already is an AIO write request in flight which allocates
877 * the same cluster. In this case we need to wait until the previous
878 * request has completed and updated the L2 table accordingly.
879 *
880 * Returns:
881 * 0 if there was no dependency. *cur_bytes indicates the number of
882 * bytes from guest_offset that can be read before the next
883 * dependency must be processed (or the request is complete)
884 *
885 * -EAGAIN if we had to wait for another request, previously gathered
886 * information on cluster allocation may be invalid now. The caller
887 * must start over anyway, so consider *cur_bytes undefined.
888 */
889 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
890 uint64_t *cur_bytes, QCowL2Meta **m)
891 {
892 BDRVQcow2State *s = bs->opaque;
893 QCowL2Meta *old_alloc;
894 uint64_t bytes = *cur_bytes;
895
896 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
897
898 uint64_t start = guest_offset;
899 uint64_t end = start + bytes;
900 uint64_t old_start = l2meta_cow_start(old_alloc);
901 uint64_t old_end = l2meta_cow_end(old_alloc);
902
903 if (end <= old_start || start >= old_end) {
904 /* No intersection */
905 } else {
906 if (start < old_start) {
907 /* Stop at the start of a running allocation */
908 bytes = old_start - start;
909 } else {
910 bytes = 0;
911 }
912
913 /* Stop if already an l2meta exists. After yielding, it wouldn't
914 * be valid any more, so we'd have to clean up the old L2Metas
915 * and deal with requests depending on them before starting to
916 * gather new ones. Not worth the trouble. */
917 if (bytes == 0 && *m) {
918 *cur_bytes = 0;
919 return 0;
920 }
921
922 if (bytes == 0) {
923 /* Wait for the dependency to complete. We need to recheck
924 * the free/allocated clusters when we continue. */
925 qemu_co_mutex_unlock(&s->lock);
926 qemu_co_queue_wait(&old_alloc->dependent_requests);
927 qemu_co_mutex_lock(&s->lock);
928 return -EAGAIN;
929 }
930 }
931 }
932
933 /* Make sure that existing clusters and new allocations are only used up to
934 * the next dependency if we shortened the request above */
935 *cur_bytes = bytes;
936
937 return 0;
938 }
939
940 /*
941 * Checks how many already allocated clusters that don't require a copy on
942 * write there are at the given guest_offset (up to *bytes). If
943 * *host_offset is not zero, only physically contiguous clusters beginning at
944 * this host offset are counted.
945 *
946 * Note that guest_offset may not be cluster aligned. In this case, the
947 * returned *host_offset points to exact byte referenced by guest_offset and
948 * therefore isn't cluster aligned as well.
949 *
950 * Returns:
951 * 0: if no allocated clusters are available at the given offset.
952 * *bytes is normally unchanged. It is set to 0 if the cluster
953 * is allocated and doesn't need COW, but doesn't have the right
954 * physical offset.
955 *
956 * 1: if allocated clusters that don't require a COW are available at
957 * the requested offset. *bytes may have decreased and describes
958 * the length of the area that can be written to.
959 *
960 * -errno: in error cases
961 */
962 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
963 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
964 {
965 BDRVQcow2State *s = bs->opaque;
966 int l2_index;
967 uint64_t cluster_offset;
968 uint64_t *l2_table;
969 uint64_t nb_clusters;
970 unsigned int keep_clusters;
971 int ret;
972
973 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
974 *bytes);
975
976 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
977 == offset_into_cluster(s, *host_offset));
978
979 /*
980 * Calculate the number of clusters to look for. We stop at L2 table
981 * boundaries to keep things simple.
982 */
983 nb_clusters =
984 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
985
986 l2_index = offset_to_l2_index(s, guest_offset);
987 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
988 assert(nb_clusters <= INT_MAX);
989
990 /* Find L2 entry for the first involved cluster */
991 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
992 if (ret < 0) {
993 return ret;
994 }
995
996 cluster_offset = be64_to_cpu(l2_table[l2_index]);
997
998 /* Check how many clusters are already allocated and don't need COW */
999 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1000 && (cluster_offset & QCOW_OFLAG_COPIED))
1001 {
1002 /* If a specific host_offset is required, check it */
1003 bool offset_matches =
1004 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1005
1006 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1007 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1008 "%#llx unaligned (guest offset: %#" PRIx64
1009 ")", cluster_offset & L2E_OFFSET_MASK,
1010 guest_offset);
1011 ret = -EIO;
1012 goto out;
1013 }
1014
1015 if (*host_offset != 0 && !offset_matches) {
1016 *bytes = 0;
1017 ret = 0;
1018 goto out;
1019 }
1020
1021 /* We keep all QCOW_OFLAG_COPIED clusters */
1022 keep_clusters =
1023 count_contiguous_clusters(nb_clusters, s->cluster_size,
1024 &l2_table[l2_index],
1025 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1026 assert(keep_clusters <= nb_clusters);
1027
1028 *bytes = MIN(*bytes,
1029 keep_clusters * s->cluster_size
1030 - offset_into_cluster(s, guest_offset));
1031
1032 ret = 1;
1033 } else {
1034 ret = 0;
1035 }
1036
1037 /* Cleanup */
1038 out:
1039 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1040
1041 /* Only return a host offset if we actually made progress. Otherwise we
1042 * would make requirements for handle_alloc() that it can't fulfill */
1043 if (ret > 0) {
1044 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1045 + offset_into_cluster(s, guest_offset);
1046 }
1047
1048 return ret;
1049 }
1050
1051 /*
1052 * Allocates new clusters for the given guest_offset.
1053 *
1054 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1055 * contain the number of clusters that have been allocated and are contiguous
1056 * in the image file.
1057 *
1058 * If *host_offset is non-zero, it specifies the offset in the image file at
1059 * which the new clusters must start. *nb_clusters can be 0 on return in this
1060 * case if the cluster at host_offset is already in use. If *host_offset is
1061 * zero, the clusters can be allocated anywhere in the image file.
1062 *
1063 * *host_offset is updated to contain the offset into the image file at which
1064 * the first allocated cluster starts.
1065 *
1066 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1067 * function has been waiting for another request and the allocation must be
1068 * restarted, but the whole request should not be failed.
1069 */
1070 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1071 uint64_t *host_offset, uint64_t *nb_clusters)
1072 {
1073 BDRVQcow2State *s = bs->opaque;
1074
1075 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1076 *host_offset, *nb_clusters);
1077
1078 /* Allocate new clusters */
1079 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1080 if (*host_offset == 0) {
1081 int64_t cluster_offset =
1082 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1083 if (cluster_offset < 0) {
1084 return cluster_offset;
1085 }
1086 *host_offset = cluster_offset;
1087 return 0;
1088 } else {
1089 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1090 if (ret < 0) {
1091 return ret;
1092 }
1093 *nb_clusters = ret;
1094 return 0;
1095 }
1096 }
1097
1098 /*
1099 * Allocates new clusters for an area that either is yet unallocated or needs a
1100 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1101 * the new allocation can match the specified host offset.
1102 *
1103 * Note that guest_offset may not be cluster aligned. In this case, the
1104 * returned *host_offset points to exact byte referenced by guest_offset and
1105 * therefore isn't cluster aligned as well.
1106 *
1107 * Returns:
1108 * 0: if no clusters could be allocated. *bytes is set to 0,
1109 * *host_offset is left unchanged.
1110 *
1111 * 1: if new clusters were allocated. *bytes may be decreased if the
1112 * new allocation doesn't cover all of the requested area.
1113 * *host_offset is updated to contain the host offset of the first
1114 * newly allocated cluster.
1115 *
1116 * -errno: in error cases
1117 */
1118 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1119 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1120 {
1121 BDRVQcow2State *s = bs->opaque;
1122 int l2_index;
1123 uint64_t *l2_table;
1124 uint64_t entry;
1125 uint64_t nb_clusters;
1126 int ret;
1127
1128 uint64_t alloc_cluster_offset;
1129
1130 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1131 *bytes);
1132 assert(*bytes > 0);
1133
1134 /*
1135 * Calculate the number of clusters to look for. We stop at L2 table
1136 * boundaries to keep things simple.
1137 */
1138 nb_clusters =
1139 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1140
1141 l2_index = offset_to_l2_index(s, guest_offset);
1142 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1143 assert(nb_clusters <= INT_MAX);
1144
1145 /* Find L2 entry for the first involved cluster */
1146 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1147 if (ret < 0) {
1148 return ret;
1149 }
1150
1151 entry = be64_to_cpu(l2_table[l2_index]);
1152
1153 /* For the moment, overwrite compressed clusters one by one */
1154 if (entry & QCOW_OFLAG_COMPRESSED) {
1155 nb_clusters = 1;
1156 } else {
1157 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1158 }
1159
1160 /* This function is only called when there were no non-COW clusters, so if
1161 * we can't find any unallocated or COW clusters either, something is
1162 * wrong with our code. */
1163 assert(nb_clusters > 0);
1164
1165 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1166
1167 /* Allocate, if necessary at a given offset in the image file */
1168 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1169 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1170 &nb_clusters);
1171 if (ret < 0) {
1172 goto fail;
1173 }
1174
1175 /* Can't extend contiguous allocation */
1176 if (nb_clusters == 0) {
1177 *bytes = 0;
1178 return 0;
1179 }
1180
1181 /* !*host_offset would overwrite the image header and is reserved for "no
1182 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1183 * following overlap check; do that now to avoid having an invalid value in
1184 * *host_offset. */
1185 if (!alloc_cluster_offset) {
1186 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1187 nb_clusters * s->cluster_size);
1188 assert(ret < 0);
1189 goto fail;
1190 }
1191
1192 /*
1193 * Save info needed for meta data update.
1194 *
1195 * requested_sectors: Number of sectors from the start of the first
1196 * newly allocated cluster to the end of the (possibly shortened
1197 * before) write request.
1198 *
1199 * avail_sectors: Number of sectors from the start of the first
1200 * newly allocated to the end of the last newly allocated cluster.
1201 *
1202 * nb_sectors: The number of sectors from the start of the first
1203 * newly allocated cluster to the end of the area that the write
1204 * request actually writes to (excluding COW at the end)
1205 */
1206 int requested_sectors =
1207 (*bytes + offset_into_cluster(s, guest_offset))
1208 >> BDRV_SECTOR_BITS;
1209 int avail_sectors = nb_clusters
1210 << (s->cluster_bits - BDRV_SECTOR_BITS);
1211 int alloc_n_start = offset_into_cluster(s, guest_offset)
1212 >> BDRV_SECTOR_BITS;
1213 int nb_sectors = MIN(requested_sectors, avail_sectors);
1214 QCowL2Meta *old_m = *m;
1215
1216 *m = g_malloc0(sizeof(**m));
1217
1218 **m = (QCowL2Meta) {
1219 .next = old_m,
1220
1221 .alloc_offset = alloc_cluster_offset,
1222 .offset = start_of_cluster(s, guest_offset),
1223 .nb_clusters = nb_clusters,
1224 .nb_available = nb_sectors,
1225
1226 .cow_start = {
1227 .offset = 0,
1228 .nb_sectors = alloc_n_start,
1229 },
1230 .cow_end = {
1231 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1232 .nb_sectors = avail_sectors - nb_sectors,
1233 },
1234 };
1235 qemu_co_queue_init(&(*m)->dependent_requests);
1236 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1237
1238 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1239 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1240 - offset_into_cluster(s, guest_offset));
1241 assert(*bytes != 0);
1242
1243 return 1;
1244
1245 fail:
1246 if (*m && (*m)->nb_clusters > 0) {
1247 QLIST_REMOVE(*m, next_in_flight);
1248 }
1249 return ret;
1250 }
1251
1252 /*
1253 * alloc_cluster_offset
1254 *
1255 * For a given offset on the virtual disk, find the cluster offset in qcow2
1256 * file. If the offset is not found, allocate a new cluster.
1257 *
1258 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1259 * other fields in m are meaningless.
1260 *
1261 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1262 * contiguous clusters that have been allocated. In this case, the other
1263 * fields of m are valid and contain information about the first allocated
1264 * cluster.
1265 *
1266 * If the request conflicts with another write request in flight, the coroutine
1267 * is queued and will be reentered when the dependency has completed.
1268 *
1269 * Return 0 on success and -errno in error cases
1270 */
1271 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1272 int *num, uint64_t *host_offset, QCowL2Meta **m)
1273 {
1274 BDRVQcow2State *s = bs->opaque;
1275 uint64_t start, remaining;
1276 uint64_t cluster_offset;
1277 uint64_t cur_bytes;
1278 int ret;
1279
1280 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1281
1282 assert((offset & ~BDRV_SECTOR_MASK) == 0);
1283
1284 again:
1285 start = offset;
1286 remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1287 cluster_offset = 0;
1288 *host_offset = 0;
1289 cur_bytes = 0;
1290 *m = NULL;
1291
1292 while (true) {
1293
1294 if (!*host_offset) {
1295 *host_offset = start_of_cluster(s, cluster_offset);
1296 }
1297
1298 assert(remaining >= cur_bytes);
1299
1300 start += cur_bytes;
1301 remaining -= cur_bytes;
1302 cluster_offset += cur_bytes;
1303
1304 if (remaining == 0) {
1305 break;
1306 }
1307
1308 cur_bytes = remaining;
1309
1310 /*
1311 * Now start gathering as many contiguous clusters as possible:
1312 *
1313 * 1. Check for overlaps with in-flight allocations
1314 *
1315 * a) Overlap not in the first cluster -> shorten this request and
1316 * let the caller handle the rest in its next loop iteration.
1317 *
1318 * b) Real overlaps of two requests. Yield and restart the search
1319 * for contiguous clusters (the situation could have changed
1320 * while we were sleeping)
1321 *
1322 * c) TODO: Request starts in the same cluster as the in-flight
1323 * allocation ends. Shorten the COW of the in-fight allocation,
1324 * set cluster_offset to write to the same cluster and set up
1325 * the right synchronisation between the in-flight request and
1326 * the new one.
1327 */
1328 ret = handle_dependencies(bs, start, &cur_bytes, m);
1329 if (ret == -EAGAIN) {
1330 /* Currently handle_dependencies() doesn't yield if we already had
1331 * an allocation. If it did, we would have to clean up the L2Meta
1332 * structs before starting over. */
1333 assert(*m == NULL);
1334 goto again;
1335 } else if (ret < 0) {
1336 return ret;
1337 } else if (cur_bytes == 0) {
1338 break;
1339 } else {
1340 /* handle_dependencies() may have decreased cur_bytes (shortened
1341 * the allocations below) so that the next dependency is processed
1342 * correctly during the next loop iteration. */
1343 }
1344
1345 /*
1346 * 2. Count contiguous COPIED clusters.
1347 */
1348 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1349 if (ret < 0) {
1350 return ret;
1351 } else if (ret) {
1352 continue;
1353 } else if (cur_bytes == 0) {
1354 break;
1355 }
1356
1357 /*
1358 * 3. If the request still hasn't completed, allocate new clusters,
1359 * considering any cluster_offset of steps 1c or 2.
1360 */
1361 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1362 if (ret < 0) {
1363 return ret;
1364 } else if (ret) {
1365 continue;
1366 } else {
1367 assert(cur_bytes == 0);
1368 break;
1369 }
1370 }
1371
1372 *num -= remaining >> BDRV_SECTOR_BITS;
1373 assert(*num > 0);
1374 assert(*host_offset != 0);
1375
1376 return 0;
1377 }
1378
1379 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1380 const uint8_t *buf, int buf_size)
1381 {
1382 z_stream strm1, *strm = &strm1;
1383 int ret, out_len;
1384
1385 memset(strm, 0, sizeof(*strm));
1386
1387 strm->next_in = (uint8_t *)buf;
1388 strm->avail_in = buf_size;
1389 strm->next_out = out_buf;
1390 strm->avail_out = out_buf_size;
1391
1392 ret = inflateInit2(strm, -12);
1393 if (ret != Z_OK)
1394 return -1;
1395 ret = inflate(strm, Z_FINISH);
1396 out_len = strm->next_out - out_buf;
1397 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1398 out_len != out_buf_size) {
1399 inflateEnd(strm);
1400 return -1;
1401 }
1402 inflateEnd(strm);
1403 return 0;
1404 }
1405
1406 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1407 {
1408 BDRVQcow2State *s = bs->opaque;
1409 int ret, csize, nb_csectors, sector_offset;
1410 uint64_t coffset;
1411
1412 coffset = cluster_offset & s->cluster_offset_mask;
1413 if (s->cluster_cache_offset != coffset) {
1414 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1415 sector_offset = coffset & 511;
1416 csize = nb_csectors * 512 - sector_offset;
1417 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1418 ret = bdrv_read(bs->file->bs, coffset >> 9, s->cluster_data,
1419 nb_csectors);
1420 if (ret < 0) {
1421 return ret;
1422 }
1423 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1424 s->cluster_data + sector_offset, csize) < 0) {
1425 return -EIO;
1426 }
1427 s->cluster_cache_offset = coffset;
1428 }
1429 return 0;
1430 }
1431
1432 /*
1433 * This discards as many clusters of nb_clusters as possible at once (i.e.
1434 * all clusters in the same L2 table) and returns the number of discarded
1435 * clusters.
1436 */
1437 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1438 uint64_t nb_clusters, enum qcow2_discard_type type,
1439 bool full_discard)
1440 {
1441 BDRVQcow2State *s = bs->opaque;
1442 uint64_t *l2_table;
1443 int l2_index;
1444 int ret;
1445 int i;
1446
1447 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1448 if (ret < 0) {
1449 return ret;
1450 }
1451
1452 /* Limit nb_clusters to one L2 table */
1453 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1454 assert(nb_clusters <= INT_MAX);
1455
1456 for (i = 0; i < nb_clusters; i++) {
1457 uint64_t old_l2_entry;
1458
1459 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1460
1461 /*
1462 * If full_discard is false, make sure that a discarded area reads back
1463 * as zeroes for v3 images (we cannot do it for v2 without actually
1464 * writing a zero-filled buffer). We can skip the operation if the
1465 * cluster is already marked as zero, or if it's unallocated and we
1466 * don't have a backing file.
1467 *
1468 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1469 * holding s->lock, so that doesn't work today.
1470 *
1471 * If full_discard is true, the sector should not read back as zeroes,
1472 * but rather fall through to the backing file.
1473 */
1474 switch (qcow2_get_cluster_type(old_l2_entry)) {
1475 case QCOW2_CLUSTER_UNALLOCATED:
1476 if (full_discard || !bs->backing) {
1477 continue;
1478 }
1479 break;
1480
1481 case QCOW2_CLUSTER_ZERO:
1482 if (!full_discard) {
1483 continue;
1484 }
1485 break;
1486
1487 case QCOW2_CLUSTER_NORMAL:
1488 case QCOW2_CLUSTER_COMPRESSED:
1489 break;
1490
1491 default:
1492 abort();
1493 }
1494
1495 /* First remove L2 entries */
1496 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1497 if (!full_discard && s->qcow_version >= 3) {
1498 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1499 } else {
1500 l2_table[l2_index + i] = cpu_to_be64(0);
1501 }
1502
1503 /* Then decrease the refcount */
1504 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1505 }
1506
1507 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1508
1509 return nb_clusters;
1510 }
1511
1512 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1513 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1514 {
1515 BDRVQcow2State *s = bs->opaque;
1516 uint64_t end_offset;
1517 uint64_t nb_clusters;
1518 int ret;
1519
1520 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1521
1522 /* Round start up and end down */
1523 offset = align_offset(offset, s->cluster_size);
1524 end_offset = start_of_cluster(s, end_offset);
1525
1526 if (offset > end_offset) {
1527 return 0;
1528 }
1529
1530 nb_clusters = size_to_clusters(s, end_offset - offset);
1531
1532 s->cache_discards = true;
1533
1534 /* Each L2 table is handled by its own loop iteration */
1535 while (nb_clusters > 0) {
1536 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1537 if (ret < 0) {
1538 goto fail;
1539 }
1540
1541 nb_clusters -= ret;
1542 offset += (ret * s->cluster_size);
1543 }
1544
1545 ret = 0;
1546 fail:
1547 s->cache_discards = false;
1548 qcow2_process_discards(bs, ret);
1549
1550 return ret;
1551 }
1552
1553 /*
1554 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1555 * all clusters in the same L2 table) and returns the number of zeroed
1556 * clusters.
1557 */
1558 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1559 uint64_t nb_clusters)
1560 {
1561 BDRVQcow2State *s = bs->opaque;
1562 uint64_t *l2_table;
1563 int l2_index;
1564 int ret;
1565 int i;
1566
1567 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1568 if (ret < 0) {
1569 return ret;
1570 }
1571
1572 /* Limit nb_clusters to one L2 table */
1573 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1574 assert(nb_clusters <= INT_MAX);
1575
1576 for (i = 0; i < nb_clusters; i++) {
1577 uint64_t old_offset;
1578
1579 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1580
1581 /* Update L2 entries */
1582 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1583 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1584 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1585 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1586 } else {
1587 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1588 }
1589 }
1590
1591 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1592
1593 return nb_clusters;
1594 }
1595
1596 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1597 {
1598 BDRVQcow2State *s = bs->opaque;
1599 uint64_t nb_clusters;
1600 int ret;
1601
1602 /* The zero flag is only supported by version 3 and newer */
1603 if (s->qcow_version < 3) {
1604 return -ENOTSUP;
1605 }
1606
1607 /* Each L2 table is handled by its own loop iteration */
1608 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1609
1610 s->cache_discards = true;
1611
1612 while (nb_clusters > 0) {
1613 ret = zero_single_l2(bs, offset, nb_clusters);
1614 if (ret < 0) {
1615 goto fail;
1616 }
1617
1618 nb_clusters -= ret;
1619 offset += (ret * s->cluster_size);
1620 }
1621
1622 ret = 0;
1623 fail:
1624 s->cache_discards = false;
1625 qcow2_process_discards(bs, ret);
1626
1627 return ret;
1628 }
1629
1630 /*
1631 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1632 * non-backed non-pre-allocated zero clusters).
1633 *
1634 * l1_entries and *visited_l1_entries are used to keep track of progress for
1635 * status_cb(). l1_entries contains the total number of L1 entries and
1636 * *visited_l1_entries counts all visited L1 entries.
1637 */
1638 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1639 int l1_size, int64_t *visited_l1_entries,
1640 int64_t l1_entries,
1641 BlockDriverAmendStatusCB *status_cb)
1642 {
1643 BDRVQcow2State *s = bs->opaque;
1644 bool is_active_l1 = (l1_table == s->l1_table);
1645 uint64_t *l2_table = NULL;
1646 int ret;
1647 int i, j;
1648
1649 if (!is_active_l1) {
1650 /* inactive L2 tables require a buffer to be stored in when loading
1651 * them from disk */
1652 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1653 if (l2_table == NULL) {
1654 return -ENOMEM;
1655 }
1656 }
1657
1658 for (i = 0; i < l1_size; i++) {
1659 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1660 bool l2_dirty = false;
1661 uint64_t l2_refcount;
1662
1663 if (!l2_offset) {
1664 /* unallocated */
1665 (*visited_l1_entries)++;
1666 if (status_cb) {
1667 status_cb(bs, *visited_l1_entries, l1_entries);
1668 }
1669 continue;
1670 }
1671
1672 if (offset_into_cluster(s, l2_offset)) {
1673 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1674 PRIx64 " unaligned (L1 index: %#x)",
1675 l2_offset, i);
1676 ret = -EIO;
1677 goto fail;
1678 }
1679
1680 if (is_active_l1) {
1681 /* get active L2 tables from cache */
1682 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1683 (void **)&l2_table);
1684 } else {
1685 /* load inactive L2 tables from disk */
1686 ret = bdrv_read(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1687 (void *)l2_table, s->cluster_sectors);
1688 }
1689 if (ret < 0) {
1690 goto fail;
1691 }
1692
1693 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1694 &l2_refcount);
1695 if (ret < 0) {
1696 goto fail;
1697 }
1698
1699 for (j = 0; j < s->l2_size; j++) {
1700 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1701 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1702 int cluster_type = qcow2_get_cluster_type(l2_entry);
1703 bool preallocated = offset != 0;
1704
1705 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1706 continue;
1707 }
1708
1709 if (!preallocated) {
1710 if (!bs->backing) {
1711 /* not backed; therefore we can simply deallocate the
1712 * cluster */
1713 l2_table[j] = 0;
1714 l2_dirty = true;
1715 continue;
1716 }
1717
1718 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1719 if (offset < 0) {
1720 ret = offset;
1721 goto fail;
1722 }
1723
1724 if (l2_refcount > 1) {
1725 /* For shared L2 tables, set the refcount accordingly (it is
1726 * already 1 and needs to be l2_refcount) */
1727 ret = qcow2_update_cluster_refcount(bs,
1728 offset >> s->cluster_bits,
1729 refcount_diff(1, l2_refcount), false,
1730 QCOW2_DISCARD_OTHER);
1731 if (ret < 0) {
1732 qcow2_free_clusters(bs, offset, s->cluster_size,
1733 QCOW2_DISCARD_OTHER);
1734 goto fail;
1735 }
1736 }
1737 }
1738
1739 if (offset_into_cluster(s, offset)) {
1740 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1741 "%#" PRIx64 " unaligned (L2 offset: %#"
1742 PRIx64 ", L2 index: %#x)", offset,
1743 l2_offset, j);
1744 if (!preallocated) {
1745 qcow2_free_clusters(bs, offset, s->cluster_size,
1746 QCOW2_DISCARD_ALWAYS);
1747 }
1748 ret = -EIO;
1749 goto fail;
1750 }
1751
1752 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1753 if (ret < 0) {
1754 if (!preallocated) {
1755 qcow2_free_clusters(bs, offset, s->cluster_size,
1756 QCOW2_DISCARD_ALWAYS);
1757 }
1758 goto fail;
1759 }
1760
1761 ret = bdrv_write_zeroes(bs->file->bs, offset / BDRV_SECTOR_SIZE,
1762 s->cluster_sectors, 0);
1763 if (ret < 0) {
1764 if (!preallocated) {
1765 qcow2_free_clusters(bs, offset, s->cluster_size,
1766 QCOW2_DISCARD_ALWAYS);
1767 }
1768 goto fail;
1769 }
1770
1771 if (l2_refcount == 1) {
1772 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1773 } else {
1774 l2_table[j] = cpu_to_be64(offset);
1775 }
1776 l2_dirty = true;
1777 }
1778
1779 if (is_active_l1) {
1780 if (l2_dirty) {
1781 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1782 qcow2_cache_depends_on_flush(s->l2_table_cache);
1783 }
1784 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1785 } else {
1786 if (l2_dirty) {
1787 ret = qcow2_pre_write_overlap_check(bs,
1788 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1789 s->cluster_size);
1790 if (ret < 0) {
1791 goto fail;
1792 }
1793
1794 ret = bdrv_write(bs->file->bs, l2_offset / BDRV_SECTOR_SIZE,
1795 (void *)l2_table, s->cluster_sectors);
1796 if (ret < 0) {
1797 goto fail;
1798 }
1799 }
1800 }
1801
1802 (*visited_l1_entries)++;
1803 if (status_cb) {
1804 status_cb(bs, *visited_l1_entries, l1_entries);
1805 }
1806 }
1807
1808 ret = 0;
1809
1810 fail:
1811 if (l2_table) {
1812 if (!is_active_l1) {
1813 qemu_vfree(l2_table);
1814 } else {
1815 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1816 }
1817 }
1818 return ret;
1819 }
1820
1821 /*
1822 * For backed images, expands all zero clusters on the image. For non-backed
1823 * images, deallocates all non-pre-allocated zero clusters (and claims the
1824 * allocation for pre-allocated ones). This is important for downgrading to a
1825 * qcow2 version which doesn't yet support metadata zero clusters.
1826 */
1827 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1828 BlockDriverAmendStatusCB *status_cb)
1829 {
1830 BDRVQcow2State *s = bs->opaque;
1831 uint64_t *l1_table = NULL;
1832 int64_t l1_entries = 0, visited_l1_entries = 0;
1833 int ret;
1834 int i, j;
1835
1836 if (status_cb) {
1837 l1_entries = s->l1_size;
1838 for (i = 0; i < s->nb_snapshots; i++) {
1839 l1_entries += s->snapshots[i].l1_size;
1840 }
1841 }
1842
1843 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1844 &visited_l1_entries, l1_entries,
1845 status_cb);
1846 if (ret < 0) {
1847 goto fail;
1848 }
1849
1850 /* Inactive L1 tables may point to active L2 tables - therefore it is
1851 * necessary to flush the L2 table cache before trying to access the L2
1852 * tables pointed to by inactive L1 entries (else we might try to expand
1853 * zero clusters that have already been expanded); furthermore, it is also
1854 * necessary to empty the L2 table cache, since it may contain tables which
1855 * are now going to be modified directly on disk, bypassing the cache.
1856 * qcow2_cache_empty() does both for us. */
1857 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1858 if (ret < 0) {
1859 goto fail;
1860 }
1861
1862 for (i = 0; i < s->nb_snapshots; i++) {
1863 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1864 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1865
1866 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1867
1868 ret = bdrv_read(bs->file->bs,
1869 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1870 (void *)l1_table, l1_sectors);
1871 if (ret < 0) {
1872 goto fail;
1873 }
1874
1875 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1876 be64_to_cpus(&l1_table[j]);
1877 }
1878
1879 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1880 &visited_l1_entries, l1_entries,
1881 status_cb);
1882 if (ret < 0) {
1883 goto fail;
1884 }
1885 }
1886
1887 ret = 0;
1888
1889 fail:
1890 g_free(l1_table);
1891 return ret;
1892 }