]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-cluster.c
qcow2: Avoid making the L1 table too big
[mirror_qemu.git] / block / qcow2-cluster.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
34
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
36 bool exact_size)
37 {
38 BDRVQcow2State *s = bs->opaque;
39 int new_l1_size2, ret, i;
40 uint64_t *new_l1_table;
41 int64_t old_l1_table_offset, old_l1_size;
42 int64_t new_l1_table_offset, new_l1_size;
43 uint8_t data[12];
44
45 if (min_size <= s->l1_size)
46 return 0;
47
48 /* Do a sanity check on min_size before trying to calculate new_l1_size
49 * (this prevents overflows during the while loop for the calculation of
50 * new_l1_size) */
51 if (min_size > INT_MAX / sizeof(uint64_t)) {
52 return -EFBIG;
53 }
54
55 if (exact_size) {
56 new_l1_size = min_size;
57 } else {
58 /* Bump size up to reduce the number of times we have to grow */
59 new_l1_size = s->l1_size;
60 if (new_l1_size == 0) {
61 new_l1_size = 1;
62 }
63 while (min_size > new_l1_size) {
64 new_l1_size = (new_l1_size * 3 + 1) / 2;
65 }
66 }
67
68 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
69 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
70 return -EFBIG;
71 }
72
73 #ifdef DEBUG_ALLOC2
74 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
75 s->l1_size, new_l1_size);
76 #endif
77
78 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
79 new_l1_table = qemu_try_blockalign(bs->file->bs,
80 align_offset(new_l1_size2, 512));
81 if (new_l1_table == NULL) {
82 return -ENOMEM;
83 }
84 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
85
86 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
87
88 /* write new table (align to cluster) */
89 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
90 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
91 if (new_l1_table_offset < 0) {
92 qemu_vfree(new_l1_table);
93 return new_l1_table_offset;
94 }
95
96 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
97 if (ret < 0) {
98 goto fail;
99 }
100
101 /* the L1 position has not yet been updated, so these clusters must
102 * indeed be completely free */
103 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
104 new_l1_size2);
105 if (ret < 0) {
106 goto fail;
107 }
108
109 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
110 for(i = 0; i < s->l1_size; i++)
111 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
112 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
113 new_l1_table, new_l1_size2);
114 if (ret < 0)
115 goto fail;
116 for(i = 0; i < s->l1_size; i++)
117 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
118
119 /* set new table */
120 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
121 stl_be_p(data, new_l1_size);
122 stq_be_p(data + 4, new_l1_table_offset);
123 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
124 data, sizeof(data));
125 if (ret < 0) {
126 goto fail;
127 }
128 qemu_vfree(s->l1_table);
129 old_l1_table_offset = s->l1_table_offset;
130 s->l1_table_offset = new_l1_table_offset;
131 s->l1_table = new_l1_table;
132 old_l1_size = s->l1_size;
133 s->l1_size = new_l1_size;
134 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
135 QCOW2_DISCARD_OTHER);
136 return 0;
137 fail:
138 qemu_vfree(new_l1_table);
139 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
140 QCOW2_DISCARD_OTHER);
141 return ret;
142 }
143
144 /*
145 * l2_load
146 *
147 * Loads a L2 table into memory. If the table is in the cache, the cache
148 * is used; otherwise the L2 table is loaded from the image file.
149 *
150 * Returns a pointer to the L2 table on success, or NULL if the read from
151 * the image file failed.
152 */
153
154 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
155 uint64_t **l2_table)
156 {
157 BDRVQcow2State *s = bs->opaque;
158
159 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
160 (void **)l2_table);
161 }
162
163 /*
164 * Writes one sector of the L1 table to the disk (can't update single entries
165 * and we really don't want bdrv_pread to perform a read-modify-write)
166 */
167 #define L1_ENTRIES_PER_SECTOR (512 / 8)
168 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
169 {
170 BDRVQcow2State *s = bs->opaque;
171 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
172 int l1_start_index;
173 int i, ret;
174
175 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
176 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
177 i++)
178 {
179 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
180 }
181
182 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
183 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
184 if (ret < 0) {
185 return ret;
186 }
187
188 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
189 ret = bdrv_pwrite_sync(bs->file,
190 s->l1_table_offset + 8 * l1_start_index,
191 buf, sizeof(buf));
192 if (ret < 0) {
193 return ret;
194 }
195
196 return 0;
197 }
198
199 /*
200 * l2_allocate
201 *
202 * Allocate a new l2 entry in the file. If l1_index points to an already
203 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
204 * table) copy the contents of the old L2 table into the newly allocated one.
205 * Otherwise the new table is initialized with zeros.
206 *
207 */
208
209 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
210 {
211 BDRVQcow2State *s = bs->opaque;
212 uint64_t old_l2_offset;
213 uint64_t *l2_table = NULL;
214 int64_t l2_offset;
215 int ret;
216
217 old_l2_offset = s->l1_table[l1_index];
218
219 trace_qcow2_l2_allocate(bs, l1_index);
220
221 /* allocate a new l2 entry */
222
223 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
224 if (l2_offset < 0) {
225 ret = l2_offset;
226 goto fail;
227 }
228
229 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
230 if (ret < 0) {
231 goto fail;
232 }
233
234 /* allocate a new entry in the l2 cache */
235
236 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
237 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
238 if (ret < 0) {
239 goto fail;
240 }
241
242 l2_table = *table;
243
244 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
245 /* if there was no old l2 table, clear the new table */
246 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
247 } else {
248 uint64_t* old_table;
249
250 /* if there was an old l2 table, read it from the disk */
251 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
252 ret = qcow2_cache_get(bs, s->l2_table_cache,
253 old_l2_offset & L1E_OFFSET_MASK,
254 (void**) &old_table);
255 if (ret < 0) {
256 goto fail;
257 }
258
259 memcpy(l2_table, old_table, s->cluster_size);
260
261 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
262 }
263
264 /* write the l2 table to the file */
265 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
266
267 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
268 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
269 ret = qcow2_cache_flush(bs, s->l2_table_cache);
270 if (ret < 0) {
271 goto fail;
272 }
273
274 /* update the L1 entry */
275 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
276 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
277 ret = qcow2_write_l1_entry(bs, l1_index);
278 if (ret < 0) {
279 goto fail;
280 }
281
282 *table = l2_table;
283 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
284 return 0;
285
286 fail:
287 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
288 if (l2_table != NULL) {
289 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
290 }
291 s->l1_table[l1_index] = old_l2_offset;
292 if (l2_offset > 0) {
293 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
294 QCOW2_DISCARD_ALWAYS);
295 }
296 return ret;
297 }
298
299 /*
300 * Checks how many clusters in a given L2 table are contiguous in the image
301 * file. As soon as one of the flags in the bitmask stop_flags changes compared
302 * to the first cluster, the search is stopped and the cluster is not counted
303 * as contiguous. (This allows it, for example, to stop at the first compressed
304 * cluster which may require a different handling)
305 */
306 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
307 uint64_t *l2_table, uint64_t stop_flags)
308 {
309 int i;
310 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
311 uint64_t first_entry = be64_to_cpu(l2_table[0]);
312 uint64_t offset = first_entry & mask;
313
314 if (!offset)
315 return 0;
316
317 assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
318
319 for (i = 0; i < nb_clusters; i++) {
320 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
321 if (offset + (uint64_t) i * cluster_size != l2_entry) {
322 break;
323 }
324 }
325
326 return i;
327 }
328
329 static int count_contiguous_clusters_by_type(int nb_clusters,
330 uint64_t *l2_table,
331 int wanted_type)
332 {
333 int i;
334
335 for (i = 0; i < nb_clusters; i++) {
336 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
337
338 if (type != wanted_type) {
339 break;
340 }
341 }
342
343 return i;
344 }
345
346 /* The crypt function is compatible with the linux cryptoloop
347 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
348 supported */
349 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
350 uint8_t *out_buf, const uint8_t *in_buf,
351 int nb_sectors, bool enc,
352 Error **errp)
353 {
354 union {
355 uint64_t ll[2];
356 uint8_t b[16];
357 } ivec;
358 int i;
359 int ret;
360
361 for(i = 0; i < nb_sectors; i++) {
362 ivec.ll[0] = cpu_to_le64(sector_num);
363 ivec.ll[1] = 0;
364 if (qcrypto_cipher_setiv(s->cipher,
365 ivec.b, G_N_ELEMENTS(ivec.b),
366 errp) < 0) {
367 return -1;
368 }
369 if (enc) {
370 ret = qcrypto_cipher_encrypt(s->cipher,
371 in_buf,
372 out_buf,
373 512,
374 errp);
375 } else {
376 ret = qcrypto_cipher_decrypt(s->cipher,
377 in_buf,
378 out_buf,
379 512,
380 errp);
381 }
382 if (ret < 0) {
383 return -1;
384 }
385 sector_num++;
386 in_buf += 512;
387 out_buf += 512;
388 }
389 return 0;
390 }
391
392 static int coroutine_fn do_perform_cow(BlockDriverState *bs,
393 uint64_t src_cluster_offset,
394 uint64_t cluster_offset,
395 int offset_in_cluster,
396 int bytes)
397 {
398 BDRVQcow2State *s = bs->opaque;
399 QEMUIOVector qiov;
400 struct iovec iov;
401 int ret;
402
403 iov.iov_len = bytes;
404 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
405 if (iov.iov_base == NULL) {
406 return -ENOMEM;
407 }
408
409 qemu_iovec_init_external(&qiov, &iov, 1);
410
411 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
412
413 if (!bs->drv) {
414 ret = -ENOMEDIUM;
415 goto out;
416 }
417
418 /* Call .bdrv_co_readv() directly instead of using the public block-layer
419 * interface. This avoids double I/O throttling and request tracking,
420 * which can lead to deadlock when block layer copy-on-read is enabled.
421 */
422 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
423 bytes, &qiov, 0);
424 if (ret < 0) {
425 goto out;
426 }
427
428 if (bs->encrypted) {
429 Error *err = NULL;
430 int64_t sector = (cluster_offset + offset_in_cluster)
431 >> BDRV_SECTOR_BITS;
432 assert(s->cipher);
433 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
434 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
435 if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
436 bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
437 ret = -EIO;
438 error_free(err);
439 goto out;
440 }
441 }
442
443 ret = qcow2_pre_write_overlap_check(bs, 0,
444 cluster_offset + offset_in_cluster, bytes);
445 if (ret < 0) {
446 goto out;
447 }
448
449 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
450 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
451 bytes, &qiov, 0);
452 if (ret < 0) {
453 goto out;
454 }
455
456 ret = 0;
457 out:
458 qemu_vfree(iov.iov_base);
459 return ret;
460 }
461
462
463 /*
464 * get_cluster_offset
465 *
466 * For a given offset of the virtual disk, find the cluster type and offset in
467 * the qcow2 file. The offset is stored in *cluster_offset.
468 *
469 * On entry, *bytes is the maximum number of contiguous bytes starting at
470 * offset that we are interested in.
471 *
472 * On exit, *bytes is the number of bytes starting at offset that have the same
473 * cluster type and (if applicable) are stored contiguously in the image file.
474 * Compressed clusters are always returned one by one.
475 *
476 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
477 * cases.
478 */
479 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
480 unsigned int *bytes, uint64_t *cluster_offset)
481 {
482 BDRVQcow2State *s = bs->opaque;
483 unsigned int l2_index;
484 uint64_t l1_index, l2_offset, *l2_table;
485 int l1_bits, c;
486 unsigned int offset_in_cluster, nb_clusters;
487 uint64_t bytes_available, bytes_needed;
488 int ret;
489
490 offset_in_cluster = offset_into_cluster(s, offset);
491 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
492
493 l1_bits = s->l2_bits + s->cluster_bits;
494
495 /* compute how many bytes there are between the start of the cluster
496 * containing offset and the end of the l1 entry */
497 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
498 + offset_in_cluster;
499
500 if (bytes_needed > bytes_available) {
501 bytes_needed = bytes_available;
502 }
503 assert(bytes_needed <= INT_MAX);
504
505 *cluster_offset = 0;
506
507 /* seek to the l2 offset in the l1 table */
508
509 l1_index = offset >> l1_bits;
510 if (l1_index >= s->l1_size) {
511 ret = QCOW2_CLUSTER_UNALLOCATED;
512 goto out;
513 }
514
515 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
516 if (!l2_offset) {
517 ret = QCOW2_CLUSTER_UNALLOCATED;
518 goto out;
519 }
520
521 if (offset_into_cluster(s, l2_offset)) {
522 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
523 " unaligned (L1 index: %#" PRIx64 ")",
524 l2_offset, l1_index);
525 return -EIO;
526 }
527
528 /* load the l2 table in memory */
529
530 ret = l2_load(bs, l2_offset, &l2_table);
531 if (ret < 0) {
532 return ret;
533 }
534
535 /* find the cluster offset for the given disk offset */
536
537 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
538 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
539
540 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
541 nb_clusters = size_to_clusters(s, bytes_needed);
542
543 ret = qcow2_get_cluster_type(*cluster_offset);
544 switch (ret) {
545 case QCOW2_CLUSTER_COMPRESSED:
546 /* Compressed clusters can only be processed one by one */
547 c = 1;
548 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
549 break;
550 case QCOW2_CLUSTER_ZERO:
551 if (s->qcow_version < 3) {
552 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
553 " in pre-v3 image (L2 offset: %#" PRIx64
554 ", L2 index: %#x)", l2_offset, l2_index);
555 ret = -EIO;
556 goto fail;
557 }
558 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
559 QCOW2_CLUSTER_ZERO);
560 *cluster_offset = 0;
561 break;
562 case QCOW2_CLUSTER_UNALLOCATED:
563 /* how many empty clusters ? */
564 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
565 QCOW2_CLUSTER_UNALLOCATED);
566 *cluster_offset = 0;
567 break;
568 case QCOW2_CLUSTER_NORMAL:
569 /* how many allocated clusters ? */
570 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
571 &l2_table[l2_index], QCOW_OFLAG_ZERO);
572 *cluster_offset &= L2E_OFFSET_MASK;
573 if (offset_into_cluster(s, *cluster_offset)) {
574 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
575 PRIx64 " unaligned (L2 offset: %#" PRIx64
576 ", L2 index: %#x)", *cluster_offset,
577 l2_offset, l2_index);
578 ret = -EIO;
579 goto fail;
580 }
581 break;
582 default:
583 abort();
584 }
585
586 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
587
588 bytes_available = (c * s->cluster_size);
589
590 out:
591 if (bytes_available > bytes_needed) {
592 bytes_available = bytes_needed;
593 }
594
595 *bytes = bytes_available - offset_in_cluster;
596
597 return ret;
598
599 fail:
600 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
601 return ret;
602 }
603
604 /*
605 * get_cluster_table
606 *
607 * for a given disk offset, load (and allocate if needed)
608 * the l2 table.
609 *
610 * the l2 table offset in the qcow2 file and the cluster index
611 * in the l2 table are given to the caller.
612 *
613 * Returns 0 on success, -errno in failure case
614 */
615 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
616 uint64_t **new_l2_table,
617 int *new_l2_index)
618 {
619 BDRVQcow2State *s = bs->opaque;
620 unsigned int l2_index;
621 uint64_t l1_index, l2_offset;
622 uint64_t *l2_table = NULL;
623 int ret;
624
625 /* seek to the l2 offset in the l1 table */
626
627 l1_index = offset >> (s->l2_bits + s->cluster_bits);
628 if (l1_index >= s->l1_size) {
629 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
630 if (ret < 0) {
631 return ret;
632 }
633 }
634
635 assert(l1_index < s->l1_size);
636 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
637 if (offset_into_cluster(s, l2_offset)) {
638 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
639 " unaligned (L1 index: %#" PRIx64 ")",
640 l2_offset, l1_index);
641 return -EIO;
642 }
643
644 /* seek the l2 table of the given l2 offset */
645
646 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
647 /* load the l2 table in memory */
648 ret = l2_load(bs, l2_offset, &l2_table);
649 if (ret < 0) {
650 return ret;
651 }
652 } else {
653 /* First allocate a new L2 table (and do COW if needed) */
654 ret = l2_allocate(bs, l1_index, &l2_table);
655 if (ret < 0) {
656 return ret;
657 }
658
659 /* Then decrease the refcount of the old table */
660 if (l2_offset) {
661 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
662 QCOW2_DISCARD_OTHER);
663 }
664 }
665
666 /* find the cluster offset for the given disk offset */
667
668 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
669
670 *new_l2_table = l2_table;
671 *new_l2_index = l2_index;
672
673 return 0;
674 }
675
676 /*
677 * alloc_compressed_cluster_offset
678 *
679 * For a given offset of the disk image, return cluster offset in
680 * qcow2 file.
681 *
682 * If the offset is not found, allocate a new compressed cluster.
683 *
684 * Return the cluster offset if successful,
685 * Return 0, otherwise.
686 *
687 */
688
689 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
690 uint64_t offset,
691 int compressed_size)
692 {
693 BDRVQcow2State *s = bs->opaque;
694 int l2_index, ret;
695 uint64_t *l2_table;
696 int64_t cluster_offset;
697 int nb_csectors;
698
699 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
700 if (ret < 0) {
701 return 0;
702 }
703
704 /* Compression can't overwrite anything. Fail if the cluster was already
705 * allocated. */
706 cluster_offset = be64_to_cpu(l2_table[l2_index]);
707 if (cluster_offset & L2E_OFFSET_MASK) {
708 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
709 return 0;
710 }
711
712 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
713 if (cluster_offset < 0) {
714 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
715 return 0;
716 }
717
718 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
719 (cluster_offset >> 9);
720
721 cluster_offset |= QCOW_OFLAG_COMPRESSED |
722 ((uint64_t)nb_csectors << s->csize_shift);
723
724 /* update L2 table */
725
726 /* compressed clusters never have the copied flag */
727
728 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
729 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
730 l2_table[l2_index] = cpu_to_be64(cluster_offset);
731 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
732
733 return cluster_offset;
734 }
735
736 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
737 {
738 BDRVQcow2State *s = bs->opaque;
739 int ret;
740
741 if (r->nb_bytes == 0) {
742 return 0;
743 }
744
745 qemu_co_mutex_unlock(&s->lock);
746 ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
747 qemu_co_mutex_lock(&s->lock);
748
749 if (ret < 0) {
750 return ret;
751 }
752
753 /*
754 * Before we update the L2 table to actually point to the new cluster, we
755 * need to be sure that the refcounts have been increased and COW was
756 * handled.
757 */
758 qcow2_cache_depends_on_flush(s->l2_table_cache);
759
760 return 0;
761 }
762
763 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
764 {
765 BDRVQcow2State *s = bs->opaque;
766 int i, j = 0, l2_index, ret;
767 uint64_t *old_cluster, *l2_table;
768 uint64_t cluster_offset = m->alloc_offset;
769
770 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
771 assert(m->nb_clusters > 0);
772
773 old_cluster = g_try_new(uint64_t, m->nb_clusters);
774 if (old_cluster == NULL) {
775 ret = -ENOMEM;
776 goto err;
777 }
778
779 /* copy content of unmodified sectors */
780 ret = perform_cow(bs, m, &m->cow_start);
781 if (ret < 0) {
782 goto err;
783 }
784
785 ret = perform_cow(bs, m, &m->cow_end);
786 if (ret < 0) {
787 goto err;
788 }
789
790 /* Update L2 table. */
791 if (s->use_lazy_refcounts) {
792 qcow2_mark_dirty(bs);
793 }
794 if (qcow2_need_accurate_refcounts(s)) {
795 qcow2_cache_set_dependency(bs, s->l2_table_cache,
796 s->refcount_block_cache);
797 }
798
799 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
800 if (ret < 0) {
801 goto err;
802 }
803 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
804
805 assert(l2_index + m->nb_clusters <= s->l2_size);
806 for (i = 0; i < m->nb_clusters; i++) {
807 /* if two concurrent writes happen to the same unallocated cluster
808 * each write allocates separate cluster and writes data concurrently.
809 * The first one to complete updates l2 table with pointer to its
810 * cluster the second one has to do RMW (which is done above by
811 * perform_cow()), update l2 table with its cluster pointer and free
812 * old cluster. This is what this loop does */
813 if (l2_table[l2_index + i] != 0) {
814 old_cluster[j++] = l2_table[l2_index + i];
815 }
816
817 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
818 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
819 }
820
821
822 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
823
824 /*
825 * If this was a COW, we need to decrease the refcount of the old cluster.
826 *
827 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
828 * clusters), the next write will reuse them anyway.
829 */
830 if (j != 0) {
831 for (i = 0; i < j; i++) {
832 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
833 QCOW2_DISCARD_NEVER);
834 }
835 }
836
837 ret = 0;
838 err:
839 g_free(old_cluster);
840 return ret;
841 }
842
843 /*
844 * Returns the number of contiguous clusters that can be used for an allocating
845 * write, but require COW to be performed (this includes yet unallocated space,
846 * which must copy from the backing file)
847 */
848 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
849 uint64_t *l2_table, int l2_index)
850 {
851 int i;
852
853 for (i = 0; i < nb_clusters; i++) {
854 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
855 int cluster_type = qcow2_get_cluster_type(l2_entry);
856
857 switch(cluster_type) {
858 case QCOW2_CLUSTER_NORMAL:
859 if (l2_entry & QCOW_OFLAG_COPIED) {
860 goto out;
861 }
862 break;
863 case QCOW2_CLUSTER_UNALLOCATED:
864 case QCOW2_CLUSTER_COMPRESSED:
865 case QCOW2_CLUSTER_ZERO:
866 break;
867 default:
868 abort();
869 }
870 }
871
872 out:
873 assert(i <= nb_clusters);
874 return i;
875 }
876
877 /*
878 * Check if there already is an AIO write request in flight which allocates
879 * the same cluster. In this case we need to wait until the previous
880 * request has completed and updated the L2 table accordingly.
881 *
882 * Returns:
883 * 0 if there was no dependency. *cur_bytes indicates the number of
884 * bytes from guest_offset that can be read before the next
885 * dependency must be processed (or the request is complete)
886 *
887 * -EAGAIN if we had to wait for another request, previously gathered
888 * information on cluster allocation may be invalid now. The caller
889 * must start over anyway, so consider *cur_bytes undefined.
890 */
891 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
892 uint64_t *cur_bytes, QCowL2Meta **m)
893 {
894 BDRVQcow2State *s = bs->opaque;
895 QCowL2Meta *old_alloc;
896 uint64_t bytes = *cur_bytes;
897
898 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
899
900 uint64_t start = guest_offset;
901 uint64_t end = start + bytes;
902 uint64_t old_start = l2meta_cow_start(old_alloc);
903 uint64_t old_end = l2meta_cow_end(old_alloc);
904
905 if (end <= old_start || start >= old_end) {
906 /* No intersection */
907 } else {
908 if (start < old_start) {
909 /* Stop at the start of a running allocation */
910 bytes = old_start - start;
911 } else {
912 bytes = 0;
913 }
914
915 /* Stop if already an l2meta exists. After yielding, it wouldn't
916 * be valid any more, so we'd have to clean up the old L2Metas
917 * and deal with requests depending on them before starting to
918 * gather new ones. Not worth the trouble. */
919 if (bytes == 0 && *m) {
920 *cur_bytes = 0;
921 return 0;
922 }
923
924 if (bytes == 0) {
925 /* Wait for the dependency to complete. We need to recheck
926 * the free/allocated clusters when we continue. */
927 qemu_co_mutex_unlock(&s->lock);
928 qemu_co_queue_wait(&old_alloc->dependent_requests);
929 qemu_co_mutex_lock(&s->lock);
930 return -EAGAIN;
931 }
932 }
933 }
934
935 /* Make sure that existing clusters and new allocations are only used up to
936 * the next dependency if we shortened the request above */
937 *cur_bytes = bytes;
938
939 return 0;
940 }
941
942 /*
943 * Checks how many already allocated clusters that don't require a copy on
944 * write there are at the given guest_offset (up to *bytes). If
945 * *host_offset is not zero, only physically contiguous clusters beginning at
946 * this host offset are counted.
947 *
948 * Note that guest_offset may not be cluster aligned. In this case, the
949 * returned *host_offset points to exact byte referenced by guest_offset and
950 * therefore isn't cluster aligned as well.
951 *
952 * Returns:
953 * 0: if no allocated clusters are available at the given offset.
954 * *bytes is normally unchanged. It is set to 0 if the cluster
955 * is allocated and doesn't need COW, but doesn't have the right
956 * physical offset.
957 *
958 * 1: if allocated clusters that don't require a COW are available at
959 * the requested offset. *bytes may have decreased and describes
960 * the length of the area that can be written to.
961 *
962 * -errno: in error cases
963 */
964 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
965 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
966 {
967 BDRVQcow2State *s = bs->opaque;
968 int l2_index;
969 uint64_t cluster_offset;
970 uint64_t *l2_table;
971 uint64_t nb_clusters;
972 unsigned int keep_clusters;
973 int ret;
974
975 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
976 *bytes);
977
978 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
979 == offset_into_cluster(s, *host_offset));
980
981 /*
982 * Calculate the number of clusters to look for. We stop at L2 table
983 * boundaries to keep things simple.
984 */
985 nb_clusters =
986 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
987
988 l2_index = offset_to_l2_index(s, guest_offset);
989 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
990 assert(nb_clusters <= INT_MAX);
991
992 /* Find L2 entry for the first involved cluster */
993 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
994 if (ret < 0) {
995 return ret;
996 }
997
998 cluster_offset = be64_to_cpu(l2_table[l2_index]);
999
1000 /* Check how many clusters are already allocated and don't need COW */
1001 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1002 && (cluster_offset & QCOW_OFLAG_COPIED))
1003 {
1004 /* If a specific host_offset is required, check it */
1005 bool offset_matches =
1006 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1007
1008 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1009 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1010 "%#llx unaligned (guest offset: %#" PRIx64
1011 ")", cluster_offset & L2E_OFFSET_MASK,
1012 guest_offset);
1013 ret = -EIO;
1014 goto out;
1015 }
1016
1017 if (*host_offset != 0 && !offset_matches) {
1018 *bytes = 0;
1019 ret = 0;
1020 goto out;
1021 }
1022
1023 /* We keep all QCOW_OFLAG_COPIED clusters */
1024 keep_clusters =
1025 count_contiguous_clusters(nb_clusters, s->cluster_size,
1026 &l2_table[l2_index],
1027 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1028 assert(keep_clusters <= nb_clusters);
1029
1030 *bytes = MIN(*bytes,
1031 keep_clusters * s->cluster_size
1032 - offset_into_cluster(s, guest_offset));
1033
1034 ret = 1;
1035 } else {
1036 ret = 0;
1037 }
1038
1039 /* Cleanup */
1040 out:
1041 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1042
1043 /* Only return a host offset if we actually made progress. Otherwise we
1044 * would make requirements for handle_alloc() that it can't fulfill */
1045 if (ret > 0) {
1046 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1047 + offset_into_cluster(s, guest_offset);
1048 }
1049
1050 return ret;
1051 }
1052
1053 /*
1054 * Allocates new clusters for the given guest_offset.
1055 *
1056 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1057 * contain the number of clusters that have been allocated and are contiguous
1058 * in the image file.
1059 *
1060 * If *host_offset is non-zero, it specifies the offset in the image file at
1061 * which the new clusters must start. *nb_clusters can be 0 on return in this
1062 * case if the cluster at host_offset is already in use. If *host_offset is
1063 * zero, the clusters can be allocated anywhere in the image file.
1064 *
1065 * *host_offset is updated to contain the offset into the image file at which
1066 * the first allocated cluster starts.
1067 *
1068 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1069 * function has been waiting for another request and the allocation must be
1070 * restarted, but the whole request should not be failed.
1071 */
1072 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1073 uint64_t *host_offset, uint64_t *nb_clusters)
1074 {
1075 BDRVQcow2State *s = bs->opaque;
1076
1077 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1078 *host_offset, *nb_clusters);
1079
1080 /* Allocate new clusters */
1081 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1082 if (*host_offset == 0) {
1083 int64_t cluster_offset =
1084 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1085 if (cluster_offset < 0) {
1086 return cluster_offset;
1087 }
1088 *host_offset = cluster_offset;
1089 return 0;
1090 } else {
1091 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1092 if (ret < 0) {
1093 return ret;
1094 }
1095 *nb_clusters = ret;
1096 return 0;
1097 }
1098 }
1099
1100 /*
1101 * Allocates new clusters for an area that either is yet unallocated or needs a
1102 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1103 * the new allocation can match the specified host offset.
1104 *
1105 * Note that guest_offset may not be cluster aligned. In this case, the
1106 * returned *host_offset points to exact byte referenced by guest_offset and
1107 * therefore isn't cluster aligned as well.
1108 *
1109 * Returns:
1110 * 0: if no clusters could be allocated. *bytes is set to 0,
1111 * *host_offset is left unchanged.
1112 *
1113 * 1: if new clusters were allocated. *bytes may be decreased if the
1114 * new allocation doesn't cover all of the requested area.
1115 * *host_offset is updated to contain the host offset of the first
1116 * newly allocated cluster.
1117 *
1118 * -errno: in error cases
1119 */
1120 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1121 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1122 {
1123 BDRVQcow2State *s = bs->opaque;
1124 int l2_index;
1125 uint64_t *l2_table;
1126 uint64_t entry;
1127 uint64_t nb_clusters;
1128 int ret;
1129
1130 uint64_t alloc_cluster_offset;
1131
1132 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1133 *bytes);
1134 assert(*bytes > 0);
1135
1136 /*
1137 * Calculate the number of clusters to look for. We stop at L2 table
1138 * boundaries to keep things simple.
1139 */
1140 nb_clusters =
1141 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1142
1143 l2_index = offset_to_l2_index(s, guest_offset);
1144 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1145 assert(nb_clusters <= INT_MAX);
1146
1147 /* Find L2 entry for the first involved cluster */
1148 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1149 if (ret < 0) {
1150 return ret;
1151 }
1152
1153 entry = be64_to_cpu(l2_table[l2_index]);
1154
1155 /* For the moment, overwrite compressed clusters one by one */
1156 if (entry & QCOW_OFLAG_COMPRESSED) {
1157 nb_clusters = 1;
1158 } else {
1159 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1160 }
1161
1162 /* This function is only called when there were no non-COW clusters, so if
1163 * we can't find any unallocated or COW clusters either, something is
1164 * wrong with our code. */
1165 assert(nb_clusters > 0);
1166
1167 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1168
1169 /* Allocate, if necessary at a given offset in the image file */
1170 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1171 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1172 &nb_clusters);
1173 if (ret < 0) {
1174 goto fail;
1175 }
1176
1177 /* Can't extend contiguous allocation */
1178 if (nb_clusters == 0) {
1179 *bytes = 0;
1180 return 0;
1181 }
1182
1183 /* !*host_offset would overwrite the image header and is reserved for "no
1184 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1185 * following overlap check; do that now to avoid having an invalid value in
1186 * *host_offset. */
1187 if (!alloc_cluster_offset) {
1188 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1189 nb_clusters * s->cluster_size);
1190 assert(ret < 0);
1191 goto fail;
1192 }
1193
1194 /*
1195 * Save info needed for meta data update.
1196 *
1197 * requested_bytes: Number of bytes from the start of the first
1198 * newly allocated cluster to the end of the (possibly shortened
1199 * before) write request.
1200 *
1201 * avail_bytes: Number of bytes from the start of the first
1202 * newly allocated to the end of the last newly allocated cluster.
1203 *
1204 * nb_bytes: The number of bytes from the start of the first
1205 * newly allocated cluster to the end of the area that the write
1206 * request actually writes to (excluding COW at the end)
1207 */
1208 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1209 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1210 int nb_bytes = MIN(requested_bytes, avail_bytes);
1211 QCowL2Meta *old_m = *m;
1212
1213 *m = g_malloc0(sizeof(**m));
1214
1215 **m = (QCowL2Meta) {
1216 .next = old_m,
1217
1218 .alloc_offset = alloc_cluster_offset,
1219 .offset = start_of_cluster(s, guest_offset),
1220 .nb_clusters = nb_clusters,
1221
1222 .cow_start = {
1223 .offset = 0,
1224 .nb_bytes = offset_into_cluster(s, guest_offset),
1225 },
1226 .cow_end = {
1227 .offset = nb_bytes,
1228 .nb_bytes = avail_bytes - nb_bytes,
1229 },
1230 };
1231 qemu_co_queue_init(&(*m)->dependent_requests);
1232 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1233
1234 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1235 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1236 assert(*bytes != 0);
1237
1238 return 1;
1239
1240 fail:
1241 if (*m && (*m)->nb_clusters > 0) {
1242 QLIST_REMOVE(*m, next_in_flight);
1243 }
1244 return ret;
1245 }
1246
1247 /*
1248 * alloc_cluster_offset
1249 *
1250 * For a given offset on the virtual disk, find the cluster offset in qcow2
1251 * file. If the offset is not found, allocate a new cluster.
1252 *
1253 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1254 * other fields in m are meaningless.
1255 *
1256 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1257 * contiguous clusters that have been allocated. In this case, the other
1258 * fields of m are valid and contain information about the first allocated
1259 * cluster.
1260 *
1261 * If the request conflicts with another write request in flight, the coroutine
1262 * is queued and will be reentered when the dependency has completed.
1263 *
1264 * Return 0 on success and -errno in error cases
1265 */
1266 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1267 unsigned int *bytes, uint64_t *host_offset,
1268 QCowL2Meta **m)
1269 {
1270 BDRVQcow2State *s = bs->opaque;
1271 uint64_t start, remaining;
1272 uint64_t cluster_offset;
1273 uint64_t cur_bytes;
1274 int ret;
1275
1276 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1277
1278 again:
1279 start = offset;
1280 remaining = *bytes;
1281 cluster_offset = 0;
1282 *host_offset = 0;
1283 cur_bytes = 0;
1284 *m = NULL;
1285
1286 while (true) {
1287
1288 if (!*host_offset) {
1289 *host_offset = start_of_cluster(s, cluster_offset);
1290 }
1291
1292 assert(remaining >= cur_bytes);
1293
1294 start += cur_bytes;
1295 remaining -= cur_bytes;
1296 cluster_offset += cur_bytes;
1297
1298 if (remaining == 0) {
1299 break;
1300 }
1301
1302 cur_bytes = remaining;
1303
1304 /*
1305 * Now start gathering as many contiguous clusters as possible:
1306 *
1307 * 1. Check for overlaps with in-flight allocations
1308 *
1309 * a) Overlap not in the first cluster -> shorten this request and
1310 * let the caller handle the rest in its next loop iteration.
1311 *
1312 * b) Real overlaps of two requests. Yield and restart the search
1313 * for contiguous clusters (the situation could have changed
1314 * while we were sleeping)
1315 *
1316 * c) TODO: Request starts in the same cluster as the in-flight
1317 * allocation ends. Shorten the COW of the in-fight allocation,
1318 * set cluster_offset to write to the same cluster and set up
1319 * the right synchronisation between the in-flight request and
1320 * the new one.
1321 */
1322 ret = handle_dependencies(bs, start, &cur_bytes, m);
1323 if (ret == -EAGAIN) {
1324 /* Currently handle_dependencies() doesn't yield if we already had
1325 * an allocation. If it did, we would have to clean up the L2Meta
1326 * structs before starting over. */
1327 assert(*m == NULL);
1328 goto again;
1329 } else if (ret < 0) {
1330 return ret;
1331 } else if (cur_bytes == 0) {
1332 break;
1333 } else {
1334 /* handle_dependencies() may have decreased cur_bytes (shortened
1335 * the allocations below) so that the next dependency is processed
1336 * correctly during the next loop iteration. */
1337 }
1338
1339 /*
1340 * 2. Count contiguous COPIED clusters.
1341 */
1342 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1343 if (ret < 0) {
1344 return ret;
1345 } else if (ret) {
1346 continue;
1347 } else if (cur_bytes == 0) {
1348 break;
1349 }
1350
1351 /*
1352 * 3. If the request still hasn't completed, allocate new clusters,
1353 * considering any cluster_offset of steps 1c or 2.
1354 */
1355 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1356 if (ret < 0) {
1357 return ret;
1358 } else if (ret) {
1359 continue;
1360 } else {
1361 assert(cur_bytes == 0);
1362 break;
1363 }
1364 }
1365
1366 *bytes -= remaining;
1367 assert(*bytes > 0);
1368 assert(*host_offset != 0);
1369
1370 return 0;
1371 }
1372
1373 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1374 const uint8_t *buf, int buf_size)
1375 {
1376 z_stream strm1, *strm = &strm1;
1377 int ret, out_len;
1378
1379 memset(strm, 0, sizeof(*strm));
1380
1381 strm->next_in = (uint8_t *)buf;
1382 strm->avail_in = buf_size;
1383 strm->next_out = out_buf;
1384 strm->avail_out = out_buf_size;
1385
1386 ret = inflateInit2(strm, -12);
1387 if (ret != Z_OK)
1388 return -1;
1389 ret = inflate(strm, Z_FINISH);
1390 out_len = strm->next_out - out_buf;
1391 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1392 out_len != out_buf_size) {
1393 inflateEnd(strm);
1394 return -1;
1395 }
1396 inflateEnd(strm);
1397 return 0;
1398 }
1399
1400 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1401 {
1402 BDRVQcow2State *s = bs->opaque;
1403 int ret, csize, nb_csectors, sector_offset;
1404 uint64_t coffset;
1405
1406 coffset = cluster_offset & s->cluster_offset_mask;
1407 if (s->cluster_cache_offset != coffset) {
1408 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1409 sector_offset = coffset & 511;
1410 csize = nb_csectors * 512 - sector_offset;
1411 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1412 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1413 nb_csectors);
1414 if (ret < 0) {
1415 return ret;
1416 }
1417 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1418 s->cluster_data + sector_offset, csize) < 0) {
1419 return -EIO;
1420 }
1421 s->cluster_cache_offset = coffset;
1422 }
1423 return 0;
1424 }
1425
1426 /*
1427 * This discards as many clusters of nb_clusters as possible at once (i.e.
1428 * all clusters in the same L2 table) and returns the number of discarded
1429 * clusters.
1430 */
1431 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1432 uint64_t nb_clusters, enum qcow2_discard_type type,
1433 bool full_discard)
1434 {
1435 BDRVQcow2State *s = bs->opaque;
1436 uint64_t *l2_table;
1437 int l2_index;
1438 int ret;
1439 int i;
1440
1441 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1442 if (ret < 0) {
1443 return ret;
1444 }
1445
1446 /* Limit nb_clusters to one L2 table */
1447 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1448 assert(nb_clusters <= INT_MAX);
1449
1450 for (i = 0; i < nb_clusters; i++) {
1451 uint64_t old_l2_entry;
1452
1453 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1454
1455 /*
1456 * If full_discard is false, make sure that a discarded area reads back
1457 * as zeroes for v3 images (we cannot do it for v2 without actually
1458 * writing a zero-filled buffer). We can skip the operation if the
1459 * cluster is already marked as zero, or if it's unallocated and we
1460 * don't have a backing file.
1461 *
1462 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1463 * holding s->lock, so that doesn't work today.
1464 *
1465 * If full_discard is true, the sector should not read back as zeroes,
1466 * but rather fall through to the backing file.
1467 */
1468 switch (qcow2_get_cluster_type(old_l2_entry)) {
1469 case QCOW2_CLUSTER_UNALLOCATED:
1470 if (full_discard || !bs->backing) {
1471 continue;
1472 }
1473 break;
1474
1475 case QCOW2_CLUSTER_ZERO:
1476 if (!full_discard) {
1477 continue;
1478 }
1479 break;
1480
1481 case QCOW2_CLUSTER_NORMAL:
1482 case QCOW2_CLUSTER_COMPRESSED:
1483 break;
1484
1485 default:
1486 abort();
1487 }
1488
1489 /* First remove L2 entries */
1490 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1491 if (!full_discard && s->qcow_version >= 3) {
1492 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1493 } else {
1494 l2_table[l2_index + i] = cpu_to_be64(0);
1495 }
1496
1497 /* Then decrease the refcount */
1498 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1499 }
1500
1501 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1502
1503 return nb_clusters;
1504 }
1505
1506 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1507 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1508 {
1509 BDRVQcow2State *s = bs->opaque;
1510 uint64_t end_offset;
1511 uint64_t nb_clusters;
1512 int ret;
1513
1514 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1515
1516 /* Round start up and end down */
1517 offset = align_offset(offset, s->cluster_size);
1518 end_offset = start_of_cluster(s, end_offset);
1519
1520 if (offset > end_offset) {
1521 return 0;
1522 }
1523
1524 nb_clusters = size_to_clusters(s, end_offset - offset);
1525
1526 s->cache_discards = true;
1527
1528 /* Each L2 table is handled by its own loop iteration */
1529 while (nb_clusters > 0) {
1530 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1531 if (ret < 0) {
1532 goto fail;
1533 }
1534
1535 nb_clusters -= ret;
1536 offset += (ret * s->cluster_size);
1537 }
1538
1539 ret = 0;
1540 fail:
1541 s->cache_discards = false;
1542 qcow2_process_discards(bs, ret);
1543
1544 return ret;
1545 }
1546
1547 /*
1548 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1549 * all clusters in the same L2 table) and returns the number of zeroed
1550 * clusters.
1551 */
1552 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1553 uint64_t nb_clusters)
1554 {
1555 BDRVQcow2State *s = bs->opaque;
1556 uint64_t *l2_table;
1557 int l2_index;
1558 int ret;
1559 int i;
1560
1561 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1562 if (ret < 0) {
1563 return ret;
1564 }
1565
1566 /* Limit nb_clusters to one L2 table */
1567 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1568 assert(nb_clusters <= INT_MAX);
1569
1570 for (i = 0; i < nb_clusters; i++) {
1571 uint64_t old_offset;
1572
1573 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1574
1575 /* Update L2 entries */
1576 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1577 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1578 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1579 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1580 } else {
1581 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1582 }
1583 }
1584
1585 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1586
1587 return nb_clusters;
1588 }
1589
1590 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1591 {
1592 BDRVQcow2State *s = bs->opaque;
1593 uint64_t nb_clusters;
1594 int ret;
1595
1596 /* The zero flag is only supported by version 3 and newer */
1597 if (s->qcow_version < 3) {
1598 return -ENOTSUP;
1599 }
1600
1601 /* Each L2 table is handled by its own loop iteration */
1602 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1603
1604 s->cache_discards = true;
1605
1606 while (nb_clusters > 0) {
1607 ret = zero_single_l2(bs, offset, nb_clusters);
1608 if (ret < 0) {
1609 goto fail;
1610 }
1611
1612 nb_clusters -= ret;
1613 offset += (ret * s->cluster_size);
1614 }
1615
1616 ret = 0;
1617 fail:
1618 s->cache_discards = false;
1619 qcow2_process_discards(bs, ret);
1620
1621 return ret;
1622 }
1623
1624 /*
1625 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1626 * non-backed non-pre-allocated zero clusters).
1627 *
1628 * l1_entries and *visited_l1_entries are used to keep track of progress for
1629 * status_cb(). l1_entries contains the total number of L1 entries and
1630 * *visited_l1_entries counts all visited L1 entries.
1631 */
1632 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1633 int l1_size, int64_t *visited_l1_entries,
1634 int64_t l1_entries,
1635 BlockDriverAmendStatusCB *status_cb,
1636 void *cb_opaque)
1637 {
1638 BDRVQcow2State *s = bs->opaque;
1639 bool is_active_l1 = (l1_table == s->l1_table);
1640 uint64_t *l2_table = NULL;
1641 int ret;
1642 int i, j;
1643
1644 if (!is_active_l1) {
1645 /* inactive L2 tables require a buffer to be stored in when loading
1646 * them from disk */
1647 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1648 if (l2_table == NULL) {
1649 return -ENOMEM;
1650 }
1651 }
1652
1653 for (i = 0; i < l1_size; i++) {
1654 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1655 bool l2_dirty = false;
1656 uint64_t l2_refcount;
1657
1658 if (!l2_offset) {
1659 /* unallocated */
1660 (*visited_l1_entries)++;
1661 if (status_cb) {
1662 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1663 }
1664 continue;
1665 }
1666
1667 if (offset_into_cluster(s, l2_offset)) {
1668 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1669 PRIx64 " unaligned (L1 index: %#x)",
1670 l2_offset, i);
1671 ret = -EIO;
1672 goto fail;
1673 }
1674
1675 if (is_active_l1) {
1676 /* get active L2 tables from cache */
1677 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1678 (void **)&l2_table);
1679 } else {
1680 /* load inactive L2 tables from disk */
1681 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1682 (void *)l2_table, s->cluster_sectors);
1683 }
1684 if (ret < 0) {
1685 goto fail;
1686 }
1687
1688 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1689 &l2_refcount);
1690 if (ret < 0) {
1691 goto fail;
1692 }
1693
1694 for (j = 0; j < s->l2_size; j++) {
1695 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1696 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1697 int cluster_type = qcow2_get_cluster_type(l2_entry);
1698 bool preallocated = offset != 0;
1699
1700 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1701 continue;
1702 }
1703
1704 if (!preallocated) {
1705 if (!bs->backing) {
1706 /* not backed; therefore we can simply deallocate the
1707 * cluster */
1708 l2_table[j] = 0;
1709 l2_dirty = true;
1710 continue;
1711 }
1712
1713 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1714 if (offset < 0) {
1715 ret = offset;
1716 goto fail;
1717 }
1718
1719 if (l2_refcount > 1) {
1720 /* For shared L2 tables, set the refcount accordingly (it is
1721 * already 1 and needs to be l2_refcount) */
1722 ret = qcow2_update_cluster_refcount(bs,
1723 offset >> s->cluster_bits,
1724 refcount_diff(1, l2_refcount), false,
1725 QCOW2_DISCARD_OTHER);
1726 if (ret < 0) {
1727 qcow2_free_clusters(bs, offset, s->cluster_size,
1728 QCOW2_DISCARD_OTHER);
1729 goto fail;
1730 }
1731 }
1732 }
1733
1734 if (offset_into_cluster(s, offset)) {
1735 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1736 "%#" PRIx64 " unaligned (L2 offset: %#"
1737 PRIx64 ", L2 index: %#x)", offset,
1738 l2_offset, j);
1739 if (!preallocated) {
1740 qcow2_free_clusters(bs, offset, s->cluster_size,
1741 QCOW2_DISCARD_ALWAYS);
1742 }
1743 ret = -EIO;
1744 goto fail;
1745 }
1746
1747 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1748 if (ret < 0) {
1749 if (!preallocated) {
1750 qcow2_free_clusters(bs, offset, s->cluster_size,
1751 QCOW2_DISCARD_ALWAYS);
1752 }
1753 goto fail;
1754 }
1755
1756 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1757 if (ret < 0) {
1758 if (!preallocated) {
1759 qcow2_free_clusters(bs, offset, s->cluster_size,
1760 QCOW2_DISCARD_ALWAYS);
1761 }
1762 goto fail;
1763 }
1764
1765 if (l2_refcount == 1) {
1766 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1767 } else {
1768 l2_table[j] = cpu_to_be64(offset);
1769 }
1770 l2_dirty = true;
1771 }
1772
1773 if (is_active_l1) {
1774 if (l2_dirty) {
1775 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1776 qcow2_cache_depends_on_flush(s->l2_table_cache);
1777 }
1778 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1779 } else {
1780 if (l2_dirty) {
1781 ret = qcow2_pre_write_overlap_check(bs,
1782 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1783 s->cluster_size);
1784 if (ret < 0) {
1785 goto fail;
1786 }
1787
1788 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1789 (void *)l2_table, s->cluster_sectors);
1790 if (ret < 0) {
1791 goto fail;
1792 }
1793 }
1794 }
1795
1796 (*visited_l1_entries)++;
1797 if (status_cb) {
1798 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1799 }
1800 }
1801
1802 ret = 0;
1803
1804 fail:
1805 if (l2_table) {
1806 if (!is_active_l1) {
1807 qemu_vfree(l2_table);
1808 } else {
1809 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1810 }
1811 }
1812 return ret;
1813 }
1814
1815 /*
1816 * For backed images, expands all zero clusters on the image. For non-backed
1817 * images, deallocates all non-pre-allocated zero clusters (and claims the
1818 * allocation for pre-allocated ones). This is important for downgrading to a
1819 * qcow2 version which doesn't yet support metadata zero clusters.
1820 */
1821 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1822 BlockDriverAmendStatusCB *status_cb,
1823 void *cb_opaque)
1824 {
1825 BDRVQcow2State *s = bs->opaque;
1826 uint64_t *l1_table = NULL;
1827 int64_t l1_entries = 0, visited_l1_entries = 0;
1828 int ret;
1829 int i, j;
1830
1831 if (status_cb) {
1832 l1_entries = s->l1_size;
1833 for (i = 0; i < s->nb_snapshots; i++) {
1834 l1_entries += s->snapshots[i].l1_size;
1835 }
1836 }
1837
1838 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1839 &visited_l1_entries, l1_entries,
1840 status_cb, cb_opaque);
1841 if (ret < 0) {
1842 goto fail;
1843 }
1844
1845 /* Inactive L1 tables may point to active L2 tables - therefore it is
1846 * necessary to flush the L2 table cache before trying to access the L2
1847 * tables pointed to by inactive L1 entries (else we might try to expand
1848 * zero clusters that have already been expanded); furthermore, it is also
1849 * necessary to empty the L2 table cache, since it may contain tables which
1850 * are now going to be modified directly on disk, bypassing the cache.
1851 * qcow2_cache_empty() does both for us. */
1852 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1853 if (ret < 0) {
1854 goto fail;
1855 }
1856
1857 for (i = 0; i < s->nb_snapshots; i++) {
1858 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1859 sizeof(uint64_t), BDRV_SECTOR_SIZE);
1860
1861 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1862
1863 ret = bdrv_read(bs->file,
1864 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1865 (void *)l1_table, l1_sectors);
1866 if (ret < 0) {
1867 goto fail;
1868 }
1869
1870 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1871 be64_to_cpus(&l1_table[j]);
1872 }
1873
1874 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1875 &visited_l1_entries, l1_entries,
1876 status_cb, cb_opaque);
1877 if (ret < 0) {
1878 goto fail;
1879 }
1880 }
1881
1882 ret = 0;
1883
1884 fail:
1885 g_free(l1_table);
1886 return ret;
1887 }