]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-refcount.c
qcow2: truncate the tail of the image file after shrinking the image
[mirror_qemu.git] / block / qcow2-refcount.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36 int64_t offset, int64_t length, uint64_t addend,
37 bool decrease, enum qcow2_discard_type type);
38
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48 uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50 uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52 uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54 uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56 uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58 uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60 uint64_t value);
61
62
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64 &get_refcount_ro0,
65 &get_refcount_ro1,
66 &get_refcount_ro2,
67 &get_refcount_ro3,
68 &get_refcount_ro4,
69 &get_refcount_ro5,
70 &get_refcount_ro6
71 };
72
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74 &set_refcount_ro0,
75 &set_refcount_ro1,
76 &set_refcount_ro2,
77 &set_refcount_ro3,
78 &set_refcount_ro4,
79 &set_refcount_ro5,
80 &set_refcount_ro6
81 };
82
83
84 /*********************************************************/
85 /* refcount handling */
86
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89 unsigned i = s->refcount_table_size - 1;
90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91 i--;
92 }
93 /* Set s->max_refcount_table_index to the index of the last used entry */
94 s->max_refcount_table_index = i;
95 }
96
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99 BDRVQcow2State *s = bs->opaque;
100 unsigned int refcount_table_size2, i;
101 int ret;
102
103 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104
105 s->get_refcount = get_refcount_funcs[s->refcount_order];
106 s->set_refcount = set_refcount_funcs[s->refcount_order];
107
108 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110 s->refcount_table = g_try_malloc(refcount_table_size2);
111
112 if (s->refcount_table_size > 0) {
113 if (s->refcount_table == NULL) {
114 ret = -ENOMEM;
115 goto fail;
116 }
117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118 ret = bdrv_pread(bs->file, s->refcount_table_offset,
119 s->refcount_table, refcount_table_size2);
120 if (ret < 0) {
121 goto fail;
122 }
123 for(i = 0; i < s->refcount_table_size; i++)
124 be64_to_cpus(&s->refcount_table[i]);
125 update_max_refcount_table_index(s);
126 }
127 return 0;
128 fail:
129 return ret;
130 }
131
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134 BDRVQcow2State *s = bs->opaque;
135 g_free(s->refcount_table);
136 }
137
138
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145 uint64_t value)
146 {
147 assert(!(value >> 1));
148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155 & 0x3;
156 }
157
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159 uint64_t value)
160 {
161 assert(!(value >> 2));
162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169 & 0xf;
170 }
171
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173 uint64_t value)
174 {
175 assert(!(value >> 4));
176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182 return ((const uint8_t *)refcount_array)[index];
183 }
184
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186 uint64_t value)
187 {
188 assert(!(value >> 8));
189 ((uint8_t *)refcount_array)[index] = value;
190 }
191
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198 uint64_t value)
199 {
200 assert(!(value >> 16));
201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210 uint64_t value)
211 {
212 assert(!(value >> 32));
213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222 uint64_t value)
223 {
224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226
227
228 static int load_refcount_block(BlockDriverState *bs,
229 int64_t refcount_block_offset,
230 void **refcount_block)
231 {
232 BDRVQcow2State *s = bs->opaque;
233
234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236 refcount_block);
237 }
238
239 /*
240 * Retrieves the refcount of the cluster given by its index and stores it in
241 * *refcount. Returns 0 on success and -errno on failure.
242 */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244 uint64_t *refcount)
245 {
246 BDRVQcow2State *s = bs->opaque;
247 uint64_t refcount_table_index, block_index;
248 int64_t refcount_block_offset;
249 int ret;
250 void *refcount_block;
251
252 refcount_table_index = cluster_index >> s->refcount_block_bits;
253 if (refcount_table_index >= s->refcount_table_size) {
254 *refcount = 0;
255 return 0;
256 }
257 refcount_block_offset =
258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259 if (!refcount_block_offset) {
260 *refcount = 0;
261 return 0;
262 }
263
264 if (offset_into_cluster(s, refcount_block_offset)) {
265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266 " unaligned (reftable index: %#" PRIx64 ")",
267 refcount_block_offset, refcount_table_index);
268 return -EIO;
269 }
270
271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272 &refcount_block);
273 if (ret < 0) {
274 return ret;
275 }
276
277 block_index = cluster_index & (s->refcount_block_size - 1);
278 *refcount = s->get_refcount(refcount_block, block_index);
279
280 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
281
282 return 0;
283 }
284
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287 uint64_t offset_b)
288 {
289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291
292 return (block_a == block_b);
293 }
294
295 /*
296 * Loads a refcount block. If it doesn't exist yet, it is allocated first
297 * (including growing the refcount table if needed).
298 *
299 * Returns 0 on success or -errno in error case
300 */
301 static int alloc_refcount_block(BlockDriverState *bs,
302 int64_t cluster_index, void **refcount_block)
303 {
304 BDRVQcow2State *s = bs->opaque;
305 unsigned int refcount_table_index;
306 int64_t ret;
307
308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309
310 /* Find the refcount block for the given cluster */
311 refcount_table_index = cluster_index >> s->refcount_block_bits;
312
313 if (refcount_table_index < s->refcount_table_size) {
314
315 uint64_t refcount_block_offset =
316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317
318 /* If it's already there, we're done */
319 if (refcount_block_offset) {
320 if (offset_into_cluster(s, refcount_block_offset)) {
321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322 PRIx64 " unaligned (reftable index: "
323 "%#x)", refcount_block_offset,
324 refcount_table_index);
325 return -EIO;
326 }
327
328 return load_refcount_block(bs, refcount_block_offset,
329 refcount_block);
330 }
331 }
332
333 /*
334 * If we came here, we need to allocate something. Something is at least
335 * a cluster for the new refcount block. It may also include a new refcount
336 * table if the old refcount table is too small.
337 *
338 * Note that allocating clusters here needs some special care:
339 *
340 * - We can't use the normal qcow2_alloc_clusters(), it would try to
341 * increase the refcount and very likely we would end up with an endless
342 * recursion. Instead we must place the refcount blocks in a way that
343 * they can describe them themselves.
344 *
345 * - We need to consider that at this point we are inside update_refcounts
346 * and potentially doing an initial refcount increase. This means that
347 * some clusters have already been allocated by the caller, but their
348 * refcount isn't accurate yet. If we allocate clusters for metadata, we
349 * need to return -EAGAIN to signal the caller that it needs to restart
350 * the search for free clusters.
351 *
352 * - alloc_clusters_noref and qcow2_free_clusters may load a different
353 * refcount block into the cache
354 */
355
356 *refcount_block = NULL;
357
358 /* We write to the refcount table, so we might depend on L2 tables */
359 ret = qcow2_cache_flush(bs, s->l2_table_cache);
360 if (ret < 0) {
361 return ret;
362 }
363
364 /* Allocate the refcount block itself and mark it as used */
365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366 if (new_block < 0) {
367 return new_block;
368 }
369
370 #ifdef DEBUG_ALLOC2
371 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
372 " at %" PRIx64 "\n",
373 refcount_table_index, cluster_index << s->cluster_bits, new_block);
374 #endif
375
376 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
377 /* Zero the new refcount block before updating it */
378 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
379 refcount_block);
380 if (ret < 0) {
381 goto fail;
382 }
383
384 memset(*refcount_block, 0, s->cluster_size);
385
386 /* The block describes itself, need to update the cache */
387 int block_index = (new_block >> s->cluster_bits) &
388 (s->refcount_block_size - 1);
389 s->set_refcount(*refcount_block, block_index, 1);
390 } else {
391 /* Described somewhere else. This can recurse at most twice before we
392 * arrive at a block that describes itself. */
393 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
394 QCOW2_DISCARD_NEVER);
395 if (ret < 0) {
396 goto fail;
397 }
398
399 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
400 if (ret < 0) {
401 goto fail;
402 }
403
404 /* Initialize the new refcount block only after updating its refcount,
405 * update_refcount uses the refcount cache itself */
406 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
407 refcount_block);
408 if (ret < 0) {
409 goto fail;
410 }
411
412 memset(*refcount_block, 0, s->cluster_size);
413 }
414
415 /* Now the new refcount block needs to be written to disk */
416 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
417 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
418 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
419 if (ret < 0) {
420 goto fail;
421 }
422
423 /* If the refcount table is big enough, just hook the block up there */
424 if (refcount_table_index < s->refcount_table_size) {
425 uint64_t data64 = cpu_to_be64(new_block);
426 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
427 ret = bdrv_pwrite_sync(bs->file,
428 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
429 &data64, sizeof(data64));
430 if (ret < 0) {
431 goto fail;
432 }
433
434 s->refcount_table[refcount_table_index] = new_block;
435 /* If there's a hole in s->refcount_table then it can happen
436 * that refcount_table_index < s->max_refcount_table_index */
437 s->max_refcount_table_index =
438 MAX(s->max_refcount_table_index, refcount_table_index);
439
440 /* The new refcount block may be where the caller intended to put its
441 * data, so let it restart the search. */
442 return -EAGAIN;
443 }
444
445 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
446
447 /*
448 * If we come here, we need to grow the refcount table. Again, a new
449 * refcount table needs some space and we can't simply allocate to avoid
450 * endless recursion.
451 *
452 * Therefore let's grab new refcount blocks at the end of the image, which
453 * will describe themselves and the new refcount table. This way we can
454 * reference them only in the new table and do the switch to the new
455 * refcount table at once without producing an inconsistent state in
456 * between.
457 */
458 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
459
460 /* Calculate the number of refcount blocks needed so far; this will be the
461 * basis for calculating the index of the first cluster used for the
462 * self-describing refcount structures which we are about to create.
463 *
464 * Because we reached this point, there cannot be any refcount entries for
465 * cluster_index or higher indices yet. However, because new_block has been
466 * allocated to describe that cluster (and it will assume this role later
467 * on), we cannot use that index; also, new_block may actually have a higher
468 * cluster index than cluster_index, so it needs to be taken into account
469 * here (and 1 needs to be added to its value because that cluster is used).
470 */
471 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
472 (new_block >> s->cluster_bits) + 1),
473 s->refcount_block_size);
474
475 /* Create the new refcount table and blocks */
476 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
477 s->cluster_size;
478
479 ret = qcow2_refcount_area(bs, meta_offset, 0, false,
480 refcount_table_index, new_block);
481 if (ret < 0) {
482 return ret;
483 }
484
485 ret = load_refcount_block(bs, new_block, refcount_block);
486 if (ret < 0) {
487 return ret;
488 }
489
490 /* If we were trying to do the initial refcount update for some cluster
491 * allocation, we might have used the same clusters to store newly
492 * allocated metadata. Make the caller search some new space. */
493 return -EAGAIN;
494
495 fail:
496 if (*refcount_block != NULL) {
497 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
498 }
499 return ret;
500 }
501
502 /*
503 * Starting at @start_offset, this function creates new self-covering refcount
504 * structures: A new refcount table and refcount blocks which cover all of
505 * themselves, and a number of @additional_clusters beyond their end.
506 * @start_offset must be at the end of the image file, that is, there must be
507 * only empty space beyond it.
508 * If @exact_size is false, the refcount table will have 50 % more entries than
509 * necessary so it will not need to grow again soon.
510 * If @new_refblock_offset is not zero, it contains the offset of a refcount
511 * block that should be entered into the new refcount table at index
512 * @new_refblock_index.
513 *
514 * Returns: The offset after the new refcount structures (i.e. where the
515 * @additional_clusters may be placed) on success, -errno on error.
516 */
517 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
518 uint64_t additional_clusters, bool exact_size,
519 int new_refblock_index,
520 uint64_t new_refblock_offset)
521 {
522 BDRVQcow2State *s = bs->opaque;
523 uint64_t total_refblock_count_u64, additional_refblock_count;
524 int total_refblock_count, table_size, area_reftable_index, table_clusters;
525 int i;
526 uint64_t table_offset, block_offset, end_offset;
527 int ret;
528 uint64_t *new_table;
529
530 assert(!(start_offset % s->cluster_size));
531
532 qcow2_refcount_metadata_size(start_offset / s->cluster_size +
533 additional_clusters,
534 s->cluster_size, s->refcount_order,
535 !exact_size, &total_refblock_count_u64);
536 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
537 return -EFBIG;
538 }
539 total_refblock_count = total_refblock_count_u64;
540
541 /* Index in the refcount table of the first refcount block to cover the area
542 * of refcount structures we are about to create; we know that
543 * @total_refblock_count can cover @start_offset, so this will definitely
544 * fit into an int. */
545 area_reftable_index = (start_offset / s->cluster_size) /
546 s->refcount_block_size;
547
548 if (exact_size) {
549 table_size = total_refblock_count;
550 } else {
551 table_size = total_refblock_count +
552 DIV_ROUND_UP(total_refblock_count, 2);
553 }
554 /* The qcow2 file can only store the reftable size in number of clusters */
555 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
556 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
557
558 if (table_size > QCOW_MAX_REFTABLE_SIZE) {
559 return -EFBIG;
560 }
561
562 new_table = g_try_new0(uint64_t, table_size);
563
564 assert(table_size > 0);
565 if (new_table == NULL) {
566 ret = -ENOMEM;
567 goto fail;
568 }
569
570 /* Fill the new refcount table */
571 if (table_size > s->max_refcount_table_index) {
572 /* We're actually growing the reftable */
573 memcpy(new_table, s->refcount_table,
574 (s->max_refcount_table_index + 1) * sizeof(uint64_t));
575 } else {
576 /* Improbable case: We're shrinking the reftable. However, the caller
577 * has assured us that there is only empty space beyond @start_offset,
578 * so we can simply drop all of the refblocks that won't fit into the
579 * new reftable. */
580 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
581 }
582
583 if (new_refblock_offset) {
584 assert(new_refblock_index < total_refblock_count);
585 new_table[new_refblock_index] = new_refblock_offset;
586 }
587
588 /* Count how many new refblocks we have to create */
589 additional_refblock_count = 0;
590 for (i = area_reftable_index; i < total_refblock_count; i++) {
591 if (!new_table[i]) {
592 additional_refblock_count++;
593 }
594 }
595
596 table_offset = start_offset + additional_refblock_count * s->cluster_size;
597 end_offset = table_offset + table_clusters * s->cluster_size;
598
599 /* Fill the refcount blocks, and create new ones, if necessary */
600 block_offset = start_offset;
601 for (i = area_reftable_index; i < total_refblock_count; i++) {
602 void *refblock_data;
603 uint64_t first_offset_covered;
604
605 /* Reuse an existing refblock if possible, create a new one otherwise */
606 if (new_table[i]) {
607 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
608 &refblock_data);
609 if (ret < 0) {
610 goto fail;
611 }
612 } else {
613 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
614 block_offset, &refblock_data);
615 if (ret < 0) {
616 goto fail;
617 }
618 memset(refblock_data, 0, s->cluster_size);
619 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
620 refblock_data);
621
622 new_table[i] = block_offset;
623 block_offset += s->cluster_size;
624 }
625
626 /* First host offset covered by this refblock */
627 first_offset_covered = (uint64_t)i * s->refcount_block_size *
628 s->cluster_size;
629 if (first_offset_covered < end_offset) {
630 int j, end_index;
631
632 /* Set the refcount of all of the new refcount structures to 1 */
633
634 if (first_offset_covered < start_offset) {
635 assert(i == area_reftable_index);
636 j = (start_offset - first_offset_covered) / s->cluster_size;
637 assert(j < s->refcount_block_size);
638 } else {
639 j = 0;
640 }
641
642 end_index = MIN((end_offset - first_offset_covered) /
643 s->cluster_size,
644 s->refcount_block_size);
645
646 for (; j < end_index; j++) {
647 /* The caller guaranteed us this space would be empty */
648 assert(s->get_refcount(refblock_data, j) == 0);
649 s->set_refcount(refblock_data, j, 1);
650 }
651
652 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
653 refblock_data);
654 }
655
656 qcow2_cache_put(bs, s->refcount_block_cache, &refblock_data);
657 }
658
659 assert(block_offset == table_offset);
660
661 /* Write refcount blocks to disk */
662 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
663 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
664 if (ret < 0) {
665 goto fail;
666 }
667
668 /* Write refcount table to disk */
669 for (i = 0; i < total_refblock_count; i++) {
670 cpu_to_be64s(&new_table[i]);
671 }
672
673 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
674 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
675 table_size * sizeof(uint64_t));
676 if (ret < 0) {
677 goto fail;
678 }
679
680 for (i = 0; i < total_refblock_count; i++) {
681 be64_to_cpus(&new_table[i]);
682 }
683
684 /* Hook up the new refcount table in the qcow2 header */
685 struct QEMU_PACKED {
686 uint64_t d64;
687 uint32_t d32;
688 } data;
689 data.d64 = cpu_to_be64(table_offset);
690 data.d32 = cpu_to_be32(table_clusters);
691 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
692 ret = bdrv_pwrite_sync(bs->file,
693 offsetof(QCowHeader, refcount_table_offset),
694 &data, sizeof(data));
695 if (ret < 0) {
696 goto fail;
697 }
698
699 /* And switch it in memory */
700 uint64_t old_table_offset = s->refcount_table_offset;
701 uint64_t old_table_size = s->refcount_table_size;
702
703 g_free(s->refcount_table);
704 s->refcount_table = new_table;
705 s->refcount_table_size = table_size;
706 s->refcount_table_offset = table_offset;
707 update_max_refcount_table_index(s);
708
709 /* Free old table. */
710 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
711 QCOW2_DISCARD_OTHER);
712
713 return end_offset;
714
715 fail:
716 g_free(new_table);
717 return ret;
718 }
719
720 void qcow2_process_discards(BlockDriverState *bs, int ret)
721 {
722 BDRVQcow2State *s = bs->opaque;
723 Qcow2DiscardRegion *d, *next;
724
725 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
726 QTAILQ_REMOVE(&s->discards, d, next);
727
728 /* Discard is optional, ignore the return value */
729 if (ret >= 0) {
730 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
731 }
732
733 g_free(d);
734 }
735 }
736
737 static void update_refcount_discard(BlockDriverState *bs,
738 uint64_t offset, uint64_t length)
739 {
740 BDRVQcow2State *s = bs->opaque;
741 Qcow2DiscardRegion *d, *p, *next;
742
743 QTAILQ_FOREACH(d, &s->discards, next) {
744 uint64_t new_start = MIN(offset, d->offset);
745 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
746
747 if (new_end - new_start <= length + d->bytes) {
748 /* There can't be any overlap, areas ending up here have no
749 * references any more and therefore shouldn't get freed another
750 * time. */
751 assert(d->bytes + length == new_end - new_start);
752 d->offset = new_start;
753 d->bytes = new_end - new_start;
754 goto found;
755 }
756 }
757
758 d = g_malloc(sizeof(*d));
759 *d = (Qcow2DiscardRegion) {
760 .bs = bs,
761 .offset = offset,
762 .bytes = length,
763 };
764 QTAILQ_INSERT_TAIL(&s->discards, d, next);
765
766 found:
767 /* Merge discard requests if they are adjacent now */
768 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
769 if (p == d
770 || p->offset > d->offset + d->bytes
771 || d->offset > p->offset + p->bytes)
772 {
773 continue;
774 }
775
776 /* Still no overlap possible */
777 assert(p->offset == d->offset + d->bytes
778 || d->offset == p->offset + p->bytes);
779
780 QTAILQ_REMOVE(&s->discards, p, next);
781 d->offset = MIN(d->offset, p->offset);
782 d->bytes += p->bytes;
783 g_free(p);
784 }
785 }
786
787 /* XXX: cache several refcount block clusters ? */
788 /* @addend is the absolute value of the addend; if @decrease is set, @addend
789 * will be subtracted from the current refcount, otherwise it will be added */
790 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
791 int64_t offset,
792 int64_t length,
793 uint64_t addend,
794 bool decrease,
795 enum qcow2_discard_type type)
796 {
797 BDRVQcow2State *s = bs->opaque;
798 int64_t start, last, cluster_offset;
799 void *refcount_block = NULL;
800 int64_t old_table_index = -1;
801 int ret;
802
803 #ifdef DEBUG_ALLOC2
804 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
805 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
806 addend);
807 #endif
808 if (length < 0) {
809 return -EINVAL;
810 } else if (length == 0) {
811 return 0;
812 }
813
814 if (decrease) {
815 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
816 s->l2_table_cache);
817 }
818
819 start = start_of_cluster(s, offset);
820 last = start_of_cluster(s, offset + length - 1);
821 for(cluster_offset = start; cluster_offset <= last;
822 cluster_offset += s->cluster_size)
823 {
824 int block_index;
825 uint64_t refcount;
826 int64_t cluster_index = cluster_offset >> s->cluster_bits;
827 int64_t table_index = cluster_index >> s->refcount_block_bits;
828
829 /* Load the refcount block and allocate it if needed */
830 if (table_index != old_table_index) {
831 if (refcount_block) {
832 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
833 }
834 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
835 if (ret < 0) {
836 goto fail;
837 }
838 }
839 old_table_index = table_index;
840
841 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
842 refcount_block);
843
844 /* we can update the count and save it */
845 block_index = cluster_index & (s->refcount_block_size - 1);
846
847 refcount = s->get_refcount(refcount_block, block_index);
848 if (decrease ? (refcount - addend > refcount)
849 : (refcount + addend < refcount ||
850 refcount + addend > s->refcount_max))
851 {
852 ret = -EINVAL;
853 goto fail;
854 }
855 if (decrease) {
856 refcount -= addend;
857 } else {
858 refcount += addend;
859 }
860 if (refcount == 0 && cluster_index < s->free_cluster_index) {
861 s->free_cluster_index = cluster_index;
862 }
863 s->set_refcount(refcount_block, block_index, refcount);
864
865 if (refcount == 0) {
866 void *table;
867
868 table = qcow2_cache_is_table_offset(bs, s->refcount_block_cache,
869 offset);
870 if (table != NULL) {
871 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
872 qcow2_cache_discard(bs, s->refcount_block_cache, table);
873 }
874
875 table = qcow2_cache_is_table_offset(bs, s->l2_table_cache, offset);
876 if (table != NULL) {
877 qcow2_cache_discard(bs, s->l2_table_cache, table);
878 }
879
880 if (s->discard_passthrough[type]) {
881 update_refcount_discard(bs, cluster_offset, s->cluster_size);
882 }
883 }
884 }
885
886 ret = 0;
887 fail:
888 if (!s->cache_discards) {
889 qcow2_process_discards(bs, ret);
890 }
891
892 /* Write last changed block to disk */
893 if (refcount_block) {
894 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
895 }
896
897 /*
898 * Try do undo any updates if an error is returned (This may succeed in
899 * some cases like ENOSPC for allocating a new refcount block)
900 */
901 if (ret < 0) {
902 int dummy;
903 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
904 !decrease, QCOW2_DISCARD_NEVER);
905 (void)dummy;
906 }
907
908 return ret;
909 }
910
911 /*
912 * Increases or decreases the refcount of a given cluster.
913 *
914 * @addend is the absolute value of the addend; if @decrease is set, @addend
915 * will be subtracted from the current refcount, otherwise it will be added.
916 *
917 * On success 0 is returned; on failure -errno is returned.
918 */
919 int qcow2_update_cluster_refcount(BlockDriverState *bs,
920 int64_t cluster_index,
921 uint64_t addend, bool decrease,
922 enum qcow2_discard_type type)
923 {
924 BDRVQcow2State *s = bs->opaque;
925 int ret;
926
927 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
928 decrease, type);
929 if (ret < 0) {
930 return ret;
931 }
932
933 return 0;
934 }
935
936
937
938 /*********************************************************/
939 /* cluster allocation functions */
940
941
942
943 /* return < 0 if error */
944 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
945 {
946 BDRVQcow2State *s = bs->opaque;
947 uint64_t i, nb_clusters, refcount;
948 int ret;
949
950 /* We can't allocate clusters if they may still be queued for discard. */
951 if (s->cache_discards) {
952 qcow2_process_discards(bs, 0);
953 }
954
955 nb_clusters = size_to_clusters(s, size);
956 retry:
957 for(i = 0; i < nb_clusters; i++) {
958 uint64_t next_cluster_index = s->free_cluster_index++;
959 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
960
961 if (ret < 0) {
962 return ret;
963 } else if (refcount != 0) {
964 goto retry;
965 }
966 }
967
968 /* Make sure that all offsets in the "allocated" range are representable
969 * in an int64_t */
970 if (s->free_cluster_index > 0 &&
971 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
972 {
973 return -EFBIG;
974 }
975
976 #ifdef DEBUG_ALLOC2
977 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
978 size,
979 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
980 #endif
981 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
982 }
983
984 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
985 {
986 int64_t offset;
987 int ret;
988
989 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
990 do {
991 offset = alloc_clusters_noref(bs, size);
992 if (offset < 0) {
993 return offset;
994 }
995
996 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
997 } while (ret == -EAGAIN);
998
999 if (ret < 0) {
1000 return ret;
1001 }
1002
1003 return offset;
1004 }
1005
1006 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1007 int64_t nb_clusters)
1008 {
1009 BDRVQcow2State *s = bs->opaque;
1010 uint64_t cluster_index, refcount;
1011 uint64_t i;
1012 int ret;
1013
1014 assert(nb_clusters >= 0);
1015 if (nb_clusters == 0) {
1016 return 0;
1017 }
1018
1019 do {
1020 /* Check how many clusters there are free */
1021 cluster_index = offset >> s->cluster_bits;
1022 for(i = 0; i < nb_clusters; i++) {
1023 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1024 if (ret < 0) {
1025 return ret;
1026 } else if (refcount != 0) {
1027 break;
1028 }
1029 }
1030
1031 /* And then allocate them */
1032 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1033 QCOW2_DISCARD_NEVER);
1034 } while (ret == -EAGAIN);
1035
1036 if (ret < 0) {
1037 return ret;
1038 }
1039
1040 return i;
1041 }
1042
1043 /* only used to allocate compressed sectors. We try to allocate
1044 contiguous sectors. size must be <= cluster_size */
1045 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1046 {
1047 BDRVQcow2State *s = bs->opaque;
1048 int64_t offset;
1049 size_t free_in_cluster;
1050 int ret;
1051
1052 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1053 assert(size > 0 && size <= s->cluster_size);
1054 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1055
1056 offset = s->free_byte_offset;
1057
1058 if (offset) {
1059 uint64_t refcount;
1060 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1061 if (ret < 0) {
1062 return ret;
1063 }
1064
1065 if (refcount == s->refcount_max) {
1066 offset = 0;
1067 }
1068 }
1069
1070 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1071 do {
1072 if (!offset || free_in_cluster < size) {
1073 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1074 if (new_cluster < 0) {
1075 return new_cluster;
1076 }
1077
1078 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1079 offset = new_cluster;
1080 free_in_cluster = s->cluster_size;
1081 } else {
1082 free_in_cluster += s->cluster_size;
1083 }
1084 }
1085
1086 assert(offset);
1087 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1088 if (ret < 0) {
1089 offset = 0;
1090 }
1091 } while (ret == -EAGAIN);
1092 if (ret < 0) {
1093 return ret;
1094 }
1095
1096 /* The cluster refcount was incremented; refcount blocks must be flushed
1097 * before the caller's L2 table updates. */
1098 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1099
1100 s->free_byte_offset = offset + size;
1101 if (!offset_into_cluster(s, s->free_byte_offset)) {
1102 s->free_byte_offset = 0;
1103 }
1104
1105 return offset;
1106 }
1107
1108 void qcow2_free_clusters(BlockDriverState *bs,
1109 int64_t offset, int64_t size,
1110 enum qcow2_discard_type type)
1111 {
1112 int ret;
1113
1114 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1115 ret = update_refcount(bs, offset, size, 1, true, type);
1116 if (ret < 0) {
1117 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1118 /* TODO Remember the clusters to free them later and avoid leaking */
1119 }
1120 }
1121
1122 /*
1123 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1124 * normal cluster, compressed cluster, etc.)
1125 */
1126 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1127 int nb_clusters, enum qcow2_discard_type type)
1128 {
1129 BDRVQcow2State *s = bs->opaque;
1130
1131 switch (qcow2_get_cluster_type(l2_entry)) {
1132 case QCOW2_CLUSTER_COMPRESSED:
1133 {
1134 int nb_csectors;
1135 nb_csectors = ((l2_entry >> s->csize_shift) &
1136 s->csize_mask) + 1;
1137 qcow2_free_clusters(bs,
1138 (l2_entry & s->cluster_offset_mask) & ~511,
1139 nb_csectors * 512, type);
1140 }
1141 break;
1142 case QCOW2_CLUSTER_NORMAL:
1143 case QCOW2_CLUSTER_ZERO_ALLOC:
1144 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1145 qcow2_signal_corruption(bs, false, -1, -1,
1146 "Cannot free unaligned cluster %#llx",
1147 l2_entry & L2E_OFFSET_MASK);
1148 } else {
1149 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1150 nb_clusters << s->cluster_bits, type);
1151 }
1152 break;
1153 case QCOW2_CLUSTER_ZERO_PLAIN:
1154 case QCOW2_CLUSTER_UNALLOCATED:
1155 break;
1156 default:
1157 abort();
1158 }
1159 }
1160
1161
1162
1163 /*********************************************************/
1164 /* snapshots and image creation */
1165
1166
1167
1168 /* update the refcounts of snapshots and the copied flag */
1169 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1170 int64_t l1_table_offset, int l1_size, int addend)
1171 {
1172 BDRVQcow2State *s = bs->opaque;
1173 uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
1174 bool l1_allocated = false;
1175 int64_t old_entry, old_l2_offset;
1176 int i, j, l1_modified = 0, nb_csectors;
1177 int ret;
1178
1179 assert(addend >= -1 && addend <= 1);
1180
1181 l2_table = NULL;
1182 l1_table = NULL;
1183 l1_size2 = l1_size * sizeof(uint64_t);
1184
1185 s->cache_discards = true;
1186
1187 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1188 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1189 * when changing this! */
1190 if (l1_table_offset != s->l1_table_offset) {
1191 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1192 if (l1_size2 && l1_table == NULL) {
1193 ret = -ENOMEM;
1194 goto fail;
1195 }
1196 l1_allocated = true;
1197
1198 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1199 if (ret < 0) {
1200 goto fail;
1201 }
1202
1203 for (i = 0; i < l1_size; i++) {
1204 be64_to_cpus(&l1_table[i]);
1205 }
1206 } else {
1207 assert(l1_size == s->l1_size);
1208 l1_table = s->l1_table;
1209 l1_allocated = false;
1210 }
1211
1212 for (i = 0; i < l1_size; i++) {
1213 l2_offset = l1_table[i];
1214 if (l2_offset) {
1215 old_l2_offset = l2_offset;
1216 l2_offset &= L1E_OFFSET_MASK;
1217
1218 if (offset_into_cluster(s, l2_offset)) {
1219 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1220 PRIx64 " unaligned (L1 index: %#x)",
1221 l2_offset, i);
1222 ret = -EIO;
1223 goto fail;
1224 }
1225
1226 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1227 (void**) &l2_table);
1228 if (ret < 0) {
1229 goto fail;
1230 }
1231
1232 for (j = 0; j < s->l2_size; j++) {
1233 uint64_t cluster_index;
1234 uint64_t offset;
1235
1236 entry = be64_to_cpu(l2_table[j]);
1237 old_entry = entry;
1238 entry &= ~QCOW_OFLAG_COPIED;
1239 offset = entry & L2E_OFFSET_MASK;
1240
1241 switch (qcow2_get_cluster_type(entry)) {
1242 case QCOW2_CLUSTER_COMPRESSED:
1243 nb_csectors = ((entry >> s->csize_shift) &
1244 s->csize_mask) + 1;
1245 if (addend != 0) {
1246 ret = update_refcount(bs,
1247 (entry & s->cluster_offset_mask) & ~511,
1248 nb_csectors * 512, abs(addend), addend < 0,
1249 QCOW2_DISCARD_SNAPSHOT);
1250 if (ret < 0) {
1251 goto fail;
1252 }
1253 }
1254 /* compressed clusters are never modified */
1255 refcount = 2;
1256 break;
1257
1258 case QCOW2_CLUSTER_NORMAL:
1259 case QCOW2_CLUSTER_ZERO_ALLOC:
1260 if (offset_into_cluster(s, offset)) {
1261 qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1262 "allocation offset %#" PRIx64
1263 " unaligned (L2 offset: %#"
1264 PRIx64 ", L2 index: %#x)",
1265 offset, l2_offset, j);
1266 ret = -EIO;
1267 goto fail;
1268 }
1269
1270 cluster_index = offset >> s->cluster_bits;
1271 assert(cluster_index);
1272 if (addend != 0) {
1273 ret = qcow2_update_cluster_refcount(bs,
1274 cluster_index, abs(addend), addend < 0,
1275 QCOW2_DISCARD_SNAPSHOT);
1276 if (ret < 0) {
1277 goto fail;
1278 }
1279 }
1280
1281 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1282 if (ret < 0) {
1283 goto fail;
1284 }
1285 break;
1286
1287 case QCOW2_CLUSTER_ZERO_PLAIN:
1288 case QCOW2_CLUSTER_UNALLOCATED:
1289 refcount = 0;
1290 break;
1291
1292 default:
1293 abort();
1294 }
1295
1296 if (refcount == 1) {
1297 entry |= QCOW_OFLAG_COPIED;
1298 }
1299 if (entry != old_entry) {
1300 if (addend > 0) {
1301 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1302 s->refcount_block_cache);
1303 }
1304 l2_table[j] = cpu_to_be64(entry);
1305 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1306 l2_table);
1307 }
1308 }
1309
1310 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1311
1312 if (addend != 0) {
1313 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1314 s->cluster_bits,
1315 abs(addend), addend < 0,
1316 QCOW2_DISCARD_SNAPSHOT);
1317 if (ret < 0) {
1318 goto fail;
1319 }
1320 }
1321 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1322 &refcount);
1323 if (ret < 0) {
1324 goto fail;
1325 } else if (refcount == 1) {
1326 l2_offset |= QCOW_OFLAG_COPIED;
1327 }
1328 if (l2_offset != old_l2_offset) {
1329 l1_table[i] = l2_offset;
1330 l1_modified = 1;
1331 }
1332 }
1333 }
1334
1335 ret = bdrv_flush(bs);
1336 fail:
1337 if (l2_table) {
1338 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1339 }
1340
1341 s->cache_discards = false;
1342 qcow2_process_discards(bs, ret);
1343
1344 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1345 if (ret == 0 && addend >= 0 && l1_modified) {
1346 for (i = 0; i < l1_size; i++) {
1347 cpu_to_be64s(&l1_table[i]);
1348 }
1349
1350 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1351 l1_table, l1_size2);
1352
1353 for (i = 0; i < l1_size; i++) {
1354 be64_to_cpus(&l1_table[i]);
1355 }
1356 }
1357 if (l1_allocated)
1358 g_free(l1_table);
1359 return ret;
1360 }
1361
1362
1363
1364
1365 /*********************************************************/
1366 /* refcount checking functions */
1367
1368
1369 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1370 {
1371 /* This assertion holds because there is no way we can address more than
1372 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1373 * offsets have to be representable in bytes); due to every cluster
1374 * corresponding to one refcount entry, we are well below that limit */
1375 assert(entries < (UINT64_C(1) << (64 - 9)));
1376
1377 /* Thanks to the assertion this will not overflow, because
1378 * s->refcount_order < 7.
1379 * (note: x << s->refcount_order == x * s->refcount_bits) */
1380 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1381 }
1382
1383 /**
1384 * Reallocates *array so that it can hold new_size entries. *size must contain
1385 * the current number of entries in *array. If the reallocation fails, *array
1386 * and *size will not be modified and -errno will be returned. If the
1387 * reallocation is successful, *array will be set to the new buffer, *size
1388 * will be set to new_size and 0 will be returned. The size of the reallocated
1389 * refcount array buffer will be aligned to a cluster boundary, and the newly
1390 * allocated area will be zeroed.
1391 */
1392 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1393 int64_t *size, int64_t new_size)
1394 {
1395 int64_t old_byte_size, new_byte_size;
1396 void *new_ptr;
1397
1398 /* Round to clusters so the array can be directly written to disk */
1399 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1400 * s->cluster_size;
1401 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1402 * s->cluster_size;
1403
1404 if (new_byte_size == old_byte_size) {
1405 *size = new_size;
1406 return 0;
1407 }
1408
1409 assert(new_byte_size > 0);
1410
1411 if (new_byte_size > SIZE_MAX) {
1412 return -ENOMEM;
1413 }
1414
1415 new_ptr = g_try_realloc(*array, new_byte_size);
1416 if (!new_ptr) {
1417 return -ENOMEM;
1418 }
1419
1420 if (new_byte_size > old_byte_size) {
1421 memset((char *)new_ptr + old_byte_size, 0,
1422 new_byte_size - old_byte_size);
1423 }
1424
1425 *array = new_ptr;
1426 *size = new_size;
1427
1428 return 0;
1429 }
1430
1431 /*
1432 * Increases the refcount for a range of clusters in a given refcount table.
1433 * This is used to construct a temporary refcount table out of L1 and L2 tables
1434 * which can be compared to the refcount table saved in the image.
1435 *
1436 * Modifies the number of errors in res.
1437 */
1438 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1439 void **refcount_table,
1440 int64_t *refcount_table_size,
1441 int64_t offset, int64_t size)
1442 {
1443 BDRVQcow2State *s = bs->opaque;
1444 uint64_t start, last, cluster_offset, k, refcount;
1445 int ret;
1446
1447 if (size <= 0) {
1448 return 0;
1449 }
1450
1451 start = start_of_cluster(s, offset);
1452 last = start_of_cluster(s, offset + size - 1);
1453 for(cluster_offset = start; cluster_offset <= last;
1454 cluster_offset += s->cluster_size) {
1455 k = cluster_offset >> s->cluster_bits;
1456 if (k >= *refcount_table_size) {
1457 ret = realloc_refcount_array(s, refcount_table,
1458 refcount_table_size, k + 1);
1459 if (ret < 0) {
1460 res->check_errors++;
1461 return ret;
1462 }
1463 }
1464
1465 refcount = s->get_refcount(*refcount_table, k);
1466 if (refcount == s->refcount_max) {
1467 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1468 "\n", cluster_offset);
1469 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1470 "width or qemu-img convert to create a clean copy if the "
1471 "image cannot be opened for writing\n");
1472 res->corruptions++;
1473 continue;
1474 }
1475 s->set_refcount(*refcount_table, k, refcount + 1);
1476 }
1477
1478 return 0;
1479 }
1480
1481 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1482 enum {
1483 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1484 };
1485
1486 /*
1487 * Increases the refcount in the given refcount table for the all clusters
1488 * referenced in the L2 table. While doing so, performs some checks on L2
1489 * entries.
1490 *
1491 * Returns the number of errors found by the checks or -errno if an internal
1492 * error occurred.
1493 */
1494 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1495 void **refcount_table,
1496 int64_t *refcount_table_size, int64_t l2_offset,
1497 int flags)
1498 {
1499 BDRVQcow2State *s = bs->opaque;
1500 uint64_t *l2_table, l2_entry;
1501 uint64_t next_contiguous_offset = 0;
1502 int i, l2_size, nb_csectors, ret;
1503
1504 /* Read L2 table from disk */
1505 l2_size = s->l2_size * sizeof(uint64_t);
1506 l2_table = g_malloc(l2_size);
1507
1508 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1509 if (ret < 0) {
1510 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1511 res->check_errors++;
1512 goto fail;
1513 }
1514
1515 /* Do the actual checks */
1516 for(i = 0; i < s->l2_size; i++) {
1517 l2_entry = be64_to_cpu(l2_table[i]);
1518
1519 switch (qcow2_get_cluster_type(l2_entry)) {
1520 case QCOW2_CLUSTER_COMPRESSED:
1521 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1522 if (l2_entry & QCOW_OFLAG_COPIED) {
1523 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1524 "copied flag must never be set for compressed "
1525 "clusters\n", l2_entry >> s->cluster_bits);
1526 l2_entry &= ~QCOW_OFLAG_COPIED;
1527 res->corruptions++;
1528 }
1529
1530 /* Mark cluster as used */
1531 nb_csectors = ((l2_entry >> s->csize_shift) &
1532 s->csize_mask) + 1;
1533 l2_entry &= s->cluster_offset_mask;
1534 ret = qcow2_inc_refcounts_imrt(bs, res,
1535 refcount_table, refcount_table_size,
1536 l2_entry & ~511, nb_csectors * 512);
1537 if (ret < 0) {
1538 goto fail;
1539 }
1540
1541 if (flags & CHECK_FRAG_INFO) {
1542 res->bfi.allocated_clusters++;
1543 res->bfi.compressed_clusters++;
1544
1545 /* Compressed clusters are fragmented by nature. Since they
1546 * take up sub-sector space but we only have sector granularity
1547 * I/O we need to re-read the same sectors even for adjacent
1548 * compressed clusters.
1549 */
1550 res->bfi.fragmented_clusters++;
1551 }
1552 break;
1553
1554 case QCOW2_CLUSTER_ZERO_ALLOC:
1555 case QCOW2_CLUSTER_NORMAL:
1556 {
1557 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1558
1559 if (flags & CHECK_FRAG_INFO) {
1560 res->bfi.allocated_clusters++;
1561 if (next_contiguous_offset &&
1562 offset != next_contiguous_offset) {
1563 res->bfi.fragmented_clusters++;
1564 }
1565 next_contiguous_offset = offset + s->cluster_size;
1566 }
1567
1568 /* Mark cluster as used */
1569 ret = qcow2_inc_refcounts_imrt(bs, res,
1570 refcount_table, refcount_table_size,
1571 offset, s->cluster_size);
1572 if (ret < 0) {
1573 goto fail;
1574 }
1575
1576 /* Correct offsets are cluster aligned */
1577 if (offset_into_cluster(s, offset)) {
1578 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1579 "properly aligned; L2 entry corrupted.\n", offset);
1580 res->corruptions++;
1581 }
1582 break;
1583 }
1584
1585 case QCOW2_CLUSTER_ZERO_PLAIN:
1586 case QCOW2_CLUSTER_UNALLOCATED:
1587 break;
1588
1589 default:
1590 abort();
1591 }
1592 }
1593
1594 g_free(l2_table);
1595 return 0;
1596
1597 fail:
1598 g_free(l2_table);
1599 return ret;
1600 }
1601
1602 /*
1603 * Increases the refcount for the L1 table, its L2 tables and all referenced
1604 * clusters in the given refcount table. While doing so, performs some checks
1605 * on L1 and L2 entries.
1606 *
1607 * Returns the number of errors found by the checks or -errno if an internal
1608 * error occurred.
1609 */
1610 static int check_refcounts_l1(BlockDriverState *bs,
1611 BdrvCheckResult *res,
1612 void **refcount_table,
1613 int64_t *refcount_table_size,
1614 int64_t l1_table_offset, int l1_size,
1615 int flags)
1616 {
1617 BDRVQcow2State *s = bs->opaque;
1618 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1619 int i, ret;
1620
1621 l1_size2 = l1_size * sizeof(uint64_t);
1622
1623 /* Mark L1 table as used */
1624 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1625 l1_table_offset, l1_size2);
1626 if (ret < 0) {
1627 goto fail;
1628 }
1629
1630 /* Read L1 table entries from disk */
1631 if (l1_size2 > 0) {
1632 l1_table = g_try_malloc(l1_size2);
1633 if (l1_table == NULL) {
1634 ret = -ENOMEM;
1635 res->check_errors++;
1636 goto fail;
1637 }
1638 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1639 if (ret < 0) {
1640 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1641 res->check_errors++;
1642 goto fail;
1643 }
1644 for(i = 0;i < l1_size; i++)
1645 be64_to_cpus(&l1_table[i]);
1646 }
1647
1648 /* Do the actual checks */
1649 for(i = 0; i < l1_size; i++) {
1650 l2_offset = l1_table[i];
1651 if (l2_offset) {
1652 /* Mark L2 table as used */
1653 l2_offset &= L1E_OFFSET_MASK;
1654 ret = qcow2_inc_refcounts_imrt(bs, res,
1655 refcount_table, refcount_table_size,
1656 l2_offset, s->cluster_size);
1657 if (ret < 0) {
1658 goto fail;
1659 }
1660
1661 /* L2 tables are cluster aligned */
1662 if (offset_into_cluster(s, l2_offset)) {
1663 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1664 "cluster aligned; L1 entry corrupted\n", l2_offset);
1665 res->corruptions++;
1666 }
1667
1668 /* Process and check L2 entries */
1669 ret = check_refcounts_l2(bs, res, refcount_table,
1670 refcount_table_size, l2_offset, flags);
1671 if (ret < 0) {
1672 goto fail;
1673 }
1674 }
1675 }
1676 g_free(l1_table);
1677 return 0;
1678
1679 fail:
1680 g_free(l1_table);
1681 return ret;
1682 }
1683
1684 /*
1685 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1686 *
1687 * This function does not print an error message nor does it increment
1688 * check_errors if qcow2_get_refcount fails (this is because such an error will
1689 * have been already detected and sufficiently signaled by the calling function
1690 * (qcow2_check_refcounts) by the time this function is called).
1691 */
1692 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1693 BdrvCheckMode fix)
1694 {
1695 BDRVQcow2State *s = bs->opaque;
1696 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1697 int ret;
1698 uint64_t refcount;
1699 int i, j;
1700
1701 for (i = 0; i < s->l1_size; i++) {
1702 uint64_t l1_entry = s->l1_table[i];
1703 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1704 bool l2_dirty = false;
1705
1706 if (!l2_offset) {
1707 continue;
1708 }
1709
1710 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1711 &refcount);
1712 if (ret < 0) {
1713 /* don't print message nor increment check_errors */
1714 continue;
1715 }
1716 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1717 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1718 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1719 fix & BDRV_FIX_ERRORS ? "Repairing" :
1720 "ERROR",
1721 i, l1_entry, refcount);
1722 if (fix & BDRV_FIX_ERRORS) {
1723 s->l1_table[i] = refcount == 1
1724 ? l1_entry | QCOW_OFLAG_COPIED
1725 : l1_entry & ~QCOW_OFLAG_COPIED;
1726 ret = qcow2_write_l1_entry(bs, i);
1727 if (ret < 0) {
1728 res->check_errors++;
1729 goto fail;
1730 }
1731 res->corruptions_fixed++;
1732 } else {
1733 res->corruptions++;
1734 }
1735 }
1736
1737 ret = bdrv_pread(bs->file, l2_offset, l2_table,
1738 s->l2_size * sizeof(uint64_t));
1739 if (ret < 0) {
1740 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1741 strerror(-ret));
1742 res->check_errors++;
1743 goto fail;
1744 }
1745
1746 for (j = 0; j < s->l2_size; j++) {
1747 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1748 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1749 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1750
1751 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1752 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1753 ret = qcow2_get_refcount(bs,
1754 data_offset >> s->cluster_bits,
1755 &refcount);
1756 if (ret < 0) {
1757 /* don't print message nor increment check_errors */
1758 continue;
1759 }
1760 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1761 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1762 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1763 fix & BDRV_FIX_ERRORS ? "Repairing" :
1764 "ERROR",
1765 l2_entry, refcount);
1766 if (fix & BDRV_FIX_ERRORS) {
1767 l2_table[j] = cpu_to_be64(refcount == 1
1768 ? l2_entry | QCOW_OFLAG_COPIED
1769 : l2_entry & ~QCOW_OFLAG_COPIED);
1770 l2_dirty = true;
1771 res->corruptions_fixed++;
1772 } else {
1773 res->corruptions++;
1774 }
1775 }
1776 }
1777 }
1778
1779 if (l2_dirty) {
1780 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1781 l2_offset, s->cluster_size);
1782 if (ret < 0) {
1783 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1784 "overlap check failed: %s\n", strerror(-ret));
1785 res->check_errors++;
1786 goto fail;
1787 }
1788
1789 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1790 s->cluster_size);
1791 if (ret < 0) {
1792 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1793 strerror(-ret));
1794 res->check_errors++;
1795 goto fail;
1796 }
1797 }
1798 }
1799
1800 ret = 0;
1801
1802 fail:
1803 qemu_vfree(l2_table);
1804 return ret;
1805 }
1806
1807 /*
1808 * Checks consistency of refblocks and accounts for each refblock in
1809 * *refcount_table.
1810 */
1811 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1812 BdrvCheckMode fix, bool *rebuild,
1813 void **refcount_table, int64_t *nb_clusters)
1814 {
1815 BDRVQcow2State *s = bs->opaque;
1816 int64_t i, size;
1817 int ret;
1818
1819 for(i = 0; i < s->refcount_table_size; i++) {
1820 uint64_t offset, cluster;
1821 offset = s->refcount_table[i];
1822 cluster = offset >> s->cluster_bits;
1823
1824 /* Refcount blocks are cluster aligned */
1825 if (offset_into_cluster(s, offset)) {
1826 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1827 "cluster aligned; refcount table entry corrupted\n", i);
1828 res->corruptions++;
1829 *rebuild = true;
1830 continue;
1831 }
1832
1833 if (cluster >= *nb_clusters) {
1834 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1835 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1836
1837 if (fix & BDRV_FIX_ERRORS) {
1838 int64_t new_nb_clusters;
1839 Error *local_err = NULL;
1840
1841 if (offset > INT64_MAX - s->cluster_size) {
1842 ret = -EINVAL;
1843 goto resize_fail;
1844 }
1845
1846 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1847 PREALLOC_MODE_OFF, &local_err);
1848 if (ret < 0) {
1849 error_report_err(local_err);
1850 goto resize_fail;
1851 }
1852 size = bdrv_getlength(bs->file->bs);
1853 if (size < 0) {
1854 ret = size;
1855 goto resize_fail;
1856 }
1857
1858 new_nb_clusters = size_to_clusters(s, size);
1859 assert(new_nb_clusters >= *nb_clusters);
1860
1861 ret = realloc_refcount_array(s, refcount_table,
1862 nb_clusters, new_nb_clusters);
1863 if (ret < 0) {
1864 res->check_errors++;
1865 return ret;
1866 }
1867
1868 if (cluster >= *nb_clusters) {
1869 ret = -EINVAL;
1870 goto resize_fail;
1871 }
1872
1873 res->corruptions_fixed++;
1874 ret = qcow2_inc_refcounts_imrt(bs, res,
1875 refcount_table, nb_clusters,
1876 offset, s->cluster_size);
1877 if (ret < 0) {
1878 return ret;
1879 }
1880 /* No need to check whether the refcount is now greater than 1:
1881 * This area was just allocated and zeroed, so it can only be
1882 * exactly 1 after qcow2_inc_refcounts_imrt() */
1883 continue;
1884
1885 resize_fail:
1886 res->corruptions++;
1887 *rebuild = true;
1888 fprintf(stderr, "ERROR could not resize image: %s\n",
1889 strerror(-ret));
1890 } else {
1891 res->corruptions++;
1892 }
1893 continue;
1894 }
1895
1896 if (offset != 0) {
1897 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1898 offset, s->cluster_size);
1899 if (ret < 0) {
1900 return ret;
1901 }
1902 if (s->get_refcount(*refcount_table, cluster) != 1) {
1903 fprintf(stderr, "ERROR refcount block %" PRId64
1904 " refcount=%" PRIu64 "\n", i,
1905 s->get_refcount(*refcount_table, cluster));
1906 res->corruptions++;
1907 *rebuild = true;
1908 }
1909 }
1910 }
1911
1912 return 0;
1913 }
1914
1915 /*
1916 * Calculates an in-memory refcount table.
1917 */
1918 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1919 BdrvCheckMode fix, bool *rebuild,
1920 void **refcount_table, int64_t *nb_clusters)
1921 {
1922 BDRVQcow2State *s = bs->opaque;
1923 int64_t i;
1924 QCowSnapshot *sn;
1925 int ret;
1926
1927 if (!*refcount_table) {
1928 int64_t old_size = 0;
1929 ret = realloc_refcount_array(s, refcount_table,
1930 &old_size, *nb_clusters);
1931 if (ret < 0) {
1932 res->check_errors++;
1933 return ret;
1934 }
1935 }
1936
1937 /* header */
1938 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1939 0, s->cluster_size);
1940 if (ret < 0) {
1941 return ret;
1942 }
1943
1944 /* current L1 table */
1945 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1946 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1947 if (ret < 0) {
1948 return ret;
1949 }
1950
1951 /* snapshots */
1952 for (i = 0; i < s->nb_snapshots; i++) {
1953 sn = s->snapshots + i;
1954 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1955 sn->l1_table_offset, sn->l1_size, 0);
1956 if (ret < 0) {
1957 return ret;
1958 }
1959 }
1960 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1961 s->snapshots_offset, s->snapshots_size);
1962 if (ret < 0) {
1963 return ret;
1964 }
1965
1966 /* refcount data */
1967 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1968 s->refcount_table_offset,
1969 s->refcount_table_size * sizeof(uint64_t));
1970 if (ret < 0) {
1971 return ret;
1972 }
1973
1974 /* encryption */
1975 if (s->crypto_header.length) {
1976 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1977 s->crypto_header.offset,
1978 s->crypto_header.length);
1979 if (ret < 0) {
1980 return ret;
1981 }
1982 }
1983
1984 /* bitmaps */
1985 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
1986 if (ret < 0) {
1987 return ret;
1988 }
1989
1990 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1991 }
1992
1993 /*
1994 * Compares the actual reference count for each cluster in the image against the
1995 * refcount as reported by the refcount structures on-disk.
1996 */
1997 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1998 BdrvCheckMode fix, bool *rebuild,
1999 int64_t *highest_cluster,
2000 void *refcount_table, int64_t nb_clusters)
2001 {
2002 BDRVQcow2State *s = bs->opaque;
2003 int64_t i;
2004 uint64_t refcount1, refcount2;
2005 int ret;
2006
2007 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2008 ret = qcow2_get_refcount(bs, i, &refcount1);
2009 if (ret < 0) {
2010 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2011 i, strerror(-ret));
2012 res->check_errors++;
2013 continue;
2014 }
2015
2016 refcount2 = s->get_refcount(refcount_table, i);
2017
2018 if (refcount1 > 0 || refcount2 > 0) {
2019 *highest_cluster = i;
2020 }
2021
2022 if (refcount1 != refcount2) {
2023 /* Check if we're allowed to fix the mismatch */
2024 int *num_fixed = NULL;
2025 if (refcount1 == 0) {
2026 *rebuild = true;
2027 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2028 num_fixed = &res->leaks_fixed;
2029 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2030 num_fixed = &res->corruptions_fixed;
2031 }
2032
2033 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2034 " reference=%" PRIu64 "\n",
2035 num_fixed != NULL ? "Repairing" :
2036 refcount1 < refcount2 ? "ERROR" :
2037 "Leaked",
2038 i, refcount1, refcount2);
2039
2040 if (num_fixed) {
2041 ret = update_refcount(bs, i << s->cluster_bits, 1,
2042 refcount_diff(refcount1, refcount2),
2043 refcount1 > refcount2,
2044 QCOW2_DISCARD_ALWAYS);
2045 if (ret >= 0) {
2046 (*num_fixed)++;
2047 continue;
2048 }
2049 }
2050
2051 /* And if we couldn't, print an error */
2052 if (refcount1 < refcount2) {
2053 res->corruptions++;
2054 } else {
2055 res->leaks++;
2056 }
2057 }
2058 }
2059 }
2060
2061 /*
2062 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2063 * the on-disk refcount structures.
2064 *
2065 * On input, *first_free_cluster tells where to start looking, and need not
2066 * actually be a free cluster; the returned offset will not be before that
2067 * cluster. On output, *first_free_cluster points to the first gap found, even
2068 * if that gap was too small to be used as the returned offset.
2069 *
2070 * Note that *first_free_cluster is a cluster index whereas the return value is
2071 * an offset.
2072 */
2073 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2074 int cluster_count,
2075 void **refcount_table,
2076 int64_t *imrt_nb_clusters,
2077 int64_t *first_free_cluster)
2078 {
2079 BDRVQcow2State *s = bs->opaque;
2080 int64_t cluster = *first_free_cluster, i;
2081 bool first_gap = true;
2082 int contiguous_free_clusters;
2083 int ret;
2084
2085 /* Starting at *first_free_cluster, find a range of at least cluster_count
2086 * continuously free clusters */
2087 for (contiguous_free_clusters = 0;
2088 cluster < *imrt_nb_clusters &&
2089 contiguous_free_clusters < cluster_count;
2090 cluster++)
2091 {
2092 if (!s->get_refcount(*refcount_table, cluster)) {
2093 contiguous_free_clusters++;
2094 if (first_gap) {
2095 /* If this is the first free cluster found, update
2096 * *first_free_cluster accordingly */
2097 *first_free_cluster = cluster;
2098 first_gap = false;
2099 }
2100 } else if (contiguous_free_clusters) {
2101 contiguous_free_clusters = 0;
2102 }
2103 }
2104
2105 /* If contiguous_free_clusters is greater than zero, it contains the number
2106 * of continuously free clusters until the current cluster; the first free
2107 * cluster in the current "gap" is therefore
2108 * cluster - contiguous_free_clusters */
2109
2110 /* If no such range could be found, grow the in-memory refcount table
2111 * accordingly to append free clusters at the end of the image */
2112 if (contiguous_free_clusters < cluster_count) {
2113 /* contiguous_free_clusters clusters are already empty at the image end;
2114 * we need cluster_count clusters; therefore, we have to allocate
2115 * cluster_count - contiguous_free_clusters new clusters at the end of
2116 * the image (which is the current value of cluster; note that cluster
2117 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2118 * the image end) */
2119 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2120 cluster + cluster_count
2121 - contiguous_free_clusters);
2122 if (ret < 0) {
2123 return ret;
2124 }
2125 }
2126
2127 /* Go back to the first free cluster */
2128 cluster -= contiguous_free_clusters;
2129 for (i = 0; i < cluster_count; i++) {
2130 s->set_refcount(*refcount_table, cluster + i, 1);
2131 }
2132
2133 return cluster << s->cluster_bits;
2134 }
2135
2136 /*
2137 * Creates a new refcount structure based solely on the in-memory information
2138 * given through *refcount_table. All necessary allocations will be reflected
2139 * in that array.
2140 *
2141 * On success, the old refcount structure is leaked (it will be covered by the
2142 * new refcount structure).
2143 */
2144 static int rebuild_refcount_structure(BlockDriverState *bs,
2145 BdrvCheckResult *res,
2146 void **refcount_table,
2147 int64_t *nb_clusters)
2148 {
2149 BDRVQcow2State *s = bs->opaque;
2150 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2151 int64_t refblock_offset, refblock_start, refblock_index;
2152 uint32_t reftable_size = 0;
2153 uint64_t *on_disk_reftable = NULL;
2154 void *on_disk_refblock;
2155 int ret = 0;
2156 struct {
2157 uint64_t reftable_offset;
2158 uint32_t reftable_clusters;
2159 } QEMU_PACKED reftable_offset_and_clusters;
2160
2161 qcow2_cache_empty(bs, s->refcount_block_cache);
2162
2163 write_refblocks:
2164 for (; cluster < *nb_clusters; cluster++) {
2165 if (!s->get_refcount(*refcount_table, cluster)) {
2166 continue;
2167 }
2168
2169 refblock_index = cluster >> s->refcount_block_bits;
2170 refblock_start = refblock_index << s->refcount_block_bits;
2171
2172 /* Don't allocate a cluster in a refblock already written to disk */
2173 if (first_free_cluster < refblock_start) {
2174 first_free_cluster = refblock_start;
2175 }
2176 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2177 nb_clusters, &first_free_cluster);
2178 if (refblock_offset < 0) {
2179 fprintf(stderr, "ERROR allocating refblock: %s\n",
2180 strerror(-refblock_offset));
2181 res->check_errors++;
2182 ret = refblock_offset;
2183 goto fail;
2184 }
2185
2186 if (reftable_size <= refblock_index) {
2187 uint32_t old_reftable_size = reftable_size;
2188 uint64_t *new_on_disk_reftable;
2189
2190 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2191 s->cluster_size) / sizeof(uint64_t);
2192 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2193 reftable_size *
2194 sizeof(uint64_t));
2195 if (!new_on_disk_reftable) {
2196 res->check_errors++;
2197 ret = -ENOMEM;
2198 goto fail;
2199 }
2200 on_disk_reftable = new_on_disk_reftable;
2201
2202 memset(on_disk_reftable + old_reftable_size, 0,
2203 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2204
2205 /* The offset we have for the reftable is now no longer valid;
2206 * this will leak that range, but we can easily fix that by running
2207 * a leak-fixing check after this rebuild operation */
2208 reftable_offset = -1;
2209 } else {
2210 assert(on_disk_reftable);
2211 }
2212 on_disk_reftable[refblock_index] = refblock_offset;
2213
2214 /* If this is apparently the last refblock (for now), try to squeeze the
2215 * reftable in */
2216 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2217 reftable_offset < 0)
2218 {
2219 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2220 sizeof(uint64_t));
2221 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2222 refcount_table, nb_clusters,
2223 &first_free_cluster);
2224 if (reftable_offset < 0) {
2225 fprintf(stderr, "ERROR allocating reftable: %s\n",
2226 strerror(-reftable_offset));
2227 res->check_errors++;
2228 ret = reftable_offset;
2229 goto fail;
2230 }
2231 }
2232
2233 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2234 s->cluster_size);
2235 if (ret < 0) {
2236 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2237 goto fail;
2238 }
2239
2240 /* The size of *refcount_table is always cluster-aligned, therefore the
2241 * write operation will not overflow */
2242 on_disk_refblock = (void *)((char *) *refcount_table +
2243 refblock_index * s->cluster_size);
2244
2245 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2246 on_disk_refblock, s->cluster_sectors);
2247 if (ret < 0) {
2248 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2249 goto fail;
2250 }
2251
2252 /* Go to the end of this refblock */
2253 cluster = refblock_start + s->refcount_block_size - 1;
2254 }
2255
2256 if (reftable_offset < 0) {
2257 uint64_t post_refblock_start, reftable_clusters;
2258
2259 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2260 reftable_clusters = size_to_clusters(s,
2261 reftable_size * sizeof(uint64_t));
2262 /* Not pretty but simple */
2263 if (first_free_cluster < post_refblock_start) {
2264 first_free_cluster = post_refblock_start;
2265 }
2266 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2267 refcount_table, nb_clusters,
2268 &first_free_cluster);
2269 if (reftable_offset < 0) {
2270 fprintf(stderr, "ERROR allocating reftable: %s\n",
2271 strerror(-reftable_offset));
2272 res->check_errors++;
2273 ret = reftable_offset;
2274 goto fail;
2275 }
2276
2277 goto write_refblocks;
2278 }
2279
2280 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2281 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2282 }
2283
2284 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2285 reftable_size * sizeof(uint64_t));
2286 if (ret < 0) {
2287 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2288 goto fail;
2289 }
2290
2291 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2292 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2293 reftable_size * sizeof(uint64_t));
2294 if (ret < 0) {
2295 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2296 goto fail;
2297 }
2298
2299 /* Enter new reftable into the image header */
2300 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2301 reftable_offset_and_clusters.reftable_clusters =
2302 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2303 ret = bdrv_pwrite_sync(bs->file,
2304 offsetof(QCowHeader, refcount_table_offset),
2305 &reftable_offset_and_clusters,
2306 sizeof(reftable_offset_and_clusters));
2307 if (ret < 0) {
2308 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2309 goto fail;
2310 }
2311
2312 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2313 be64_to_cpus(&on_disk_reftable[refblock_index]);
2314 }
2315 s->refcount_table = on_disk_reftable;
2316 s->refcount_table_offset = reftable_offset;
2317 s->refcount_table_size = reftable_size;
2318 update_max_refcount_table_index(s);
2319
2320 return 0;
2321
2322 fail:
2323 g_free(on_disk_reftable);
2324 return ret;
2325 }
2326
2327 /*
2328 * Checks an image for refcount consistency.
2329 *
2330 * Returns 0 if no errors are found, the number of errors in case the image is
2331 * detected as corrupted, and -errno when an internal error occurred.
2332 */
2333 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2334 BdrvCheckMode fix)
2335 {
2336 BDRVQcow2State *s = bs->opaque;
2337 BdrvCheckResult pre_compare_res;
2338 int64_t size, highest_cluster, nb_clusters;
2339 void *refcount_table = NULL;
2340 bool rebuild = false;
2341 int ret;
2342
2343 size = bdrv_getlength(bs->file->bs);
2344 if (size < 0) {
2345 res->check_errors++;
2346 return size;
2347 }
2348
2349 nb_clusters = size_to_clusters(s, size);
2350 if (nb_clusters > INT_MAX) {
2351 res->check_errors++;
2352 return -EFBIG;
2353 }
2354
2355 res->bfi.total_clusters =
2356 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2357
2358 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2359 &nb_clusters);
2360 if (ret < 0) {
2361 goto fail;
2362 }
2363
2364 /* In case we don't need to rebuild the refcount structure (but want to fix
2365 * something), this function is immediately called again, in which case the
2366 * result should be ignored */
2367 pre_compare_res = *res;
2368 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2369 nb_clusters);
2370
2371 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2372 BdrvCheckResult old_res = *res;
2373 int fresh_leaks = 0;
2374
2375 fprintf(stderr, "Rebuilding refcount structure\n");
2376 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2377 &nb_clusters);
2378 if (ret < 0) {
2379 goto fail;
2380 }
2381
2382 res->corruptions = 0;
2383 res->leaks = 0;
2384
2385 /* Because the old reftable has been exchanged for a new one the
2386 * references have to be recalculated */
2387 rebuild = false;
2388 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2389 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2390 &nb_clusters);
2391 if (ret < 0) {
2392 goto fail;
2393 }
2394
2395 if (fix & BDRV_FIX_LEAKS) {
2396 /* The old refcount structures are now leaked, fix it; the result
2397 * can be ignored, aside from leaks which were introduced by
2398 * rebuild_refcount_structure() that could not be fixed */
2399 BdrvCheckResult saved_res = *res;
2400 *res = (BdrvCheckResult){ 0 };
2401
2402 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2403 &highest_cluster, refcount_table, nb_clusters);
2404 if (rebuild) {
2405 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2406 "broken\n");
2407 }
2408
2409 /* Any leaks accounted for here were introduced by
2410 * rebuild_refcount_structure() because that function has created a
2411 * new refcount structure from scratch */
2412 fresh_leaks = res->leaks;
2413 *res = saved_res;
2414 }
2415
2416 if (res->corruptions < old_res.corruptions) {
2417 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2418 }
2419 if (res->leaks < old_res.leaks) {
2420 res->leaks_fixed += old_res.leaks - res->leaks;
2421 }
2422 res->leaks += fresh_leaks;
2423 } else if (fix) {
2424 if (rebuild) {
2425 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2426 res->check_errors++;
2427 ret = -EIO;
2428 goto fail;
2429 }
2430
2431 if (res->leaks || res->corruptions) {
2432 *res = pre_compare_res;
2433 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2434 refcount_table, nb_clusters);
2435 }
2436 }
2437
2438 /* check OFLAG_COPIED */
2439 ret = check_oflag_copied(bs, res, fix);
2440 if (ret < 0) {
2441 goto fail;
2442 }
2443
2444 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2445 ret = 0;
2446
2447 fail:
2448 g_free(refcount_table);
2449
2450 return ret;
2451 }
2452
2453 #define overlaps_with(ofs, sz) \
2454 ranges_overlap(offset, size, ofs, sz)
2455
2456 /*
2457 * Checks if the given offset into the image file is actually free to use by
2458 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2459 * i.e. a sanity check without relying on the refcount tables.
2460 *
2461 * The ign parameter specifies what checks not to perform (being a bitmask of
2462 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2463 *
2464 * Returns:
2465 * - 0 if writing to this offset will not affect the mentioned metadata
2466 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2467 * - a negative value (-errno) indicating an error while performing a check,
2468 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2469 */
2470 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2471 int64_t size)
2472 {
2473 BDRVQcow2State *s = bs->opaque;
2474 int chk = s->overlap_check & ~ign;
2475 int i, j;
2476
2477 if (!size) {
2478 return 0;
2479 }
2480
2481 if (chk & QCOW2_OL_MAIN_HEADER) {
2482 if (offset < s->cluster_size) {
2483 return QCOW2_OL_MAIN_HEADER;
2484 }
2485 }
2486
2487 /* align range to test to cluster boundaries */
2488 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2489 offset = start_of_cluster(s, offset);
2490
2491 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2492 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2493 return QCOW2_OL_ACTIVE_L1;
2494 }
2495 }
2496
2497 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2498 if (overlaps_with(s->refcount_table_offset,
2499 s->refcount_table_size * sizeof(uint64_t))) {
2500 return QCOW2_OL_REFCOUNT_TABLE;
2501 }
2502 }
2503
2504 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2505 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2506 return QCOW2_OL_SNAPSHOT_TABLE;
2507 }
2508 }
2509
2510 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2511 for (i = 0; i < s->nb_snapshots; i++) {
2512 if (s->snapshots[i].l1_size &&
2513 overlaps_with(s->snapshots[i].l1_table_offset,
2514 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2515 return QCOW2_OL_INACTIVE_L1;
2516 }
2517 }
2518 }
2519
2520 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2521 for (i = 0; i < s->l1_size; i++) {
2522 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2523 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2524 s->cluster_size)) {
2525 return QCOW2_OL_ACTIVE_L2;
2526 }
2527 }
2528 }
2529
2530 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2531 unsigned last_entry = s->max_refcount_table_index;
2532 assert(last_entry < s->refcount_table_size);
2533 assert(last_entry + 1 == s->refcount_table_size ||
2534 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2535 for (i = 0; i <= last_entry; i++) {
2536 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2537 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2538 s->cluster_size)) {
2539 return QCOW2_OL_REFCOUNT_BLOCK;
2540 }
2541 }
2542 }
2543
2544 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2545 for (i = 0; i < s->nb_snapshots; i++) {
2546 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2547 uint32_t l1_sz = s->snapshots[i].l1_size;
2548 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2549 uint64_t *l1 = g_try_malloc(l1_sz2);
2550 int ret;
2551
2552 if (l1_sz2 && l1 == NULL) {
2553 return -ENOMEM;
2554 }
2555
2556 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2557 if (ret < 0) {
2558 g_free(l1);
2559 return ret;
2560 }
2561
2562 for (j = 0; j < l1_sz; j++) {
2563 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2564 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2565 g_free(l1);
2566 return QCOW2_OL_INACTIVE_L2;
2567 }
2568 }
2569
2570 g_free(l1);
2571 }
2572 }
2573
2574 return 0;
2575 }
2576
2577 static const char *metadata_ol_names[] = {
2578 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2579 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2580 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2581 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2582 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2583 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2584 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2585 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2586 };
2587
2588 /*
2589 * First performs a check for metadata overlaps (through
2590 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2591 * while performing a check), that value is returned. If an impending overlap
2592 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2593 * and -EIO returned.
2594 *
2595 * Returns 0 if there were neither overlaps nor errors while checking for
2596 * overlaps; or a negative value (-errno) on error.
2597 */
2598 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2599 int64_t size)
2600 {
2601 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2602
2603 if (ret < 0) {
2604 return ret;
2605 } else if (ret > 0) {
2606 int metadata_ol_bitnr = ctz32(ret);
2607 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2608
2609 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2610 "write on metadata (overlaps with %s)",
2611 metadata_ol_names[metadata_ol_bitnr]);
2612 return -EIO;
2613 }
2614
2615 return 0;
2616 }
2617
2618 /* A pointer to a function of this type is given to walk_over_reftable(). That
2619 * function will create refblocks and pass them to a RefblockFinishOp once they
2620 * are completed (@refblock). @refblock_empty is set if the refblock is
2621 * completely empty.
2622 *
2623 * Along with the refblock, a corresponding reftable entry is passed, in the
2624 * reftable @reftable (which may be reallocated) at @reftable_index.
2625 *
2626 * @allocated should be set to true if a new cluster has been allocated.
2627 */
2628 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2629 uint64_t reftable_index, uint64_t *reftable_size,
2630 void *refblock, bool refblock_empty,
2631 bool *allocated, Error **errp);
2632
2633 /**
2634 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2635 * it is not empty) and inserts its offset into the new reftable. The size of
2636 * this new reftable is increased as required.
2637 */
2638 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2639 uint64_t reftable_index, uint64_t *reftable_size,
2640 void *refblock, bool refblock_empty, bool *allocated,
2641 Error **errp)
2642 {
2643 BDRVQcow2State *s = bs->opaque;
2644 int64_t offset;
2645
2646 if (!refblock_empty && reftable_index >= *reftable_size) {
2647 uint64_t *new_reftable;
2648 uint64_t new_reftable_size;
2649
2650 new_reftable_size = ROUND_UP(reftable_index + 1,
2651 s->cluster_size / sizeof(uint64_t));
2652 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2653 error_setg(errp,
2654 "This operation would make the refcount table grow "
2655 "beyond the maximum size supported by QEMU, aborting");
2656 return -ENOTSUP;
2657 }
2658
2659 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2660 sizeof(uint64_t));
2661 if (!new_reftable) {
2662 error_setg(errp, "Failed to increase reftable buffer size");
2663 return -ENOMEM;
2664 }
2665
2666 memset(new_reftable + *reftable_size, 0,
2667 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2668
2669 *reftable = new_reftable;
2670 *reftable_size = new_reftable_size;
2671 }
2672
2673 if (!refblock_empty && !(*reftable)[reftable_index]) {
2674 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2675 if (offset < 0) {
2676 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2677 return offset;
2678 }
2679 (*reftable)[reftable_index] = offset;
2680 *allocated = true;
2681 }
2682
2683 return 0;
2684 }
2685
2686 /**
2687 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2688 * offset specified by the new reftable's entry. It does not modify the new
2689 * reftable or change any refcounts.
2690 */
2691 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2692 uint64_t reftable_index, uint64_t *reftable_size,
2693 void *refblock, bool refblock_empty, bool *allocated,
2694 Error **errp)
2695 {
2696 BDRVQcow2State *s = bs->opaque;
2697 int64_t offset;
2698 int ret;
2699
2700 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2701 offset = (*reftable)[reftable_index];
2702
2703 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2704 if (ret < 0) {
2705 error_setg_errno(errp, -ret, "Overlap check failed");
2706 return ret;
2707 }
2708
2709 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2710 if (ret < 0) {
2711 error_setg_errno(errp, -ret, "Failed to write refblock");
2712 return ret;
2713 }
2714 } else {
2715 assert(refblock_empty);
2716 }
2717
2718 return 0;
2719 }
2720
2721 /**
2722 * This function walks over the existing reftable and every referenced refblock;
2723 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2724 * create an equal new entry in the passed @new_refblock. Once that
2725 * @new_refblock is completely filled, @operation will be called.
2726 *
2727 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2728 * @index is the index of the walk_over_reftable() calls and @total is the total
2729 * number of walk_over_reftable() calls per amend operation. Both are used for
2730 * calculating the parameters for the status callback.
2731 *
2732 * @allocated is set to true if a new cluster has been allocated.
2733 */
2734 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2735 uint64_t *new_reftable_index,
2736 uint64_t *new_reftable_size,
2737 void *new_refblock, int new_refblock_size,
2738 int new_refcount_bits,
2739 RefblockFinishOp *operation, bool *allocated,
2740 Qcow2SetRefcountFunc *new_set_refcount,
2741 BlockDriverAmendStatusCB *status_cb,
2742 void *cb_opaque, int index, int total,
2743 Error **errp)
2744 {
2745 BDRVQcow2State *s = bs->opaque;
2746 uint64_t reftable_index;
2747 bool new_refblock_empty = true;
2748 int refblock_index;
2749 int new_refblock_index = 0;
2750 int ret;
2751
2752 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2753 reftable_index++)
2754 {
2755 uint64_t refblock_offset = s->refcount_table[reftable_index]
2756 & REFT_OFFSET_MASK;
2757
2758 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2759 (uint64_t)total * s->refcount_table_size, cb_opaque);
2760
2761 if (refblock_offset) {
2762 void *refblock;
2763
2764 if (offset_into_cluster(s, refblock_offset)) {
2765 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2766 PRIx64 " unaligned (reftable index: %#"
2767 PRIx64 ")", refblock_offset,
2768 reftable_index);
2769 error_setg(errp,
2770 "Image is corrupt (unaligned refblock offset)");
2771 return -EIO;
2772 }
2773
2774 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2775 &refblock);
2776 if (ret < 0) {
2777 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2778 return ret;
2779 }
2780
2781 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2782 refblock_index++)
2783 {
2784 uint64_t refcount;
2785
2786 if (new_refblock_index >= new_refblock_size) {
2787 /* new_refblock is now complete */
2788 ret = operation(bs, new_reftable, *new_reftable_index,
2789 new_reftable_size, new_refblock,
2790 new_refblock_empty, allocated, errp);
2791 if (ret < 0) {
2792 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2793 return ret;
2794 }
2795
2796 (*new_reftable_index)++;
2797 new_refblock_index = 0;
2798 new_refblock_empty = true;
2799 }
2800
2801 refcount = s->get_refcount(refblock, refblock_index);
2802 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2803 uint64_t offset;
2804
2805 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2806
2807 offset = ((reftable_index << s->refcount_block_bits)
2808 + refblock_index) << s->cluster_bits;
2809
2810 error_setg(errp, "Cannot decrease refcount entry width to "
2811 "%i bits: Cluster at offset %#" PRIx64 " has a "
2812 "refcount of %" PRIu64, new_refcount_bits,
2813 offset, refcount);
2814 return -EINVAL;
2815 }
2816
2817 if (new_set_refcount) {
2818 new_set_refcount(new_refblock, new_refblock_index++,
2819 refcount);
2820 } else {
2821 new_refblock_index++;
2822 }
2823 new_refblock_empty = new_refblock_empty && refcount == 0;
2824 }
2825
2826 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2827 } else {
2828 /* No refblock means every refcount is 0 */
2829 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2830 refblock_index++)
2831 {
2832 if (new_refblock_index >= new_refblock_size) {
2833 /* new_refblock is now complete */
2834 ret = operation(bs, new_reftable, *new_reftable_index,
2835 new_reftable_size, new_refblock,
2836 new_refblock_empty, allocated, errp);
2837 if (ret < 0) {
2838 return ret;
2839 }
2840
2841 (*new_reftable_index)++;
2842 new_refblock_index = 0;
2843 new_refblock_empty = true;
2844 }
2845
2846 if (new_set_refcount) {
2847 new_set_refcount(new_refblock, new_refblock_index++, 0);
2848 } else {
2849 new_refblock_index++;
2850 }
2851 }
2852 }
2853 }
2854
2855 if (new_refblock_index > 0) {
2856 /* Complete the potentially existing partially filled final refblock */
2857 if (new_set_refcount) {
2858 for (; new_refblock_index < new_refblock_size;
2859 new_refblock_index++)
2860 {
2861 new_set_refcount(new_refblock, new_refblock_index, 0);
2862 }
2863 }
2864
2865 ret = operation(bs, new_reftable, *new_reftable_index,
2866 new_reftable_size, new_refblock, new_refblock_empty,
2867 allocated, errp);
2868 if (ret < 0) {
2869 return ret;
2870 }
2871
2872 (*new_reftable_index)++;
2873 }
2874
2875 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2876 (uint64_t)total * s->refcount_table_size, cb_opaque);
2877
2878 return 0;
2879 }
2880
2881 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2882 BlockDriverAmendStatusCB *status_cb,
2883 void *cb_opaque, Error **errp)
2884 {
2885 BDRVQcow2State *s = bs->opaque;
2886 Qcow2GetRefcountFunc *new_get_refcount;
2887 Qcow2SetRefcountFunc *new_set_refcount;
2888 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2889 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2890 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2891 uint64_t new_reftable_index = 0;
2892 uint64_t i;
2893 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2894 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2895 int old_refcount_order;
2896 int walk_index = 0;
2897 int ret;
2898 bool new_allocation;
2899
2900 assert(s->qcow_version >= 3);
2901 assert(refcount_order >= 0 && refcount_order <= 6);
2902
2903 /* see qcow2_open() */
2904 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2905
2906 new_get_refcount = get_refcount_funcs[refcount_order];
2907 new_set_refcount = set_refcount_funcs[refcount_order];
2908
2909
2910 do {
2911 int total_walks;
2912
2913 new_allocation = false;
2914
2915 /* At least we have to do this walk and the one which writes the
2916 * refblocks; also, at least we have to do this loop here at least
2917 * twice (normally), first to do the allocations, and second to
2918 * determine that everything is correctly allocated, this then makes
2919 * three walks in total */
2920 total_walks = MAX(walk_index + 2, 3);
2921
2922 /* First, allocate the structures so they are present in the refcount
2923 * structures */
2924 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2925 &new_reftable_size, NULL, new_refblock_size,
2926 new_refcount_bits, &alloc_refblock,
2927 &new_allocation, NULL, status_cb, cb_opaque,
2928 walk_index++, total_walks, errp);
2929 if (ret < 0) {
2930 goto done;
2931 }
2932
2933 new_reftable_index = 0;
2934
2935 if (new_allocation) {
2936 if (new_reftable_offset) {
2937 qcow2_free_clusters(bs, new_reftable_offset,
2938 allocated_reftable_size * sizeof(uint64_t),
2939 QCOW2_DISCARD_NEVER);
2940 }
2941
2942 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2943 sizeof(uint64_t));
2944 if (new_reftable_offset < 0) {
2945 error_setg_errno(errp, -new_reftable_offset,
2946 "Failed to allocate the new reftable");
2947 ret = new_reftable_offset;
2948 goto done;
2949 }
2950 allocated_reftable_size = new_reftable_size;
2951 }
2952 } while (new_allocation);
2953
2954 /* Second, write the new refblocks */
2955 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2956 &new_reftable_size, new_refblock,
2957 new_refblock_size, new_refcount_bits,
2958 &flush_refblock, &new_allocation, new_set_refcount,
2959 status_cb, cb_opaque, walk_index, walk_index + 1,
2960 errp);
2961 if (ret < 0) {
2962 goto done;
2963 }
2964 assert(!new_allocation);
2965
2966
2967 /* Write the new reftable */
2968 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2969 new_reftable_size * sizeof(uint64_t));
2970 if (ret < 0) {
2971 error_setg_errno(errp, -ret, "Overlap check failed");
2972 goto done;
2973 }
2974
2975 for (i = 0; i < new_reftable_size; i++) {
2976 cpu_to_be64s(&new_reftable[i]);
2977 }
2978
2979 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2980 new_reftable_size * sizeof(uint64_t));
2981
2982 for (i = 0; i < new_reftable_size; i++) {
2983 be64_to_cpus(&new_reftable[i]);
2984 }
2985
2986 if (ret < 0) {
2987 error_setg_errno(errp, -ret, "Failed to write the new reftable");
2988 goto done;
2989 }
2990
2991
2992 /* Empty the refcount cache */
2993 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2994 if (ret < 0) {
2995 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2996 goto done;
2997 }
2998
2999 /* Update the image header to point to the new reftable; this only updates
3000 * the fields which are relevant to qcow2_update_header(); other fields
3001 * such as s->refcount_table or s->refcount_bits stay stale for now
3002 * (because we have to restore everything if qcow2_update_header() fails) */
3003 old_refcount_order = s->refcount_order;
3004 old_reftable_size = s->refcount_table_size;
3005 old_reftable_offset = s->refcount_table_offset;
3006
3007 s->refcount_order = refcount_order;
3008 s->refcount_table_size = new_reftable_size;
3009 s->refcount_table_offset = new_reftable_offset;
3010
3011 ret = qcow2_update_header(bs);
3012 if (ret < 0) {
3013 s->refcount_order = old_refcount_order;
3014 s->refcount_table_size = old_reftable_size;
3015 s->refcount_table_offset = old_reftable_offset;
3016 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3017 goto done;
3018 }
3019
3020 /* Now update the rest of the in-memory information */
3021 old_reftable = s->refcount_table;
3022 s->refcount_table = new_reftable;
3023 update_max_refcount_table_index(s);
3024
3025 s->refcount_bits = 1 << refcount_order;
3026 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3027 s->refcount_max += s->refcount_max - 1;
3028
3029 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3030 s->refcount_block_size = 1 << s->refcount_block_bits;
3031
3032 s->get_refcount = new_get_refcount;
3033 s->set_refcount = new_set_refcount;
3034
3035 /* For cleaning up all old refblocks and the old reftable below the "done"
3036 * label */
3037 new_reftable = old_reftable;
3038 new_reftable_size = old_reftable_size;
3039 new_reftable_offset = old_reftable_offset;
3040
3041 done:
3042 if (new_reftable) {
3043 /* On success, new_reftable actually points to the old reftable (and
3044 * new_reftable_size is the old reftable's size); but that is just
3045 * fine */
3046 for (i = 0; i < new_reftable_size; i++) {
3047 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3048 if (offset) {
3049 qcow2_free_clusters(bs, offset, s->cluster_size,
3050 QCOW2_DISCARD_OTHER);
3051 }
3052 }
3053 g_free(new_reftable);
3054
3055 if (new_reftable_offset > 0) {
3056 qcow2_free_clusters(bs, new_reftable_offset,
3057 new_reftable_size * sizeof(uint64_t),
3058 QCOW2_DISCARD_OTHER);
3059 }
3060 }
3061
3062 qemu_vfree(new_refblock);
3063 return ret;
3064 }
3065
3066 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3067 uint64_t discard_block_offs)
3068 {
3069 BDRVQcow2State *s = bs->opaque;
3070 uint64_t refblock_offs = get_refblock_offset(s, discard_block_offs);
3071 uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3072 uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3073 void *refblock;
3074 int ret;
3075
3076 assert(discard_block_offs != 0);
3077
3078 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3079 &refblock);
3080 if (ret < 0) {
3081 return ret;
3082 }
3083
3084 if (s->get_refcount(refblock, block_index) != 1) {
3085 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3086 " refblock offset %#" PRIx64
3087 ", reftable index %u"
3088 ", block offset %#" PRIx64
3089 ", refcount %#" PRIx64,
3090 refblock_offs,
3091 offset_to_reftable_index(s, discard_block_offs),
3092 discard_block_offs,
3093 s->get_refcount(refblock, block_index));
3094 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3095 return -EINVAL;
3096 }
3097 s->set_refcount(refblock, block_index, 0);
3098
3099 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, refblock);
3100
3101 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3102
3103 if (cluster_index < s->free_cluster_index) {
3104 s->free_cluster_index = cluster_index;
3105 }
3106
3107 refblock = qcow2_cache_is_table_offset(bs, s->refcount_block_cache,
3108 discard_block_offs);
3109 if (refblock) {
3110 /* discard refblock from the cache if refblock is cached */
3111 qcow2_cache_discard(bs, s->refcount_block_cache, refblock);
3112 }
3113 update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3114
3115 return 0;
3116 }
3117
3118 int qcow2_shrink_reftable(BlockDriverState *bs)
3119 {
3120 BDRVQcow2State *s = bs->opaque;
3121 uint64_t *reftable_tmp =
3122 g_malloc(s->refcount_table_size * sizeof(uint64_t));
3123 int i, ret;
3124
3125 for (i = 0; i < s->refcount_table_size; i++) {
3126 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3127 void *refblock;
3128 bool unused_block;
3129
3130 if (refblock_offs == 0) {
3131 reftable_tmp[i] = 0;
3132 continue;
3133 }
3134 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3135 &refblock);
3136 if (ret < 0) {
3137 goto out;
3138 }
3139
3140 /* the refblock has own reference */
3141 if (i == offset_to_reftable_index(s, refblock_offs)) {
3142 uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3143 (s->refcount_block_size - 1);
3144 uint64_t refcount = s->get_refcount(refblock, block_index);
3145
3146 s->set_refcount(refblock, block_index, 0);
3147
3148 unused_block = buffer_is_zero(refblock, s->cluster_size);
3149
3150 s->set_refcount(refblock, block_index, refcount);
3151 } else {
3152 unused_block = buffer_is_zero(refblock, s->cluster_size);
3153 }
3154 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
3155
3156 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3157 }
3158
3159 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3160 s->refcount_table_size * sizeof(uint64_t));
3161 /*
3162 * If the write in the reftable failed the image may contain a partially
3163 * overwritten reftable. In this case it would be better to clear the
3164 * reftable in memory to avoid possible image corruption.
3165 */
3166 for (i = 0; i < s->refcount_table_size; i++) {
3167 if (s->refcount_table[i] && !reftable_tmp[i]) {
3168 if (ret == 0) {
3169 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3170 REFT_OFFSET_MASK);
3171 }
3172 s->refcount_table[i] = 0;
3173 }
3174 }
3175
3176 if (!s->cache_discards) {
3177 qcow2_process_discards(bs, ret);
3178 }
3179
3180 out:
3181 g_free(reftable_tmp);
3182 return ret;
3183 }
3184
3185 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3186 {
3187 BDRVQcow2State *s = bs->opaque;
3188 int64_t i;
3189
3190 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3191 uint64_t refcount;
3192 int ret = qcow2_get_refcount(bs, i, &refcount);
3193 if (ret < 0) {
3194 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3195 i, strerror(-ret));
3196 return ret;
3197 }
3198 if (refcount > 0) {
3199 return i;
3200 }
3201 }
3202 qcow2_signal_corruption(bs, true, -1, -1,
3203 "There are no references in the refcount table.");
3204 return -EIO;
3205 }