]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-refcount.c
af493f8bfebae539d268f3fc374588af41387de8
[mirror_qemu.git] / block / qcow2-refcount.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu-common.h"
26 #include "block/block_int.h"
27 #include "block/qcow2.h"
28 #include "qemu/range.h"
29
30 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
31 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
32 int64_t offset, int64_t length, uint64_t addend,
33 bool decrease, enum qcow2_discard_type type);
34
35 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
36 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
37 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
38 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
42
43 static void set_refcount_ro0(void *refcount_array, uint64_t index,
44 uint64_t value);
45 static void set_refcount_ro1(void *refcount_array, uint64_t index,
46 uint64_t value);
47 static void set_refcount_ro2(void *refcount_array, uint64_t index,
48 uint64_t value);
49 static void set_refcount_ro3(void *refcount_array, uint64_t index,
50 uint64_t value);
51 static void set_refcount_ro4(void *refcount_array, uint64_t index,
52 uint64_t value);
53 static void set_refcount_ro5(void *refcount_array, uint64_t index,
54 uint64_t value);
55 static void set_refcount_ro6(void *refcount_array, uint64_t index,
56 uint64_t value);
57
58
59 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
60 &get_refcount_ro0,
61 &get_refcount_ro1,
62 &get_refcount_ro2,
63 &get_refcount_ro3,
64 &get_refcount_ro4,
65 &get_refcount_ro5,
66 &get_refcount_ro6
67 };
68
69 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
70 &set_refcount_ro0,
71 &set_refcount_ro1,
72 &set_refcount_ro2,
73 &set_refcount_ro3,
74 &set_refcount_ro4,
75 &set_refcount_ro5,
76 &set_refcount_ro6
77 };
78
79
80 /*********************************************************/
81 /* refcount handling */
82
83 int qcow2_refcount_init(BlockDriverState *bs)
84 {
85 BDRVQcow2State *s = bs->opaque;
86 unsigned int refcount_table_size2, i;
87 int ret;
88
89 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
90
91 s->get_refcount = get_refcount_funcs[s->refcount_order];
92 s->set_refcount = set_refcount_funcs[s->refcount_order];
93
94 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
95 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
96 s->refcount_table = g_try_malloc(refcount_table_size2);
97
98 if (s->refcount_table_size > 0) {
99 if (s->refcount_table == NULL) {
100 ret = -ENOMEM;
101 goto fail;
102 }
103 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
104 ret = bdrv_pread(bs->file->bs, s->refcount_table_offset,
105 s->refcount_table, refcount_table_size2);
106 if (ret < 0) {
107 goto fail;
108 }
109 for(i = 0; i < s->refcount_table_size; i++)
110 be64_to_cpus(&s->refcount_table[i]);
111 }
112 return 0;
113 fail:
114 return ret;
115 }
116
117 void qcow2_refcount_close(BlockDriverState *bs)
118 {
119 BDRVQcow2State *s = bs->opaque;
120 g_free(s->refcount_table);
121 }
122
123
124 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
125 {
126 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
127 }
128
129 static void set_refcount_ro0(void *refcount_array, uint64_t index,
130 uint64_t value)
131 {
132 assert(!(value >> 1));
133 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
134 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
135 }
136
137 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
138 {
139 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
140 & 0x3;
141 }
142
143 static void set_refcount_ro1(void *refcount_array, uint64_t index,
144 uint64_t value)
145 {
146 assert(!(value >> 2));
147 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
148 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
149 }
150
151 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
152 {
153 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
154 & 0xf;
155 }
156
157 static void set_refcount_ro2(void *refcount_array, uint64_t index,
158 uint64_t value)
159 {
160 assert(!(value >> 4));
161 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
162 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
163 }
164
165 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
166 {
167 return ((const uint8_t *)refcount_array)[index];
168 }
169
170 static void set_refcount_ro3(void *refcount_array, uint64_t index,
171 uint64_t value)
172 {
173 assert(!(value >> 8));
174 ((uint8_t *)refcount_array)[index] = value;
175 }
176
177 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
178 {
179 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
180 }
181
182 static void set_refcount_ro4(void *refcount_array, uint64_t index,
183 uint64_t value)
184 {
185 assert(!(value >> 16));
186 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
187 }
188
189 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
190 {
191 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
192 }
193
194 static void set_refcount_ro5(void *refcount_array, uint64_t index,
195 uint64_t value)
196 {
197 assert(!(value >> 32));
198 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
199 }
200
201 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
202 {
203 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
204 }
205
206 static void set_refcount_ro6(void *refcount_array, uint64_t index,
207 uint64_t value)
208 {
209 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
210 }
211
212
213 static int load_refcount_block(BlockDriverState *bs,
214 int64_t refcount_block_offset,
215 void **refcount_block)
216 {
217 BDRVQcow2State *s = bs->opaque;
218 int ret;
219
220 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
221 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
222 refcount_block);
223
224 return ret;
225 }
226
227 /*
228 * Retrieves the refcount of the cluster given by its index and stores it in
229 * *refcount. Returns 0 on success and -errno on failure.
230 */
231 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
232 uint64_t *refcount)
233 {
234 BDRVQcow2State *s = bs->opaque;
235 uint64_t refcount_table_index, block_index;
236 int64_t refcount_block_offset;
237 int ret;
238 void *refcount_block;
239
240 refcount_table_index = cluster_index >> s->refcount_block_bits;
241 if (refcount_table_index >= s->refcount_table_size) {
242 *refcount = 0;
243 return 0;
244 }
245 refcount_block_offset =
246 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
247 if (!refcount_block_offset) {
248 *refcount = 0;
249 return 0;
250 }
251
252 if (offset_into_cluster(s, refcount_block_offset)) {
253 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
254 " unaligned (reftable index: %#" PRIx64 ")",
255 refcount_block_offset, refcount_table_index);
256 return -EIO;
257 }
258
259 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
260 &refcount_block);
261 if (ret < 0) {
262 return ret;
263 }
264
265 block_index = cluster_index & (s->refcount_block_size - 1);
266 *refcount = s->get_refcount(refcount_block, block_index);
267
268 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
269
270 return 0;
271 }
272
273 /*
274 * Rounds the refcount table size up to avoid growing the table for each single
275 * refcount block that is allocated.
276 */
277 static unsigned int next_refcount_table_size(BDRVQcow2State *s,
278 unsigned int min_size)
279 {
280 unsigned int min_clusters = (min_size >> (s->cluster_bits - 3)) + 1;
281 unsigned int refcount_table_clusters =
282 MAX(1, s->refcount_table_size >> (s->cluster_bits - 3));
283
284 while (min_clusters > refcount_table_clusters) {
285 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
286 }
287
288 return refcount_table_clusters << (s->cluster_bits - 3);
289 }
290
291
292 /* Checks if two offsets are described by the same refcount block */
293 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
294 uint64_t offset_b)
295 {
296 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
297 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
298
299 return (block_a == block_b);
300 }
301
302 /*
303 * Loads a refcount block. If it doesn't exist yet, it is allocated first
304 * (including growing the refcount table if needed).
305 *
306 * Returns 0 on success or -errno in error case
307 */
308 static int alloc_refcount_block(BlockDriverState *bs,
309 int64_t cluster_index, void **refcount_block)
310 {
311 BDRVQcow2State *s = bs->opaque;
312 unsigned int refcount_table_index;
313 int ret;
314
315 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
316
317 /* Find the refcount block for the given cluster */
318 refcount_table_index = cluster_index >> s->refcount_block_bits;
319
320 if (refcount_table_index < s->refcount_table_size) {
321
322 uint64_t refcount_block_offset =
323 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
324
325 /* If it's already there, we're done */
326 if (refcount_block_offset) {
327 if (offset_into_cluster(s, refcount_block_offset)) {
328 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
329 PRIx64 " unaligned (reftable index: "
330 "%#x)", refcount_block_offset,
331 refcount_table_index);
332 return -EIO;
333 }
334
335 return load_refcount_block(bs, refcount_block_offset,
336 refcount_block);
337 }
338 }
339
340 /*
341 * If we came here, we need to allocate something. Something is at least
342 * a cluster for the new refcount block. It may also include a new refcount
343 * table if the old refcount table is too small.
344 *
345 * Note that allocating clusters here needs some special care:
346 *
347 * - We can't use the normal qcow2_alloc_clusters(), it would try to
348 * increase the refcount and very likely we would end up with an endless
349 * recursion. Instead we must place the refcount blocks in a way that
350 * they can describe them themselves.
351 *
352 * - We need to consider that at this point we are inside update_refcounts
353 * and potentially doing an initial refcount increase. This means that
354 * some clusters have already been allocated by the caller, but their
355 * refcount isn't accurate yet. If we allocate clusters for metadata, we
356 * need to return -EAGAIN to signal the caller that it needs to restart
357 * the search for free clusters.
358 *
359 * - alloc_clusters_noref and qcow2_free_clusters may load a different
360 * refcount block into the cache
361 */
362
363 *refcount_block = NULL;
364
365 /* We write to the refcount table, so we might depend on L2 tables */
366 ret = qcow2_cache_flush(bs, s->l2_table_cache);
367 if (ret < 0) {
368 return ret;
369 }
370
371 /* Allocate the refcount block itself and mark it as used */
372 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
373 if (new_block < 0) {
374 return new_block;
375 }
376
377 #ifdef DEBUG_ALLOC2
378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379 " at %" PRIx64 "\n",
380 refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
382
383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384 /* Zero the new refcount block before updating it */
385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386 refcount_block);
387 if (ret < 0) {
388 goto fail_block;
389 }
390
391 memset(*refcount_block, 0, s->cluster_size);
392
393 /* The block describes itself, need to update the cache */
394 int block_index = (new_block >> s->cluster_bits) &
395 (s->refcount_block_size - 1);
396 s->set_refcount(*refcount_block, block_index, 1);
397 } else {
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401 QCOW2_DISCARD_NEVER);
402 if (ret < 0) {
403 goto fail_block;
404 }
405
406 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407 if (ret < 0) {
408 goto fail_block;
409 }
410
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414 refcount_block);
415 if (ret < 0) {
416 goto fail_block;
417 }
418
419 memset(*refcount_block, 0, s->cluster_size);
420 }
421
422 /* Now the new refcount block needs to be written to disk */
423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
425 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426 if (ret < 0) {
427 goto fail_block;
428 }
429
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index < s->refcount_table_size) {
432 uint64_t data64 = cpu_to_be64(new_block);
433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434 ret = bdrv_pwrite_sync(bs->file->bs,
435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436 &data64, sizeof(data64));
437 if (ret < 0) {
438 goto fail_block;
439 }
440
441 s->refcount_table[refcount_table_index] = new_block;
442
443 /* The new refcount block may be where the caller intended to put its
444 * data, so let it restart the search. */
445 return -EAGAIN;
446 }
447
448 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
449
450 /*
451 * If we come here, we need to grow the refcount table. Again, a new
452 * refcount table needs some space and we can't simply allocate to avoid
453 * endless recursion.
454 *
455 * Therefore let's grab new refcount blocks at the end of the image, which
456 * will describe themselves and the new refcount table. This way we can
457 * reference them only in the new table and do the switch to the new
458 * refcount table at once without producing an inconsistent state in
459 * between.
460 */
461 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
462
463 /* Calculate the number of refcount blocks needed so far; this will be the
464 * basis for calculating the index of the first cluster used for the
465 * self-describing refcount structures which we are about to create.
466 *
467 * Because we reached this point, there cannot be any refcount entries for
468 * cluster_index or higher indices yet. However, because new_block has been
469 * allocated to describe that cluster (and it will assume this role later
470 * on), we cannot use that index; also, new_block may actually have a higher
471 * cluster index than cluster_index, so it needs to be taken into account
472 * here (and 1 needs to be added to its value because that cluster is used).
473 */
474 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
475 (new_block >> s->cluster_bits) + 1),
476 s->refcount_block_size);
477
478 if (blocks_used > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
479 return -EFBIG;
480 }
481
482 /* And now we need at least one block more for the new metadata */
483 uint64_t table_size = next_refcount_table_size(s, blocks_used + 1);
484 uint64_t last_table_size;
485 uint64_t blocks_clusters;
486 do {
487 uint64_t table_clusters =
488 size_to_clusters(s, table_size * sizeof(uint64_t));
489 blocks_clusters = 1 +
490 ((table_clusters + s->refcount_block_size - 1)
491 / s->refcount_block_size);
492 uint64_t meta_clusters = table_clusters + blocks_clusters;
493
494 last_table_size = table_size;
495 table_size = next_refcount_table_size(s, blocks_used +
496 ((meta_clusters + s->refcount_block_size - 1)
497 / s->refcount_block_size));
498
499 } while (last_table_size != table_size);
500
501 #ifdef DEBUG_ALLOC2
502 fprintf(stderr, "qcow2: Grow refcount table %" PRId32 " => %" PRId64 "\n",
503 s->refcount_table_size, table_size);
504 #endif
505
506 /* Create the new refcount table and blocks */
507 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
508 s->cluster_size;
509 uint64_t table_offset = meta_offset + blocks_clusters * s->cluster_size;
510 uint64_t *new_table = g_try_new0(uint64_t, table_size);
511 void *new_blocks = g_try_malloc0(blocks_clusters * s->cluster_size);
512
513 assert(table_size > 0 && blocks_clusters > 0);
514 if (new_table == NULL || new_blocks == NULL) {
515 ret = -ENOMEM;
516 goto fail_table;
517 }
518
519 /* Fill the new refcount table */
520 memcpy(new_table, s->refcount_table,
521 s->refcount_table_size * sizeof(uint64_t));
522 new_table[refcount_table_index] = new_block;
523
524 int i;
525 for (i = 0; i < blocks_clusters; i++) {
526 new_table[blocks_used + i] = meta_offset + (i * s->cluster_size);
527 }
528
529 /* Fill the refcount blocks */
530 uint64_t table_clusters = size_to_clusters(s, table_size * sizeof(uint64_t));
531 int block = 0;
532 for (i = 0; i < table_clusters + blocks_clusters; i++) {
533 s->set_refcount(new_blocks, block++, 1);
534 }
535
536 /* Write refcount blocks to disk */
537 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
538 ret = bdrv_pwrite_sync(bs->file->bs, meta_offset, new_blocks,
539 blocks_clusters * s->cluster_size);
540 g_free(new_blocks);
541 new_blocks = NULL;
542 if (ret < 0) {
543 goto fail_table;
544 }
545
546 /* Write refcount table to disk */
547 for(i = 0; i < table_size; i++) {
548 cpu_to_be64s(&new_table[i]);
549 }
550
551 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
552 ret = bdrv_pwrite_sync(bs->file->bs, table_offset, new_table,
553 table_size * sizeof(uint64_t));
554 if (ret < 0) {
555 goto fail_table;
556 }
557
558 for(i = 0; i < table_size; i++) {
559 be64_to_cpus(&new_table[i]);
560 }
561
562 /* Hook up the new refcount table in the qcow2 header */
563 struct QEMU_PACKED {
564 uint64_t d64;
565 uint32_t d32;
566 } data;
567 cpu_to_be64w(&data.d64, table_offset);
568 cpu_to_be32w(&data.d32, table_clusters);
569 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
570 ret = bdrv_pwrite_sync(bs->file->bs,
571 offsetof(QCowHeader, refcount_table_offset),
572 &data, sizeof(data));
573 if (ret < 0) {
574 goto fail_table;
575 }
576
577 /* And switch it in memory */
578 uint64_t old_table_offset = s->refcount_table_offset;
579 uint64_t old_table_size = s->refcount_table_size;
580
581 g_free(s->refcount_table);
582 s->refcount_table = new_table;
583 s->refcount_table_size = table_size;
584 s->refcount_table_offset = table_offset;
585
586 /* Free old table. */
587 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
588 QCOW2_DISCARD_OTHER);
589
590 ret = load_refcount_block(bs, new_block, refcount_block);
591 if (ret < 0) {
592 return ret;
593 }
594
595 /* If we were trying to do the initial refcount update for some cluster
596 * allocation, we might have used the same clusters to store newly
597 * allocated metadata. Make the caller search some new space. */
598 return -EAGAIN;
599
600 fail_table:
601 g_free(new_blocks);
602 g_free(new_table);
603 fail_block:
604 if (*refcount_block != NULL) {
605 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
606 }
607 return ret;
608 }
609
610 void qcow2_process_discards(BlockDriverState *bs, int ret)
611 {
612 BDRVQcow2State *s = bs->opaque;
613 Qcow2DiscardRegion *d, *next;
614
615 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
616 QTAILQ_REMOVE(&s->discards, d, next);
617
618 /* Discard is optional, ignore the return value */
619 if (ret >= 0) {
620 bdrv_discard(bs->file->bs,
621 d->offset >> BDRV_SECTOR_BITS,
622 d->bytes >> BDRV_SECTOR_BITS);
623 }
624
625 g_free(d);
626 }
627 }
628
629 static void update_refcount_discard(BlockDriverState *bs,
630 uint64_t offset, uint64_t length)
631 {
632 BDRVQcow2State *s = bs->opaque;
633 Qcow2DiscardRegion *d, *p, *next;
634
635 QTAILQ_FOREACH(d, &s->discards, next) {
636 uint64_t new_start = MIN(offset, d->offset);
637 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
638
639 if (new_end - new_start <= length + d->bytes) {
640 /* There can't be any overlap, areas ending up here have no
641 * references any more and therefore shouldn't get freed another
642 * time. */
643 assert(d->bytes + length == new_end - new_start);
644 d->offset = new_start;
645 d->bytes = new_end - new_start;
646 goto found;
647 }
648 }
649
650 d = g_malloc(sizeof(*d));
651 *d = (Qcow2DiscardRegion) {
652 .bs = bs,
653 .offset = offset,
654 .bytes = length,
655 };
656 QTAILQ_INSERT_TAIL(&s->discards, d, next);
657
658 found:
659 /* Merge discard requests if they are adjacent now */
660 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
661 if (p == d
662 || p->offset > d->offset + d->bytes
663 || d->offset > p->offset + p->bytes)
664 {
665 continue;
666 }
667
668 /* Still no overlap possible */
669 assert(p->offset == d->offset + d->bytes
670 || d->offset == p->offset + p->bytes);
671
672 QTAILQ_REMOVE(&s->discards, p, next);
673 d->offset = MIN(d->offset, p->offset);
674 d->bytes += p->bytes;
675 g_free(p);
676 }
677 }
678
679 /* XXX: cache several refcount block clusters ? */
680 /* @addend is the absolute value of the addend; if @decrease is set, @addend
681 * will be subtracted from the current refcount, otherwise it will be added */
682 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
683 int64_t offset,
684 int64_t length,
685 uint64_t addend,
686 bool decrease,
687 enum qcow2_discard_type type)
688 {
689 BDRVQcow2State *s = bs->opaque;
690 int64_t start, last, cluster_offset;
691 void *refcount_block = NULL;
692 int64_t old_table_index = -1;
693 int ret;
694
695 #ifdef DEBUG_ALLOC2
696 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
697 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
698 addend);
699 #endif
700 if (length < 0) {
701 return -EINVAL;
702 } else if (length == 0) {
703 return 0;
704 }
705
706 if (decrease) {
707 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
708 s->l2_table_cache);
709 }
710
711 start = start_of_cluster(s, offset);
712 last = start_of_cluster(s, offset + length - 1);
713 for(cluster_offset = start; cluster_offset <= last;
714 cluster_offset += s->cluster_size)
715 {
716 int block_index;
717 uint64_t refcount;
718 int64_t cluster_index = cluster_offset >> s->cluster_bits;
719 int64_t table_index = cluster_index >> s->refcount_block_bits;
720
721 /* Load the refcount block and allocate it if needed */
722 if (table_index != old_table_index) {
723 if (refcount_block) {
724 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
725 }
726 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
727 if (ret < 0) {
728 goto fail;
729 }
730 }
731 old_table_index = table_index;
732
733 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
734 refcount_block);
735
736 /* we can update the count and save it */
737 block_index = cluster_index & (s->refcount_block_size - 1);
738
739 refcount = s->get_refcount(refcount_block, block_index);
740 if (decrease ? (refcount - addend > refcount)
741 : (refcount + addend < refcount ||
742 refcount + addend > s->refcount_max))
743 {
744 ret = -EINVAL;
745 goto fail;
746 }
747 if (decrease) {
748 refcount -= addend;
749 } else {
750 refcount += addend;
751 }
752 if (refcount == 0 && cluster_index < s->free_cluster_index) {
753 s->free_cluster_index = cluster_index;
754 }
755 s->set_refcount(refcount_block, block_index, refcount);
756
757 if (refcount == 0 && s->discard_passthrough[type]) {
758 update_refcount_discard(bs, cluster_offset, s->cluster_size);
759 }
760 }
761
762 ret = 0;
763 fail:
764 if (!s->cache_discards) {
765 qcow2_process_discards(bs, ret);
766 }
767
768 /* Write last changed block to disk */
769 if (refcount_block) {
770 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
771 }
772
773 /*
774 * Try do undo any updates if an error is returned (This may succeed in
775 * some cases like ENOSPC for allocating a new refcount block)
776 */
777 if (ret < 0) {
778 int dummy;
779 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
780 !decrease, QCOW2_DISCARD_NEVER);
781 (void)dummy;
782 }
783
784 return ret;
785 }
786
787 /*
788 * Increases or decreases the refcount of a given cluster.
789 *
790 * @addend is the absolute value of the addend; if @decrease is set, @addend
791 * will be subtracted from the current refcount, otherwise it will be added.
792 *
793 * On success 0 is returned; on failure -errno is returned.
794 */
795 int qcow2_update_cluster_refcount(BlockDriverState *bs,
796 int64_t cluster_index,
797 uint64_t addend, bool decrease,
798 enum qcow2_discard_type type)
799 {
800 BDRVQcow2State *s = bs->opaque;
801 int ret;
802
803 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
804 decrease, type);
805 if (ret < 0) {
806 return ret;
807 }
808
809 return 0;
810 }
811
812
813
814 /*********************************************************/
815 /* cluster allocation functions */
816
817
818
819 /* return < 0 if error */
820 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
821 {
822 BDRVQcow2State *s = bs->opaque;
823 uint64_t i, nb_clusters, refcount;
824 int ret;
825
826 /* We can't allocate clusters if they may still be queued for discard. */
827 if (s->cache_discards) {
828 qcow2_process_discards(bs, 0);
829 }
830
831 nb_clusters = size_to_clusters(s, size);
832 retry:
833 for(i = 0; i < nb_clusters; i++) {
834 uint64_t next_cluster_index = s->free_cluster_index++;
835 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
836
837 if (ret < 0) {
838 return ret;
839 } else if (refcount != 0) {
840 goto retry;
841 }
842 }
843
844 /* Make sure that all offsets in the "allocated" range are representable
845 * in an int64_t */
846 if (s->free_cluster_index > 0 &&
847 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
848 {
849 return -EFBIG;
850 }
851
852 #ifdef DEBUG_ALLOC2
853 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
854 size,
855 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
856 #endif
857 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
858 }
859
860 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
861 {
862 int64_t offset;
863 int ret;
864
865 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
866 do {
867 offset = alloc_clusters_noref(bs, size);
868 if (offset < 0) {
869 return offset;
870 }
871
872 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
873 } while (ret == -EAGAIN);
874
875 if (ret < 0) {
876 return ret;
877 }
878
879 return offset;
880 }
881
882 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
883 int64_t nb_clusters)
884 {
885 BDRVQcow2State *s = bs->opaque;
886 uint64_t cluster_index, refcount;
887 uint64_t i;
888 int ret;
889
890 assert(nb_clusters >= 0);
891 if (nb_clusters == 0) {
892 return 0;
893 }
894
895 do {
896 /* Check how many clusters there are free */
897 cluster_index = offset >> s->cluster_bits;
898 for(i = 0; i < nb_clusters; i++) {
899 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
900 if (ret < 0) {
901 return ret;
902 } else if (refcount != 0) {
903 break;
904 }
905 }
906
907 /* And then allocate them */
908 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
909 QCOW2_DISCARD_NEVER);
910 } while (ret == -EAGAIN);
911
912 if (ret < 0) {
913 return ret;
914 }
915
916 return i;
917 }
918
919 /* only used to allocate compressed sectors. We try to allocate
920 contiguous sectors. size must be <= cluster_size */
921 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
922 {
923 BDRVQcow2State *s = bs->opaque;
924 int64_t offset;
925 size_t free_in_cluster;
926 int ret;
927
928 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
929 assert(size > 0 && size <= s->cluster_size);
930 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
931
932 offset = s->free_byte_offset;
933
934 if (offset) {
935 uint64_t refcount;
936 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
937 if (ret < 0) {
938 return ret;
939 }
940
941 if (refcount == s->refcount_max) {
942 offset = 0;
943 }
944 }
945
946 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
947 do {
948 if (!offset || free_in_cluster < size) {
949 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
950 if (new_cluster < 0) {
951 return new_cluster;
952 }
953
954 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
955 offset = new_cluster;
956 free_in_cluster = s->cluster_size;
957 } else {
958 free_in_cluster += s->cluster_size;
959 }
960 }
961
962 assert(offset);
963 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
964 if (ret < 0) {
965 offset = 0;
966 }
967 } while (ret == -EAGAIN);
968 if (ret < 0) {
969 return ret;
970 }
971
972 /* The cluster refcount was incremented; refcount blocks must be flushed
973 * before the caller's L2 table updates. */
974 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
975
976 s->free_byte_offset = offset + size;
977 if (!offset_into_cluster(s, s->free_byte_offset)) {
978 s->free_byte_offset = 0;
979 }
980
981 return offset;
982 }
983
984 void qcow2_free_clusters(BlockDriverState *bs,
985 int64_t offset, int64_t size,
986 enum qcow2_discard_type type)
987 {
988 int ret;
989
990 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
991 ret = update_refcount(bs, offset, size, 1, true, type);
992 if (ret < 0) {
993 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
994 /* TODO Remember the clusters to free them later and avoid leaking */
995 }
996 }
997
998 /*
999 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1000 * normal cluster, compressed cluster, etc.)
1001 */
1002 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1003 int nb_clusters, enum qcow2_discard_type type)
1004 {
1005 BDRVQcow2State *s = bs->opaque;
1006
1007 switch (qcow2_get_cluster_type(l2_entry)) {
1008 case QCOW2_CLUSTER_COMPRESSED:
1009 {
1010 int nb_csectors;
1011 nb_csectors = ((l2_entry >> s->csize_shift) &
1012 s->csize_mask) + 1;
1013 qcow2_free_clusters(bs,
1014 (l2_entry & s->cluster_offset_mask) & ~511,
1015 nb_csectors * 512, type);
1016 }
1017 break;
1018 case QCOW2_CLUSTER_NORMAL:
1019 case QCOW2_CLUSTER_ZERO:
1020 if (l2_entry & L2E_OFFSET_MASK) {
1021 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1022 qcow2_signal_corruption(bs, false, -1, -1,
1023 "Cannot free unaligned cluster %#llx",
1024 l2_entry & L2E_OFFSET_MASK);
1025 } else {
1026 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1027 nb_clusters << s->cluster_bits, type);
1028 }
1029 }
1030 break;
1031 case QCOW2_CLUSTER_UNALLOCATED:
1032 break;
1033 default:
1034 abort();
1035 }
1036 }
1037
1038
1039
1040 /*********************************************************/
1041 /* snapshots and image creation */
1042
1043
1044
1045 /* update the refcounts of snapshots and the copied flag */
1046 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1047 int64_t l1_table_offset, int l1_size, int addend)
1048 {
1049 BDRVQcow2State *s = bs->opaque;
1050 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, refcount;
1051 bool l1_allocated = false;
1052 int64_t old_offset, old_l2_offset;
1053 int i, j, l1_modified = 0, nb_csectors;
1054 int ret;
1055
1056 assert(addend >= -1 && addend <= 1);
1057
1058 l2_table = NULL;
1059 l1_table = NULL;
1060 l1_size2 = l1_size * sizeof(uint64_t);
1061
1062 s->cache_discards = true;
1063
1064 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1065 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1066 * when changing this! */
1067 if (l1_table_offset != s->l1_table_offset) {
1068 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1069 if (l1_size2 && l1_table == NULL) {
1070 ret = -ENOMEM;
1071 goto fail;
1072 }
1073 l1_allocated = true;
1074
1075 ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1076 if (ret < 0) {
1077 goto fail;
1078 }
1079
1080 for(i = 0;i < l1_size; i++)
1081 be64_to_cpus(&l1_table[i]);
1082 } else {
1083 assert(l1_size == s->l1_size);
1084 l1_table = s->l1_table;
1085 l1_allocated = false;
1086 }
1087
1088 for(i = 0; i < l1_size; i++) {
1089 l2_offset = l1_table[i];
1090 if (l2_offset) {
1091 old_l2_offset = l2_offset;
1092 l2_offset &= L1E_OFFSET_MASK;
1093
1094 if (offset_into_cluster(s, l2_offset)) {
1095 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1096 PRIx64 " unaligned (L1 index: %#x)",
1097 l2_offset, i);
1098 ret = -EIO;
1099 goto fail;
1100 }
1101
1102 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1103 (void**) &l2_table);
1104 if (ret < 0) {
1105 goto fail;
1106 }
1107
1108 for(j = 0; j < s->l2_size; j++) {
1109 uint64_t cluster_index;
1110
1111 offset = be64_to_cpu(l2_table[j]);
1112 old_offset = offset;
1113 offset &= ~QCOW_OFLAG_COPIED;
1114
1115 switch (qcow2_get_cluster_type(offset)) {
1116 case QCOW2_CLUSTER_COMPRESSED:
1117 nb_csectors = ((offset >> s->csize_shift) &
1118 s->csize_mask) + 1;
1119 if (addend != 0) {
1120 ret = update_refcount(bs,
1121 (offset & s->cluster_offset_mask) & ~511,
1122 nb_csectors * 512, abs(addend), addend < 0,
1123 QCOW2_DISCARD_SNAPSHOT);
1124 if (ret < 0) {
1125 goto fail;
1126 }
1127 }
1128 /* compressed clusters are never modified */
1129 refcount = 2;
1130 break;
1131
1132 case QCOW2_CLUSTER_NORMAL:
1133 case QCOW2_CLUSTER_ZERO:
1134 if (offset_into_cluster(s, offset & L2E_OFFSET_MASK)) {
1135 qcow2_signal_corruption(bs, true, -1, -1, "Data "
1136 "cluster offset %#llx "
1137 "unaligned (L2 offset: %#"
1138 PRIx64 ", L2 index: %#x)",
1139 offset & L2E_OFFSET_MASK,
1140 l2_offset, j);
1141 ret = -EIO;
1142 goto fail;
1143 }
1144
1145 cluster_index = (offset & L2E_OFFSET_MASK) >> s->cluster_bits;
1146 if (!cluster_index) {
1147 /* unallocated */
1148 refcount = 0;
1149 break;
1150 }
1151 if (addend != 0) {
1152 ret = qcow2_update_cluster_refcount(bs,
1153 cluster_index, abs(addend), addend < 0,
1154 QCOW2_DISCARD_SNAPSHOT);
1155 if (ret < 0) {
1156 goto fail;
1157 }
1158 }
1159
1160 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1161 if (ret < 0) {
1162 goto fail;
1163 }
1164 break;
1165
1166 case QCOW2_CLUSTER_UNALLOCATED:
1167 refcount = 0;
1168 break;
1169
1170 default:
1171 abort();
1172 }
1173
1174 if (refcount == 1) {
1175 offset |= QCOW_OFLAG_COPIED;
1176 }
1177 if (offset != old_offset) {
1178 if (addend > 0) {
1179 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1180 s->refcount_block_cache);
1181 }
1182 l2_table[j] = cpu_to_be64(offset);
1183 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1184 l2_table);
1185 }
1186 }
1187
1188 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1189
1190 if (addend != 0) {
1191 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1192 s->cluster_bits,
1193 abs(addend), addend < 0,
1194 QCOW2_DISCARD_SNAPSHOT);
1195 if (ret < 0) {
1196 goto fail;
1197 }
1198 }
1199 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1200 &refcount);
1201 if (ret < 0) {
1202 goto fail;
1203 } else if (refcount == 1) {
1204 l2_offset |= QCOW_OFLAG_COPIED;
1205 }
1206 if (l2_offset != old_l2_offset) {
1207 l1_table[i] = l2_offset;
1208 l1_modified = 1;
1209 }
1210 }
1211 }
1212
1213 ret = bdrv_flush(bs);
1214 fail:
1215 if (l2_table) {
1216 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1217 }
1218
1219 s->cache_discards = false;
1220 qcow2_process_discards(bs, ret);
1221
1222 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1223 if (ret == 0 && addend >= 0 && l1_modified) {
1224 for (i = 0; i < l1_size; i++) {
1225 cpu_to_be64s(&l1_table[i]);
1226 }
1227
1228 ret = bdrv_pwrite_sync(bs->file->bs, l1_table_offset,
1229 l1_table, l1_size2);
1230
1231 for (i = 0; i < l1_size; i++) {
1232 be64_to_cpus(&l1_table[i]);
1233 }
1234 }
1235 if (l1_allocated)
1236 g_free(l1_table);
1237 return ret;
1238 }
1239
1240
1241
1242
1243 /*********************************************************/
1244 /* refcount checking functions */
1245
1246
1247 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1248 {
1249 /* This assertion holds because there is no way we can address more than
1250 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1251 * offsets have to be representable in bytes); due to every cluster
1252 * corresponding to one refcount entry, we are well below that limit */
1253 assert(entries < (UINT64_C(1) << (64 - 9)));
1254
1255 /* Thanks to the assertion this will not overflow, because
1256 * s->refcount_order < 7.
1257 * (note: x << s->refcount_order == x * s->refcount_bits) */
1258 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1259 }
1260
1261 /**
1262 * Reallocates *array so that it can hold new_size entries. *size must contain
1263 * the current number of entries in *array. If the reallocation fails, *array
1264 * and *size will not be modified and -errno will be returned. If the
1265 * reallocation is successful, *array will be set to the new buffer, *size
1266 * will be set to new_size and 0 will be returned. The size of the reallocated
1267 * refcount array buffer will be aligned to a cluster boundary, and the newly
1268 * allocated area will be zeroed.
1269 */
1270 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1271 int64_t *size, int64_t new_size)
1272 {
1273 int64_t old_byte_size, new_byte_size;
1274 void *new_ptr;
1275
1276 /* Round to clusters so the array can be directly written to disk */
1277 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1278 * s->cluster_size;
1279 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1280 * s->cluster_size;
1281
1282 if (new_byte_size == old_byte_size) {
1283 *size = new_size;
1284 return 0;
1285 }
1286
1287 assert(new_byte_size > 0);
1288
1289 if (new_byte_size > SIZE_MAX) {
1290 return -ENOMEM;
1291 }
1292
1293 new_ptr = g_try_realloc(*array, new_byte_size);
1294 if (!new_ptr) {
1295 return -ENOMEM;
1296 }
1297
1298 if (new_byte_size > old_byte_size) {
1299 memset((char *)new_ptr + old_byte_size, 0,
1300 new_byte_size - old_byte_size);
1301 }
1302
1303 *array = new_ptr;
1304 *size = new_size;
1305
1306 return 0;
1307 }
1308
1309 /*
1310 * Increases the refcount for a range of clusters in a given refcount table.
1311 * This is used to construct a temporary refcount table out of L1 and L2 tables
1312 * which can be compared to the refcount table saved in the image.
1313 *
1314 * Modifies the number of errors in res.
1315 */
1316 static int inc_refcounts(BlockDriverState *bs,
1317 BdrvCheckResult *res,
1318 void **refcount_table,
1319 int64_t *refcount_table_size,
1320 int64_t offset, int64_t size)
1321 {
1322 BDRVQcow2State *s = bs->opaque;
1323 uint64_t start, last, cluster_offset, k, refcount;
1324 int ret;
1325
1326 if (size <= 0) {
1327 return 0;
1328 }
1329
1330 start = start_of_cluster(s, offset);
1331 last = start_of_cluster(s, offset + size - 1);
1332 for(cluster_offset = start; cluster_offset <= last;
1333 cluster_offset += s->cluster_size) {
1334 k = cluster_offset >> s->cluster_bits;
1335 if (k >= *refcount_table_size) {
1336 ret = realloc_refcount_array(s, refcount_table,
1337 refcount_table_size, k + 1);
1338 if (ret < 0) {
1339 res->check_errors++;
1340 return ret;
1341 }
1342 }
1343
1344 refcount = s->get_refcount(*refcount_table, k);
1345 if (refcount == s->refcount_max) {
1346 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1347 "\n", cluster_offset);
1348 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1349 "width or qemu-img convert to create a clean copy if the "
1350 "image cannot be opened for writing\n");
1351 res->corruptions++;
1352 continue;
1353 }
1354 s->set_refcount(*refcount_table, k, refcount + 1);
1355 }
1356
1357 return 0;
1358 }
1359
1360 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1361 enum {
1362 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1363 };
1364
1365 /*
1366 * Increases the refcount in the given refcount table for the all clusters
1367 * referenced in the L2 table. While doing so, performs some checks on L2
1368 * entries.
1369 *
1370 * Returns the number of errors found by the checks or -errno if an internal
1371 * error occurred.
1372 */
1373 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1374 void **refcount_table,
1375 int64_t *refcount_table_size, int64_t l2_offset,
1376 int flags)
1377 {
1378 BDRVQcow2State *s = bs->opaque;
1379 uint64_t *l2_table, l2_entry;
1380 uint64_t next_contiguous_offset = 0;
1381 int i, l2_size, nb_csectors, ret;
1382
1383 /* Read L2 table from disk */
1384 l2_size = s->l2_size * sizeof(uint64_t);
1385 l2_table = g_malloc(l2_size);
1386
1387 ret = bdrv_pread(bs->file->bs, l2_offset, l2_table, l2_size);
1388 if (ret < 0) {
1389 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1390 res->check_errors++;
1391 goto fail;
1392 }
1393
1394 /* Do the actual checks */
1395 for(i = 0; i < s->l2_size; i++) {
1396 l2_entry = be64_to_cpu(l2_table[i]);
1397
1398 switch (qcow2_get_cluster_type(l2_entry)) {
1399 case QCOW2_CLUSTER_COMPRESSED:
1400 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1401 if (l2_entry & QCOW_OFLAG_COPIED) {
1402 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1403 "copied flag must never be set for compressed "
1404 "clusters\n", l2_entry >> s->cluster_bits);
1405 l2_entry &= ~QCOW_OFLAG_COPIED;
1406 res->corruptions++;
1407 }
1408
1409 /* Mark cluster as used */
1410 nb_csectors = ((l2_entry >> s->csize_shift) &
1411 s->csize_mask) + 1;
1412 l2_entry &= s->cluster_offset_mask;
1413 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1414 l2_entry & ~511, nb_csectors * 512);
1415 if (ret < 0) {
1416 goto fail;
1417 }
1418
1419 if (flags & CHECK_FRAG_INFO) {
1420 res->bfi.allocated_clusters++;
1421 res->bfi.compressed_clusters++;
1422
1423 /* Compressed clusters are fragmented by nature. Since they
1424 * take up sub-sector space but we only have sector granularity
1425 * I/O we need to re-read the same sectors even for adjacent
1426 * compressed clusters.
1427 */
1428 res->bfi.fragmented_clusters++;
1429 }
1430 break;
1431
1432 case QCOW2_CLUSTER_ZERO:
1433 if ((l2_entry & L2E_OFFSET_MASK) == 0) {
1434 break;
1435 }
1436 /* fall through */
1437
1438 case QCOW2_CLUSTER_NORMAL:
1439 {
1440 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1441
1442 if (flags & CHECK_FRAG_INFO) {
1443 res->bfi.allocated_clusters++;
1444 if (next_contiguous_offset &&
1445 offset != next_contiguous_offset) {
1446 res->bfi.fragmented_clusters++;
1447 }
1448 next_contiguous_offset = offset + s->cluster_size;
1449 }
1450
1451 /* Mark cluster as used */
1452 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1453 offset, s->cluster_size);
1454 if (ret < 0) {
1455 goto fail;
1456 }
1457
1458 /* Correct offsets are cluster aligned */
1459 if (offset_into_cluster(s, offset)) {
1460 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1461 "properly aligned; L2 entry corrupted.\n", offset);
1462 res->corruptions++;
1463 }
1464 break;
1465 }
1466
1467 case QCOW2_CLUSTER_UNALLOCATED:
1468 break;
1469
1470 default:
1471 abort();
1472 }
1473 }
1474
1475 g_free(l2_table);
1476 return 0;
1477
1478 fail:
1479 g_free(l2_table);
1480 return ret;
1481 }
1482
1483 /*
1484 * Increases the refcount for the L1 table, its L2 tables and all referenced
1485 * clusters in the given refcount table. While doing so, performs some checks
1486 * on L1 and L2 entries.
1487 *
1488 * Returns the number of errors found by the checks or -errno if an internal
1489 * error occurred.
1490 */
1491 static int check_refcounts_l1(BlockDriverState *bs,
1492 BdrvCheckResult *res,
1493 void **refcount_table,
1494 int64_t *refcount_table_size,
1495 int64_t l1_table_offset, int l1_size,
1496 int flags)
1497 {
1498 BDRVQcow2State *s = bs->opaque;
1499 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1500 int i, ret;
1501
1502 l1_size2 = l1_size * sizeof(uint64_t);
1503
1504 /* Mark L1 table as used */
1505 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1506 l1_table_offset, l1_size2);
1507 if (ret < 0) {
1508 goto fail;
1509 }
1510
1511 /* Read L1 table entries from disk */
1512 if (l1_size2 > 0) {
1513 l1_table = g_try_malloc(l1_size2);
1514 if (l1_table == NULL) {
1515 ret = -ENOMEM;
1516 res->check_errors++;
1517 goto fail;
1518 }
1519 ret = bdrv_pread(bs->file->bs, l1_table_offset, l1_table, l1_size2);
1520 if (ret < 0) {
1521 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1522 res->check_errors++;
1523 goto fail;
1524 }
1525 for(i = 0;i < l1_size; i++)
1526 be64_to_cpus(&l1_table[i]);
1527 }
1528
1529 /* Do the actual checks */
1530 for(i = 0; i < l1_size; i++) {
1531 l2_offset = l1_table[i];
1532 if (l2_offset) {
1533 /* Mark L2 table as used */
1534 l2_offset &= L1E_OFFSET_MASK;
1535 ret = inc_refcounts(bs, res, refcount_table, refcount_table_size,
1536 l2_offset, s->cluster_size);
1537 if (ret < 0) {
1538 goto fail;
1539 }
1540
1541 /* L2 tables are cluster aligned */
1542 if (offset_into_cluster(s, l2_offset)) {
1543 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1544 "cluster aligned; L1 entry corrupted\n", l2_offset);
1545 res->corruptions++;
1546 }
1547
1548 /* Process and check L2 entries */
1549 ret = check_refcounts_l2(bs, res, refcount_table,
1550 refcount_table_size, l2_offset, flags);
1551 if (ret < 0) {
1552 goto fail;
1553 }
1554 }
1555 }
1556 g_free(l1_table);
1557 return 0;
1558
1559 fail:
1560 g_free(l1_table);
1561 return ret;
1562 }
1563
1564 /*
1565 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1566 *
1567 * This function does not print an error message nor does it increment
1568 * check_errors if qcow2_get_refcount fails (this is because such an error will
1569 * have been already detected and sufficiently signaled by the calling function
1570 * (qcow2_check_refcounts) by the time this function is called).
1571 */
1572 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1573 BdrvCheckMode fix)
1574 {
1575 BDRVQcow2State *s = bs->opaque;
1576 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1577 int ret;
1578 uint64_t refcount;
1579 int i, j;
1580
1581 for (i = 0; i < s->l1_size; i++) {
1582 uint64_t l1_entry = s->l1_table[i];
1583 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1584 bool l2_dirty = false;
1585
1586 if (!l2_offset) {
1587 continue;
1588 }
1589
1590 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1591 &refcount);
1592 if (ret < 0) {
1593 /* don't print message nor increment check_errors */
1594 continue;
1595 }
1596 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1597 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1598 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1599 fix & BDRV_FIX_ERRORS ? "Repairing" :
1600 "ERROR",
1601 i, l1_entry, refcount);
1602 if (fix & BDRV_FIX_ERRORS) {
1603 s->l1_table[i] = refcount == 1
1604 ? l1_entry | QCOW_OFLAG_COPIED
1605 : l1_entry & ~QCOW_OFLAG_COPIED;
1606 ret = qcow2_write_l1_entry(bs, i);
1607 if (ret < 0) {
1608 res->check_errors++;
1609 goto fail;
1610 }
1611 res->corruptions_fixed++;
1612 } else {
1613 res->corruptions++;
1614 }
1615 }
1616
1617 ret = bdrv_pread(bs->file->bs, l2_offset, l2_table,
1618 s->l2_size * sizeof(uint64_t));
1619 if (ret < 0) {
1620 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1621 strerror(-ret));
1622 res->check_errors++;
1623 goto fail;
1624 }
1625
1626 for (j = 0; j < s->l2_size; j++) {
1627 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1628 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1629 int cluster_type = qcow2_get_cluster_type(l2_entry);
1630
1631 if ((cluster_type == QCOW2_CLUSTER_NORMAL) ||
1632 ((cluster_type == QCOW2_CLUSTER_ZERO) && (data_offset != 0))) {
1633 ret = qcow2_get_refcount(bs,
1634 data_offset >> s->cluster_bits,
1635 &refcount);
1636 if (ret < 0) {
1637 /* don't print message nor increment check_errors */
1638 continue;
1639 }
1640 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1641 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1642 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1643 fix & BDRV_FIX_ERRORS ? "Repairing" :
1644 "ERROR",
1645 l2_entry, refcount);
1646 if (fix & BDRV_FIX_ERRORS) {
1647 l2_table[j] = cpu_to_be64(refcount == 1
1648 ? l2_entry | QCOW_OFLAG_COPIED
1649 : l2_entry & ~QCOW_OFLAG_COPIED);
1650 l2_dirty = true;
1651 res->corruptions_fixed++;
1652 } else {
1653 res->corruptions++;
1654 }
1655 }
1656 }
1657 }
1658
1659 if (l2_dirty) {
1660 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1661 l2_offset, s->cluster_size);
1662 if (ret < 0) {
1663 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1664 "overlap check failed: %s\n", strerror(-ret));
1665 res->check_errors++;
1666 goto fail;
1667 }
1668
1669 ret = bdrv_pwrite(bs->file->bs, l2_offset, l2_table,
1670 s->cluster_size);
1671 if (ret < 0) {
1672 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1673 strerror(-ret));
1674 res->check_errors++;
1675 goto fail;
1676 }
1677 }
1678 }
1679
1680 ret = 0;
1681
1682 fail:
1683 qemu_vfree(l2_table);
1684 return ret;
1685 }
1686
1687 /*
1688 * Checks consistency of refblocks and accounts for each refblock in
1689 * *refcount_table.
1690 */
1691 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1692 BdrvCheckMode fix, bool *rebuild,
1693 void **refcount_table, int64_t *nb_clusters)
1694 {
1695 BDRVQcow2State *s = bs->opaque;
1696 int64_t i, size;
1697 int ret;
1698
1699 for(i = 0; i < s->refcount_table_size; i++) {
1700 uint64_t offset, cluster;
1701 offset = s->refcount_table[i];
1702 cluster = offset >> s->cluster_bits;
1703
1704 /* Refcount blocks are cluster aligned */
1705 if (offset_into_cluster(s, offset)) {
1706 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1707 "cluster aligned; refcount table entry corrupted\n", i);
1708 res->corruptions++;
1709 *rebuild = true;
1710 continue;
1711 }
1712
1713 if (cluster >= *nb_clusters) {
1714 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1715 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1716
1717 if (fix & BDRV_FIX_ERRORS) {
1718 int64_t new_nb_clusters;
1719
1720 if (offset > INT64_MAX - s->cluster_size) {
1721 ret = -EINVAL;
1722 goto resize_fail;
1723 }
1724
1725 ret = bdrv_truncate(bs->file->bs, offset + s->cluster_size);
1726 if (ret < 0) {
1727 goto resize_fail;
1728 }
1729 size = bdrv_getlength(bs->file->bs);
1730 if (size < 0) {
1731 ret = size;
1732 goto resize_fail;
1733 }
1734
1735 new_nb_clusters = size_to_clusters(s, size);
1736 assert(new_nb_clusters >= *nb_clusters);
1737
1738 ret = realloc_refcount_array(s, refcount_table,
1739 nb_clusters, new_nb_clusters);
1740 if (ret < 0) {
1741 res->check_errors++;
1742 return ret;
1743 }
1744
1745 if (cluster >= *nb_clusters) {
1746 ret = -EINVAL;
1747 goto resize_fail;
1748 }
1749
1750 res->corruptions_fixed++;
1751 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1752 offset, s->cluster_size);
1753 if (ret < 0) {
1754 return ret;
1755 }
1756 /* No need to check whether the refcount is now greater than 1:
1757 * This area was just allocated and zeroed, so it can only be
1758 * exactly 1 after inc_refcounts() */
1759 continue;
1760
1761 resize_fail:
1762 res->corruptions++;
1763 *rebuild = true;
1764 fprintf(stderr, "ERROR could not resize image: %s\n",
1765 strerror(-ret));
1766 } else {
1767 res->corruptions++;
1768 }
1769 continue;
1770 }
1771
1772 if (offset != 0) {
1773 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1774 offset, s->cluster_size);
1775 if (ret < 0) {
1776 return ret;
1777 }
1778 if (s->get_refcount(*refcount_table, cluster) != 1) {
1779 fprintf(stderr, "ERROR refcount block %" PRId64
1780 " refcount=%" PRIu64 "\n", i,
1781 s->get_refcount(*refcount_table, cluster));
1782 res->corruptions++;
1783 *rebuild = true;
1784 }
1785 }
1786 }
1787
1788 return 0;
1789 }
1790
1791 /*
1792 * Calculates an in-memory refcount table.
1793 */
1794 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1795 BdrvCheckMode fix, bool *rebuild,
1796 void **refcount_table, int64_t *nb_clusters)
1797 {
1798 BDRVQcow2State *s = bs->opaque;
1799 int64_t i;
1800 QCowSnapshot *sn;
1801 int ret;
1802
1803 if (!*refcount_table) {
1804 int64_t old_size = 0;
1805 ret = realloc_refcount_array(s, refcount_table,
1806 &old_size, *nb_clusters);
1807 if (ret < 0) {
1808 res->check_errors++;
1809 return ret;
1810 }
1811 }
1812
1813 /* header */
1814 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1815 0, s->cluster_size);
1816 if (ret < 0) {
1817 return ret;
1818 }
1819
1820 /* current L1 table */
1821 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1822 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1823 if (ret < 0) {
1824 return ret;
1825 }
1826
1827 /* snapshots */
1828 for (i = 0; i < s->nb_snapshots; i++) {
1829 sn = s->snapshots + i;
1830 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1831 sn->l1_table_offset, sn->l1_size, 0);
1832 if (ret < 0) {
1833 return ret;
1834 }
1835 }
1836 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1837 s->snapshots_offset, s->snapshots_size);
1838 if (ret < 0) {
1839 return ret;
1840 }
1841
1842 /* refcount data */
1843 ret = inc_refcounts(bs, res, refcount_table, nb_clusters,
1844 s->refcount_table_offset,
1845 s->refcount_table_size * sizeof(uint64_t));
1846 if (ret < 0) {
1847 return ret;
1848 }
1849
1850 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1851 }
1852
1853 /*
1854 * Compares the actual reference count for each cluster in the image against the
1855 * refcount as reported by the refcount structures on-disk.
1856 */
1857 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1858 BdrvCheckMode fix, bool *rebuild,
1859 int64_t *highest_cluster,
1860 void *refcount_table, int64_t nb_clusters)
1861 {
1862 BDRVQcow2State *s = bs->opaque;
1863 int64_t i;
1864 uint64_t refcount1, refcount2;
1865 int ret;
1866
1867 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1868 ret = qcow2_get_refcount(bs, i, &refcount1);
1869 if (ret < 0) {
1870 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1871 i, strerror(-ret));
1872 res->check_errors++;
1873 continue;
1874 }
1875
1876 refcount2 = s->get_refcount(refcount_table, i);
1877
1878 if (refcount1 > 0 || refcount2 > 0) {
1879 *highest_cluster = i;
1880 }
1881
1882 if (refcount1 != refcount2) {
1883 /* Check if we're allowed to fix the mismatch */
1884 int *num_fixed = NULL;
1885 if (refcount1 == 0) {
1886 *rebuild = true;
1887 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
1888 num_fixed = &res->leaks_fixed;
1889 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
1890 num_fixed = &res->corruptions_fixed;
1891 }
1892
1893 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
1894 " reference=%" PRIu64 "\n",
1895 num_fixed != NULL ? "Repairing" :
1896 refcount1 < refcount2 ? "ERROR" :
1897 "Leaked",
1898 i, refcount1, refcount2);
1899
1900 if (num_fixed) {
1901 ret = update_refcount(bs, i << s->cluster_bits, 1,
1902 refcount_diff(refcount1, refcount2),
1903 refcount1 > refcount2,
1904 QCOW2_DISCARD_ALWAYS);
1905 if (ret >= 0) {
1906 (*num_fixed)++;
1907 continue;
1908 }
1909 }
1910
1911 /* And if we couldn't, print an error */
1912 if (refcount1 < refcount2) {
1913 res->corruptions++;
1914 } else {
1915 res->leaks++;
1916 }
1917 }
1918 }
1919 }
1920
1921 /*
1922 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
1923 * the on-disk refcount structures.
1924 *
1925 * On input, *first_free_cluster tells where to start looking, and need not
1926 * actually be a free cluster; the returned offset will not be before that
1927 * cluster. On output, *first_free_cluster points to the first gap found, even
1928 * if that gap was too small to be used as the returned offset.
1929 *
1930 * Note that *first_free_cluster is a cluster index whereas the return value is
1931 * an offset.
1932 */
1933 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
1934 int cluster_count,
1935 void **refcount_table,
1936 int64_t *imrt_nb_clusters,
1937 int64_t *first_free_cluster)
1938 {
1939 BDRVQcow2State *s = bs->opaque;
1940 int64_t cluster = *first_free_cluster, i;
1941 bool first_gap = true;
1942 int contiguous_free_clusters;
1943 int ret;
1944
1945 /* Starting at *first_free_cluster, find a range of at least cluster_count
1946 * continuously free clusters */
1947 for (contiguous_free_clusters = 0;
1948 cluster < *imrt_nb_clusters &&
1949 contiguous_free_clusters < cluster_count;
1950 cluster++)
1951 {
1952 if (!s->get_refcount(*refcount_table, cluster)) {
1953 contiguous_free_clusters++;
1954 if (first_gap) {
1955 /* If this is the first free cluster found, update
1956 * *first_free_cluster accordingly */
1957 *first_free_cluster = cluster;
1958 first_gap = false;
1959 }
1960 } else if (contiguous_free_clusters) {
1961 contiguous_free_clusters = 0;
1962 }
1963 }
1964
1965 /* If contiguous_free_clusters is greater than zero, it contains the number
1966 * of continuously free clusters until the current cluster; the first free
1967 * cluster in the current "gap" is therefore
1968 * cluster - contiguous_free_clusters */
1969
1970 /* If no such range could be found, grow the in-memory refcount table
1971 * accordingly to append free clusters at the end of the image */
1972 if (contiguous_free_clusters < cluster_count) {
1973 /* contiguous_free_clusters clusters are already empty at the image end;
1974 * we need cluster_count clusters; therefore, we have to allocate
1975 * cluster_count - contiguous_free_clusters new clusters at the end of
1976 * the image (which is the current value of cluster; note that cluster
1977 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
1978 * the image end) */
1979 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
1980 cluster + cluster_count
1981 - contiguous_free_clusters);
1982 if (ret < 0) {
1983 return ret;
1984 }
1985 }
1986
1987 /* Go back to the first free cluster */
1988 cluster -= contiguous_free_clusters;
1989 for (i = 0; i < cluster_count; i++) {
1990 s->set_refcount(*refcount_table, cluster + i, 1);
1991 }
1992
1993 return cluster << s->cluster_bits;
1994 }
1995
1996 /*
1997 * Creates a new refcount structure based solely on the in-memory information
1998 * given through *refcount_table. All necessary allocations will be reflected
1999 * in that array.
2000 *
2001 * On success, the old refcount structure is leaked (it will be covered by the
2002 * new refcount structure).
2003 */
2004 static int rebuild_refcount_structure(BlockDriverState *bs,
2005 BdrvCheckResult *res,
2006 void **refcount_table,
2007 int64_t *nb_clusters)
2008 {
2009 BDRVQcow2State *s = bs->opaque;
2010 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2011 int64_t refblock_offset, refblock_start, refblock_index;
2012 uint32_t reftable_size = 0;
2013 uint64_t *on_disk_reftable = NULL;
2014 void *on_disk_refblock;
2015 int ret = 0;
2016 struct {
2017 uint64_t reftable_offset;
2018 uint32_t reftable_clusters;
2019 } QEMU_PACKED reftable_offset_and_clusters;
2020
2021 qcow2_cache_empty(bs, s->refcount_block_cache);
2022
2023 write_refblocks:
2024 for (; cluster < *nb_clusters; cluster++) {
2025 if (!s->get_refcount(*refcount_table, cluster)) {
2026 continue;
2027 }
2028
2029 refblock_index = cluster >> s->refcount_block_bits;
2030 refblock_start = refblock_index << s->refcount_block_bits;
2031
2032 /* Don't allocate a cluster in a refblock already written to disk */
2033 if (first_free_cluster < refblock_start) {
2034 first_free_cluster = refblock_start;
2035 }
2036 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2037 nb_clusters, &first_free_cluster);
2038 if (refblock_offset < 0) {
2039 fprintf(stderr, "ERROR allocating refblock: %s\n",
2040 strerror(-refblock_offset));
2041 res->check_errors++;
2042 ret = refblock_offset;
2043 goto fail;
2044 }
2045
2046 if (reftable_size <= refblock_index) {
2047 uint32_t old_reftable_size = reftable_size;
2048 uint64_t *new_on_disk_reftable;
2049
2050 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2051 s->cluster_size) / sizeof(uint64_t);
2052 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2053 reftable_size *
2054 sizeof(uint64_t));
2055 if (!new_on_disk_reftable) {
2056 res->check_errors++;
2057 ret = -ENOMEM;
2058 goto fail;
2059 }
2060 on_disk_reftable = new_on_disk_reftable;
2061
2062 memset(on_disk_reftable + old_reftable_size, 0,
2063 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2064
2065 /* The offset we have for the reftable is now no longer valid;
2066 * this will leak that range, but we can easily fix that by running
2067 * a leak-fixing check after this rebuild operation */
2068 reftable_offset = -1;
2069 }
2070 on_disk_reftable[refblock_index] = refblock_offset;
2071
2072 /* If this is apparently the last refblock (for now), try to squeeze the
2073 * reftable in */
2074 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2075 reftable_offset < 0)
2076 {
2077 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2078 sizeof(uint64_t));
2079 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2080 refcount_table, nb_clusters,
2081 &first_free_cluster);
2082 if (reftable_offset < 0) {
2083 fprintf(stderr, "ERROR allocating reftable: %s\n",
2084 strerror(-reftable_offset));
2085 res->check_errors++;
2086 ret = reftable_offset;
2087 goto fail;
2088 }
2089 }
2090
2091 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2092 s->cluster_size);
2093 if (ret < 0) {
2094 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2095 goto fail;
2096 }
2097
2098 /* The size of *refcount_table is always cluster-aligned, therefore the
2099 * write operation will not overflow */
2100 on_disk_refblock = (void *)((char *) *refcount_table +
2101 refblock_index * s->cluster_size);
2102
2103 ret = bdrv_write(bs->file->bs, refblock_offset / BDRV_SECTOR_SIZE,
2104 on_disk_refblock, s->cluster_sectors);
2105 if (ret < 0) {
2106 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2107 goto fail;
2108 }
2109
2110 /* Go to the end of this refblock */
2111 cluster = refblock_start + s->refcount_block_size - 1;
2112 }
2113
2114 if (reftable_offset < 0) {
2115 uint64_t post_refblock_start, reftable_clusters;
2116
2117 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2118 reftable_clusters = size_to_clusters(s,
2119 reftable_size * sizeof(uint64_t));
2120 /* Not pretty but simple */
2121 if (first_free_cluster < post_refblock_start) {
2122 first_free_cluster = post_refblock_start;
2123 }
2124 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2125 refcount_table, nb_clusters,
2126 &first_free_cluster);
2127 if (reftable_offset < 0) {
2128 fprintf(stderr, "ERROR allocating reftable: %s\n",
2129 strerror(-reftable_offset));
2130 res->check_errors++;
2131 ret = reftable_offset;
2132 goto fail;
2133 }
2134
2135 goto write_refblocks;
2136 }
2137
2138 assert(on_disk_reftable);
2139
2140 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2141 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2142 }
2143
2144 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2145 reftable_size * sizeof(uint64_t));
2146 if (ret < 0) {
2147 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2148 goto fail;
2149 }
2150
2151 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2152 ret = bdrv_pwrite(bs->file->bs, reftable_offset, on_disk_reftable,
2153 reftable_size * sizeof(uint64_t));
2154 if (ret < 0) {
2155 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2156 goto fail;
2157 }
2158
2159 /* Enter new reftable into the image header */
2160 cpu_to_be64w(&reftable_offset_and_clusters.reftable_offset,
2161 reftable_offset);
2162 cpu_to_be32w(&reftable_offset_and_clusters.reftable_clusters,
2163 size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2164 ret = bdrv_pwrite_sync(bs->file->bs, offsetof(QCowHeader,
2165 refcount_table_offset),
2166 &reftable_offset_and_clusters,
2167 sizeof(reftable_offset_and_clusters));
2168 if (ret < 0) {
2169 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2170 goto fail;
2171 }
2172
2173 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2174 be64_to_cpus(&on_disk_reftable[refblock_index]);
2175 }
2176 s->refcount_table = on_disk_reftable;
2177 s->refcount_table_offset = reftable_offset;
2178 s->refcount_table_size = reftable_size;
2179
2180 return 0;
2181
2182 fail:
2183 g_free(on_disk_reftable);
2184 return ret;
2185 }
2186
2187 /*
2188 * Checks an image for refcount consistency.
2189 *
2190 * Returns 0 if no errors are found, the number of errors in case the image is
2191 * detected as corrupted, and -errno when an internal error occurred.
2192 */
2193 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2194 BdrvCheckMode fix)
2195 {
2196 BDRVQcow2State *s = bs->opaque;
2197 BdrvCheckResult pre_compare_res;
2198 int64_t size, highest_cluster, nb_clusters;
2199 void *refcount_table = NULL;
2200 bool rebuild = false;
2201 int ret;
2202
2203 size = bdrv_getlength(bs->file->bs);
2204 if (size < 0) {
2205 res->check_errors++;
2206 return size;
2207 }
2208
2209 nb_clusters = size_to_clusters(s, size);
2210 if (nb_clusters > INT_MAX) {
2211 res->check_errors++;
2212 return -EFBIG;
2213 }
2214
2215 res->bfi.total_clusters =
2216 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2217
2218 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2219 &nb_clusters);
2220 if (ret < 0) {
2221 goto fail;
2222 }
2223
2224 /* In case we don't need to rebuild the refcount structure (but want to fix
2225 * something), this function is immediately called again, in which case the
2226 * result should be ignored */
2227 pre_compare_res = *res;
2228 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2229 nb_clusters);
2230
2231 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2232 BdrvCheckResult old_res = *res;
2233 int fresh_leaks = 0;
2234
2235 fprintf(stderr, "Rebuilding refcount structure\n");
2236 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2237 &nb_clusters);
2238 if (ret < 0) {
2239 goto fail;
2240 }
2241
2242 res->corruptions = 0;
2243 res->leaks = 0;
2244
2245 /* Because the old reftable has been exchanged for a new one the
2246 * references have to be recalculated */
2247 rebuild = false;
2248 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2249 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2250 &nb_clusters);
2251 if (ret < 0) {
2252 goto fail;
2253 }
2254
2255 if (fix & BDRV_FIX_LEAKS) {
2256 /* The old refcount structures are now leaked, fix it; the result
2257 * can be ignored, aside from leaks which were introduced by
2258 * rebuild_refcount_structure() that could not be fixed */
2259 BdrvCheckResult saved_res = *res;
2260 *res = (BdrvCheckResult){ 0 };
2261
2262 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2263 &highest_cluster, refcount_table, nb_clusters);
2264 if (rebuild) {
2265 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2266 "broken\n");
2267 }
2268
2269 /* Any leaks accounted for here were introduced by
2270 * rebuild_refcount_structure() because that function has created a
2271 * new refcount structure from scratch */
2272 fresh_leaks = res->leaks;
2273 *res = saved_res;
2274 }
2275
2276 if (res->corruptions < old_res.corruptions) {
2277 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2278 }
2279 if (res->leaks < old_res.leaks) {
2280 res->leaks_fixed += old_res.leaks - res->leaks;
2281 }
2282 res->leaks += fresh_leaks;
2283 } else if (fix) {
2284 if (rebuild) {
2285 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2286 res->check_errors++;
2287 ret = -EIO;
2288 goto fail;
2289 }
2290
2291 if (res->leaks || res->corruptions) {
2292 *res = pre_compare_res;
2293 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2294 refcount_table, nb_clusters);
2295 }
2296 }
2297
2298 /* check OFLAG_COPIED */
2299 ret = check_oflag_copied(bs, res, fix);
2300 if (ret < 0) {
2301 goto fail;
2302 }
2303
2304 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2305 ret = 0;
2306
2307 fail:
2308 g_free(refcount_table);
2309
2310 return ret;
2311 }
2312
2313 #define overlaps_with(ofs, sz) \
2314 ranges_overlap(offset, size, ofs, sz)
2315
2316 /*
2317 * Checks if the given offset into the image file is actually free to use by
2318 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2319 * i.e. a sanity check without relying on the refcount tables.
2320 *
2321 * The ign parameter specifies what checks not to perform (being a bitmask of
2322 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2323 *
2324 * Returns:
2325 * - 0 if writing to this offset will not affect the mentioned metadata
2326 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2327 * - a negative value (-errno) indicating an error while performing a check,
2328 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2329 */
2330 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2331 int64_t size)
2332 {
2333 BDRVQcow2State *s = bs->opaque;
2334 int chk = s->overlap_check & ~ign;
2335 int i, j;
2336
2337 if (!size) {
2338 return 0;
2339 }
2340
2341 if (chk & QCOW2_OL_MAIN_HEADER) {
2342 if (offset < s->cluster_size) {
2343 return QCOW2_OL_MAIN_HEADER;
2344 }
2345 }
2346
2347 /* align range to test to cluster boundaries */
2348 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2349 offset = start_of_cluster(s, offset);
2350
2351 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2352 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2353 return QCOW2_OL_ACTIVE_L1;
2354 }
2355 }
2356
2357 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2358 if (overlaps_with(s->refcount_table_offset,
2359 s->refcount_table_size * sizeof(uint64_t))) {
2360 return QCOW2_OL_REFCOUNT_TABLE;
2361 }
2362 }
2363
2364 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2365 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2366 return QCOW2_OL_SNAPSHOT_TABLE;
2367 }
2368 }
2369
2370 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2371 for (i = 0; i < s->nb_snapshots; i++) {
2372 if (s->snapshots[i].l1_size &&
2373 overlaps_with(s->snapshots[i].l1_table_offset,
2374 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2375 return QCOW2_OL_INACTIVE_L1;
2376 }
2377 }
2378 }
2379
2380 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2381 for (i = 0; i < s->l1_size; i++) {
2382 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2383 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2384 s->cluster_size)) {
2385 return QCOW2_OL_ACTIVE_L2;
2386 }
2387 }
2388 }
2389
2390 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2391 for (i = 0; i < s->refcount_table_size; i++) {
2392 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2393 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2394 s->cluster_size)) {
2395 return QCOW2_OL_REFCOUNT_BLOCK;
2396 }
2397 }
2398 }
2399
2400 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2401 for (i = 0; i < s->nb_snapshots; i++) {
2402 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2403 uint32_t l1_sz = s->snapshots[i].l1_size;
2404 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2405 uint64_t *l1 = g_try_malloc(l1_sz2);
2406 int ret;
2407
2408 if (l1_sz2 && l1 == NULL) {
2409 return -ENOMEM;
2410 }
2411
2412 ret = bdrv_pread(bs->file->bs, l1_ofs, l1, l1_sz2);
2413 if (ret < 0) {
2414 g_free(l1);
2415 return ret;
2416 }
2417
2418 for (j = 0; j < l1_sz; j++) {
2419 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2420 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2421 g_free(l1);
2422 return QCOW2_OL_INACTIVE_L2;
2423 }
2424 }
2425
2426 g_free(l1);
2427 }
2428 }
2429
2430 return 0;
2431 }
2432
2433 static const char *metadata_ol_names[] = {
2434 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2435 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2436 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2437 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2438 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2439 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2440 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2441 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2442 };
2443
2444 /*
2445 * First performs a check for metadata overlaps (through
2446 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2447 * while performing a check), that value is returned. If an impending overlap
2448 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2449 * and -EIO returned.
2450 *
2451 * Returns 0 if there were neither overlaps nor errors while checking for
2452 * overlaps; or a negative value (-errno) on error.
2453 */
2454 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2455 int64_t size)
2456 {
2457 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2458
2459 if (ret < 0) {
2460 return ret;
2461 } else if (ret > 0) {
2462 int metadata_ol_bitnr = ctz32(ret);
2463 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2464
2465 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2466 "write on metadata (overlaps with %s)",
2467 metadata_ol_names[metadata_ol_bitnr]);
2468 return -EIO;
2469 }
2470
2471 return 0;
2472 }
2473
2474 /* A pointer to a function of this type is given to walk_over_reftable(). That
2475 * function will create refblocks and pass them to a RefblockFinishOp once they
2476 * are completed (@refblock). @refblock_empty is set if the refblock is
2477 * completely empty.
2478 *
2479 * Along with the refblock, a corresponding reftable entry is passed, in the
2480 * reftable @reftable (which may be reallocated) at @reftable_index.
2481 *
2482 * @allocated should be set to true if a new cluster has been allocated.
2483 */
2484 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2485 uint64_t reftable_index, uint64_t *reftable_size,
2486 void *refblock, bool refblock_empty,
2487 bool *allocated, Error **errp);
2488
2489 /**
2490 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2491 * it is not empty) and inserts its offset into the new reftable. The size of
2492 * this new reftable is increased as required.
2493 */
2494 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2495 uint64_t reftable_index, uint64_t *reftable_size,
2496 void *refblock, bool refblock_empty, bool *allocated,
2497 Error **errp)
2498 {
2499 BDRVQcow2State *s = bs->opaque;
2500 int64_t offset;
2501
2502 if (!refblock_empty && reftable_index >= *reftable_size) {
2503 uint64_t *new_reftable;
2504 uint64_t new_reftable_size;
2505
2506 new_reftable_size = ROUND_UP(reftable_index + 1,
2507 s->cluster_size / sizeof(uint64_t));
2508 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2509 error_setg(errp,
2510 "This operation would make the refcount table grow "
2511 "beyond the maximum size supported by QEMU, aborting");
2512 return -ENOTSUP;
2513 }
2514
2515 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2516 sizeof(uint64_t));
2517 if (!new_reftable) {
2518 error_setg(errp, "Failed to increase reftable buffer size");
2519 return -ENOMEM;
2520 }
2521
2522 memset(new_reftable + *reftable_size, 0,
2523 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2524
2525 *reftable = new_reftable;
2526 *reftable_size = new_reftable_size;
2527 }
2528
2529 if (!refblock_empty && !(*reftable)[reftable_index]) {
2530 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2531 if (offset < 0) {
2532 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2533 return offset;
2534 }
2535 (*reftable)[reftable_index] = offset;
2536 *allocated = true;
2537 }
2538
2539 return 0;
2540 }
2541
2542 /**
2543 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2544 * offset specified by the new reftable's entry. It does not modify the new
2545 * reftable or change any refcounts.
2546 */
2547 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2548 uint64_t reftable_index, uint64_t *reftable_size,
2549 void *refblock, bool refblock_empty, bool *allocated,
2550 Error **errp)
2551 {
2552 BDRVQcow2State *s = bs->opaque;
2553 int64_t offset;
2554 int ret;
2555
2556 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2557 offset = (*reftable)[reftable_index];
2558
2559 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2560 if (ret < 0) {
2561 error_setg_errno(errp, -ret, "Overlap check failed");
2562 return ret;
2563 }
2564
2565 ret = bdrv_pwrite(bs->file->bs, offset, refblock, s->cluster_size);
2566 if (ret < 0) {
2567 error_setg_errno(errp, -ret, "Failed to write refblock");
2568 return ret;
2569 }
2570 } else {
2571 assert(refblock_empty);
2572 }
2573
2574 return 0;
2575 }
2576
2577 /**
2578 * This function walks over the existing reftable and every referenced refblock;
2579 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2580 * create an equal new entry in the passed @new_refblock. Once that
2581 * @new_refblock is completely filled, @operation will be called.
2582 *
2583 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2584 * @index is the index of the walk_over_reftable() calls and @total is the total
2585 * number of walk_over_reftable() calls per amend operation. Both are used for
2586 * calculating the parameters for the status callback.
2587 *
2588 * @allocated is set to true if a new cluster has been allocated.
2589 */
2590 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2591 uint64_t *new_reftable_index,
2592 uint64_t *new_reftable_size,
2593 void *new_refblock, int new_refblock_size,
2594 int new_refcount_bits,
2595 RefblockFinishOp *operation, bool *allocated,
2596 Qcow2SetRefcountFunc *new_set_refcount,
2597 BlockDriverAmendStatusCB *status_cb,
2598 void *cb_opaque, int index, int total,
2599 Error **errp)
2600 {
2601 BDRVQcow2State *s = bs->opaque;
2602 uint64_t reftable_index;
2603 bool new_refblock_empty = true;
2604 int refblock_index;
2605 int new_refblock_index = 0;
2606 int ret;
2607
2608 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2609 reftable_index++)
2610 {
2611 uint64_t refblock_offset = s->refcount_table[reftable_index]
2612 & REFT_OFFSET_MASK;
2613
2614 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2615 (uint64_t)total * s->refcount_table_size, cb_opaque);
2616
2617 if (refblock_offset) {
2618 void *refblock;
2619
2620 if (offset_into_cluster(s, refblock_offset)) {
2621 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2622 PRIx64 " unaligned (reftable index: %#"
2623 PRIx64 ")", refblock_offset,
2624 reftable_index);
2625 error_setg(errp,
2626 "Image is corrupt (unaligned refblock offset)");
2627 return -EIO;
2628 }
2629
2630 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2631 &refblock);
2632 if (ret < 0) {
2633 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2634 return ret;
2635 }
2636
2637 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2638 refblock_index++)
2639 {
2640 uint64_t refcount;
2641
2642 if (new_refblock_index >= new_refblock_size) {
2643 /* new_refblock is now complete */
2644 ret = operation(bs, new_reftable, *new_reftable_index,
2645 new_reftable_size, new_refblock,
2646 new_refblock_empty, allocated, errp);
2647 if (ret < 0) {
2648 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2649 return ret;
2650 }
2651
2652 (*new_reftable_index)++;
2653 new_refblock_index = 0;
2654 new_refblock_empty = true;
2655 }
2656
2657 refcount = s->get_refcount(refblock, refblock_index);
2658 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2659 uint64_t offset;
2660
2661 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2662
2663 offset = ((reftable_index << s->refcount_block_bits)
2664 + refblock_index) << s->cluster_bits;
2665
2666 error_setg(errp, "Cannot decrease refcount entry width to "
2667 "%i bits: Cluster at offset %#" PRIx64 " has a "
2668 "refcount of %" PRIu64, new_refcount_bits,
2669 offset, refcount);
2670 return -EINVAL;
2671 }
2672
2673 if (new_set_refcount) {
2674 new_set_refcount(new_refblock, new_refblock_index++,
2675 refcount);
2676 } else {
2677 new_refblock_index++;
2678 }
2679 new_refblock_empty = new_refblock_empty && refcount == 0;
2680 }
2681
2682 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2683 } else {
2684 /* No refblock means every refcount is 0 */
2685 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2686 refblock_index++)
2687 {
2688 if (new_refblock_index >= new_refblock_size) {
2689 /* new_refblock is now complete */
2690 ret = operation(bs, new_reftable, *new_reftable_index,
2691 new_reftable_size, new_refblock,
2692 new_refblock_empty, allocated, errp);
2693 if (ret < 0) {
2694 return ret;
2695 }
2696
2697 (*new_reftable_index)++;
2698 new_refblock_index = 0;
2699 new_refblock_empty = true;
2700 }
2701
2702 if (new_set_refcount) {
2703 new_set_refcount(new_refblock, new_refblock_index++, 0);
2704 } else {
2705 new_refblock_index++;
2706 }
2707 }
2708 }
2709 }
2710
2711 if (new_refblock_index > 0) {
2712 /* Complete the potentially existing partially filled final refblock */
2713 if (new_set_refcount) {
2714 for (; new_refblock_index < new_refblock_size;
2715 new_refblock_index++)
2716 {
2717 new_set_refcount(new_refblock, new_refblock_index, 0);
2718 }
2719 }
2720
2721 ret = operation(bs, new_reftable, *new_reftable_index,
2722 new_reftable_size, new_refblock, new_refblock_empty,
2723 allocated, errp);
2724 if (ret < 0) {
2725 return ret;
2726 }
2727
2728 (*new_reftable_index)++;
2729 }
2730
2731 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2732 (uint64_t)total * s->refcount_table_size, cb_opaque);
2733
2734 return 0;
2735 }
2736
2737 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2738 BlockDriverAmendStatusCB *status_cb,
2739 void *cb_opaque, Error **errp)
2740 {
2741 BDRVQcow2State *s = bs->opaque;
2742 Qcow2GetRefcountFunc *new_get_refcount;
2743 Qcow2SetRefcountFunc *new_set_refcount;
2744 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2745 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2746 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2747 uint64_t new_reftable_index = 0;
2748 uint64_t i;
2749 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2750 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2751 int old_refcount_order;
2752 int walk_index = 0;
2753 int ret;
2754 bool new_allocation;
2755
2756 assert(s->qcow_version >= 3);
2757 assert(refcount_order >= 0 && refcount_order <= 6);
2758
2759 /* see qcow2_open() */
2760 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2761
2762 new_get_refcount = get_refcount_funcs[refcount_order];
2763 new_set_refcount = set_refcount_funcs[refcount_order];
2764
2765
2766 do {
2767 int total_walks;
2768
2769 new_allocation = false;
2770
2771 /* At least we have to do this walk and the one which writes the
2772 * refblocks; also, at least we have to do this loop here at least
2773 * twice (normally), first to do the allocations, and second to
2774 * determine that everything is correctly allocated, this then makes
2775 * three walks in total */
2776 total_walks = MAX(walk_index + 2, 3);
2777
2778 /* First, allocate the structures so they are present in the refcount
2779 * structures */
2780 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2781 &new_reftable_size, NULL, new_refblock_size,
2782 new_refcount_bits, &alloc_refblock,
2783 &new_allocation, NULL, status_cb, cb_opaque,
2784 walk_index++, total_walks, errp);
2785 if (ret < 0) {
2786 goto done;
2787 }
2788
2789 new_reftable_index = 0;
2790
2791 if (new_allocation) {
2792 if (new_reftable_offset) {
2793 qcow2_free_clusters(bs, new_reftable_offset,
2794 allocated_reftable_size * sizeof(uint64_t),
2795 QCOW2_DISCARD_NEVER);
2796 }
2797
2798 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2799 sizeof(uint64_t));
2800 if (new_reftable_offset < 0) {
2801 error_setg_errno(errp, -new_reftable_offset,
2802 "Failed to allocate the new reftable");
2803 ret = new_reftable_offset;
2804 goto done;
2805 }
2806 allocated_reftable_size = new_reftable_size;
2807 }
2808 } while (new_allocation);
2809
2810 /* Second, write the new refblocks */
2811 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2812 &new_reftable_size, new_refblock,
2813 new_refblock_size, new_refcount_bits,
2814 &flush_refblock, &new_allocation, new_set_refcount,
2815 status_cb, cb_opaque, walk_index, walk_index + 1,
2816 errp);
2817 if (ret < 0) {
2818 goto done;
2819 }
2820 assert(!new_allocation);
2821
2822
2823 /* Write the new reftable */
2824 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2825 new_reftable_size * sizeof(uint64_t));
2826 if (ret < 0) {
2827 error_setg_errno(errp, -ret, "Overlap check failed");
2828 goto done;
2829 }
2830
2831 for (i = 0; i < new_reftable_size; i++) {
2832 cpu_to_be64s(&new_reftable[i]);
2833 }
2834
2835 ret = bdrv_pwrite(bs->file->bs, new_reftable_offset, new_reftable,
2836 new_reftable_size * sizeof(uint64_t));
2837
2838 for (i = 0; i < new_reftable_size; i++) {
2839 be64_to_cpus(&new_reftable[i]);
2840 }
2841
2842 if (ret < 0) {
2843 error_setg_errno(errp, -ret, "Failed to write the new reftable");
2844 goto done;
2845 }
2846
2847
2848 /* Empty the refcount cache */
2849 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2850 if (ret < 0) {
2851 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2852 goto done;
2853 }
2854
2855 /* Update the image header to point to the new reftable; this only updates
2856 * the fields which are relevant to qcow2_update_header(); other fields
2857 * such as s->refcount_table or s->refcount_bits stay stale for now
2858 * (because we have to restore everything if qcow2_update_header() fails) */
2859 old_refcount_order = s->refcount_order;
2860 old_reftable_size = s->refcount_table_size;
2861 old_reftable_offset = s->refcount_table_offset;
2862
2863 s->refcount_order = refcount_order;
2864 s->refcount_table_size = new_reftable_size;
2865 s->refcount_table_offset = new_reftable_offset;
2866
2867 ret = qcow2_update_header(bs);
2868 if (ret < 0) {
2869 s->refcount_order = old_refcount_order;
2870 s->refcount_table_size = old_reftable_size;
2871 s->refcount_table_offset = old_reftable_offset;
2872 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
2873 goto done;
2874 }
2875
2876 /* Now update the rest of the in-memory information */
2877 old_reftable = s->refcount_table;
2878 s->refcount_table = new_reftable;
2879
2880 s->refcount_bits = 1 << refcount_order;
2881 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
2882 s->refcount_max += s->refcount_max - 1;
2883
2884 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
2885 s->refcount_block_size = 1 << s->refcount_block_bits;
2886
2887 s->get_refcount = new_get_refcount;
2888 s->set_refcount = new_set_refcount;
2889
2890 /* For cleaning up all old refblocks and the old reftable below the "done"
2891 * label */
2892 new_reftable = old_reftable;
2893 new_reftable_size = old_reftable_size;
2894 new_reftable_offset = old_reftable_offset;
2895
2896 done:
2897 if (new_reftable) {
2898 /* On success, new_reftable actually points to the old reftable (and
2899 * new_reftable_size is the old reftable's size); but that is just
2900 * fine */
2901 for (i = 0; i < new_reftable_size; i++) {
2902 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
2903 if (offset) {
2904 qcow2_free_clusters(bs, offset, s->cluster_size,
2905 QCOW2_DISCARD_OTHER);
2906 }
2907 }
2908 g_free(new_reftable);
2909
2910 if (new_reftable_offset > 0) {
2911 qcow2_free_clusters(bs, new_reftable_offset,
2912 new_reftable_size * sizeof(uint64_t),
2913 QCOW2_DISCARD_OTHER);
2914 }
2915 }
2916
2917 qemu_vfree(new_refblock);
2918 return ret;
2919 }