]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-refcount.c
vvfat: initialize memory after allocating it
[mirror_qemu.git] / block / qcow2-refcount.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32
33 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
34 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
35 int64_t offset, int64_t length, uint64_t addend,
36 bool decrease, enum qcow2_discard_type type);
37
38 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
39 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
45
46 static void set_refcount_ro0(void *refcount_array, uint64_t index,
47 uint64_t value);
48 static void set_refcount_ro1(void *refcount_array, uint64_t index,
49 uint64_t value);
50 static void set_refcount_ro2(void *refcount_array, uint64_t index,
51 uint64_t value);
52 static void set_refcount_ro3(void *refcount_array, uint64_t index,
53 uint64_t value);
54 static void set_refcount_ro4(void *refcount_array, uint64_t index,
55 uint64_t value);
56 static void set_refcount_ro5(void *refcount_array, uint64_t index,
57 uint64_t value);
58 static void set_refcount_ro6(void *refcount_array, uint64_t index,
59 uint64_t value);
60
61
62 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
63 &get_refcount_ro0,
64 &get_refcount_ro1,
65 &get_refcount_ro2,
66 &get_refcount_ro3,
67 &get_refcount_ro4,
68 &get_refcount_ro5,
69 &get_refcount_ro6
70 };
71
72 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
73 &set_refcount_ro0,
74 &set_refcount_ro1,
75 &set_refcount_ro2,
76 &set_refcount_ro3,
77 &set_refcount_ro4,
78 &set_refcount_ro5,
79 &set_refcount_ro6
80 };
81
82
83 /*********************************************************/
84 /* refcount handling */
85
86 static void update_max_refcount_table_index(BDRVQcow2State *s)
87 {
88 unsigned i = s->refcount_table_size - 1;
89 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
90 i--;
91 }
92 /* Set s->max_refcount_table_index to the index of the last used entry */
93 s->max_refcount_table_index = i;
94 }
95
96 int qcow2_refcount_init(BlockDriverState *bs)
97 {
98 BDRVQcow2State *s = bs->opaque;
99 unsigned int refcount_table_size2, i;
100 int ret;
101
102 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
103
104 s->get_refcount = get_refcount_funcs[s->refcount_order];
105 s->set_refcount = set_refcount_funcs[s->refcount_order];
106
107 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
108 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
109 s->refcount_table = g_try_malloc(refcount_table_size2);
110
111 if (s->refcount_table_size > 0) {
112 if (s->refcount_table == NULL) {
113 ret = -ENOMEM;
114 goto fail;
115 }
116 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
117 ret = bdrv_pread(bs->file, s->refcount_table_offset,
118 s->refcount_table, refcount_table_size2);
119 if (ret < 0) {
120 goto fail;
121 }
122 for(i = 0; i < s->refcount_table_size; i++)
123 be64_to_cpus(&s->refcount_table[i]);
124 update_max_refcount_table_index(s);
125 }
126 return 0;
127 fail:
128 return ret;
129 }
130
131 void qcow2_refcount_close(BlockDriverState *bs)
132 {
133 BDRVQcow2State *s = bs->opaque;
134 g_free(s->refcount_table);
135 }
136
137
138 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
139 {
140 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
141 }
142
143 static void set_refcount_ro0(void *refcount_array, uint64_t index,
144 uint64_t value)
145 {
146 assert(!(value >> 1));
147 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
148 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
149 }
150
151 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
152 {
153 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
154 & 0x3;
155 }
156
157 static void set_refcount_ro1(void *refcount_array, uint64_t index,
158 uint64_t value)
159 {
160 assert(!(value >> 2));
161 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
162 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
163 }
164
165 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
166 {
167 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
168 & 0xf;
169 }
170
171 static void set_refcount_ro2(void *refcount_array, uint64_t index,
172 uint64_t value)
173 {
174 assert(!(value >> 4));
175 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
176 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
177 }
178
179 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
180 {
181 return ((const uint8_t *)refcount_array)[index];
182 }
183
184 static void set_refcount_ro3(void *refcount_array, uint64_t index,
185 uint64_t value)
186 {
187 assert(!(value >> 8));
188 ((uint8_t *)refcount_array)[index] = value;
189 }
190
191 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
192 {
193 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
194 }
195
196 static void set_refcount_ro4(void *refcount_array, uint64_t index,
197 uint64_t value)
198 {
199 assert(!(value >> 16));
200 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
201 }
202
203 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
204 {
205 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
206 }
207
208 static void set_refcount_ro5(void *refcount_array, uint64_t index,
209 uint64_t value)
210 {
211 assert(!(value >> 32));
212 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
213 }
214
215 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
216 {
217 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
218 }
219
220 static void set_refcount_ro6(void *refcount_array, uint64_t index,
221 uint64_t value)
222 {
223 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
224 }
225
226
227 static int load_refcount_block(BlockDriverState *bs,
228 int64_t refcount_block_offset,
229 void **refcount_block)
230 {
231 BDRVQcow2State *s = bs->opaque;
232
233 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
234 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
235 refcount_block);
236 }
237
238 /*
239 * Retrieves the refcount of the cluster given by its index and stores it in
240 * *refcount. Returns 0 on success and -errno on failure.
241 */
242 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
243 uint64_t *refcount)
244 {
245 BDRVQcow2State *s = bs->opaque;
246 uint64_t refcount_table_index, block_index;
247 int64_t refcount_block_offset;
248 int ret;
249 void *refcount_block;
250
251 refcount_table_index = cluster_index >> s->refcount_block_bits;
252 if (refcount_table_index >= s->refcount_table_size) {
253 *refcount = 0;
254 return 0;
255 }
256 refcount_block_offset =
257 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
258 if (!refcount_block_offset) {
259 *refcount = 0;
260 return 0;
261 }
262
263 if (offset_into_cluster(s, refcount_block_offset)) {
264 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
265 " unaligned (reftable index: %#" PRIx64 ")",
266 refcount_block_offset, refcount_table_index);
267 return -EIO;
268 }
269
270 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
271 &refcount_block);
272 if (ret < 0) {
273 return ret;
274 }
275
276 block_index = cluster_index & (s->refcount_block_size - 1);
277 *refcount = s->get_refcount(refcount_block, block_index);
278
279 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
280
281 return 0;
282 }
283
284 /* Checks if two offsets are described by the same refcount block */
285 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
286 uint64_t offset_b)
287 {
288 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
289 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
290
291 return (block_a == block_b);
292 }
293
294 /*
295 * Loads a refcount block. If it doesn't exist yet, it is allocated first
296 * (including growing the refcount table if needed).
297 *
298 * Returns 0 on success or -errno in error case
299 */
300 static int alloc_refcount_block(BlockDriverState *bs,
301 int64_t cluster_index, void **refcount_block)
302 {
303 BDRVQcow2State *s = bs->opaque;
304 unsigned int refcount_table_index;
305 int64_t ret;
306
307 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
308
309 /* Find the refcount block for the given cluster */
310 refcount_table_index = cluster_index >> s->refcount_block_bits;
311
312 if (refcount_table_index < s->refcount_table_size) {
313
314 uint64_t refcount_block_offset =
315 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
316
317 /* If it's already there, we're done */
318 if (refcount_block_offset) {
319 if (offset_into_cluster(s, refcount_block_offset)) {
320 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
321 PRIx64 " unaligned (reftable index: "
322 "%#x)", refcount_block_offset,
323 refcount_table_index);
324 return -EIO;
325 }
326
327 return load_refcount_block(bs, refcount_block_offset,
328 refcount_block);
329 }
330 }
331
332 /*
333 * If we came here, we need to allocate something. Something is at least
334 * a cluster for the new refcount block. It may also include a new refcount
335 * table if the old refcount table is too small.
336 *
337 * Note that allocating clusters here needs some special care:
338 *
339 * - We can't use the normal qcow2_alloc_clusters(), it would try to
340 * increase the refcount and very likely we would end up with an endless
341 * recursion. Instead we must place the refcount blocks in a way that
342 * they can describe them themselves.
343 *
344 * - We need to consider that at this point we are inside update_refcounts
345 * and potentially doing an initial refcount increase. This means that
346 * some clusters have already been allocated by the caller, but their
347 * refcount isn't accurate yet. If we allocate clusters for metadata, we
348 * need to return -EAGAIN to signal the caller that it needs to restart
349 * the search for free clusters.
350 *
351 * - alloc_clusters_noref and qcow2_free_clusters may load a different
352 * refcount block into the cache
353 */
354
355 *refcount_block = NULL;
356
357 /* We write to the refcount table, so we might depend on L2 tables */
358 ret = qcow2_cache_flush(bs, s->l2_table_cache);
359 if (ret < 0) {
360 return ret;
361 }
362
363 /* Allocate the refcount block itself and mark it as used */
364 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
365 if (new_block < 0) {
366 return new_block;
367 }
368
369 #ifdef DEBUG_ALLOC2
370 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
371 " at %" PRIx64 "\n",
372 refcount_table_index, cluster_index << s->cluster_bits, new_block);
373 #endif
374
375 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
376 /* Zero the new refcount block before updating it */
377 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
378 refcount_block);
379 if (ret < 0) {
380 goto fail;
381 }
382
383 memset(*refcount_block, 0, s->cluster_size);
384
385 /* The block describes itself, need to update the cache */
386 int block_index = (new_block >> s->cluster_bits) &
387 (s->refcount_block_size - 1);
388 s->set_refcount(*refcount_block, block_index, 1);
389 } else {
390 /* Described somewhere else. This can recurse at most twice before we
391 * arrive at a block that describes itself. */
392 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
393 QCOW2_DISCARD_NEVER);
394 if (ret < 0) {
395 goto fail;
396 }
397
398 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
399 if (ret < 0) {
400 goto fail;
401 }
402
403 /* Initialize the new refcount block only after updating its refcount,
404 * update_refcount uses the refcount cache itself */
405 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
406 refcount_block);
407 if (ret < 0) {
408 goto fail;
409 }
410
411 memset(*refcount_block, 0, s->cluster_size);
412 }
413
414 /* Now the new refcount block needs to be written to disk */
415 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
416 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache, *refcount_block);
417 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
418 if (ret < 0) {
419 goto fail;
420 }
421
422 /* If the refcount table is big enough, just hook the block up there */
423 if (refcount_table_index < s->refcount_table_size) {
424 uint64_t data64 = cpu_to_be64(new_block);
425 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
426 ret = bdrv_pwrite_sync(bs->file,
427 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
428 &data64, sizeof(data64));
429 if (ret < 0) {
430 goto fail;
431 }
432
433 s->refcount_table[refcount_table_index] = new_block;
434 /* If there's a hole in s->refcount_table then it can happen
435 * that refcount_table_index < s->max_refcount_table_index */
436 s->max_refcount_table_index =
437 MAX(s->max_refcount_table_index, refcount_table_index);
438
439 /* The new refcount block may be where the caller intended to put its
440 * data, so let it restart the search. */
441 return -EAGAIN;
442 }
443
444 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
445
446 /*
447 * If we come here, we need to grow the refcount table. Again, a new
448 * refcount table needs some space and we can't simply allocate to avoid
449 * endless recursion.
450 *
451 * Therefore let's grab new refcount blocks at the end of the image, which
452 * will describe themselves and the new refcount table. This way we can
453 * reference them only in the new table and do the switch to the new
454 * refcount table at once without producing an inconsistent state in
455 * between.
456 */
457 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
458
459 /* Calculate the number of refcount blocks needed so far; this will be the
460 * basis for calculating the index of the first cluster used for the
461 * self-describing refcount structures which we are about to create.
462 *
463 * Because we reached this point, there cannot be any refcount entries for
464 * cluster_index or higher indices yet. However, because new_block has been
465 * allocated to describe that cluster (and it will assume this role later
466 * on), we cannot use that index; also, new_block may actually have a higher
467 * cluster index than cluster_index, so it needs to be taken into account
468 * here (and 1 needs to be added to its value because that cluster is used).
469 */
470 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
471 (new_block >> s->cluster_bits) + 1),
472 s->refcount_block_size);
473
474 /* Create the new refcount table and blocks */
475 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
476 s->cluster_size;
477
478 ret = qcow2_refcount_area(bs, meta_offset, 0, false,
479 refcount_table_index, new_block);
480 if (ret < 0) {
481 return ret;
482 }
483
484 ret = load_refcount_block(bs, new_block, refcount_block);
485 if (ret < 0) {
486 return ret;
487 }
488
489 /* If we were trying to do the initial refcount update for some cluster
490 * allocation, we might have used the same clusters to store newly
491 * allocated metadata. Make the caller search some new space. */
492 return -EAGAIN;
493
494 fail:
495 if (*refcount_block != NULL) {
496 qcow2_cache_put(bs, s->refcount_block_cache, refcount_block);
497 }
498 return ret;
499 }
500
501 /*
502 * Starting at @start_offset, this function creates new self-covering refcount
503 * structures: A new refcount table and refcount blocks which cover all of
504 * themselves, and a number of @additional_clusters beyond their end.
505 * @start_offset must be at the end of the image file, that is, there must be
506 * only empty space beyond it.
507 * If @exact_size is false, the refcount table will have 50 % more entries than
508 * necessary so it will not need to grow again soon.
509 * If @new_refblock_offset is not zero, it contains the offset of a refcount
510 * block that should be entered into the new refcount table at index
511 * @new_refblock_index.
512 *
513 * Returns: The offset after the new refcount structures (i.e. where the
514 * @additional_clusters may be placed) on success, -errno on error.
515 */
516 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
517 uint64_t additional_clusters, bool exact_size,
518 int new_refblock_index,
519 uint64_t new_refblock_offset)
520 {
521 BDRVQcow2State *s = bs->opaque;
522 uint64_t total_refblock_count_u64, additional_refblock_count;
523 int total_refblock_count, table_size, area_reftable_index, table_clusters;
524 int i;
525 uint64_t table_offset, block_offset, end_offset;
526 int ret;
527 uint64_t *new_table;
528
529 assert(!(start_offset % s->cluster_size));
530
531 qcow2_refcount_metadata_size(start_offset / s->cluster_size +
532 additional_clusters,
533 s->cluster_size, s->refcount_order,
534 !exact_size, &total_refblock_count_u64);
535 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
536 return -EFBIG;
537 }
538 total_refblock_count = total_refblock_count_u64;
539
540 /* Index in the refcount table of the first refcount block to cover the area
541 * of refcount structures we are about to create; we know that
542 * @total_refblock_count can cover @start_offset, so this will definitely
543 * fit into an int. */
544 area_reftable_index = (start_offset / s->cluster_size) /
545 s->refcount_block_size;
546
547 if (exact_size) {
548 table_size = total_refblock_count;
549 } else {
550 table_size = total_refblock_count +
551 DIV_ROUND_UP(total_refblock_count, 2);
552 }
553 /* The qcow2 file can only store the reftable size in number of clusters */
554 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
555 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
556
557 if (table_size > QCOW_MAX_REFTABLE_SIZE) {
558 return -EFBIG;
559 }
560
561 new_table = g_try_new0(uint64_t, table_size);
562
563 assert(table_size > 0);
564 if (new_table == NULL) {
565 ret = -ENOMEM;
566 goto fail;
567 }
568
569 /* Fill the new refcount table */
570 if (table_size > s->max_refcount_table_index) {
571 /* We're actually growing the reftable */
572 memcpy(new_table, s->refcount_table,
573 (s->max_refcount_table_index + 1) * sizeof(uint64_t));
574 } else {
575 /* Improbable case: We're shrinking the reftable. However, the caller
576 * has assured us that there is only empty space beyond @start_offset,
577 * so we can simply drop all of the refblocks that won't fit into the
578 * new reftable. */
579 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
580 }
581
582 if (new_refblock_offset) {
583 assert(new_refblock_index < total_refblock_count);
584 new_table[new_refblock_index] = new_refblock_offset;
585 }
586
587 /* Count how many new refblocks we have to create */
588 additional_refblock_count = 0;
589 for (i = area_reftable_index; i < total_refblock_count; i++) {
590 if (!new_table[i]) {
591 additional_refblock_count++;
592 }
593 }
594
595 table_offset = start_offset + additional_refblock_count * s->cluster_size;
596 end_offset = table_offset + table_clusters * s->cluster_size;
597
598 /* Fill the refcount blocks, and create new ones, if necessary */
599 block_offset = start_offset;
600 for (i = area_reftable_index; i < total_refblock_count; i++) {
601 void *refblock_data;
602 uint64_t first_offset_covered;
603
604 /* Reuse an existing refblock if possible, create a new one otherwise */
605 if (new_table[i]) {
606 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
607 &refblock_data);
608 if (ret < 0) {
609 goto fail;
610 }
611 } else {
612 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
613 block_offset, &refblock_data);
614 if (ret < 0) {
615 goto fail;
616 }
617 memset(refblock_data, 0, s->cluster_size);
618 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
619 refblock_data);
620
621 new_table[i] = block_offset;
622 block_offset += s->cluster_size;
623 }
624
625 /* First host offset covered by this refblock */
626 first_offset_covered = (uint64_t)i * s->refcount_block_size *
627 s->cluster_size;
628 if (first_offset_covered < end_offset) {
629 int j, end_index;
630
631 /* Set the refcount of all of the new refcount structures to 1 */
632
633 if (first_offset_covered < start_offset) {
634 assert(i == area_reftable_index);
635 j = (start_offset - first_offset_covered) / s->cluster_size;
636 assert(j < s->refcount_block_size);
637 } else {
638 j = 0;
639 }
640
641 end_index = MIN((end_offset - first_offset_covered) /
642 s->cluster_size,
643 s->refcount_block_size);
644
645 for (; j < end_index; j++) {
646 /* The caller guaranteed us this space would be empty */
647 assert(s->get_refcount(refblock_data, j) == 0);
648 s->set_refcount(refblock_data, j, 1);
649 }
650
651 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
652 refblock_data);
653 }
654
655 qcow2_cache_put(bs, s->refcount_block_cache, &refblock_data);
656 }
657
658 assert(block_offset == table_offset);
659
660 /* Write refcount blocks to disk */
661 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
662 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
663 if (ret < 0) {
664 goto fail;
665 }
666
667 /* Write refcount table to disk */
668 for (i = 0; i < total_refblock_count; i++) {
669 cpu_to_be64s(&new_table[i]);
670 }
671
672 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
673 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
674 table_size * sizeof(uint64_t));
675 if (ret < 0) {
676 goto fail;
677 }
678
679 for (i = 0; i < total_refblock_count; i++) {
680 be64_to_cpus(&new_table[i]);
681 }
682
683 /* Hook up the new refcount table in the qcow2 header */
684 struct QEMU_PACKED {
685 uint64_t d64;
686 uint32_t d32;
687 } data;
688 data.d64 = cpu_to_be64(table_offset);
689 data.d32 = cpu_to_be32(table_clusters);
690 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
691 ret = bdrv_pwrite_sync(bs->file,
692 offsetof(QCowHeader, refcount_table_offset),
693 &data, sizeof(data));
694 if (ret < 0) {
695 goto fail;
696 }
697
698 /* And switch it in memory */
699 uint64_t old_table_offset = s->refcount_table_offset;
700 uint64_t old_table_size = s->refcount_table_size;
701
702 g_free(s->refcount_table);
703 s->refcount_table = new_table;
704 s->refcount_table_size = table_size;
705 s->refcount_table_offset = table_offset;
706 update_max_refcount_table_index(s);
707
708 /* Free old table. */
709 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
710 QCOW2_DISCARD_OTHER);
711
712 return end_offset;
713
714 fail:
715 g_free(new_table);
716 return ret;
717 }
718
719 void qcow2_process_discards(BlockDriverState *bs, int ret)
720 {
721 BDRVQcow2State *s = bs->opaque;
722 Qcow2DiscardRegion *d, *next;
723
724 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
725 QTAILQ_REMOVE(&s->discards, d, next);
726
727 /* Discard is optional, ignore the return value */
728 if (ret >= 0) {
729 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
730 }
731
732 g_free(d);
733 }
734 }
735
736 static void update_refcount_discard(BlockDriverState *bs,
737 uint64_t offset, uint64_t length)
738 {
739 BDRVQcow2State *s = bs->opaque;
740 Qcow2DiscardRegion *d, *p, *next;
741
742 QTAILQ_FOREACH(d, &s->discards, next) {
743 uint64_t new_start = MIN(offset, d->offset);
744 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
745
746 if (new_end - new_start <= length + d->bytes) {
747 /* There can't be any overlap, areas ending up here have no
748 * references any more and therefore shouldn't get freed another
749 * time. */
750 assert(d->bytes + length == new_end - new_start);
751 d->offset = new_start;
752 d->bytes = new_end - new_start;
753 goto found;
754 }
755 }
756
757 d = g_malloc(sizeof(*d));
758 *d = (Qcow2DiscardRegion) {
759 .bs = bs,
760 .offset = offset,
761 .bytes = length,
762 };
763 QTAILQ_INSERT_TAIL(&s->discards, d, next);
764
765 found:
766 /* Merge discard requests if they are adjacent now */
767 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
768 if (p == d
769 || p->offset > d->offset + d->bytes
770 || d->offset > p->offset + p->bytes)
771 {
772 continue;
773 }
774
775 /* Still no overlap possible */
776 assert(p->offset == d->offset + d->bytes
777 || d->offset == p->offset + p->bytes);
778
779 QTAILQ_REMOVE(&s->discards, p, next);
780 d->offset = MIN(d->offset, p->offset);
781 d->bytes += p->bytes;
782 g_free(p);
783 }
784 }
785
786 /* XXX: cache several refcount block clusters ? */
787 /* @addend is the absolute value of the addend; if @decrease is set, @addend
788 * will be subtracted from the current refcount, otherwise it will be added */
789 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
790 int64_t offset,
791 int64_t length,
792 uint64_t addend,
793 bool decrease,
794 enum qcow2_discard_type type)
795 {
796 BDRVQcow2State *s = bs->opaque;
797 int64_t start, last, cluster_offset;
798 void *refcount_block = NULL;
799 int64_t old_table_index = -1;
800 int ret;
801
802 #ifdef DEBUG_ALLOC2
803 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
804 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
805 addend);
806 #endif
807 if (length < 0) {
808 return -EINVAL;
809 } else if (length == 0) {
810 return 0;
811 }
812
813 if (decrease) {
814 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
815 s->l2_table_cache);
816 }
817
818 start = start_of_cluster(s, offset);
819 last = start_of_cluster(s, offset + length - 1);
820 for(cluster_offset = start; cluster_offset <= last;
821 cluster_offset += s->cluster_size)
822 {
823 int block_index;
824 uint64_t refcount;
825 int64_t cluster_index = cluster_offset >> s->cluster_bits;
826 int64_t table_index = cluster_index >> s->refcount_block_bits;
827
828 /* Load the refcount block and allocate it if needed */
829 if (table_index != old_table_index) {
830 if (refcount_block) {
831 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
832 }
833 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
834 if (ret < 0) {
835 goto fail;
836 }
837 }
838 old_table_index = table_index;
839
840 qcow2_cache_entry_mark_dirty(bs, s->refcount_block_cache,
841 refcount_block);
842
843 /* we can update the count and save it */
844 block_index = cluster_index & (s->refcount_block_size - 1);
845
846 refcount = s->get_refcount(refcount_block, block_index);
847 if (decrease ? (refcount - addend > refcount)
848 : (refcount + addend < refcount ||
849 refcount + addend > s->refcount_max))
850 {
851 ret = -EINVAL;
852 goto fail;
853 }
854 if (decrease) {
855 refcount -= addend;
856 } else {
857 refcount += addend;
858 }
859 if (refcount == 0 && cluster_index < s->free_cluster_index) {
860 s->free_cluster_index = cluster_index;
861 }
862 s->set_refcount(refcount_block, block_index, refcount);
863
864 if (refcount == 0 && s->discard_passthrough[type]) {
865 update_refcount_discard(bs, cluster_offset, s->cluster_size);
866 }
867 }
868
869 ret = 0;
870 fail:
871 if (!s->cache_discards) {
872 qcow2_process_discards(bs, ret);
873 }
874
875 /* Write last changed block to disk */
876 if (refcount_block) {
877 qcow2_cache_put(bs, s->refcount_block_cache, &refcount_block);
878 }
879
880 /*
881 * Try do undo any updates if an error is returned (This may succeed in
882 * some cases like ENOSPC for allocating a new refcount block)
883 */
884 if (ret < 0) {
885 int dummy;
886 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
887 !decrease, QCOW2_DISCARD_NEVER);
888 (void)dummy;
889 }
890
891 return ret;
892 }
893
894 /*
895 * Increases or decreases the refcount of a given cluster.
896 *
897 * @addend is the absolute value of the addend; if @decrease is set, @addend
898 * will be subtracted from the current refcount, otherwise it will be added.
899 *
900 * On success 0 is returned; on failure -errno is returned.
901 */
902 int qcow2_update_cluster_refcount(BlockDriverState *bs,
903 int64_t cluster_index,
904 uint64_t addend, bool decrease,
905 enum qcow2_discard_type type)
906 {
907 BDRVQcow2State *s = bs->opaque;
908 int ret;
909
910 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
911 decrease, type);
912 if (ret < 0) {
913 return ret;
914 }
915
916 return 0;
917 }
918
919
920
921 /*********************************************************/
922 /* cluster allocation functions */
923
924
925
926 /* return < 0 if error */
927 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
928 {
929 BDRVQcow2State *s = bs->opaque;
930 uint64_t i, nb_clusters, refcount;
931 int ret;
932
933 /* We can't allocate clusters if they may still be queued for discard. */
934 if (s->cache_discards) {
935 qcow2_process_discards(bs, 0);
936 }
937
938 nb_clusters = size_to_clusters(s, size);
939 retry:
940 for(i = 0; i < nb_clusters; i++) {
941 uint64_t next_cluster_index = s->free_cluster_index++;
942 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
943
944 if (ret < 0) {
945 return ret;
946 } else if (refcount != 0) {
947 goto retry;
948 }
949 }
950
951 /* Make sure that all offsets in the "allocated" range are representable
952 * in an int64_t */
953 if (s->free_cluster_index > 0 &&
954 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
955 {
956 return -EFBIG;
957 }
958
959 #ifdef DEBUG_ALLOC2
960 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
961 size,
962 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
963 #endif
964 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
965 }
966
967 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
968 {
969 int64_t offset;
970 int ret;
971
972 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
973 do {
974 offset = alloc_clusters_noref(bs, size);
975 if (offset < 0) {
976 return offset;
977 }
978
979 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
980 } while (ret == -EAGAIN);
981
982 if (ret < 0) {
983 return ret;
984 }
985
986 return offset;
987 }
988
989 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
990 int64_t nb_clusters)
991 {
992 BDRVQcow2State *s = bs->opaque;
993 uint64_t cluster_index, refcount;
994 uint64_t i;
995 int ret;
996
997 assert(nb_clusters >= 0);
998 if (nb_clusters == 0) {
999 return 0;
1000 }
1001
1002 do {
1003 /* Check how many clusters there are free */
1004 cluster_index = offset >> s->cluster_bits;
1005 for(i = 0; i < nb_clusters; i++) {
1006 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1007 if (ret < 0) {
1008 return ret;
1009 } else if (refcount != 0) {
1010 break;
1011 }
1012 }
1013
1014 /* And then allocate them */
1015 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1016 QCOW2_DISCARD_NEVER);
1017 } while (ret == -EAGAIN);
1018
1019 if (ret < 0) {
1020 return ret;
1021 }
1022
1023 return i;
1024 }
1025
1026 /* only used to allocate compressed sectors. We try to allocate
1027 contiguous sectors. size must be <= cluster_size */
1028 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1029 {
1030 BDRVQcow2State *s = bs->opaque;
1031 int64_t offset;
1032 size_t free_in_cluster;
1033 int ret;
1034
1035 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1036 assert(size > 0 && size <= s->cluster_size);
1037 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1038
1039 offset = s->free_byte_offset;
1040
1041 if (offset) {
1042 uint64_t refcount;
1043 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1044 if (ret < 0) {
1045 return ret;
1046 }
1047
1048 if (refcount == s->refcount_max) {
1049 offset = 0;
1050 }
1051 }
1052
1053 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1054 do {
1055 if (!offset || free_in_cluster < size) {
1056 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1057 if (new_cluster < 0) {
1058 return new_cluster;
1059 }
1060
1061 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1062 offset = new_cluster;
1063 free_in_cluster = s->cluster_size;
1064 } else {
1065 free_in_cluster += s->cluster_size;
1066 }
1067 }
1068
1069 assert(offset);
1070 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1071 if (ret < 0) {
1072 offset = 0;
1073 }
1074 } while (ret == -EAGAIN);
1075 if (ret < 0) {
1076 return ret;
1077 }
1078
1079 /* The cluster refcount was incremented; refcount blocks must be flushed
1080 * before the caller's L2 table updates. */
1081 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1082
1083 s->free_byte_offset = offset + size;
1084 if (!offset_into_cluster(s, s->free_byte_offset)) {
1085 s->free_byte_offset = 0;
1086 }
1087
1088 return offset;
1089 }
1090
1091 void qcow2_free_clusters(BlockDriverState *bs,
1092 int64_t offset, int64_t size,
1093 enum qcow2_discard_type type)
1094 {
1095 int ret;
1096
1097 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1098 ret = update_refcount(bs, offset, size, 1, true, type);
1099 if (ret < 0) {
1100 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1101 /* TODO Remember the clusters to free them later and avoid leaking */
1102 }
1103 }
1104
1105 /*
1106 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1107 * normal cluster, compressed cluster, etc.)
1108 */
1109 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1110 int nb_clusters, enum qcow2_discard_type type)
1111 {
1112 BDRVQcow2State *s = bs->opaque;
1113
1114 switch (qcow2_get_cluster_type(l2_entry)) {
1115 case QCOW2_CLUSTER_COMPRESSED:
1116 {
1117 int nb_csectors;
1118 nb_csectors = ((l2_entry >> s->csize_shift) &
1119 s->csize_mask) + 1;
1120 qcow2_free_clusters(bs,
1121 (l2_entry & s->cluster_offset_mask) & ~511,
1122 nb_csectors * 512, type);
1123 }
1124 break;
1125 case QCOW2_CLUSTER_NORMAL:
1126 case QCOW2_CLUSTER_ZERO_ALLOC:
1127 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1128 qcow2_signal_corruption(bs, false, -1, -1,
1129 "Cannot free unaligned cluster %#llx",
1130 l2_entry & L2E_OFFSET_MASK);
1131 } else {
1132 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1133 nb_clusters << s->cluster_bits, type);
1134 }
1135 break;
1136 case QCOW2_CLUSTER_ZERO_PLAIN:
1137 case QCOW2_CLUSTER_UNALLOCATED:
1138 break;
1139 default:
1140 abort();
1141 }
1142 }
1143
1144
1145
1146 /*********************************************************/
1147 /* snapshots and image creation */
1148
1149
1150
1151 /* update the refcounts of snapshots and the copied flag */
1152 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1153 int64_t l1_table_offset, int l1_size, int addend)
1154 {
1155 BDRVQcow2State *s = bs->opaque;
1156 uint64_t *l1_table, *l2_table, l2_offset, entry, l1_size2, refcount;
1157 bool l1_allocated = false;
1158 int64_t old_entry, old_l2_offset;
1159 int i, j, l1_modified = 0, nb_csectors;
1160 int ret;
1161
1162 assert(addend >= -1 && addend <= 1);
1163
1164 l2_table = NULL;
1165 l1_table = NULL;
1166 l1_size2 = l1_size * sizeof(uint64_t);
1167
1168 s->cache_discards = true;
1169
1170 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1171 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1172 * when changing this! */
1173 if (l1_table_offset != s->l1_table_offset) {
1174 l1_table = g_try_malloc0(align_offset(l1_size2, 512));
1175 if (l1_size2 && l1_table == NULL) {
1176 ret = -ENOMEM;
1177 goto fail;
1178 }
1179 l1_allocated = true;
1180
1181 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1182 if (ret < 0) {
1183 goto fail;
1184 }
1185
1186 for (i = 0; i < l1_size; i++) {
1187 be64_to_cpus(&l1_table[i]);
1188 }
1189 } else {
1190 assert(l1_size == s->l1_size);
1191 l1_table = s->l1_table;
1192 l1_allocated = false;
1193 }
1194
1195 for (i = 0; i < l1_size; i++) {
1196 l2_offset = l1_table[i];
1197 if (l2_offset) {
1198 old_l2_offset = l2_offset;
1199 l2_offset &= L1E_OFFSET_MASK;
1200
1201 if (offset_into_cluster(s, l2_offset)) {
1202 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1203 PRIx64 " unaligned (L1 index: %#x)",
1204 l2_offset, i);
1205 ret = -EIO;
1206 goto fail;
1207 }
1208
1209 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1210 (void**) &l2_table);
1211 if (ret < 0) {
1212 goto fail;
1213 }
1214
1215 for (j = 0; j < s->l2_size; j++) {
1216 uint64_t cluster_index;
1217 uint64_t offset;
1218
1219 entry = be64_to_cpu(l2_table[j]);
1220 old_entry = entry;
1221 entry &= ~QCOW_OFLAG_COPIED;
1222 offset = entry & L2E_OFFSET_MASK;
1223
1224 switch (qcow2_get_cluster_type(entry)) {
1225 case QCOW2_CLUSTER_COMPRESSED:
1226 nb_csectors = ((entry >> s->csize_shift) &
1227 s->csize_mask) + 1;
1228 if (addend != 0) {
1229 ret = update_refcount(bs,
1230 (entry & s->cluster_offset_mask) & ~511,
1231 nb_csectors * 512, abs(addend), addend < 0,
1232 QCOW2_DISCARD_SNAPSHOT);
1233 if (ret < 0) {
1234 goto fail;
1235 }
1236 }
1237 /* compressed clusters are never modified */
1238 refcount = 2;
1239 break;
1240
1241 case QCOW2_CLUSTER_NORMAL:
1242 case QCOW2_CLUSTER_ZERO_ALLOC:
1243 if (offset_into_cluster(s, offset)) {
1244 qcow2_signal_corruption(bs, true, -1, -1, "Cluster "
1245 "allocation offset %#" PRIx64
1246 " unaligned (L2 offset: %#"
1247 PRIx64 ", L2 index: %#x)",
1248 offset, l2_offset, j);
1249 ret = -EIO;
1250 goto fail;
1251 }
1252
1253 cluster_index = offset >> s->cluster_bits;
1254 assert(cluster_index);
1255 if (addend != 0) {
1256 ret = qcow2_update_cluster_refcount(bs,
1257 cluster_index, abs(addend), addend < 0,
1258 QCOW2_DISCARD_SNAPSHOT);
1259 if (ret < 0) {
1260 goto fail;
1261 }
1262 }
1263
1264 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1265 if (ret < 0) {
1266 goto fail;
1267 }
1268 break;
1269
1270 case QCOW2_CLUSTER_ZERO_PLAIN:
1271 case QCOW2_CLUSTER_UNALLOCATED:
1272 refcount = 0;
1273 break;
1274
1275 default:
1276 abort();
1277 }
1278
1279 if (refcount == 1) {
1280 entry |= QCOW_OFLAG_COPIED;
1281 }
1282 if (entry != old_entry) {
1283 if (addend > 0) {
1284 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1285 s->refcount_block_cache);
1286 }
1287 l2_table[j] = cpu_to_be64(entry);
1288 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache,
1289 l2_table);
1290 }
1291 }
1292
1293 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1294
1295 if (addend != 0) {
1296 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1297 s->cluster_bits,
1298 abs(addend), addend < 0,
1299 QCOW2_DISCARD_SNAPSHOT);
1300 if (ret < 0) {
1301 goto fail;
1302 }
1303 }
1304 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1305 &refcount);
1306 if (ret < 0) {
1307 goto fail;
1308 } else if (refcount == 1) {
1309 l2_offset |= QCOW_OFLAG_COPIED;
1310 }
1311 if (l2_offset != old_l2_offset) {
1312 l1_table[i] = l2_offset;
1313 l1_modified = 1;
1314 }
1315 }
1316 }
1317
1318 ret = bdrv_flush(bs);
1319 fail:
1320 if (l2_table) {
1321 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1322 }
1323
1324 s->cache_discards = false;
1325 qcow2_process_discards(bs, ret);
1326
1327 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1328 if (ret == 0 && addend >= 0 && l1_modified) {
1329 for (i = 0; i < l1_size; i++) {
1330 cpu_to_be64s(&l1_table[i]);
1331 }
1332
1333 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1334 l1_table, l1_size2);
1335
1336 for (i = 0; i < l1_size; i++) {
1337 be64_to_cpus(&l1_table[i]);
1338 }
1339 }
1340 if (l1_allocated)
1341 g_free(l1_table);
1342 return ret;
1343 }
1344
1345
1346
1347
1348 /*********************************************************/
1349 /* refcount checking functions */
1350
1351
1352 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1353 {
1354 /* This assertion holds because there is no way we can address more than
1355 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1356 * offsets have to be representable in bytes); due to every cluster
1357 * corresponding to one refcount entry, we are well below that limit */
1358 assert(entries < (UINT64_C(1) << (64 - 9)));
1359
1360 /* Thanks to the assertion this will not overflow, because
1361 * s->refcount_order < 7.
1362 * (note: x << s->refcount_order == x * s->refcount_bits) */
1363 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1364 }
1365
1366 /**
1367 * Reallocates *array so that it can hold new_size entries. *size must contain
1368 * the current number of entries in *array. If the reallocation fails, *array
1369 * and *size will not be modified and -errno will be returned. If the
1370 * reallocation is successful, *array will be set to the new buffer, *size
1371 * will be set to new_size and 0 will be returned. The size of the reallocated
1372 * refcount array buffer will be aligned to a cluster boundary, and the newly
1373 * allocated area will be zeroed.
1374 */
1375 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1376 int64_t *size, int64_t new_size)
1377 {
1378 int64_t old_byte_size, new_byte_size;
1379 void *new_ptr;
1380
1381 /* Round to clusters so the array can be directly written to disk */
1382 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1383 * s->cluster_size;
1384 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1385 * s->cluster_size;
1386
1387 if (new_byte_size == old_byte_size) {
1388 *size = new_size;
1389 return 0;
1390 }
1391
1392 assert(new_byte_size > 0);
1393
1394 if (new_byte_size > SIZE_MAX) {
1395 return -ENOMEM;
1396 }
1397
1398 new_ptr = g_try_realloc(*array, new_byte_size);
1399 if (!new_ptr) {
1400 return -ENOMEM;
1401 }
1402
1403 if (new_byte_size > old_byte_size) {
1404 memset((char *)new_ptr + old_byte_size, 0,
1405 new_byte_size - old_byte_size);
1406 }
1407
1408 *array = new_ptr;
1409 *size = new_size;
1410
1411 return 0;
1412 }
1413
1414 /*
1415 * Increases the refcount for a range of clusters in a given refcount table.
1416 * This is used to construct a temporary refcount table out of L1 and L2 tables
1417 * which can be compared to the refcount table saved in the image.
1418 *
1419 * Modifies the number of errors in res.
1420 */
1421 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1422 void **refcount_table,
1423 int64_t *refcount_table_size,
1424 int64_t offset, int64_t size)
1425 {
1426 BDRVQcow2State *s = bs->opaque;
1427 uint64_t start, last, cluster_offset, k, refcount;
1428 int ret;
1429
1430 if (size <= 0) {
1431 return 0;
1432 }
1433
1434 start = start_of_cluster(s, offset);
1435 last = start_of_cluster(s, offset + size - 1);
1436 for(cluster_offset = start; cluster_offset <= last;
1437 cluster_offset += s->cluster_size) {
1438 k = cluster_offset >> s->cluster_bits;
1439 if (k >= *refcount_table_size) {
1440 ret = realloc_refcount_array(s, refcount_table,
1441 refcount_table_size, k + 1);
1442 if (ret < 0) {
1443 res->check_errors++;
1444 return ret;
1445 }
1446 }
1447
1448 refcount = s->get_refcount(*refcount_table, k);
1449 if (refcount == s->refcount_max) {
1450 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1451 "\n", cluster_offset);
1452 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1453 "width or qemu-img convert to create a clean copy if the "
1454 "image cannot be opened for writing\n");
1455 res->corruptions++;
1456 continue;
1457 }
1458 s->set_refcount(*refcount_table, k, refcount + 1);
1459 }
1460
1461 return 0;
1462 }
1463
1464 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1465 enum {
1466 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1467 };
1468
1469 /*
1470 * Increases the refcount in the given refcount table for the all clusters
1471 * referenced in the L2 table. While doing so, performs some checks on L2
1472 * entries.
1473 *
1474 * Returns the number of errors found by the checks or -errno if an internal
1475 * error occurred.
1476 */
1477 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1478 void **refcount_table,
1479 int64_t *refcount_table_size, int64_t l2_offset,
1480 int flags)
1481 {
1482 BDRVQcow2State *s = bs->opaque;
1483 uint64_t *l2_table, l2_entry;
1484 uint64_t next_contiguous_offset = 0;
1485 int i, l2_size, nb_csectors, ret;
1486
1487 /* Read L2 table from disk */
1488 l2_size = s->l2_size * sizeof(uint64_t);
1489 l2_table = g_malloc(l2_size);
1490
1491 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1492 if (ret < 0) {
1493 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1494 res->check_errors++;
1495 goto fail;
1496 }
1497
1498 /* Do the actual checks */
1499 for(i = 0; i < s->l2_size; i++) {
1500 l2_entry = be64_to_cpu(l2_table[i]);
1501
1502 switch (qcow2_get_cluster_type(l2_entry)) {
1503 case QCOW2_CLUSTER_COMPRESSED:
1504 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1505 if (l2_entry & QCOW_OFLAG_COPIED) {
1506 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
1507 "copied flag must never be set for compressed "
1508 "clusters\n", l2_entry >> s->cluster_bits);
1509 l2_entry &= ~QCOW_OFLAG_COPIED;
1510 res->corruptions++;
1511 }
1512
1513 /* Mark cluster as used */
1514 nb_csectors = ((l2_entry >> s->csize_shift) &
1515 s->csize_mask) + 1;
1516 l2_entry &= s->cluster_offset_mask;
1517 ret = qcow2_inc_refcounts_imrt(bs, res,
1518 refcount_table, refcount_table_size,
1519 l2_entry & ~511, nb_csectors * 512);
1520 if (ret < 0) {
1521 goto fail;
1522 }
1523
1524 if (flags & CHECK_FRAG_INFO) {
1525 res->bfi.allocated_clusters++;
1526 res->bfi.compressed_clusters++;
1527
1528 /* Compressed clusters are fragmented by nature. Since they
1529 * take up sub-sector space but we only have sector granularity
1530 * I/O we need to re-read the same sectors even for adjacent
1531 * compressed clusters.
1532 */
1533 res->bfi.fragmented_clusters++;
1534 }
1535 break;
1536
1537 case QCOW2_CLUSTER_ZERO_ALLOC:
1538 case QCOW2_CLUSTER_NORMAL:
1539 {
1540 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1541
1542 if (flags & CHECK_FRAG_INFO) {
1543 res->bfi.allocated_clusters++;
1544 if (next_contiguous_offset &&
1545 offset != next_contiguous_offset) {
1546 res->bfi.fragmented_clusters++;
1547 }
1548 next_contiguous_offset = offset + s->cluster_size;
1549 }
1550
1551 /* Mark cluster as used */
1552 ret = qcow2_inc_refcounts_imrt(bs, res,
1553 refcount_table, refcount_table_size,
1554 offset, s->cluster_size);
1555 if (ret < 0) {
1556 goto fail;
1557 }
1558
1559 /* Correct offsets are cluster aligned */
1560 if (offset_into_cluster(s, offset)) {
1561 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
1562 "properly aligned; L2 entry corrupted.\n", offset);
1563 res->corruptions++;
1564 }
1565 break;
1566 }
1567
1568 case QCOW2_CLUSTER_ZERO_PLAIN:
1569 case QCOW2_CLUSTER_UNALLOCATED:
1570 break;
1571
1572 default:
1573 abort();
1574 }
1575 }
1576
1577 g_free(l2_table);
1578 return 0;
1579
1580 fail:
1581 g_free(l2_table);
1582 return ret;
1583 }
1584
1585 /*
1586 * Increases the refcount for the L1 table, its L2 tables and all referenced
1587 * clusters in the given refcount table. While doing so, performs some checks
1588 * on L1 and L2 entries.
1589 *
1590 * Returns the number of errors found by the checks or -errno if an internal
1591 * error occurred.
1592 */
1593 static int check_refcounts_l1(BlockDriverState *bs,
1594 BdrvCheckResult *res,
1595 void **refcount_table,
1596 int64_t *refcount_table_size,
1597 int64_t l1_table_offset, int l1_size,
1598 int flags)
1599 {
1600 BDRVQcow2State *s = bs->opaque;
1601 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1602 int i, ret;
1603
1604 l1_size2 = l1_size * sizeof(uint64_t);
1605
1606 /* Mark L1 table as used */
1607 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1608 l1_table_offset, l1_size2);
1609 if (ret < 0) {
1610 goto fail;
1611 }
1612
1613 /* Read L1 table entries from disk */
1614 if (l1_size2 > 0) {
1615 l1_table = g_try_malloc(l1_size2);
1616 if (l1_table == NULL) {
1617 ret = -ENOMEM;
1618 res->check_errors++;
1619 goto fail;
1620 }
1621 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1622 if (ret < 0) {
1623 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1624 res->check_errors++;
1625 goto fail;
1626 }
1627 for(i = 0;i < l1_size; i++)
1628 be64_to_cpus(&l1_table[i]);
1629 }
1630
1631 /* Do the actual checks */
1632 for(i = 0; i < l1_size; i++) {
1633 l2_offset = l1_table[i];
1634 if (l2_offset) {
1635 /* Mark L2 table as used */
1636 l2_offset &= L1E_OFFSET_MASK;
1637 ret = qcow2_inc_refcounts_imrt(bs, res,
1638 refcount_table, refcount_table_size,
1639 l2_offset, s->cluster_size);
1640 if (ret < 0) {
1641 goto fail;
1642 }
1643
1644 /* L2 tables are cluster aligned */
1645 if (offset_into_cluster(s, l2_offset)) {
1646 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1647 "cluster aligned; L1 entry corrupted\n", l2_offset);
1648 res->corruptions++;
1649 }
1650
1651 /* Process and check L2 entries */
1652 ret = check_refcounts_l2(bs, res, refcount_table,
1653 refcount_table_size, l2_offset, flags);
1654 if (ret < 0) {
1655 goto fail;
1656 }
1657 }
1658 }
1659 g_free(l1_table);
1660 return 0;
1661
1662 fail:
1663 g_free(l1_table);
1664 return ret;
1665 }
1666
1667 /*
1668 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1669 *
1670 * This function does not print an error message nor does it increment
1671 * check_errors if qcow2_get_refcount fails (this is because such an error will
1672 * have been already detected and sufficiently signaled by the calling function
1673 * (qcow2_check_refcounts) by the time this function is called).
1674 */
1675 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1676 BdrvCheckMode fix)
1677 {
1678 BDRVQcow2State *s = bs->opaque;
1679 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1680 int ret;
1681 uint64_t refcount;
1682 int i, j;
1683
1684 for (i = 0; i < s->l1_size; i++) {
1685 uint64_t l1_entry = s->l1_table[i];
1686 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1687 bool l2_dirty = false;
1688
1689 if (!l2_offset) {
1690 continue;
1691 }
1692
1693 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1694 &refcount);
1695 if (ret < 0) {
1696 /* don't print message nor increment check_errors */
1697 continue;
1698 }
1699 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1700 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1701 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1702 fix & BDRV_FIX_ERRORS ? "Repairing" :
1703 "ERROR",
1704 i, l1_entry, refcount);
1705 if (fix & BDRV_FIX_ERRORS) {
1706 s->l1_table[i] = refcount == 1
1707 ? l1_entry | QCOW_OFLAG_COPIED
1708 : l1_entry & ~QCOW_OFLAG_COPIED;
1709 ret = qcow2_write_l1_entry(bs, i);
1710 if (ret < 0) {
1711 res->check_errors++;
1712 goto fail;
1713 }
1714 res->corruptions_fixed++;
1715 } else {
1716 res->corruptions++;
1717 }
1718 }
1719
1720 ret = bdrv_pread(bs->file, l2_offset, l2_table,
1721 s->l2_size * sizeof(uint64_t));
1722 if (ret < 0) {
1723 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1724 strerror(-ret));
1725 res->check_errors++;
1726 goto fail;
1727 }
1728
1729 for (j = 0; j < s->l2_size; j++) {
1730 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1731 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1732 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1733
1734 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1735 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1736 ret = qcow2_get_refcount(bs,
1737 data_offset >> s->cluster_bits,
1738 &refcount);
1739 if (ret < 0) {
1740 /* don't print message nor increment check_errors */
1741 continue;
1742 }
1743 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1744 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1745 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1746 fix & BDRV_FIX_ERRORS ? "Repairing" :
1747 "ERROR",
1748 l2_entry, refcount);
1749 if (fix & BDRV_FIX_ERRORS) {
1750 l2_table[j] = cpu_to_be64(refcount == 1
1751 ? l2_entry | QCOW_OFLAG_COPIED
1752 : l2_entry & ~QCOW_OFLAG_COPIED);
1753 l2_dirty = true;
1754 res->corruptions_fixed++;
1755 } else {
1756 res->corruptions++;
1757 }
1758 }
1759 }
1760 }
1761
1762 if (l2_dirty) {
1763 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1764 l2_offset, s->cluster_size);
1765 if (ret < 0) {
1766 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1767 "overlap check failed: %s\n", strerror(-ret));
1768 res->check_errors++;
1769 goto fail;
1770 }
1771
1772 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1773 s->cluster_size);
1774 if (ret < 0) {
1775 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1776 strerror(-ret));
1777 res->check_errors++;
1778 goto fail;
1779 }
1780 }
1781 }
1782
1783 ret = 0;
1784
1785 fail:
1786 qemu_vfree(l2_table);
1787 return ret;
1788 }
1789
1790 /*
1791 * Checks consistency of refblocks and accounts for each refblock in
1792 * *refcount_table.
1793 */
1794 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1795 BdrvCheckMode fix, bool *rebuild,
1796 void **refcount_table, int64_t *nb_clusters)
1797 {
1798 BDRVQcow2State *s = bs->opaque;
1799 int64_t i, size;
1800 int ret;
1801
1802 for(i = 0; i < s->refcount_table_size; i++) {
1803 uint64_t offset, cluster;
1804 offset = s->refcount_table[i];
1805 cluster = offset >> s->cluster_bits;
1806
1807 /* Refcount blocks are cluster aligned */
1808 if (offset_into_cluster(s, offset)) {
1809 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1810 "cluster aligned; refcount table entry corrupted\n", i);
1811 res->corruptions++;
1812 *rebuild = true;
1813 continue;
1814 }
1815
1816 if (cluster >= *nb_clusters) {
1817 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1818 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1819
1820 if (fix & BDRV_FIX_ERRORS) {
1821 int64_t new_nb_clusters;
1822 Error *local_err = NULL;
1823
1824 if (offset > INT64_MAX - s->cluster_size) {
1825 ret = -EINVAL;
1826 goto resize_fail;
1827 }
1828
1829 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1830 PREALLOC_MODE_OFF, &local_err);
1831 if (ret < 0) {
1832 error_report_err(local_err);
1833 goto resize_fail;
1834 }
1835 size = bdrv_getlength(bs->file->bs);
1836 if (size < 0) {
1837 ret = size;
1838 goto resize_fail;
1839 }
1840
1841 new_nb_clusters = size_to_clusters(s, size);
1842 assert(new_nb_clusters >= *nb_clusters);
1843
1844 ret = realloc_refcount_array(s, refcount_table,
1845 nb_clusters, new_nb_clusters);
1846 if (ret < 0) {
1847 res->check_errors++;
1848 return ret;
1849 }
1850
1851 if (cluster >= *nb_clusters) {
1852 ret = -EINVAL;
1853 goto resize_fail;
1854 }
1855
1856 res->corruptions_fixed++;
1857 ret = qcow2_inc_refcounts_imrt(bs, res,
1858 refcount_table, nb_clusters,
1859 offset, s->cluster_size);
1860 if (ret < 0) {
1861 return ret;
1862 }
1863 /* No need to check whether the refcount is now greater than 1:
1864 * This area was just allocated and zeroed, so it can only be
1865 * exactly 1 after qcow2_inc_refcounts_imrt() */
1866 continue;
1867
1868 resize_fail:
1869 res->corruptions++;
1870 *rebuild = true;
1871 fprintf(stderr, "ERROR could not resize image: %s\n",
1872 strerror(-ret));
1873 } else {
1874 res->corruptions++;
1875 }
1876 continue;
1877 }
1878
1879 if (offset != 0) {
1880 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1881 offset, s->cluster_size);
1882 if (ret < 0) {
1883 return ret;
1884 }
1885 if (s->get_refcount(*refcount_table, cluster) != 1) {
1886 fprintf(stderr, "ERROR refcount block %" PRId64
1887 " refcount=%" PRIu64 "\n", i,
1888 s->get_refcount(*refcount_table, cluster));
1889 res->corruptions++;
1890 *rebuild = true;
1891 }
1892 }
1893 }
1894
1895 return 0;
1896 }
1897
1898 /*
1899 * Calculates an in-memory refcount table.
1900 */
1901 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1902 BdrvCheckMode fix, bool *rebuild,
1903 void **refcount_table, int64_t *nb_clusters)
1904 {
1905 BDRVQcow2State *s = bs->opaque;
1906 int64_t i;
1907 QCowSnapshot *sn;
1908 int ret;
1909
1910 if (!*refcount_table) {
1911 int64_t old_size = 0;
1912 ret = realloc_refcount_array(s, refcount_table,
1913 &old_size, *nb_clusters);
1914 if (ret < 0) {
1915 res->check_errors++;
1916 return ret;
1917 }
1918 }
1919
1920 /* header */
1921 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1922 0, s->cluster_size);
1923 if (ret < 0) {
1924 return ret;
1925 }
1926
1927 /* current L1 table */
1928 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1929 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO);
1930 if (ret < 0) {
1931 return ret;
1932 }
1933
1934 /* snapshots */
1935 for (i = 0; i < s->nb_snapshots; i++) {
1936 sn = s->snapshots + i;
1937 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
1938 sn->l1_table_offset, sn->l1_size, 0);
1939 if (ret < 0) {
1940 return ret;
1941 }
1942 }
1943 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1944 s->snapshots_offset, s->snapshots_size);
1945 if (ret < 0) {
1946 return ret;
1947 }
1948
1949 /* refcount data */
1950 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1951 s->refcount_table_offset,
1952 s->refcount_table_size * sizeof(uint64_t));
1953 if (ret < 0) {
1954 return ret;
1955 }
1956
1957 /* encryption */
1958 if (s->crypto_header.length) {
1959 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
1960 s->crypto_header.offset,
1961 s->crypto_header.length);
1962 if (ret < 0) {
1963 return ret;
1964 }
1965 }
1966
1967 /* bitmaps */
1968 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
1969 if (ret < 0) {
1970 return ret;
1971 }
1972
1973 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
1974 }
1975
1976 /*
1977 * Compares the actual reference count for each cluster in the image against the
1978 * refcount as reported by the refcount structures on-disk.
1979 */
1980 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
1981 BdrvCheckMode fix, bool *rebuild,
1982 int64_t *highest_cluster,
1983 void *refcount_table, int64_t nb_clusters)
1984 {
1985 BDRVQcow2State *s = bs->opaque;
1986 int64_t i;
1987 uint64_t refcount1, refcount2;
1988 int ret;
1989
1990 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
1991 ret = qcow2_get_refcount(bs, i, &refcount1);
1992 if (ret < 0) {
1993 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
1994 i, strerror(-ret));
1995 res->check_errors++;
1996 continue;
1997 }
1998
1999 refcount2 = s->get_refcount(refcount_table, i);
2000
2001 if (refcount1 > 0 || refcount2 > 0) {
2002 *highest_cluster = i;
2003 }
2004
2005 if (refcount1 != refcount2) {
2006 /* Check if we're allowed to fix the mismatch */
2007 int *num_fixed = NULL;
2008 if (refcount1 == 0) {
2009 *rebuild = true;
2010 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2011 num_fixed = &res->leaks_fixed;
2012 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2013 num_fixed = &res->corruptions_fixed;
2014 }
2015
2016 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2017 " reference=%" PRIu64 "\n",
2018 num_fixed != NULL ? "Repairing" :
2019 refcount1 < refcount2 ? "ERROR" :
2020 "Leaked",
2021 i, refcount1, refcount2);
2022
2023 if (num_fixed) {
2024 ret = update_refcount(bs, i << s->cluster_bits, 1,
2025 refcount_diff(refcount1, refcount2),
2026 refcount1 > refcount2,
2027 QCOW2_DISCARD_ALWAYS);
2028 if (ret >= 0) {
2029 (*num_fixed)++;
2030 continue;
2031 }
2032 }
2033
2034 /* And if we couldn't, print an error */
2035 if (refcount1 < refcount2) {
2036 res->corruptions++;
2037 } else {
2038 res->leaks++;
2039 }
2040 }
2041 }
2042 }
2043
2044 /*
2045 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2046 * the on-disk refcount structures.
2047 *
2048 * On input, *first_free_cluster tells where to start looking, and need not
2049 * actually be a free cluster; the returned offset will not be before that
2050 * cluster. On output, *first_free_cluster points to the first gap found, even
2051 * if that gap was too small to be used as the returned offset.
2052 *
2053 * Note that *first_free_cluster is a cluster index whereas the return value is
2054 * an offset.
2055 */
2056 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2057 int cluster_count,
2058 void **refcount_table,
2059 int64_t *imrt_nb_clusters,
2060 int64_t *first_free_cluster)
2061 {
2062 BDRVQcow2State *s = bs->opaque;
2063 int64_t cluster = *first_free_cluster, i;
2064 bool first_gap = true;
2065 int contiguous_free_clusters;
2066 int ret;
2067
2068 /* Starting at *first_free_cluster, find a range of at least cluster_count
2069 * continuously free clusters */
2070 for (contiguous_free_clusters = 0;
2071 cluster < *imrt_nb_clusters &&
2072 contiguous_free_clusters < cluster_count;
2073 cluster++)
2074 {
2075 if (!s->get_refcount(*refcount_table, cluster)) {
2076 contiguous_free_clusters++;
2077 if (first_gap) {
2078 /* If this is the first free cluster found, update
2079 * *first_free_cluster accordingly */
2080 *first_free_cluster = cluster;
2081 first_gap = false;
2082 }
2083 } else if (contiguous_free_clusters) {
2084 contiguous_free_clusters = 0;
2085 }
2086 }
2087
2088 /* If contiguous_free_clusters is greater than zero, it contains the number
2089 * of continuously free clusters until the current cluster; the first free
2090 * cluster in the current "gap" is therefore
2091 * cluster - contiguous_free_clusters */
2092
2093 /* If no such range could be found, grow the in-memory refcount table
2094 * accordingly to append free clusters at the end of the image */
2095 if (contiguous_free_clusters < cluster_count) {
2096 /* contiguous_free_clusters clusters are already empty at the image end;
2097 * we need cluster_count clusters; therefore, we have to allocate
2098 * cluster_count - contiguous_free_clusters new clusters at the end of
2099 * the image (which is the current value of cluster; note that cluster
2100 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2101 * the image end) */
2102 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2103 cluster + cluster_count
2104 - contiguous_free_clusters);
2105 if (ret < 0) {
2106 return ret;
2107 }
2108 }
2109
2110 /* Go back to the first free cluster */
2111 cluster -= contiguous_free_clusters;
2112 for (i = 0; i < cluster_count; i++) {
2113 s->set_refcount(*refcount_table, cluster + i, 1);
2114 }
2115
2116 return cluster << s->cluster_bits;
2117 }
2118
2119 /*
2120 * Creates a new refcount structure based solely on the in-memory information
2121 * given through *refcount_table. All necessary allocations will be reflected
2122 * in that array.
2123 *
2124 * On success, the old refcount structure is leaked (it will be covered by the
2125 * new refcount structure).
2126 */
2127 static int rebuild_refcount_structure(BlockDriverState *bs,
2128 BdrvCheckResult *res,
2129 void **refcount_table,
2130 int64_t *nb_clusters)
2131 {
2132 BDRVQcow2State *s = bs->opaque;
2133 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2134 int64_t refblock_offset, refblock_start, refblock_index;
2135 uint32_t reftable_size = 0;
2136 uint64_t *on_disk_reftable = NULL;
2137 void *on_disk_refblock;
2138 int ret = 0;
2139 struct {
2140 uint64_t reftable_offset;
2141 uint32_t reftable_clusters;
2142 } QEMU_PACKED reftable_offset_and_clusters;
2143
2144 qcow2_cache_empty(bs, s->refcount_block_cache);
2145
2146 write_refblocks:
2147 for (; cluster < *nb_clusters; cluster++) {
2148 if (!s->get_refcount(*refcount_table, cluster)) {
2149 continue;
2150 }
2151
2152 refblock_index = cluster >> s->refcount_block_bits;
2153 refblock_start = refblock_index << s->refcount_block_bits;
2154
2155 /* Don't allocate a cluster in a refblock already written to disk */
2156 if (first_free_cluster < refblock_start) {
2157 first_free_cluster = refblock_start;
2158 }
2159 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2160 nb_clusters, &first_free_cluster);
2161 if (refblock_offset < 0) {
2162 fprintf(stderr, "ERROR allocating refblock: %s\n",
2163 strerror(-refblock_offset));
2164 res->check_errors++;
2165 ret = refblock_offset;
2166 goto fail;
2167 }
2168
2169 if (reftable_size <= refblock_index) {
2170 uint32_t old_reftable_size = reftable_size;
2171 uint64_t *new_on_disk_reftable;
2172
2173 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2174 s->cluster_size) / sizeof(uint64_t);
2175 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2176 reftable_size *
2177 sizeof(uint64_t));
2178 if (!new_on_disk_reftable) {
2179 res->check_errors++;
2180 ret = -ENOMEM;
2181 goto fail;
2182 }
2183 on_disk_reftable = new_on_disk_reftable;
2184
2185 memset(on_disk_reftable + old_reftable_size, 0,
2186 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2187
2188 /* The offset we have for the reftable is now no longer valid;
2189 * this will leak that range, but we can easily fix that by running
2190 * a leak-fixing check after this rebuild operation */
2191 reftable_offset = -1;
2192 }
2193 on_disk_reftable[refblock_index] = refblock_offset;
2194
2195 /* If this is apparently the last refblock (for now), try to squeeze the
2196 * reftable in */
2197 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2198 reftable_offset < 0)
2199 {
2200 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2201 sizeof(uint64_t));
2202 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2203 refcount_table, nb_clusters,
2204 &first_free_cluster);
2205 if (reftable_offset < 0) {
2206 fprintf(stderr, "ERROR allocating reftable: %s\n",
2207 strerror(-reftable_offset));
2208 res->check_errors++;
2209 ret = reftable_offset;
2210 goto fail;
2211 }
2212 }
2213
2214 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2215 s->cluster_size);
2216 if (ret < 0) {
2217 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2218 goto fail;
2219 }
2220
2221 /* The size of *refcount_table is always cluster-aligned, therefore the
2222 * write operation will not overflow */
2223 on_disk_refblock = (void *)((char *) *refcount_table +
2224 refblock_index * s->cluster_size);
2225
2226 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2227 on_disk_refblock, s->cluster_sectors);
2228 if (ret < 0) {
2229 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2230 goto fail;
2231 }
2232
2233 /* Go to the end of this refblock */
2234 cluster = refblock_start + s->refcount_block_size - 1;
2235 }
2236
2237 if (reftable_offset < 0) {
2238 uint64_t post_refblock_start, reftable_clusters;
2239
2240 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2241 reftable_clusters = size_to_clusters(s,
2242 reftable_size * sizeof(uint64_t));
2243 /* Not pretty but simple */
2244 if (first_free_cluster < post_refblock_start) {
2245 first_free_cluster = post_refblock_start;
2246 }
2247 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2248 refcount_table, nb_clusters,
2249 &first_free_cluster);
2250 if (reftable_offset < 0) {
2251 fprintf(stderr, "ERROR allocating reftable: %s\n",
2252 strerror(-reftable_offset));
2253 res->check_errors++;
2254 ret = reftable_offset;
2255 goto fail;
2256 }
2257
2258 goto write_refblocks;
2259 }
2260
2261 assert(on_disk_reftable);
2262
2263 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2264 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2265 }
2266
2267 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2268 reftable_size * sizeof(uint64_t));
2269 if (ret < 0) {
2270 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2271 goto fail;
2272 }
2273
2274 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2275 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2276 reftable_size * sizeof(uint64_t));
2277 if (ret < 0) {
2278 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2279 goto fail;
2280 }
2281
2282 /* Enter new reftable into the image header */
2283 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2284 reftable_offset_and_clusters.reftable_clusters =
2285 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2286 ret = bdrv_pwrite_sync(bs->file,
2287 offsetof(QCowHeader, refcount_table_offset),
2288 &reftable_offset_and_clusters,
2289 sizeof(reftable_offset_and_clusters));
2290 if (ret < 0) {
2291 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2292 goto fail;
2293 }
2294
2295 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2296 be64_to_cpus(&on_disk_reftable[refblock_index]);
2297 }
2298 s->refcount_table = on_disk_reftable;
2299 s->refcount_table_offset = reftable_offset;
2300 s->refcount_table_size = reftable_size;
2301 update_max_refcount_table_index(s);
2302
2303 return 0;
2304
2305 fail:
2306 g_free(on_disk_reftable);
2307 return ret;
2308 }
2309
2310 /*
2311 * Checks an image for refcount consistency.
2312 *
2313 * Returns 0 if no errors are found, the number of errors in case the image is
2314 * detected as corrupted, and -errno when an internal error occurred.
2315 */
2316 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2317 BdrvCheckMode fix)
2318 {
2319 BDRVQcow2State *s = bs->opaque;
2320 BdrvCheckResult pre_compare_res;
2321 int64_t size, highest_cluster, nb_clusters;
2322 void *refcount_table = NULL;
2323 bool rebuild = false;
2324 int ret;
2325
2326 size = bdrv_getlength(bs->file->bs);
2327 if (size < 0) {
2328 res->check_errors++;
2329 return size;
2330 }
2331
2332 nb_clusters = size_to_clusters(s, size);
2333 if (nb_clusters > INT_MAX) {
2334 res->check_errors++;
2335 return -EFBIG;
2336 }
2337
2338 res->bfi.total_clusters =
2339 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2340
2341 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2342 &nb_clusters);
2343 if (ret < 0) {
2344 goto fail;
2345 }
2346
2347 /* In case we don't need to rebuild the refcount structure (but want to fix
2348 * something), this function is immediately called again, in which case the
2349 * result should be ignored */
2350 pre_compare_res = *res;
2351 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2352 nb_clusters);
2353
2354 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2355 BdrvCheckResult old_res = *res;
2356 int fresh_leaks = 0;
2357
2358 fprintf(stderr, "Rebuilding refcount structure\n");
2359 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2360 &nb_clusters);
2361 if (ret < 0) {
2362 goto fail;
2363 }
2364
2365 res->corruptions = 0;
2366 res->leaks = 0;
2367
2368 /* Because the old reftable has been exchanged for a new one the
2369 * references have to be recalculated */
2370 rebuild = false;
2371 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2372 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2373 &nb_clusters);
2374 if (ret < 0) {
2375 goto fail;
2376 }
2377
2378 if (fix & BDRV_FIX_LEAKS) {
2379 /* The old refcount structures are now leaked, fix it; the result
2380 * can be ignored, aside from leaks which were introduced by
2381 * rebuild_refcount_structure() that could not be fixed */
2382 BdrvCheckResult saved_res = *res;
2383 *res = (BdrvCheckResult){ 0 };
2384
2385 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2386 &highest_cluster, refcount_table, nb_clusters);
2387 if (rebuild) {
2388 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2389 "broken\n");
2390 }
2391
2392 /* Any leaks accounted for here were introduced by
2393 * rebuild_refcount_structure() because that function has created a
2394 * new refcount structure from scratch */
2395 fresh_leaks = res->leaks;
2396 *res = saved_res;
2397 }
2398
2399 if (res->corruptions < old_res.corruptions) {
2400 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2401 }
2402 if (res->leaks < old_res.leaks) {
2403 res->leaks_fixed += old_res.leaks - res->leaks;
2404 }
2405 res->leaks += fresh_leaks;
2406 } else if (fix) {
2407 if (rebuild) {
2408 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2409 res->check_errors++;
2410 ret = -EIO;
2411 goto fail;
2412 }
2413
2414 if (res->leaks || res->corruptions) {
2415 *res = pre_compare_res;
2416 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2417 refcount_table, nb_clusters);
2418 }
2419 }
2420
2421 /* check OFLAG_COPIED */
2422 ret = check_oflag_copied(bs, res, fix);
2423 if (ret < 0) {
2424 goto fail;
2425 }
2426
2427 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2428 ret = 0;
2429
2430 fail:
2431 g_free(refcount_table);
2432
2433 return ret;
2434 }
2435
2436 #define overlaps_with(ofs, sz) \
2437 ranges_overlap(offset, size, ofs, sz)
2438
2439 /*
2440 * Checks if the given offset into the image file is actually free to use by
2441 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2442 * i.e. a sanity check without relying on the refcount tables.
2443 *
2444 * The ign parameter specifies what checks not to perform (being a bitmask of
2445 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2446 *
2447 * Returns:
2448 * - 0 if writing to this offset will not affect the mentioned metadata
2449 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2450 * - a negative value (-errno) indicating an error while performing a check,
2451 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2452 */
2453 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2454 int64_t size)
2455 {
2456 BDRVQcow2State *s = bs->opaque;
2457 int chk = s->overlap_check & ~ign;
2458 int i, j;
2459
2460 if (!size) {
2461 return 0;
2462 }
2463
2464 if (chk & QCOW2_OL_MAIN_HEADER) {
2465 if (offset < s->cluster_size) {
2466 return QCOW2_OL_MAIN_HEADER;
2467 }
2468 }
2469
2470 /* align range to test to cluster boundaries */
2471 size = align_offset(offset_into_cluster(s, offset) + size, s->cluster_size);
2472 offset = start_of_cluster(s, offset);
2473
2474 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2475 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2476 return QCOW2_OL_ACTIVE_L1;
2477 }
2478 }
2479
2480 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2481 if (overlaps_with(s->refcount_table_offset,
2482 s->refcount_table_size * sizeof(uint64_t))) {
2483 return QCOW2_OL_REFCOUNT_TABLE;
2484 }
2485 }
2486
2487 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2488 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2489 return QCOW2_OL_SNAPSHOT_TABLE;
2490 }
2491 }
2492
2493 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2494 for (i = 0; i < s->nb_snapshots; i++) {
2495 if (s->snapshots[i].l1_size &&
2496 overlaps_with(s->snapshots[i].l1_table_offset,
2497 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2498 return QCOW2_OL_INACTIVE_L1;
2499 }
2500 }
2501 }
2502
2503 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2504 for (i = 0; i < s->l1_size; i++) {
2505 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2506 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2507 s->cluster_size)) {
2508 return QCOW2_OL_ACTIVE_L2;
2509 }
2510 }
2511 }
2512
2513 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2514 unsigned last_entry = s->max_refcount_table_index;
2515 assert(last_entry < s->refcount_table_size);
2516 assert(last_entry + 1 == s->refcount_table_size ||
2517 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2518 for (i = 0; i <= last_entry; i++) {
2519 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2520 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2521 s->cluster_size)) {
2522 return QCOW2_OL_REFCOUNT_BLOCK;
2523 }
2524 }
2525 }
2526
2527 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2528 for (i = 0; i < s->nb_snapshots; i++) {
2529 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2530 uint32_t l1_sz = s->snapshots[i].l1_size;
2531 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2532 uint64_t *l1 = g_try_malloc(l1_sz2);
2533 int ret;
2534
2535 if (l1_sz2 && l1 == NULL) {
2536 return -ENOMEM;
2537 }
2538
2539 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2540 if (ret < 0) {
2541 g_free(l1);
2542 return ret;
2543 }
2544
2545 for (j = 0; j < l1_sz; j++) {
2546 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2547 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2548 g_free(l1);
2549 return QCOW2_OL_INACTIVE_L2;
2550 }
2551 }
2552
2553 g_free(l1);
2554 }
2555 }
2556
2557 return 0;
2558 }
2559
2560 static const char *metadata_ol_names[] = {
2561 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2562 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2563 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2564 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2565 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2566 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2567 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2568 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2569 };
2570
2571 /*
2572 * First performs a check for metadata overlaps (through
2573 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2574 * while performing a check), that value is returned. If an impending overlap
2575 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2576 * and -EIO returned.
2577 *
2578 * Returns 0 if there were neither overlaps nor errors while checking for
2579 * overlaps; or a negative value (-errno) on error.
2580 */
2581 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2582 int64_t size)
2583 {
2584 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2585
2586 if (ret < 0) {
2587 return ret;
2588 } else if (ret > 0) {
2589 int metadata_ol_bitnr = ctz32(ret);
2590 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2591
2592 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2593 "write on metadata (overlaps with %s)",
2594 metadata_ol_names[metadata_ol_bitnr]);
2595 return -EIO;
2596 }
2597
2598 return 0;
2599 }
2600
2601 /* A pointer to a function of this type is given to walk_over_reftable(). That
2602 * function will create refblocks and pass them to a RefblockFinishOp once they
2603 * are completed (@refblock). @refblock_empty is set if the refblock is
2604 * completely empty.
2605 *
2606 * Along with the refblock, a corresponding reftable entry is passed, in the
2607 * reftable @reftable (which may be reallocated) at @reftable_index.
2608 *
2609 * @allocated should be set to true if a new cluster has been allocated.
2610 */
2611 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2612 uint64_t reftable_index, uint64_t *reftable_size,
2613 void *refblock, bool refblock_empty,
2614 bool *allocated, Error **errp);
2615
2616 /**
2617 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2618 * it is not empty) and inserts its offset into the new reftable. The size of
2619 * this new reftable is increased as required.
2620 */
2621 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2622 uint64_t reftable_index, uint64_t *reftable_size,
2623 void *refblock, bool refblock_empty, bool *allocated,
2624 Error **errp)
2625 {
2626 BDRVQcow2State *s = bs->opaque;
2627 int64_t offset;
2628
2629 if (!refblock_empty && reftable_index >= *reftable_size) {
2630 uint64_t *new_reftable;
2631 uint64_t new_reftable_size;
2632
2633 new_reftable_size = ROUND_UP(reftable_index + 1,
2634 s->cluster_size / sizeof(uint64_t));
2635 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2636 error_setg(errp,
2637 "This operation would make the refcount table grow "
2638 "beyond the maximum size supported by QEMU, aborting");
2639 return -ENOTSUP;
2640 }
2641
2642 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2643 sizeof(uint64_t));
2644 if (!new_reftable) {
2645 error_setg(errp, "Failed to increase reftable buffer size");
2646 return -ENOMEM;
2647 }
2648
2649 memset(new_reftable + *reftable_size, 0,
2650 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2651
2652 *reftable = new_reftable;
2653 *reftable_size = new_reftable_size;
2654 }
2655
2656 if (!refblock_empty && !(*reftable)[reftable_index]) {
2657 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2658 if (offset < 0) {
2659 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2660 return offset;
2661 }
2662 (*reftable)[reftable_index] = offset;
2663 *allocated = true;
2664 }
2665
2666 return 0;
2667 }
2668
2669 /**
2670 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2671 * offset specified by the new reftable's entry. It does not modify the new
2672 * reftable or change any refcounts.
2673 */
2674 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2675 uint64_t reftable_index, uint64_t *reftable_size,
2676 void *refblock, bool refblock_empty, bool *allocated,
2677 Error **errp)
2678 {
2679 BDRVQcow2State *s = bs->opaque;
2680 int64_t offset;
2681 int ret;
2682
2683 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2684 offset = (*reftable)[reftable_index];
2685
2686 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2687 if (ret < 0) {
2688 error_setg_errno(errp, -ret, "Overlap check failed");
2689 return ret;
2690 }
2691
2692 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2693 if (ret < 0) {
2694 error_setg_errno(errp, -ret, "Failed to write refblock");
2695 return ret;
2696 }
2697 } else {
2698 assert(refblock_empty);
2699 }
2700
2701 return 0;
2702 }
2703
2704 /**
2705 * This function walks over the existing reftable and every referenced refblock;
2706 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2707 * create an equal new entry in the passed @new_refblock. Once that
2708 * @new_refblock is completely filled, @operation will be called.
2709 *
2710 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2711 * @index is the index of the walk_over_reftable() calls and @total is the total
2712 * number of walk_over_reftable() calls per amend operation. Both are used for
2713 * calculating the parameters for the status callback.
2714 *
2715 * @allocated is set to true if a new cluster has been allocated.
2716 */
2717 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2718 uint64_t *new_reftable_index,
2719 uint64_t *new_reftable_size,
2720 void *new_refblock, int new_refblock_size,
2721 int new_refcount_bits,
2722 RefblockFinishOp *operation, bool *allocated,
2723 Qcow2SetRefcountFunc *new_set_refcount,
2724 BlockDriverAmendStatusCB *status_cb,
2725 void *cb_opaque, int index, int total,
2726 Error **errp)
2727 {
2728 BDRVQcow2State *s = bs->opaque;
2729 uint64_t reftable_index;
2730 bool new_refblock_empty = true;
2731 int refblock_index;
2732 int new_refblock_index = 0;
2733 int ret;
2734
2735 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2736 reftable_index++)
2737 {
2738 uint64_t refblock_offset = s->refcount_table[reftable_index]
2739 & REFT_OFFSET_MASK;
2740
2741 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2742 (uint64_t)total * s->refcount_table_size, cb_opaque);
2743
2744 if (refblock_offset) {
2745 void *refblock;
2746
2747 if (offset_into_cluster(s, refblock_offset)) {
2748 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2749 PRIx64 " unaligned (reftable index: %#"
2750 PRIx64 ")", refblock_offset,
2751 reftable_index);
2752 error_setg(errp,
2753 "Image is corrupt (unaligned refblock offset)");
2754 return -EIO;
2755 }
2756
2757 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2758 &refblock);
2759 if (ret < 0) {
2760 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2761 return ret;
2762 }
2763
2764 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2765 refblock_index++)
2766 {
2767 uint64_t refcount;
2768
2769 if (new_refblock_index >= new_refblock_size) {
2770 /* new_refblock is now complete */
2771 ret = operation(bs, new_reftable, *new_reftable_index,
2772 new_reftable_size, new_refblock,
2773 new_refblock_empty, allocated, errp);
2774 if (ret < 0) {
2775 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2776 return ret;
2777 }
2778
2779 (*new_reftable_index)++;
2780 new_refblock_index = 0;
2781 new_refblock_empty = true;
2782 }
2783
2784 refcount = s->get_refcount(refblock, refblock_index);
2785 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2786 uint64_t offset;
2787
2788 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2789
2790 offset = ((reftable_index << s->refcount_block_bits)
2791 + refblock_index) << s->cluster_bits;
2792
2793 error_setg(errp, "Cannot decrease refcount entry width to "
2794 "%i bits: Cluster at offset %#" PRIx64 " has a "
2795 "refcount of %" PRIu64, new_refcount_bits,
2796 offset, refcount);
2797 return -EINVAL;
2798 }
2799
2800 if (new_set_refcount) {
2801 new_set_refcount(new_refblock, new_refblock_index++,
2802 refcount);
2803 } else {
2804 new_refblock_index++;
2805 }
2806 new_refblock_empty = new_refblock_empty && refcount == 0;
2807 }
2808
2809 qcow2_cache_put(bs, s->refcount_block_cache, &refblock);
2810 } else {
2811 /* No refblock means every refcount is 0 */
2812 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2813 refblock_index++)
2814 {
2815 if (new_refblock_index >= new_refblock_size) {
2816 /* new_refblock is now complete */
2817 ret = operation(bs, new_reftable, *new_reftable_index,
2818 new_reftable_size, new_refblock,
2819 new_refblock_empty, allocated, errp);
2820 if (ret < 0) {
2821 return ret;
2822 }
2823
2824 (*new_reftable_index)++;
2825 new_refblock_index = 0;
2826 new_refblock_empty = true;
2827 }
2828
2829 if (new_set_refcount) {
2830 new_set_refcount(new_refblock, new_refblock_index++, 0);
2831 } else {
2832 new_refblock_index++;
2833 }
2834 }
2835 }
2836 }
2837
2838 if (new_refblock_index > 0) {
2839 /* Complete the potentially existing partially filled final refblock */
2840 if (new_set_refcount) {
2841 for (; new_refblock_index < new_refblock_size;
2842 new_refblock_index++)
2843 {
2844 new_set_refcount(new_refblock, new_refblock_index, 0);
2845 }
2846 }
2847
2848 ret = operation(bs, new_reftable, *new_reftable_index,
2849 new_reftable_size, new_refblock, new_refblock_empty,
2850 allocated, errp);
2851 if (ret < 0) {
2852 return ret;
2853 }
2854
2855 (*new_reftable_index)++;
2856 }
2857
2858 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
2859 (uint64_t)total * s->refcount_table_size, cb_opaque);
2860
2861 return 0;
2862 }
2863
2864 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
2865 BlockDriverAmendStatusCB *status_cb,
2866 void *cb_opaque, Error **errp)
2867 {
2868 BDRVQcow2State *s = bs->opaque;
2869 Qcow2GetRefcountFunc *new_get_refcount;
2870 Qcow2SetRefcountFunc *new_set_refcount;
2871 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
2872 uint64_t *new_reftable = NULL, new_reftable_size = 0;
2873 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
2874 uint64_t new_reftable_index = 0;
2875 uint64_t i;
2876 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
2877 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
2878 int old_refcount_order;
2879 int walk_index = 0;
2880 int ret;
2881 bool new_allocation;
2882
2883 assert(s->qcow_version >= 3);
2884 assert(refcount_order >= 0 && refcount_order <= 6);
2885
2886 /* see qcow2_open() */
2887 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
2888
2889 new_get_refcount = get_refcount_funcs[refcount_order];
2890 new_set_refcount = set_refcount_funcs[refcount_order];
2891
2892
2893 do {
2894 int total_walks;
2895
2896 new_allocation = false;
2897
2898 /* At least we have to do this walk and the one which writes the
2899 * refblocks; also, at least we have to do this loop here at least
2900 * twice (normally), first to do the allocations, and second to
2901 * determine that everything is correctly allocated, this then makes
2902 * three walks in total */
2903 total_walks = MAX(walk_index + 2, 3);
2904
2905 /* First, allocate the structures so they are present in the refcount
2906 * structures */
2907 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2908 &new_reftable_size, NULL, new_refblock_size,
2909 new_refcount_bits, &alloc_refblock,
2910 &new_allocation, NULL, status_cb, cb_opaque,
2911 walk_index++, total_walks, errp);
2912 if (ret < 0) {
2913 goto done;
2914 }
2915
2916 new_reftable_index = 0;
2917
2918 if (new_allocation) {
2919 if (new_reftable_offset) {
2920 qcow2_free_clusters(bs, new_reftable_offset,
2921 allocated_reftable_size * sizeof(uint64_t),
2922 QCOW2_DISCARD_NEVER);
2923 }
2924
2925 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
2926 sizeof(uint64_t));
2927 if (new_reftable_offset < 0) {
2928 error_setg_errno(errp, -new_reftable_offset,
2929 "Failed to allocate the new reftable");
2930 ret = new_reftable_offset;
2931 goto done;
2932 }
2933 allocated_reftable_size = new_reftable_size;
2934 }
2935 } while (new_allocation);
2936
2937 /* Second, write the new refblocks */
2938 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
2939 &new_reftable_size, new_refblock,
2940 new_refblock_size, new_refcount_bits,
2941 &flush_refblock, &new_allocation, new_set_refcount,
2942 status_cb, cb_opaque, walk_index, walk_index + 1,
2943 errp);
2944 if (ret < 0) {
2945 goto done;
2946 }
2947 assert(!new_allocation);
2948
2949
2950 /* Write the new reftable */
2951 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
2952 new_reftable_size * sizeof(uint64_t));
2953 if (ret < 0) {
2954 error_setg_errno(errp, -ret, "Overlap check failed");
2955 goto done;
2956 }
2957
2958 for (i = 0; i < new_reftable_size; i++) {
2959 cpu_to_be64s(&new_reftable[i]);
2960 }
2961
2962 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
2963 new_reftable_size * sizeof(uint64_t));
2964
2965 for (i = 0; i < new_reftable_size; i++) {
2966 be64_to_cpus(&new_reftable[i]);
2967 }
2968
2969 if (ret < 0) {
2970 error_setg_errno(errp, -ret, "Failed to write the new reftable");
2971 goto done;
2972 }
2973
2974
2975 /* Empty the refcount cache */
2976 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
2977 if (ret < 0) {
2978 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
2979 goto done;
2980 }
2981
2982 /* Update the image header to point to the new reftable; this only updates
2983 * the fields which are relevant to qcow2_update_header(); other fields
2984 * such as s->refcount_table or s->refcount_bits stay stale for now
2985 * (because we have to restore everything if qcow2_update_header() fails) */
2986 old_refcount_order = s->refcount_order;
2987 old_reftable_size = s->refcount_table_size;
2988 old_reftable_offset = s->refcount_table_offset;
2989
2990 s->refcount_order = refcount_order;
2991 s->refcount_table_size = new_reftable_size;
2992 s->refcount_table_offset = new_reftable_offset;
2993
2994 ret = qcow2_update_header(bs);
2995 if (ret < 0) {
2996 s->refcount_order = old_refcount_order;
2997 s->refcount_table_size = old_reftable_size;
2998 s->refcount_table_offset = old_reftable_offset;
2999 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3000 goto done;
3001 }
3002
3003 /* Now update the rest of the in-memory information */
3004 old_reftable = s->refcount_table;
3005 s->refcount_table = new_reftable;
3006 update_max_refcount_table_index(s);
3007
3008 s->refcount_bits = 1 << refcount_order;
3009 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3010 s->refcount_max += s->refcount_max - 1;
3011
3012 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3013 s->refcount_block_size = 1 << s->refcount_block_bits;
3014
3015 s->get_refcount = new_get_refcount;
3016 s->set_refcount = new_set_refcount;
3017
3018 /* For cleaning up all old refblocks and the old reftable below the "done"
3019 * label */
3020 new_reftable = old_reftable;
3021 new_reftable_size = old_reftable_size;
3022 new_reftable_offset = old_reftable_offset;
3023
3024 done:
3025 if (new_reftable) {
3026 /* On success, new_reftable actually points to the old reftable (and
3027 * new_reftable_size is the old reftable's size); but that is just
3028 * fine */
3029 for (i = 0; i < new_reftable_size; i++) {
3030 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3031 if (offset) {
3032 qcow2_free_clusters(bs, offset, s->cluster_size,
3033 QCOW2_DISCARD_OTHER);
3034 }
3035 }
3036 g_free(new_reftable);
3037
3038 if (new_reftable_offset > 0) {
3039 qcow2_free_clusters(bs, new_reftable_offset,
3040 new_reftable_size * sizeof(uint64_t),
3041 QCOW2_DISCARD_OTHER);
3042 }
3043 }
3044
3045 qemu_vfree(new_refblock);
3046 return ret;
3047 }