]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-refcount.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-3.0-pull-request...
[mirror_qemu.git] / block / qcow2-refcount.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
33
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36 int64_t offset, int64_t length, uint64_t addend,
37 bool decrease, enum qcow2_discard_type type);
38
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
46
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48 uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50 uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52 uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54 uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56 uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58 uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60 uint64_t value);
61
62
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64 &get_refcount_ro0,
65 &get_refcount_ro1,
66 &get_refcount_ro2,
67 &get_refcount_ro3,
68 &get_refcount_ro4,
69 &get_refcount_ro5,
70 &get_refcount_ro6
71 };
72
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74 &set_refcount_ro0,
75 &set_refcount_ro1,
76 &set_refcount_ro2,
77 &set_refcount_ro3,
78 &set_refcount_ro4,
79 &set_refcount_ro5,
80 &set_refcount_ro6
81 };
82
83
84 /*********************************************************/
85 /* refcount handling */
86
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
88 {
89 unsigned i = s->refcount_table_size - 1;
90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91 i--;
92 }
93 /* Set s->max_refcount_table_index to the index of the last used entry */
94 s->max_refcount_table_index = i;
95 }
96
97 int qcow2_refcount_init(BlockDriverState *bs)
98 {
99 BDRVQcow2State *s = bs->opaque;
100 unsigned int refcount_table_size2, i;
101 int ret;
102
103 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
104
105 s->get_refcount = get_refcount_funcs[s->refcount_order];
106 s->set_refcount = set_refcount_funcs[s->refcount_order];
107
108 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110 s->refcount_table = g_try_malloc(refcount_table_size2);
111
112 if (s->refcount_table_size > 0) {
113 if (s->refcount_table == NULL) {
114 ret = -ENOMEM;
115 goto fail;
116 }
117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118 ret = bdrv_pread(bs->file, s->refcount_table_offset,
119 s->refcount_table, refcount_table_size2);
120 if (ret < 0) {
121 goto fail;
122 }
123 for(i = 0; i < s->refcount_table_size; i++)
124 be64_to_cpus(&s->refcount_table[i]);
125 update_max_refcount_table_index(s);
126 }
127 return 0;
128 fail:
129 return ret;
130 }
131
132 void qcow2_refcount_close(BlockDriverState *bs)
133 {
134 BDRVQcow2State *s = bs->opaque;
135 g_free(s->refcount_table);
136 }
137
138
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
140 {
141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
142 }
143
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145 uint64_t value)
146 {
147 assert(!(value >> 1));
148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
150 }
151
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
153 {
154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155 & 0x3;
156 }
157
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159 uint64_t value)
160 {
161 assert(!(value >> 2));
162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
164 }
165
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
167 {
168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169 & 0xf;
170 }
171
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173 uint64_t value)
174 {
175 assert(!(value >> 4));
176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
178 }
179
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
181 {
182 return ((const uint8_t *)refcount_array)[index];
183 }
184
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186 uint64_t value)
187 {
188 assert(!(value >> 8));
189 ((uint8_t *)refcount_array)[index] = value;
190 }
191
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
193 {
194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
195 }
196
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198 uint64_t value)
199 {
200 assert(!(value >> 16));
201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
202 }
203
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
205 {
206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
207 }
208
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210 uint64_t value)
211 {
212 assert(!(value >> 32));
213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
214 }
215
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
217 {
218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
219 }
220
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222 uint64_t value)
223 {
224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
225 }
226
227
228 static int load_refcount_block(BlockDriverState *bs,
229 int64_t refcount_block_offset,
230 void **refcount_block)
231 {
232 BDRVQcow2State *s = bs->opaque;
233
234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236 refcount_block);
237 }
238
239 /*
240 * Retrieves the refcount of the cluster given by its index and stores it in
241 * *refcount. Returns 0 on success and -errno on failure.
242 */
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244 uint64_t *refcount)
245 {
246 BDRVQcow2State *s = bs->opaque;
247 uint64_t refcount_table_index, block_index;
248 int64_t refcount_block_offset;
249 int ret;
250 void *refcount_block;
251
252 refcount_table_index = cluster_index >> s->refcount_block_bits;
253 if (refcount_table_index >= s->refcount_table_size) {
254 *refcount = 0;
255 return 0;
256 }
257 refcount_block_offset =
258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259 if (!refcount_block_offset) {
260 *refcount = 0;
261 return 0;
262 }
263
264 if (offset_into_cluster(s, refcount_block_offset)) {
265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266 " unaligned (reftable index: %#" PRIx64 ")",
267 refcount_block_offset, refcount_table_index);
268 return -EIO;
269 }
270
271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272 &refcount_block);
273 if (ret < 0) {
274 return ret;
275 }
276
277 block_index = cluster_index & (s->refcount_block_size - 1);
278 *refcount = s->get_refcount(refcount_block, block_index);
279
280 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
281
282 return 0;
283 }
284
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287 uint64_t offset_b)
288 {
289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
291
292 return (block_a == block_b);
293 }
294
295 /*
296 * Loads a refcount block. If it doesn't exist yet, it is allocated first
297 * (including growing the refcount table if needed).
298 *
299 * Returns 0 on success or -errno in error case
300 */
301 static int alloc_refcount_block(BlockDriverState *bs,
302 int64_t cluster_index, void **refcount_block)
303 {
304 BDRVQcow2State *s = bs->opaque;
305 unsigned int refcount_table_index;
306 int64_t ret;
307
308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
309
310 /* Find the refcount block for the given cluster */
311 refcount_table_index = cluster_index >> s->refcount_block_bits;
312
313 if (refcount_table_index < s->refcount_table_size) {
314
315 uint64_t refcount_block_offset =
316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
317
318 /* If it's already there, we're done */
319 if (refcount_block_offset) {
320 if (offset_into_cluster(s, refcount_block_offset)) {
321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322 PRIx64 " unaligned (reftable index: "
323 "%#x)", refcount_block_offset,
324 refcount_table_index);
325 return -EIO;
326 }
327
328 return load_refcount_block(bs, refcount_block_offset,
329 refcount_block);
330 }
331 }
332
333 /*
334 * If we came here, we need to allocate something. Something is at least
335 * a cluster for the new refcount block. It may also include a new refcount
336 * table if the old refcount table is too small.
337 *
338 * Note that allocating clusters here needs some special care:
339 *
340 * - We can't use the normal qcow2_alloc_clusters(), it would try to
341 * increase the refcount and very likely we would end up with an endless
342 * recursion. Instead we must place the refcount blocks in a way that
343 * they can describe them themselves.
344 *
345 * - We need to consider that at this point we are inside update_refcounts
346 * and potentially doing an initial refcount increase. This means that
347 * some clusters have already been allocated by the caller, but their
348 * refcount isn't accurate yet. If we allocate clusters for metadata, we
349 * need to return -EAGAIN to signal the caller that it needs to restart
350 * the search for free clusters.
351 *
352 * - alloc_clusters_noref and qcow2_free_clusters may load a different
353 * refcount block into the cache
354 */
355
356 *refcount_block = NULL;
357
358 /* We write to the refcount table, so we might depend on L2 tables */
359 ret = qcow2_cache_flush(bs, s->l2_table_cache);
360 if (ret < 0) {
361 return ret;
362 }
363
364 /* Allocate the refcount block itself and mark it as used */
365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366 if (new_block < 0) {
367 return new_block;
368 }
369
370 /* If we're allocating the block at offset 0 then something is wrong */
371 if (new_block == 0) {
372 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
373 "allocation of refcount block at offset 0");
374 return -EIO;
375 }
376
377 #ifdef DEBUG_ALLOC2
378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379 " at %" PRIx64 "\n",
380 refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
382
383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384 /* Zero the new refcount block before updating it */
385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386 refcount_block);
387 if (ret < 0) {
388 goto fail;
389 }
390
391 memset(*refcount_block, 0, s->cluster_size);
392
393 /* The block describes itself, need to update the cache */
394 int block_index = (new_block >> s->cluster_bits) &
395 (s->refcount_block_size - 1);
396 s->set_refcount(*refcount_block, block_index, 1);
397 } else {
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401 QCOW2_DISCARD_NEVER);
402 if (ret < 0) {
403 goto fail;
404 }
405
406 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407 if (ret < 0) {
408 goto fail;
409 }
410
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414 refcount_block);
415 if (ret < 0) {
416 goto fail;
417 }
418
419 memset(*refcount_block, 0, s->cluster_size);
420 }
421
422 /* Now the new refcount block needs to be written to disk */
423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
425 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426 if (ret < 0) {
427 goto fail;
428 }
429
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index < s->refcount_table_size) {
432 uint64_t data64 = cpu_to_be64(new_block);
433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434 ret = bdrv_pwrite_sync(bs->file,
435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436 &data64, sizeof(data64));
437 if (ret < 0) {
438 goto fail;
439 }
440
441 s->refcount_table[refcount_table_index] = new_block;
442 /* If there's a hole in s->refcount_table then it can happen
443 * that refcount_table_index < s->max_refcount_table_index */
444 s->max_refcount_table_index =
445 MAX(s->max_refcount_table_index, refcount_table_index);
446
447 /* The new refcount block may be where the caller intended to put its
448 * data, so let it restart the search. */
449 return -EAGAIN;
450 }
451
452 qcow2_cache_put(s->refcount_block_cache, refcount_block);
453
454 /*
455 * If we come here, we need to grow the refcount table. Again, a new
456 * refcount table needs some space and we can't simply allocate to avoid
457 * endless recursion.
458 *
459 * Therefore let's grab new refcount blocks at the end of the image, which
460 * will describe themselves and the new refcount table. This way we can
461 * reference them only in the new table and do the switch to the new
462 * refcount table at once without producing an inconsistent state in
463 * between.
464 */
465 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
466
467 /* Calculate the number of refcount blocks needed so far; this will be the
468 * basis for calculating the index of the first cluster used for the
469 * self-describing refcount structures which we are about to create.
470 *
471 * Because we reached this point, there cannot be any refcount entries for
472 * cluster_index or higher indices yet. However, because new_block has been
473 * allocated to describe that cluster (and it will assume this role later
474 * on), we cannot use that index; also, new_block may actually have a higher
475 * cluster index than cluster_index, so it needs to be taken into account
476 * here (and 1 needs to be added to its value because that cluster is used).
477 */
478 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
479 (new_block >> s->cluster_bits) + 1),
480 s->refcount_block_size);
481
482 /* Create the new refcount table and blocks */
483 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
484 s->cluster_size;
485
486 ret = qcow2_refcount_area(bs, meta_offset, 0, false,
487 refcount_table_index, new_block);
488 if (ret < 0) {
489 return ret;
490 }
491
492 ret = load_refcount_block(bs, new_block, refcount_block);
493 if (ret < 0) {
494 return ret;
495 }
496
497 /* If we were trying to do the initial refcount update for some cluster
498 * allocation, we might have used the same clusters to store newly
499 * allocated metadata. Make the caller search some new space. */
500 return -EAGAIN;
501
502 fail:
503 if (*refcount_block != NULL) {
504 qcow2_cache_put(s->refcount_block_cache, refcount_block);
505 }
506 return ret;
507 }
508
509 /*
510 * Starting at @start_offset, this function creates new self-covering refcount
511 * structures: A new refcount table and refcount blocks which cover all of
512 * themselves, and a number of @additional_clusters beyond their end.
513 * @start_offset must be at the end of the image file, that is, there must be
514 * only empty space beyond it.
515 * If @exact_size is false, the refcount table will have 50 % more entries than
516 * necessary so it will not need to grow again soon.
517 * If @new_refblock_offset is not zero, it contains the offset of a refcount
518 * block that should be entered into the new refcount table at index
519 * @new_refblock_index.
520 *
521 * Returns: The offset after the new refcount structures (i.e. where the
522 * @additional_clusters may be placed) on success, -errno on error.
523 */
524 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
525 uint64_t additional_clusters, bool exact_size,
526 int new_refblock_index,
527 uint64_t new_refblock_offset)
528 {
529 BDRVQcow2State *s = bs->opaque;
530 uint64_t total_refblock_count_u64, additional_refblock_count;
531 int total_refblock_count, table_size, area_reftable_index, table_clusters;
532 int i;
533 uint64_t table_offset, block_offset, end_offset;
534 int ret;
535 uint64_t *new_table;
536
537 assert(!(start_offset % s->cluster_size));
538
539 qcow2_refcount_metadata_size(start_offset / s->cluster_size +
540 additional_clusters,
541 s->cluster_size, s->refcount_order,
542 !exact_size, &total_refblock_count_u64);
543 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
544 return -EFBIG;
545 }
546 total_refblock_count = total_refblock_count_u64;
547
548 /* Index in the refcount table of the first refcount block to cover the area
549 * of refcount structures we are about to create; we know that
550 * @total_refblock_count can cover @start_offset, so this will definitely
551 * fit into an int. */
552 area_reftable_index = (start_offset / s->cluster_size) /
553 s->refcount_block_size;
554
555 if (exact_size) {
556 table_size = total_refblock_count;
557 } else {
558 table_size = total_refblock_count +
559 DIV_ROUND_UP(total_refblock_count, 2);
560 }
561 /* The qcow2 file can only store the reftable size in number of clusters */
562 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
563 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
564
565 if (table_size > QCOW_MAX_REFTABLE_SIZE) {
566 return -EFBIG;
567 }
568
569 new_table = g_try_new0(uint64_t, table_size);
570
571 assert(table_size > 0);
572 if (new_table == NULL) {
573 ret = -ENOMEM;
574 goto fail;
575 }
576
577 /* Fill the new refcount table */
578 if (table_size > s->max_refcount_table_index) {
579 /* We're actually growing the reftable */
580 memcpy(new_table, s->refcount_table,
581 (s->max_refcount_table_index + 1) * sizeof(uint64_t));
582 } else {
583 /* Improbable case: We're shrinking the reftable. However, the caller
584 * has assured us that there is only empty space beyond @start_offset,
585 * so we can simply drop all of the refblocks that won't fit into the
586 * new reftable. */
587 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
588 }
589
590 if (new_refblock_offset) {
591 assert(new_refblock_index < total_refblock_count);
592 new_table[new_refblock_index] = new_refblock_offset;
593 }
594
595 /* Count how many new refblocks we have to create */
596 additional_refblock_count = 0;
597 for (i = area_reftable_index; i < total_refblock_count; i++) {
598 if (!new_table[i]) {
599 additional_refblock_count++;
600 }
601 }
602
603 table_offset = start_offset + additional_refblock_count * s->cluster_size;
604 end_offset = table_offset + table_clusters * s->cluster_size;
605
606 /* Fill the refcount blocks, and create new ones, if necessary */
607 block_offset = start_offset;
608 for (i = area_reftable_index; i < total_refblock_count; i++) {
609 void *refblock_data;
610 uint64_t first_offset_covered;
611
612 /* Reuse an existing refblock if possible, create a new one otherwise */
613 if (new_table[i]) {
614 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
615 &refblock_data);
616 if (ret < 0) {
617 goto fail;
618 }
619 } else {
620 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
621 block_offset, &refblock_data);
622 if (ret < 0) {
623 goto fail;
624 }
625 memset(refblock_data, 0, s->cluster_size);
626 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
627 refblock_data);
628
629 new_table[i] = block_offset;
630 block_offset += s->cluster_size;
631 }
632
633 /* First host offset covered by this refblock */
634 first_offset_covered = (uint64_t)i * s->refcount_block_size *
635 s->cluster_size;
636 if (first_offset_covered < end_offset) {
637 int j, end_index;
638
639 /* Set the refcount of all of the new refcount structures to 1 */
640
641 if (first_offset_covered < start_offset) {
642 assert(i == area_reftable_index);
643 j = (start_offset - first_offset_covered) / s->cluster_size;
644 assert(j < s->refcount_block_size);
645 } else {
646 j = 0;
647 }
648
649 end_index = MIN((end_offset - first_offset_covered) /
650 s->cluster_size,
651 s->refcount_block_size);
652
653 for (; j < end_index; j++) {
654 /* The caller guaranteed us this space would be empty */
655 assert(s->get_refcount(refblock_data, j) == 0);
656 s->set_refcount(refblock_data, j, 1);
657 }
658
659 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
660 refblock_data);
661 }
662
663 qcow2_cache_put(s->refcount_block_cache, &refblock_data);
664 }
665
666 assert(block_offset == table_offset);
667
668 /* Write refcount blocks to disk */
669 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
670 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
671 if (ret < 0) {
672 goto fail;
673 }
674
675 /* Write refcount table to disk */
676 for (i = 0; i < total_refblock_count; i++) {
677 cpu_to_be64s(&new_table[i]);
678 }
679
680 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
681 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
682 table_size * sizeof(uint64_t));
683 if (ret < 0) {
684 goto fail;
685 }
686
687 for (i = 0; i < total_refblock_count; i++) {
688 be64_to_cpus(&new_table[i]);
689 }
690
691 /* Hook up the new refcount table in the qcow2 header */
692 struct QEMU_PACKED {
693 uint64_t d64;
694 uint32_t d32;
695 } data;
696 data.d64 = cpu_to_be64(table_offset);
697 data.d32 = cpu_to_be32(table_clusters);
698 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
699 ret = bdrv_pwrite_sync(bs->file,
700 offsetof(QCowHeader, refcount_table_offset),
701 &data, sizeof(data));
702 if (ret < 0) {
703 goto fail;
704 }
705
706 /* And switch it in memory */
707 uint64_t old_table_offset = s->refcount_table_offset;
708 uint64_t old_table_size = s->refcount_table_size;
709
710 g_free(s->refcount_table);
711 s->refcount_table = new_table;
712 s->refcount_table_size = table_size;
713 s->refcount_table_offset = table_offset;
714 update_max_refcount_table_index(s);
715
716 /* Free old table. */
717 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
718 QCOW2_DISCARD_OTHER);
719
720 return end_offset;
721
722 fail:
723 g_free(new_table);
724 return ret;
725 }
726
727 void qcow2_process_discards(BlockDriverState *bs, int ret)
728 {
729 BDRVQcow2State *s = bs->opaque;
730 Qcow2DiscardRegion *d, *next;
731
732 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
733 QTAILQ_REMOVE(&s->discards, d, next);
734
735 /* Discard is optional, ignore the return value */
736 if (ret >= 0) {
737 bdrv_pdiscard(bs->file->bs, d->offset, d->bytes);
738 }
739
740 g_free(d);
741 }
742 }
743
744 static void update_refcount_discard(BlockDriverState *bs,
745 uint64_t offset, uint64_t length)
746 {
747 BDRVQcow2State *s = bs->opaque;
748 Qcow2DiscardRegion *d, *p, *next;
749
750 QTAILQ_FOREACH(d, &s->discards, next) {
751 uint64_t new_start = MIN(offset, d->offset);
752 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
753
754 if (new_end - new_start <= length + d->bytes) {
755 /* There can't be any overlap, areas ending up here have no
756 * references any more and therefore shouldn't get freed another
757 * time. */
758 assert(d->bytes + length == new_end - new_start);
759 d->offset = new_start;
760 d->bytes = new_end - new_start;
761 goto found;
762 }
763 }
764
765 d = g_malloc(sizeof(*d));
766 *d = (Qcow2DiscardRegion) {
767 .bs = bs,
768 .offset = offset,
769 .bytes = length,
770 };
771 QTAILQ_INSERT_TAIL(&s->discards, d, next);
772
773 found:
774 /* Merge discard requests if they are adjacent now */
775 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
776 if (p == d
777 || p->offset > d->offset + d->bytes
778 || d->offset > p->offset + p->bytes)
779 {
780 continue;
781 }
782
783 /* Still no overlap possible */
784 assert(p->offset == d->offset + d->bytes
785 || d->offset == p->offset + p->bytes);
786
787 QTAILQ_REMOVE(&s->discards, p, next);
788 d->offset = MIN(d->offset, p->offset);
789 d->bytes += p->bytes;
790 g_free(p);
791 }
792 }
793
794 /* XXX: cache several refcount block clusters ? */
795 /* @addend is the absolute value of the addend; if @decrease is set, @addend
796 * will be subtracted from the current refcount, otherwise it will be added */
797 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
798 int64_t offset,
799 int64_t length,
800 uint64_t addend,
801 bool decrease,
802 enum qcow2_discard_type type)
803 {
804 BDRVQcow2State *s = bs->opaque;
805 int64_t start, last, cluster_offset;
806 void *refcount_block = NULL;
807 int64_t old_table_index = -1;
808 int ret;
809
810 #ifdef DEBUG_ALLOC2
811 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
812 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
813 addend);
814 #endif
815 if (length < 0) {
816 return -EINVAL;
817 } else if (length == 0) {
818 return 0;
819 }
820
821 if (decrease) {
822 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
823 s->l2_table_cache);
824 }
825
826 start = start_of_cluster(s, offset);
827 last = start_of_cluster(s, offset + length - 1);
828 for(cluster_offset = start; cluster_offset <= last;
829 cluster_offset += s->cluster_size)
830 {
831 int block_index;
832 uint64_t refcount;
833 int64_t cluster_index = cluster_offset >> s->cluster_bits;
834 int64_t table_index = cluster_index >> s->refcount_block_bits;
835
836 /* Load the refcount block and allocate it if needed */
837 if (table_index != old_table_index) {
838 if (refcount_block) {
839 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
840 }
841 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
842 /* If the caller needs to restart the search for free clusters,
843 * try the same ones first to see if they're still free. */
844 if (ret == -EAGAIN) {
845 if (s->free_cluster_index > (start >> s->cluster_bits)) {
846 s->free_cluster_index = (start >> s->cluster_bits);
847 }
848 }
849 if (ret < 0) {
850 goto fail;
851 }
852 }
853 old_table_index = table_index;
854
855 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
856
857 /* we can update the count and save it */
858 block_index = cluster_index & (s->refcount_block_size - 1);
859
860 refcount = s->get_refcount(refcount_block, block_index);
861 if (decrease ? (refcount - addend > refcount)
862 : (refcount + addend < refcount ||
863 refcount + addend > s->refcount_max))
864 {
865 ret = -EINVAL;
866 goto fail;
867 }
868 if (decrease) {
869 refcount -= addend;
870 } else {
871 refcount += addend;
872 }
873 if (refcount == 0 && cluster_index < s->free_cluster_index) {
874 s->free_cluster_index = cluster_index;
875 }
876 s->set_refcount(refcount_block, block_index, refcount);
877
878 if (refcount == 0) {
879 void *table;
880
881 table = qcow2_cache_is_table_offset(s->refcount_block_cache,
882 offset);
883 if (table != NULL) {
884 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
885 qcow2_cache_discard(s->refcount_block_cache, table);
886 }
887
888 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
889 if (table != NULL) {
890 qcow2_cache_discard(s->l2_table_cache, table);
891 }
892
893 if (s->discard_passthrough[type]) {
894 update_refcount_discard(bs, cluster_offset, s->cluster_size);
895 }
896 }
897 }
898
899 ret = 0;
900 fail:
901 if (!s->cache_discards) {
902 qcow2_process_discards(bs, ret);
903 }
904
905 /* Write last changed block to disk */
906 if (refcount_block) {
907 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
908 }
909
910 /*
911 * Try do undo any updates if an error is returned (This may succeed in
912 * some cases like ENOSPC for allocating a new refcount block)
913 */
914 if (ret < 0) {
915 int dummy;
916 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
917 !decrease, QCOW2_DISCARD_NEVER);
918 (void)dummy;
919 }
920
921 return ret;
922 }
923
924 /*
925 * Increases or decreases the refcount of a given cluster.
926 *
927 * @addend is the absolute value of the addend; if @decrease is set, @addend
928 * will be subtracted from the current refcount, otherwise it will be added.
929 *
930 * On success 0 is returned; on failure -errno is returned.
931 */
932 int qcow2_update_cluster_refcount(BlockDriverState *bs,
933 int64_t cluster_index,
934 uint64_t addend, bool decrease,
935 enum qcow2_discard_type type)
936 {
937 BDRVQcow2State *s = bs->opaque;
938 int ret;
939
940 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
941 decrease, type);
942 if (ret < 0) {
943 return ret;
944 }
945
946 return 0;
947 }
948
949
950
951 /*********************************************************/
952 /* cluster allocation functions */
953
954
955
956 /* return < 0 if error */
957 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
958 {
959 BDRVQcow2State *s = bs->opaque;
960 uint64_t i, nb_clusters, refcount;
961 int ret;
962
963 /* We can't allocate clusters if they may still be queued for discard. */
964 if (s->cache_discards) {
965 qcow2_process_discards(bs, 0);
966 }
967
968 nb_clusters = size_to_clusters(s, size);
969 retry:
970 for(i = 0; i < nb_clusters; i++) {
971 uint64_t next_cluster_index = s->free_cluster_index++;
972 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
973
974 if (ret < 0) {
975 return ret;
976 } else if (refcount != 0) {
977 goto retry;
978 }
979 }
980
981 /* Make sure that all offsets in the "allocated" range are representable
982 * in an int64_t */
983 if (s->free_cluster_index > 0 &&
984 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
985 {
986 return -EFBIG;
987 }
988
989 #ifdef DEBUG_ALLOC2
990 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
991 size,
992 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
993 #endif
994 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
995 }
996
997 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
998 {
999 int64_t offset;
1000 int ret;
1001
1002 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1003 do {
1004 offset = alloc_clusters_noref(bs, size);
1005 if (offset < 0) {
1006 return offset;
1007 }
1008
1009 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1010 } while (ret == -EAGAIN);
1011
1012 if (ret < 0) {
1013 return ret;
1014 }
1015
1016 return offset;
1017 }
1018
1019 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1020 int64_t nb_clusters)
1021 {
1022 BDRVQcow2State *s = bs->opaque;
1023 uint64_t cluster_index, refcount;
1024 uint64_t i;
1025 int ret;
1026
1027 assert(nb_clusters >= 0);
1028 if (nb_clusters == 0) {
1029 return 0;
1030 }
1031
1032 do {
1033 /* Check how many clusters there are free */
1034 cluster_index = offset >> s->cluster_bits;
1035 for(i = 0; i < nb_clusters; i++) {
1036 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1037 if (ret < 0) {
1038 return ret;
1039 } else if (refcount != 0) {
1040 break;
1041 }
1042 }
1043
1044 /* And then allocate them */
1045 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1046 QCOW2_DISCARD_NEVER);
1047 } while (ret == -EAGAIN);
1048
1049 if (ret < 0) {
1050 return ret;
1051 }
1052
1053 return i;
1054 }
1055
1056 /* only used to allocate compressed sectors. We try to allocate
1057 contiguous sectors. size must be <= cluster_size */
1058 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1059 {
1060 BDRVQcow2State *s = bs->opaque;
1061 int64_t offset;
1062 size_t free_in_cluster;
1063 int ret;
1064
1065 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1066 assert(size > 0 && size <= s->cluster_size);
1067 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1068
1069 offset = s->free_byte_offset;
1070
1071 if (offset) {
1072 uint64_t refcount;
1073 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1074 if (ret < 0) {
1075 return ret;
1076 }
1077
1078 if (refcount == s->refcount_max) {
1079 offset = 0;
1080 }
1081 }
1082
1083 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1084 do {
1085 if (!offset || free_in_cluster < size) {
1086 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1087 if (new_cluster < 0) {
1088 return new_cluster;
1089 }
1090
1091 if (new_cluster == 0) {
1092 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1093 "allocation of compressed cluster "
1094 "at offset 0");
1095 return -EIO;
1096 }
1097
1098 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1099 offset = new_cluster;
1100 free_in_cluster = s->cluster_size;
1101 } else {
1102 free_in_cluster += s->cluster_size;
1103 }
1104 }
1105
1106 assert(offset);
1107 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1108 if (ret < 0) {
1109 offset = 0;
1110 }
1111 } while (ret == -EAGAIN);
1112 if (ret < 0) {
1113 return ret;
1114 }
1115
1116 /* The cluster refcount was incremented; refcount blocks must be flushed
1117 * before the caller's L2 table updates. */
1118 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1119
1120 s->free_byte_offset = offset + size;
1121 if (!offset_into_cluster(s, s->free_byte_offset)) {
1122 s->free_byte_offset = 0;
1123 }
1124
1125 return offset;
1126 }
1127
1128 void qcow2_free_clusters(BlockDriverState *bs,
1129 int64_t offset, int64_t size,
1130 enum qcow2_discard_type type)
1131 {
1132 int ret;
1133
1134 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1135 ret = update_refcount(bs, offset, size, 1, true, type);
1136 if (ret < 0) {
1137 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1138 /* TODO Remember the clusters to free them later and avoid leaking */
1139 }
1140 }
1141
1142 /*
1143 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1144 * normal cluster, compressed cluster, etc.)
1145 */
1146 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1147 int nb_clusters, enum qcow2_discard_type type)
1148 {
1149 BDRVQcow2State *s = bs->opaque;
1150
1151 switch (qcow2_get_cluster_type(l2_entry)) {
1152 case QCOW2_CLUSTER_COMPRESSED:
1153 {
1154 int nb_csectors;
1155 nb_csectors = ((l2_entry >> s->csize_shift) &
1156 s->csize_mask) + 1;
1157 qcow2_free_clusters(bs,
1158 (l2_entry & s->cluster_offset_mask) & ~511,
1159 nb_csectors * 512, type);
1160 }
1161 break;
1162 case QCOW2_CLUSTER_NORMAL:
1163 case QCOW2_CLUSTER_ZERO_ALLOC:
1164 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1165 qcow2_signal_corruption(bs, false, -1, -1,
1166 "Cannot free unaligned cluster %#llx",
1167 l2_entry & L2E_OFFSET_MASK);
1168 } else {
1169 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1170 nb_clusters << s->cluster_bits, type);
1171 }
1172 break;
1173 case QCOW2_CLUSTER_ZERO_PLAIN:
1174 case QCOW2_CLUSTER_UNALLOCATED:
1175 break;
1176 default:
1177 abort();
1178 }
1179 }
1180
1181 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1182 {
1183 BDRVQcow2State *s = bs->opaque;
1184 int ret;
1185
1186 ret = qcow2_cache_write(bs, s->l2_table_cache);
1187 if (ret < 0) {
1188 return ret;
1189 }
1190
1191 if (qcow2_need_accurate_refcounts(s)) {
1192 ret = qcow2_cache_write(bs, s->refcount_block_cache);
1193 if (ret < 0) {
1194 return ret;
1195 }
1196 }
1197
1198 return 0;
1199 }
1200
1201 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1202 {
1203 int ret = qcow2_write_caches(bs);
1204 if (ret < 0) {
1205 return ret;
1206 }
1207
1208 return bdrv_flush(bs->file->bs);
1209 }
1210
1211 /*********************************************************/
1212 /* snapshots and image creation */
1213
1214
1215
1216 /* update the refcounts of snapshots and the copied flag */
1217 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1218 int64_t l1_table_offset, int l1_size, int addend)
1219 {
1220 BDRVQcow2State *s = bs->opaque;
1221 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1222 bool l1_allocated = false;
1223 int64_t old_entry, old_l2_offset;
1224 unsigned slice, slice_size2, n_slices;
1225 int i, j, l1_modified = 0, nb_csectors;
1226 int ret;
1227
1228 assert(addend >= -1 && addend <= 1);
1229
1230 l2_slice = NULL;
1231 l1_table = NULL;
1232 l1_size2 = l1_size * sizeof(uint64_t);
1233 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1234 n_slices = s->cluster_size / slice_size2;
1235
1236 s->cache_discards = true;
1237
1238 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1239 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1240 * when changing this! */
1241 if (l1_table_offset != s->l1_table_offset) {
1242 l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1243 if (l1_size2 && l1_table == NULL) {
1244 ret = -ENOMEM;
1245 goto fail;
1246 }
1247 l1_allocated = true;
1248
1249 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1250 if (ret < 0) {
1251 goto fail;
1252 }
1253
1254 for (i = 0; i < l1_size; i++) {
1255 be64_to_cpus(&l1_table[i]);
1256 }
1257 } else {
1258 assert(l1_size == s->l1_size);
1259 l1_table = s->l1_table;
1260 l1_allocated = false;
1261 }
1262
1263 for (i = 0; i < l1_size; i++) {
1264 l2_offset = l1_table[i];
1265 if (l2_offset) {
1266 old_l2_offset = l2_offset;
1267 l2_offset &= L1E_OFFSET_MASK;
1268
1269 if (offset_into_cluster(s, l2_offset)) {
1270 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1271 PRIx64 " unaligned (L1 index: %#x)",
1272 l2_offset, i);
1273 ret = -EIO;
1274 goto fail;
1275 }
1276
1277 for (slice = 0; slice < n_slices; slice++) {
1278 ret = qcow2_cache_get(bs, s->l2_table_cache,
1279 l2_offset + slice * slice_size2,
1280 (void **) &l2_slice);
1281 if (ret < 0) {
1282 goto fail;
1283 }
1284
1285 for (j = 0; j < s->l2_slice_size; j++) {
1286 uint64_t cluster_index;
1287 uint64_t offset;
1288
1289 entry = be64_to_cpu(l2_slice[j]);
1290 old_entry = entry;
1291 entry &= ~QCOW_OFLAG_COPIED;
1292 offset = entry & L2E_OFFSET_MASK;
1293
1294 switch (qcow2_get_cluster_type(entry)) {
1295 case QCOW2_CLUSTER_COMPRESSED:
1296 nb_csectors = ((entry >> s->csize_shift) &
1297 s->csize_mask) + 1;
1298 if (addend != 0) {
1299 ret = update_refcount(
1300 bs, (entry & s->cluster_offset_mask) & ~511,
1301 nb_csectors * 512, abs(addend), addend < 0,
1302 QCOW2_DISCARD_SNAPSHOT);
1303 if (ret < 0) {
1304 goto fail;
1305 }
1306 }
1307 /* compressed clusters are never modified */
1308 refcount = 2;
1309 break;
1310
1311 case QCOW2_CLUSTER_NORMAL:
1312 case QCOW2_CLUSTER_ZERO_ALLOC:
1313 if (offset_into_cluster(s, offset)) {
1314 /* Here l2_index means table (not slice) index */
1315 int l2_index = slice * s->l2_slice_size + j;
1316 qcow2_signal_corruption(
1317 bs, true, -1, -1, "Cluster "
1318 "allocation offset %#" PRIx64
1319 " unaligned (L2 offset: %#"
1320 PRIx64 ", L2 index: %#x)",
1321 offset, l2_offset, l2_index);
1322 ret = -EIO;
1323 goto fail;
1324 }
1325
1326 cluster_index = offset >> s->cluster_bits;
1327 assert(cluster_index);
1328 if (addend != 0) {
1329 ret = qcow2_update_cluster_refcount(
1330 bs, cluster_index, abs(addend), addend < 0,
1331 QCOW2_DISCARD_SNAPSHOT);
1332 if (ret < 0) {
1333 goto fail;
1334 }
1335 }
1336
1337 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1338 if (ret < 0) {
1339 goto fail;
1340 }
1341 break;
1342
1343 case QCOW2_CLUSTER_ZERO_PLAIN:
1344 case QCOW2_CLUSTER_UNALLOCATED:
1345 refcount = 0;
1346 break;
1347
1348 default:
1349 abort();
1350 }
1351
1352 if (refcount == 1) {
1353 entry |= QCOW_OFLAG_COPIED;
1354 }
1355 if (entry != old_entry) {
1356 if (addend > 0) {
1357 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1358 s->refcount_block_cache);
1359 }
1360 l2_slice[j] = cpu_to_be64(entry);
1361 qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1362 l2_slice);
1363 }
1364 }
1365
1366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1367 }
1368
1369 if (addend != 0) {
1370 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1371 s->cluster_bits,
1372 abs(addend), addend < 0,
1373 QCOW2_DISCARD_SNAPSHOT);
1374 if (ret < 0) {
1375 goto fail;
1376 }
1377 }
1378 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1379 &refcount);
1380 if (ret < 0) {
1381 goto fail;
1382 } else if (refcount == 1) {
1383 l2_offset |= QCOW_OFLAG_COPIED;
1384 }
1385 if (l2_offset != old_l2_offset) {
1386 l1_table[i] = l2_offset;
1387 l1_modified = 1;
1388 }
1389 }
1390 }
1391
1392 ret = bdrv_flush(bs);
1393 fail:
1394 if (l2_slice) {
1395 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1396 }
1397
1398 s->cache_discards = false;
1399 qcow2_process_discards(bs, ret);
1400
1401 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1402 if (ret == 0 && addend >= 0 && l1_modified) {
1403 for (i = 0; i < l1_size; i++) {
1404 cpu_to_be64s(&l1_table[i]);
1405 }
1406
1407 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1408 l1_table, l1_size2);
1409
1410 for (i = 0; i < l1_size; i++) {
1411 be64_to_cpus(&l1_table[i]);
1412 }
1413 }
1414 if (l1_allocated)
1415 g_free(l1_table);
1416 return ret;
1417 }
1418
1419
1420
1421
1422 /*********************************************************/
1423 /* refcount checking functions */
1424
1425
1426 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1427 {
1428 /* This assertion holds because there is no way we can address more than
1429 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1430 * offsets have to be representable in bytes); due to every cluster
1431 * corresponding to one refcount entry, we are well below that limit */
1432 assert(entries < (UINT64_C(1) << (64 - 9)));
1433
1434 /* Thanks to the assertion this will not overflow, because
1435 * s->refcount_order < 7.
1436 * (note: x << s->refcount_order == x * s->refcount_bits) */
1437 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1438 }
1439
1440 /**
1441 * Reallocates *array so that it can hold new_size entries. *size must contain
1442 * the current number of entries in *array. If the reallocation fails, *array
1443 * and *size will not be modified and -errno will be returned. If the
1444 * reallocation is successful, *array will be set to the new buffer, *size
1445 * will be set to new_size and 0 will be returned. The size of the reallocated
1446 * refcount array buffer will be aligned to a cluster boundary, and the newly
1447 * allocated area will be zeroed.
1448 */
1449 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1450 int64_t *size, int64_t new_size)
1451 {
1452 int64_t old_byte_size, new_byte_size;
1453 void *new_ptr;
1454
1455 /* Round to clusters so the array can be directly written to disk */
1456 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1457 * s->cluster_size;
1458 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1459 * s->cluster_size;
1460
1461 if (new_byte_size == old_byte_size) {
1462 *size = new_size;
1463 return 0;
1464 }
1465
1466 assert(new_byte_size > 0);
1467
1468 if (new_byte_size > SIZE_MAX) {
1469 return -ENOMEM;
1470 }
1471
1472 new_ptr = g_try_realloc(*array, new_byte_size);
1473 if (!new_ptr) {
1474 return -ENOMEM;
1475 }
1476
1477 if (new_byte_size > old_byte_size) {
1478 memset((char *)new_ptr + old_byte_size, 0,
1479 new_byte_size - old_byte_size);
1480 }
1481
1482 *array = new_ptr;
1483 *size = new_size;
1484
1485 return 0;
1486 }
1487
1488 /*
1489 * Increases the refcount for a range of clusters in a given refcount table.
1490 * This is used to construct a temporary refcount table out of L1 and L2 tables
1491 * which can be compared to the refcount table saved in the image.
1492 *
1493 * Modifies the number of errors in res.
1494 */
1495 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1496 void **refcount_table,
1497 int64_t *refcount_table_size,
1498 int64_t offset, int64_t size)
1499 {
1500 BDRVQcow2State *s = bs->opaque;
1501 uint64_t start, last, cluster_offset, k, refcount;
1502 int ret;
1503
1504 if (size <= 0) {
1505 return 0;
1506 }
1507
1508 start = start_of_cluster(s, offset);
1509 last = start_of_cluster(s, offset + size - 1);
1510 for(cluster_offset = start; cluster_offset <= last;
1511 cluster_offset += s->cluster_size) {
1512 k = cluster_offset >> s->cluster_bits;
1513 if (k >= *refcount_table_size) {
1514 ret = realloc_refcount_array(s, refcount_table,
1515 refcount_table_size, k + 1);
1516 if (ret < 0) {
1517 res->check_errors++;
1518 return ret;
1519 }
1520 }
1521
1522 refcount = s->get_refcount(*refcount_table, k);
1523 if (refcount == s->refcount_max) {
1524 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1525 "\n", cluster_offset);
1526 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1527 "width or qemu-img convert to create a clean copy if the "
1528 "image cannot be opened for writing\n");
1529 res->corruptions++;
1530 continue;
1531 }
1532 s->set_refcount(*refcount_table, k, refcount + 1);
1533 }
1534
1535 return 0;
1536 }
1537
1538 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1539 enum {
1540 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1541 };
1542
1543 /*
1544 * Increases the refcount in the given refcount table for the all clusters
1545 * referenced in the L2 table. While doing so, performs some checks on L2
1546 * entries.
1547 *
1548 * Returns the number of errors found by the checks or -errno if an internal
1549 * error occurred.
1550 */
1551 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1552 void **refcount_table,
1553 int64_t *refcount_table_size, int64_t l2_offset,
1554 int flags, BdrvCheckMode fix)
1555 {
1556 BDRVQcow2State *s = bs->opaque;
1557 uint64_t *l2_table, l2_entry;
1558 uint64_t next_contiguous_offset = 0;
1559 int i, l2_size, nb_csectors, ret;
1560
1561 /* Read L2 table from disk */
1562 l2_size = s->l2_size * sizeof(uint64_t);
1563 l2_table = g_malloc(l2_size);
1564
1565 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1566 if (ret < 0) {
1567 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1568 res->check_errors++;
1569 goto fail;
1570 }
1571
1572 /* Do the actual checks */
1573 for(i = 0; i < s->l2_size; i++) {
1574 l2_entry = be64_to_cpu(l2_table[i]);
1575
1576 switch (qcow2_get_cluster_type(l2_entry)) {
1577 case QCOW2_CLUSTER_COMPRESSED:
1578 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1579 if (l2_entry & QCOW_OFLAG_COPIED) {
1580 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1581 "copied flag must never be set for compressed "
1582 "clusters\n", l2_entry & s->cluster_offset_mask);
1583 l2_entry &= ~QCOW_OFLAG_COPIED;
1584 res->corruptions++;
1585 }
1586
1587 /* Mark cluster as used */
1588 nb_csectors = ((l2_entry >> s->csize_shift) &
1589 s->csize_mask) + 1;
1590 l2_entry &= s->cluster_offset_mask;
1591 ret = qcow2_inc_refcounts_imrt(bs, res,
1592 refcount_table, refcount_table_size,
1593 l2_entry & ~511, nb_csectors * 512);
1594 if (ret < 0) {
1595 goto fail;
1596 }
1597
1598 if (flags & CHECK_FRAG_INFO) {
1599 res->bfi.allocated_clusters++;
1600 res->bfi.compressed_clusters++;
1601
1602 /* Compressed clusters are fragmented by nature. Since they
1603 * take up sub-sector space but we only have sector granularity
1604 * I/O we need to re-read the same sectors even for adjacent
1605 * compressed clusters.
1606 */
1607 res->bfi.fragmented_clusters++;
1608 }
1609 break;
1610
1611 case QCOW2_CLUSTER_ZERO_ALLOC:
1612 case QCOW2_CLUSTER_NORMAL:
1613 {
1614 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1615
1616 if (flags & CHECK_FRAG_INFO) {
1617 res->bfi.allocated_clusters++;
1618 if (next_contiguous_offset &&
1619 offset != next_contiguous_offset) {
1620 res->bfi.fragmented_clusters++;
1621 }
1622 next_contiguous_offset = offset + s->cluster_size;
1623 }
1624
1625 /* Correct offsets are cluster aligned */
1626 if (offset_into_cluster(s, offset)) {
1627 if (qcow2_get_cluster_type(l2_entry) ==
1628 QCOW2_CLUSTER_ZERO_ALLOC)
1629 {
1630 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1631 "cluster is not properly aligned; L2 entry "
1632 "corrupted.\n",
1633 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1634 offset);
1635 if (fix & BDRV_FIX_ERRORS) {
1636 uint64_t l2e_offset =
1637 l2_offset + (uint64_t)i * sizeof(uint64_t);
1638
1639 l2_entry = QCOW_OFLAG_ZERO;
1640 l2_table[i] = cpu_to_be64(l2_entry);
1641 ret = qcow2_pre_write_overlap_check(bs,
1642 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2,
1643 l2e_offset, sizeof(uint64_t));
1644 if (ret < 0) {
1645 fprintf(stderr, "ERROR: Overlap check failed\n");
1646 res->check_errors++;
1647 /* Something is seriously wrong, so abort checking
1648 * this L2 table */
1649 goto fail;
1650 }
1651
1652 ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1653 &l2_table[i], sizeof(uint64_t));
1654 if (ret < 0) {
1655 fprintf(stderr, "ERROR: Failed to overwrite L2 "
1656 "table entry: %s\n", strerror(-ret));
1657 res->check_errors++;
1658 /* Do not abort, continue checking the rest of this
1659 * L2 table's entries */
1660 } else {
1661 res->corruptions_fixed++;
1662 /* Skip marking the cluster as used
1663 * (it is unused now) */
1664 continue;
1665 }
1666 } else {
1667 res->corruptions++;
1668 }
1669 } else {
1670 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1671 "not properly aligned; L2 entry corrupted.\n", offset);
1672 res->corruptions++;
1673 }
1674 }
1675
1676 /* Mark cluster as used */
1677 ret = qcow2_inc_refcounts_imrt(bs, res,
1678 refcount_table, refcount_table_size,
1679 offset, s->cluster_size);
1680 if (ret < 0) {
1681 goto fail;
1682 }
1683 break;
1684 }
1685
1686 case QCOW2_CLUSTER_ZERO_PLAIN:
1687 case QCOW2_CLUSTER_UNALLOCATED:
1688 break;
1689
1690 default:
1691 abort();
1692 }
1693 }
1694
1695 g_free(l2_table);
1696 return 0;
1697
1698 fail:
1699 g_free(l2_table);
1700 return ret;
1701 }
1702
1703 /*
1704 * Increases the refcount for the L1 table, its L2 tables and all referenced
1705 * clusters in the given refcount table. While doing so, performs some checks
1706 * on L1 and L2 entries.
1707 *
1708 * Returns the number of errors found by the checks or -errno if an internal
1709 * error occurred.
1710 */
1711 static int check_refcounts_l1(BlockDriverState *bs,
1712 BdrvCheckResult *res,
1713 void **refcount_table,
1714 int64_t *refcount_table_size,
1715 int64_t l1_table_offset, int l1_size,
1716 int flags, BdrvCheckMode fix)
1717 {
1718 BDRVQcow2State *s = bs->opaque;
1719 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1720 int i, ret;
1721
1722 l1_size2 = l1_size * sizeof(uint64_t);
1723
1724 /* Mark L1 table as used */
1725 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1726 l1_table_offset, l1_size2);
1727 if (ret < 0) {
1728 goto fail;
1729 }
1730
1731 /* Read L1 table entries from disk */
1732 if (l1_size2 > 0) {
1733 l1_table = g_try_malloc(l1_size2);
1734 if (l1_table == NULL) {
1735 ret = -ENOMEM;
1736 res->check_errors++;
1737 goto fail;
1738 }
1739 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1740 if (ret < 0) {
1741 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1742 res->check_errors++;
1743 goto fail;
1744 }
1745 for(i = 0;i < l1_size; i++)
1746 be64_to_cpus(&l1_table[i]);
1747 }
1748
1749 /* Do the actual checks */
1750 for(i = 0; i < l1_size; i++) {
1751 l2_offset = l1_table[i];
1752 if (l2_offset) {
1753 /* Mark L2 table as used */
1754 l2_offset &= L1E_OFFSET_MASK;
1755 ret = qcow2_inc_refcounts_imrt(bs, res,
1756 refcount_table, refcount_table_size,
1757 l2_offset, s->cluster_size);
1758 if (ret < 0) {
1759 goto fail;
1760 }
1761
1762 /* L2 tables are cluster aligned */
1763 if (offset_into_cluster(s, l2_offset)) {
1764 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1765 "cluster aligned; L1 entry corrupted\n", l2_offset);
1766 res->corruptions++;
1767 }
1768
1769 /* Process and check L2 entries */
1770 ret = check_refcounts_l2(bs, res, refcount_table,
1771 refcount_table_size, l2_offset, flags,
1772 fix);
1773 if (ret < 0) {
1774 goto fail;
1775 }
1776 }
1777 }
1778 g_free(l1_table);
1779 return 0;
1780
1781 fail:
1782 g_free(l1_table);
1783 return ret;
1784 }
1785
1786 /*
1787 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1788 *
1789 * This function does not print an error message nor does it increment
1790 * check_errors if qcow2_get_refcount fails (this is because such an error will
1791 * have been already detected and sufficiently signaled by the calling function
1792 * (qcow2_check_refcounts) by the time this function is called).
1793 */
1794 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1795 BdrvCheckMode fix)
1796 {
1797 BDRVQcow2State *s = bs->opaque;
1798 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1799 int ret;
1800 uint64_t refcount;
1801 int i, j;
1802
1803 for (i = 0; i < s->l1_size; i++) {
1804 uint64_t l1_entry = s->l1_table[i];
1805 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1806 bool l2_dirty = false;
1807
1808 if (!l2_offset) {
1809 continue;
1810 }
1811
1812 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1813 &refcount);
1814 if (ret < 0) {
1815 /* don't print message nor increment check_errors */
1816 continue;
1817 }
1818 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1819 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1820 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1821 fix & BDRV_FIX_ERRORS ? "Repairing" :
1822 "ERROR",
1823 i, l1_entry, refcount);
1824 if (fix & BDRV_FIX_ERRORS) {
1825 s->l1_table[i] = refcount == 1
1826 ? l1_entry | QCOW_OFLAG_COPIED
1827 : l1_entry & ~QCOW_OFLAG_COPIED;
1828 ret = qcow2_write_l1_entry(bs, i);
1829 if (ret < 0) {
1830 res->check_errors++;
1831 goto fail;
1832 }
1833 res->corruptions_fixed++;
1834 } else {
1835 res->corruptions++;
1836 }
1837 }
1838
1839 ret = bdrv_pread(bs->file, l2_offset, l2_table,
1840 s->l2_size * sizeof(uint64_t));
1841 if (ret < 0) {
1842 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1843 strerror(-ret));
1844 res->check_errors++;
1845 goto fail;
1846 }
1847
1848 for (j = 0; j < s->l2_size; j++) {
1849 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1850 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1851 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1852
1853 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1854 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1855 ret = qcow2_get_refcount(bs,
1856 data_offset >> s->cluster_bits,
1857 &refcount);
1858 if (ret < 0) {
1859 /* don't print message nor increment check_errors */
1860 continue;
1861 }
1862 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1863 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1864 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1865 fix & BDRV_FIX_ERRORS ? "Repairing" :
1866 "ERROR",
1867 l2_entry, refcount);
1868 if (fix & BDRV_FIX_ERRORS) {
1869 l2_table[j] = cpu_to_be64(refcount == 1
1870 ? l2_entry | QCOW_OFLAG_COPIED
1871 : l2_entry & ~QCOW_OFLAG_COPIED);
1872 l2_dirty = true;
1873 res->corruptions_fixed++;
1874 } else {
1875 res->corruptions++;
1876 }
1877 }
1878 }
1879 }
1880
1881 if (l2_dirty) {
1882 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1883 l2_offset, s->cluster_size);
1884 if (ret < 0) {
1885 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1886 "overlap check failed: %s\n", strerror(-ret));
1887 res->check_errors++;
1888 goto fail;
1889 }
1890
1891 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1892 s->cluster_size);
1893 if (ret < 0) {
1894 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1895 strerror(-ret));
1896 res->check_errors++;
1897 goto fail;
1898 }
1899 }
1900 }
1901
1902 ret = 0;
1903
1904 fail:
1905 qemu_vfree(l2_table);
1906 return ret;
1907 }
1908
1909 /*
1910 * Checks consistency of refblocks and accounts for each refblock in
1911 * *refcount_table.
1912 */
1913 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1914 BdrvCheckMode fix, bool *rebuild,
1915 void **refcount_table, int64_t *nb_clusters)
1916 {
1917 BDRVQcow2State *s = bs->opaque;
1918 int64_t i, size;
1919 int ret;
1920
1921 for(i = 0; i < s->refcount_table_size; i++) {
1922 uint64_t offset, cluster;
1923 offset = s->refcount_table[i];
1924 cluster = offset >> s->cluster_bits;
1925
1926 /* Refcount blocks are cluster aligned */
1927 if (offset_into_cluster(s, offset)) {
1928 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1929 "cluster aligned; refcount table entry corrupted\n", i);
1930 res->corruptions++;
1931 *rebuild = true;
1932 continue;
1933 }
1934
1935 if (cluster >= *nb_clusters) {
1936 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1937 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1938
1939 if (fix & BDRV_FIX_ERRORS) {
1940 int64_t new_nb_clusters;
1941 Error *local_err = NULL;
1942
1943 if (offset > INT64_MAX - s->cluster_size) {
1944 ret = -EINVAL;
1945 goto resize_fail;
1946 }
1947
1948 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1949 PREALLOC_MODE_OFF, &local_err);
1950 if (ret < 0) {
1951 error_report_err(local_err);
1952 goto resize_fail;
1953 }
1954 size = bdrv_getlength(bs->file->bs);
1955 if (size < 0) {
1956 ret = size;
1957 goto resize_fail;
1958 }
1959
1960 new_nb_clusters = size_to_clusters(s, size);
1961 assert(new_nb_clusters >= *nb_clusters);
1962
1963 ret = realloc_refcount_array(s, refcount_table,
1964 nb_clusters, new_nb_clusters);
1965 if (ret < 0) {
1966 res->check_errors++;
1967 return ret;
1968 }
1969
1970 if (cluster >= *nb_clusters) {
1971 ret = -EINVAL;
1972 goto resize_fail;
1973 }
1974
1975 res->corruptions_fixed++;
1976 ret = qcow2_inc_refcounts_imrt(bs, res,
1977 refcount_table, nb_clusters,
1978 offset, s->cluster_size);
1979 if (ret < 0) {
1980 return ret;
1981 }
1982 /* No need to check whether the refcount is now greater than 1:
1983 * This area was just allocated and zeroed, so it can only be
1984 * exactly 1 after qcow2_inc_refcounts_imrt() */
1985 continue;
1986
1987 resize_fail:
1988 res->corruptions++;
1989 *rebuild = true;
1990 fprintf(stderr, "ERROR could not resize image: %s\n",
1991 strerror(-ret));
1992 } else {
1993 res->corruptions++;
1994 }
1995 continue;
1996 }
1997
1998 if (offset != 0) {
1999 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2000 offset, s->cluster_size);
2001 if (ret < 0) {
2002 return ret;
2003 }
2004 if (s->get_refcount(*refcount_table, cluster) != 1) {
2005 fprintf(stderr, "ERROR refcount block %" PRId64
2006 " refcount=%" PRIu64 "\n", i,
2007 s->get_refcount(*refcount_table, cluster));
2008 res->corruptions++;
2009 *rebuild = true;
2010 }
2011 }
2012 }
2013
2014 return 0;
2015 }
2016
2017 /*
2018 * Calculates an in-memory refcount table.
2019 */
2020 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2021 BdrvCheckMode fix, bool *rebuild,
2022 void **refcount_table, int64_t *nb_clusters)
2023 {
2024 BDRVQcow2State *s = bs->opaque;
2025 int64_t i;
2026 QCowSnapshot *sn;
2027 int ret;
2028
2029 if (!*refcount_table) {
2030 int64_t old_size = 0;
2031 ret = realloc_refcount_array(s, refcount_table,
2032 &old_size, *nb_clusters);
2033 if (ret < 0) {
2034 res->check_errors++;
2035 return ret;
2036 }
2037 }
2038
2039 /* header */
2040 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2041 0, s->cluster_size);
2042 if (ret < 0) {
2043 return ret;
2044 }
2045
2046 /* current L1 table */
2047 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2048 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2049 fix);
2050 if (ret < 0) {
2051 return ret;
2052 }
2053
2054 /* snapshots */
2055 for (i = 0; i < s->nb_snapshots; i++) {
2056 sn = s->snapshots + i;
2057 if (offset_into_cluster(s, sn->l1_table_offset)) {
2058 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2059 "L1 table is not cluster aligned; snapshot table entry "
2060 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2061 res->corruptions++;
2062 continue;
2063 }
2064 if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2065 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2066 "L1 table is too large; snapshot table entry corrupted\n",
2067 sn->id_str, sn->name, sn->l1_size);
2068 res->corruptions++;
2069 continue;
2070 }
2071 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2072 sn->l1_table_offset, sn->l1_size, 0, fix);
2073 if (ret < 0) {
2074 return ret;
2075 }
2076 }
2077 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2078 s->snapshots_offset, s->snapshots_size);
2079 if (ret < 0) {
2080 return ret;
2081 }
2082
2083 /* refcount data */
2084 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2085 s->refcount_table_offset,
2086 s->refcount_table_size * sizeof(uint64_t));
2087 if (ret < 0) {
2088 return ret;
2089 }
2090
2091 /* encryption */
2092 if (s->crypto_header.length) {
2093 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2094 s->crypto_header.offset,
2095 s->crypto_header.length);
2096 if (ret < 0) {
2097 return ret;
2098 }
2099 }
2100
2101 /* bitmaps */
2102 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2103 if (ret < 0) {
2104 return ret;
2105 }
2106
2107 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2108 }
2109
2110 /*
2111 * Compares the actual reference count for each cluster in the image against the
2112 * refcount as reported by the refcount structures on-disk.
2113 */
2114 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2115 BdrvCheckMode fix, bool *rebuild,
2116 int64_t *highest_cluster,
2117 void *refcount_table, int64_t nb_clusters)
2118 {
2119 BDRVQcow2State *s = bs->opaque;
2120 int64_t i;
2121 uint64_t refcount1, refcount2;
2122 int ret;
2123
2124 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2125 ret = qcow2_get_refcount(bs, i, &refcount1);
2126 if (ret < 0) {
2127 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2128 i, strerror(-ret));
2129 res->check_errors++;
2130 continue;
2131 }
2132
2133 refcount2 = s->get_refcount(refcount_table, i);
2134
2135 if (refcount1 > 0 || refcount2 > 0) {
2136 *highest_cluster = i;
2137 }
2138
2139 if (refcount1 != refcount2) {
2140 /* Check if we're allowed to fix the mismatch */
2141 int *num_fixed = NULL;
2142 if (refcount1 == 0) {
2143 *rebuild = true;
2144 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2145 num_fixed = &res->leaks_fixed;
2146 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2147 num_fixed = &res->corruptions_fixed;
2148 }
2149
2150 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2151 " reference=%" PRIu64 "\n",
2152 num_fixed != NULL ? "Repairing" :
2153 refcount1 < refcount2 ? "ERROR" :
2154 "Leaked",
2155 i, refcount1, refcount2);
2156
2157 if (num_fixed) {
2158 ret = update_refcount(bs, i << s->cluster_bits, 1,
2159 refcount_diff(refcount1, refcount2),
2160 refcount1 > refcount2,
2161 QCOW2_DISCARD_ALWAYS);
2162 if (ret >= 0) {
2163 (*num_fixed)++;
2164 continue;
2165 }
2166 }
2167
2168 /* And if we couldn't, print an error */
2169 if (refcount1 < refcount2) {
2170 res->corruptions++;
2171 } else {
2172 res->leaks++;
2173 }
2174 }
2175 }
2176 }
2177
2178 /*
2179 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2180 * the on-disk refcount structures.
2181 *
2182 * On input, *first_free_cluster tells where to start looking, and need not
2183 * actually be a free cluster; the returned offset will not be before that
2184 * cluster. On output, *first_free_cluster points to the first gap found, even
2185 * if that gap was too small to be used as the returned offset.
2186 *
2187 * Note that *first_free_cluster is a cluster index whereas the return value is
2188 * an offset.
2189 */
2190 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2191 int cluster_count,
2192 void **refcount_table,
2193 int64_t *imrt_nb_clusters,
2194 int64_t *first_free_cluster)
2195 {
2196 BDRVQcow2State *s = bs->opaque;
2197 int64_t cluster = *first_free_cluster, i;
2198 bool first_gap = true;
2199 int contiguous_free_clusters;
2200 int ret;
2201
2202 /* Starting at *first_free_cluster, find a range of at least cluster_count
2203 * continuously free clusters */
2204 for (contiguous_free_clusters = 0;
2205 cluster < *imrt_nb_clusters &&
2206 contiguous_free_clusters < cluster_count;
2207 cluster++)
2208 {
2209 if (!s->get_refcount(*refcount_table, cluster)) {
2210 contiguous_free_clusters++;
2211 if (first_gap) {
2212 /* If this is the first free cluster found, update
2213 * *first_free_cluster accordingly */
2214 *first_free_cluster = cluster;
2215 first_gap = false;
2216 }
2217 } else if (contiguous_free_clusters) {
2218 contiguous_free_clusters = 0;
2219 }
2220 }
2221
2222 /* If contiguous_free_clusters is greater than zero, it contains the number
2223 * of continuously free clusters until the current cluster; the first free
2224 * cluster in the current "gap" is therefore
2225 * cluster - contiguous_free_clusters */
2226
2227 /* If no such range could be found, grow the in-memory refcount table
2228 * accordingly to append free clusters at the end of the image */
2229 if (contiguous_free_clusters < cluster_count) {
2230 /* contiguous_free_clusters clusters are already empty at the image end;
2231 * we need cluster_count clusters; therefore, we have to allocate
2232 * cluster_count - contiguous_free_clusters new clusters at the end of
2233 * the image (which is the current value of cluster; note that cluster
2234 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2235 * the image end) */
2236 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2237 cluster + cluster_count
2238 - contiguous_free_clusters);
2239 if (ret < 0) {
2240 return ret;
2241 }
2242 }
2243
2244 /* Go back to the first free cluster */
2245 cluster -= contiguous_free_clusters;
2246 for (i = 0; i < cluster_count; i++) {
2247 s->set_refcount(*refcount_table, cluster + i, 1);
2248 }
2249
2250 return cluster << s->cluster_bits;
2251 }
2252
2253 /*
2254 * Creates a new refcount structure based solely on the in-memory information
2255 * given through *refcount_table. All necessary allocations will be reflected
2256 * in that array.
2257 *
2258 * On success, the old refcount structure is leaked (it will be covered by the
2259 * new refcount structure).
2260 */
2261 static int rebuild_refcount_structure(BlockDriverState *bs,
2262 BdrvCheckResult *res,
2263 void **refcount_table,
2264 int64_t *nb_clusters)
2265 {
2266 BDRVQcow2State *s = bs->opaque;
2267 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2268 int64_t refblock_offset, refblock_start, refblock_index;
2269 uint32_t reftable_size = 0;
2270 uint64_t *on_disk_reftable = NULL;
2271 void *on_disk_refblock;
2272 int ret = 0;
2273 struct {
2274 uint64_t reftable_offset;
2275 uint32_t reftable_clusters;
2276 } QEMU_PACKED reftable_offset_and_clusters;
2277
2278 qcow2_cache_empty(bs, s->refcount_block_cache);
2279
2280 write_refblocks:
2281 for (; cluster < *nb_clusters; cluster++) {
2282 if (!s->get_refcount(*refcount_table, cluster)) {
2283 continue;
2284 }
2285
2286 refblock_index = cluster >> s->refcount_block_bits;
2287 refblock_start = refblock_index << s->refcount_block_bits;
2288
2289 /* Don't allocate a cluster in a refblock already written to disk */
2290 if (first_free_cluster < refblock_start) {
2291 first_free_cluster = refblock_start;
2292 }
2293 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2294 nb_clusters, &first_free_cluster);
2295 if (refblock_offset < 0) {
2296 fprintf(stderr, "ERROR allocating refblock: %s\n",
2297 strerror(-refblock_offset));
2298 res->check_errors++;
2299 ret = refblock_offset;
2300 goto fail;
2301 }
2302
2303 if (reftable_size <= refblock_index) {
2304 uint32_t old_reftable_size = reftable_size;
2305 uint64_t *new_on_disk_reftable;
2306
2307 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2308 s->cluster_size) / sizeof(uint64_t);
2309 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2310 reftable_size *
2311 sizeof(uint64_t));
2312 if (!new_on_disk_reftable) {
2313 res->check_errors++;
2314 ret = -ENOMEM;
2315 goto fail;
2316 }
2317 on_disk_reftable = new_on_disk_reftable;
2318
2319 memset(on_disk_reftable + old_reftable_size, 0,
2320 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2321
2322 /* The offset we have for the reftable is now no longer valid;
2323 * this will leak that range, but we can easily fix that by running
2324 * a leak-fixing check after this rebuild operation */
2325 reftable_offset = -1;
2326 } else {
2327 assert(on_disk_reftable);
2328 }
2329 on_disk_reftable[refblock_index] = refblock_offset;
2330
2331 /* If this is apparently the last refblock (for now), try to squeeze the
2332 * reftable in */
2333 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2334 reftable_offset < 0)
2335 {
2336 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2337 sizeof(uint64_t));
2338 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2339 refcount_table, nb_clusters,
2340 &first_free_cluster);
2341 if (reftable_offset < 0) {
2342 fprintf(stderr, "ERROR allocating reftable: %s\n",
2343 strerror(-reftable_offset));
2344 res->check_errors++;
2345 ret = reftable_offset;
2346 goto fail;
2347 }
2348 }
2349
2350 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2351 s->cluster_size);
2352 if (ret < 0) {
2353 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2354 goto fail;
2355 }
2356
2357 /* The size of *refcount_table is always cluster-aligned, therefore the
2358 * write operation will not overflow */
2359 on_disk_refblock = (void *)((char *) *refcount_table +
2360 refblock_index * s->cluster_size);
2361
2362 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2363 on_disk_refblock, s->cluster_sectors);
2364 if (ret < 0) {
2365 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2366 goto fail;
2367 }
2368
2369 /* Go to the end of this refblock */
2370 cluster = refblock_start + s->refcount_block_size - 1;
2371 }
2372
2373 if (reftable_offset < 0) {
2374 uint64_t post_refblock_start, reftable_clusters;
2375
2376 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2377 reftable_clusters = size_to_clusters(s,
2378 reftable_size * sizeof(uint64_t));
2379 /* Not pretty but simple */
2380 if (first_free_cluster < post_refblock_start) {
2381 first_free_cluster = post_refblock_start;
2382 }
2383 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2384 refcount_table, nb_clusters,
2385 &first_free_cluster);
2386 if (reftable_offset < 0) {
2387 fprintf(stderr, "ERROR allocating reftable: %s\n",
2388 strerror(-reftable_offset));
2389 res->check_errors++;
2390 ret = reftable_offset;
2391 goto fail;
2392 }
2393
2394 goto write_refblocks;
2395 }
2396
2397 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2398 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2399 }
2400
2401 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2402 reftable_size * sizeof(uint64_t));
2403 if (ret < 0) {
2404 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2405 goto fail;
2406 }
2407
2408 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2409 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2410 reftable_size * sizeof(uint64_t));
2411 if (ret < 0) {
2412 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2413 goto fail;
2414 }
2415
2416 /* Enter new reftable into the image header */
2417 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2418 reftable_offset_and_clusters.reftable_clusters =
2419 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2420 ret = bdrv_pwrite_sync(bs->file,
2421 offsetof(QCowHeader, refcount_table_offset),
2422 &reftable_offset_and_clusters,
2423 sizeof(reftable_offset_and_clusters));
2424 if (ret < 0) {
2425 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2426 goto fail;
2427 }
2428
2429 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2430 be64_to_cpus(&on_disk_reftable[refblock_index]);
2431 }
2432 s->refcount_table = on_disk_reftable;
2433 s->refcount_table_offset = reftable_offset;
2434 s->refcount_table_size = reftable_size;
2435 update_max_refcount_table_index(s);
2436
2437 return 0;
2438
2439 fail:
2440 g_free(on_disk_reftable);
2441 return ret;
2442 }
2443
2444 /*
2445 * Checks an image for refcount consistency.
2446 *
2447 * Returns 0 if no errors are found, the number of errors in case the image is
2448 * detected as corrupted, and -errno when an internal error occurred.
2449 */
2450 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2451 BdrvCheckMode fix)
2452 {
2453 BDRVQcow2State *s = bs->opaque;
2454 BdrvCheckResult pre_compare_res;
2455 int64_t size, highest_cluster, nb_clusters;
2456 void *refcount_table = NULL;
2457 bool rebuild = false;
2458 int ret;
2459
2460 size = bdrv_getlength(bs->file->bs);
2461 if (size < 0) {
2462 res->check_errors++;
2463 return size;
2464 }
2465
2466 nb_clusters = size_to_clusters(s, size);
2467 if (nb_clusters > INT_MAX) {
2468 res->check_errors++;
2469 return -EFBIG;
2470 }
2471
2472 res->bfi.total_clusters =
2473 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2474
2475 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2476 &nb_clusters);
2477 if (ret < 0) {
2478 goto fail;
2479 }
2480
2481 /* In case we don't need to rebuild the refcount structure (but want to fix
2482 * something), this function is immediately called again, in which case the
2483 * result should be ignored */
2484 pre_compare_res = *res;
2485 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2486 nb_clusters);
2487
2488 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2489 BdrvCheckResult old_res = *res;
2490 int fresh_leaks = 0;
2491
2492 fprintf(stderr, "Rebuilding refcount structure\n");
2493 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2494 &nb_clusters);
2495 if (ret < 0) {
2496 goto fail;
2497 }
2498
2499 res->corruptions = 0;
2500 res->leaks = 0;
2501
2502 /* Because the old reftable has been exchanged for a new one the
2503 * references have to be recalculated */
2504 rebuild = false;
2505 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2506 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2507 &nb_clusters);
2508 if (ret < 0) {
2509 goto fail;
2510 }
2511
2512 if (fix & BDRV_FIX_LEAKS) {
2513 /* The old refcount structures are now leaked, fix it; the result
2514 * can be ignored, aside from leaks which were introduced by
2515 * rebuild_refcount_structure() that could not be fixed */
2516 BdrvCheckResult saved_res = *res;
2517 *res = (BdrvCheckResult){ 0 };
2518
2519 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2520 &highest_cluster, refcount_table, nb_clusters);
2521 if (rebuild) {
2522 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2523 "broken\n");
2524 }
2525
2526 /* Any leaks accounted for here were introduced by
2527 * rebuild_refcount_structure() because that function has created a
2528 * new refcount structure from scratch */
2529 fresh_leaks = res->leaks;
2530 *res = saved_res;
2531 }
2532
2533 if (res->corruptions < old_res.corruptions) {
2534 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2535 }
2536 if (res->leaks < old_res.leaks) {
2537 res->leaks_fixed += old_res.leaks - res->leaks;
2538 }
2539 res->leaks += fresh_leaks;
2540 } else if (fix) {
2541 if (rebuild) {
2542 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2543 res->check_errors++;
2544 ret = -EIO;
2545 goto fail;
2546 }
2547
2548 if (res->leaks || res->corruptions) {
2549 *res = pre_compare_res;
2550 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2551 refcount_table, nb_clusters);
2552 }
2553 }
2554
2555 /* check OFLAG_COPIED */
2556 ret = check_oflag_copied(bs, res, fix);
2557 if (ret < 0) {
2558 goto fail;
2559 }
2560
2561 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2562 ret = 0;
2563
2564 fail:
2565 g_free(refcount_table);
2566
2567 return ret;
2568 }
2569
2570 #define overlaps_with(ofs, sz) \
2571 ranges_overlap(offset, size, ofs, sz)
2572
2573 /*
2574 * Checks if the given offset into the image file is actually free to use by
2575 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2576 * i.e. a sanity check without relying on the refcount tables.
2577 *
2578 * The ign parameter specifies what checks not to perform (being a bitmask of
2579 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2580 *
2581 * Returns:
2582 * - 0 if writing to this offset will not affect the mentioned metadata
2583 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2584 * - a negative value (-errno) indicating an error while performing a check,
2585 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2586 */
2587 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2588 int64_t size)
2589 {
2590 BDRVQcow2State *s = bs->opaque;
2591 int chk = s->overlap_check & ~ign;
2592 int i, j;
2593
2594 if (!size) {
2595 return 0;
2596 }
2597
2598 if (chk & QCOW2_OL_MAIN_HEADER) {
2599 if (offset < s->cluster_size) {
2600 return QCOW2_OL_MAIN_HEADER;
2601 }
2602 }
2603
2604 /* align range to test to cluster boundaries */
2605 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2606 offset = start_of_cluster(s, offset);
2607
2608 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2609 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2610 return QCOW2_OL_ACTIVE_L1;
2611 }
2612 }
2613
2614 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2615 if (overlaps_with(s->refcount_table_offset,
2616 s->refcount_table_size * sizeof(uint64_t))) {
2617 return QCOW2_OL_REFCOUNT_TABLE;
2618 }
2619 }
2620
2621 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2622 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2623 return QCOW2_OL_SNAPSHOT_TABLE;
2624 }
2625 }
2626
2627 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2628 for (i = 0; i < s->nb_snapshots; i++) {
2629 if (s->snapshots[i].l1_size &&
2630 overlaps_with(s->snapshots[i].l1_table_offset,
2631 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2632 return QCOW2_OL_INACTIVE_L1;
2633 }
2634 }
2635 }
2636
2637 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2638 for (i = 0; i < s->l1_size; i++) {
2639 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2640 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2641 s->cluster_size)) {
2642 return QCOW2_OL_ACTIVE_L2;
2643 }
2644 }
2645 }
2646
2647 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2648 unsigned last_entry = s->max_refcount_table_index;
2649 assert(last_entry < s->refcount_table_size);
2650 assert(last_entry + 1 == s->refcount_table_size ||
2651 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2652 for (i = 0; i <= last_entry; i++) {
2653 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2654 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2655 s->cluster_size)) {
2656 return QCOW2_OL_REFCOUNT_BLOCK;
2657 }
2658 }
2659 }
2660
2661 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2662 for (i = 0; i < s->nb_snapshots; i++) {
2663 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2664 uint32_t l1_sz = s->snapshots[i].l1_size;
2665 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2666 uint64_t *l1;
2667 int ret;
2668
2669 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2670 QCOW_MAX_L1_SIZE, "", NULL);
2671 if (ret < 0) {
2672 return ret;
2673 }
2674
2675 l1 = g_try_malloc(l1_sz2);
2676
2677 if (l1_sz2 && l1 == NULL) {
2678 return -ENOMEM;
2679 }
2680
2681 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2682 if (ret < 0) {
2683 g_free(l1);
2684 return ret;
2685 }
2686
2687 for (j = 0; j < l1_sz; j++) {
2688 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2689 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2690 g_free(l1);
2691 return QCOW2_OL_INACTIVE_L2;
2692 }
2693 }
2694
2695 g_free(l1);
2696 }
2697 }
2698
2699 return 0;
2700 }
2701
2702 static const char *metadata_ol_names[] = {
2703 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2704 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2705 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2706 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2707 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2708 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2709 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2710 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2711 };
2712
2713 /*
2714 * First performs a check for metadata overlaps (through
2715 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2716 * while performing a check), that value is returned. If an impending overlap
2717 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2718 * and -EIO returned.
2719 *
2720 * Returns 0 if there were neither overlaps nor errors while checking for
2721 * overlaps; or a negative value (-errno) on error.
2722 */
2723 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2724 int64_t size)
2725 {
2726 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2727
2728 if (ret < 0) {
2729 return ret;
2730 } else if (ret > 0) {
2731 int metadata_ol_bitnr = ctz32(ret);
2732 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2733
2734 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2735 "write on metadata (overlaps with %s)",
2736 metadata_ol_names[metadata_ol_bitnr]);
2737 return -EIO;
2738 }
2739
2740 return 0;
2741 }
2742
2743 /* A pointer to a function of this type is given to walk_over_reftable(). That
2744 * function will create refblocks and pass them to a RefblockFinishOp once they
2745 * are completed (@refblock). @refblock_empty is set if the refblock is
2746 * completely empty.
2747 *
2748 * Along with the refblock, a corresponding reftable entry is passed, in the
2749 * reftable @reftable (which may be reallocated) at @reftable_index.
2750 *
2751 * @allocated should be set to true if a new cluster has been allocated.
2752 */
2753 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2754 uint64_t reftable_index, uint64_t *reftable_size,
2755 void *refblock, bool refblock_empty,
2756 bool *allocated, Error **errp);
2757
2758 /**
2759 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2760 * it is not empty) and inserts its offset into the new reftable. The size of
2761 * this new reftable is increased as required.
2762 */
2763 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2764 uint64_t reftable_index, uint64_t *reftable_size,
2765 void *refblock, bool refblock_empty, bool *allocated,
2766 Error **errp)
2767 {
2768 BDRVQcow2State *s = bs->opaque;
2769 int64_t offset;
2770
2771 if (!refblock_empty && reftable_index >= *reftable_size) {
2772 uint64_t *new_reftable;
2773 uint64_t new_reftable_size;
2774
2775 new_reftable_size = ROUND_UP(reftable_index + 1,
2776 s->cluster_size / sizeof(uint64_t));
2777 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2778 error_setg(errp,
2779 "This operation would make the refcount table grow "
2780 "beyond the maximum size supported by QEMU, aborting");
2781 return -ENOTSUP;
2782 }
2783
2784 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2785 sizeof(uint64_t));
2786 if (!new_reftable) {
2787 error_setg(errp, "Failed to increase reftable buffer size");
2788 return -ENOMEM;
2789 }
2790
2791 memset(new_reftable + *reftable_size, 0,
2792 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2793
2794 *reftable = new_reftable;
2795 *reftable_size = new_reftable_size;
2796 }
2797
2798 if (!refblock_empty && !(*reftable)[reftable_index]) {
2799 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2800 if (offset < 0) {
2801 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2802 return offset;
2803 }
2804 (*reftable)[reftable_index] = offset;
2805 *allocated = true;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /**
2812 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2813 * offset specified by the new reftable's entry. It does not modify the new
2814 * reftable or change any refcounts.
2815 */
2816 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2817 uint64_t reftable_index, uint64_t *reftable_size,
2818 void *refblock, bool refblock_empty, bool *allocated,
2819 Error **errp)
2820 {
2821 BDRVQcow2State *s = bs->opaque;
2822 int64_t offset;
2823 int ret;
2824
2825 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2826 offset = (*reftable)[reftable_index];
2827
2828 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2829 if (ret < 0) {
2830 error_setg_errno(errp, -ret, "Overlap check failed");
2831 return ret;
2832 }
2833
2834 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2835 if (ret < 0) {
2836 error_setg_errno(errp, -ret, "Failed to write refblock");
2837 return ret;
2838 }
2839 } else {
2840 assert(refblock_empty);
2841 }
2842
2843 return 0;
2844 }
2845
2846 /**
2847 * This function walks over the existing reftable and every referenced refblock;
2848 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2849 * create an equal new entry in the passed @new_refblock. Once that
2850 * @new_refblock is completely filled, @operation will be called.
2851 *
2852 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2853 * @index is the index of the walk_over_reftable() calls and @total is the total
2854 * number of walk_over_reftable() calls per amend operation. Both are used for
2855 * calculating the parameters for the status callback.
2856 *
2857 * @allocated is set to true if a new cluster has been allocated.
2858 */
2859 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2860 uint64_t *new_reftable_index,
2861 uint64_t *new_reftable_size,
2862 void *new_refblock, int new_refblock_size,
2863 int new_refcount_bits,
2864 RefblockFinishOp *operation, bool *allocated,
2865 Qcow2SetRefcountFunc *new_set_refcount,
2866 BlockDriverAmendStatusCB *status_cb,
2867 void *cb_opaque, int index, int total,
2868 Error **errp)
2869 {
2870 BDRVQcow2State *s = bs->opaque;
2871 uint64_t reftable_index;
2872 bool new_refblock_empty = true;
2873 int refblock_index;
2874 int new_refblock_index = 0;
2875 int ret;
2876
2877 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2878 reftable_index++)
2879 {
2880 uint64_t refblock_offset = s->refcount_table[reftable_index]
2881 & REFT_OFFSET_MASK;
2882
2883 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2884 (uint64_t)total * s->refcount_table_size, cb_opaque);
2885
2886 if (refblock_offset) {
2887 void *refblock;
2888
2889 if (offset_into_cluster(s, refblock_offset)) {
2890 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2891 PRIx64 " unaligned (reftable index: %#"
2892 PRIx64 ")", refblock_offset,
2893 reftable_index);
2894 error_setg(errp,
2895 "Image is corrupt (unaligned refblock offset)");
2896 return -EIO;
2897 }
2898
2899 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2900 &refblock);
2901 if (ret < 0) {
2902 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2903 return ret;
2904 }
2905
2906 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2907 refblock_index++)
2908 {
2909 uint64_t refcount;
2910
2911 if (new_refblock_index >= new_refblock_size) {
2912 /* new_refblock is now complete */
2913 ret = operation(bs, new_reftable, *new_reftable_index,
2914 new_reftable_size, new_refblock,
2915 new_refblock_empty, allocated, errp);
2916 if (ret < 0) {
2917 qcow2_cache_put(s->refcount_block_cache, &refblock);
2918 return ret;
2919 }
2920
2921 (*new_reftable_index)++;
2922 new_refblock_index = 0;
2923 new_refblock_empty = true;
2924 }
2925
2926 refcount = s->get_refcount(refblock, refblock_index);
2927 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2928 uint64_t offset;
2929
2930 qcow2_cache_put(s->refcount_block_cache, &refblock);
2931
2932 offset = ((reftable_index << s->refcount_block_bits)
2933 + refblock_index) << s->cluster_bits;
2934
2935 error_setg(errp, "Cannot decrease refcount entry width to "
2936 "%i bits: Cluster at offset %#" PRIx64 " has a "
2937 "refcount of %" PRIu64, new_refcount_bits,
2938 offset, refcount);
2939 return -EINVAL;
2940 }
2941
2942 if (new_set_refcount) {
2943 new_set_refcount(new_refblock, new_refblock_index++,
2944 refcount);
2945 } else {
2946 new_refblock_index++;
2947 }
2948 new_refblock_empty = new_refblock_empty && refcount == 0;
2949 }
2950
2951 qcow2_cache_put(s->refcount_block_cache, &refblock);
2952 } else {
2953 /* No refblock means every refcount is 0 */
2954 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2955 refblock_index++)
2956 {
2957 if (new_refblock_index >= new_refblock_size) {
2958 /* new_refblock is now complete */
2959 ret = operation(bs, new_reftable, *new_reftable_index,
2960 new_reftable_size, new_refblock,
2961 new_refblock_empty, allocated, errp);
2962 if (ret < 0) {
2963 return ret;
2964 }
2965
2966 (*new_reftable_index)++;
2967 new_refblock_index = 0;
2968 new_refblock_empty = true;
2969 }
2970
2971 if (new_set_refcount) {
2972 new_set_refcount(new_refblock, new_refblock_index++, 0);
2973 } else {
2974 new_refblock_index++;
2975 }
2976 }
2977 }
2978 }
2979
2980 if (new_refblock_index > 0) {
2981 /* Complete the potentially existing partially filled final refblock */
2982 if (new_set_refcount) {
2983 for (; new_refblock_index < new_refblock_size;
2984 new_refblock_index++)
2985 {
2986 new_set_refcount(new_refblock, new_refblock_index, 0);
2987 }
2988 }
2989
2990 ret = operation(bs, new_reftable, *new_reftable_index,
2991 new_reftable_size, new_refblock, new_refblock_empty,
2992 allocated, errp);
2993 if (ret < 0) {
2994 return ret;
2995 }
2996
2997 (*new_reftable_index)++;
2998 }
2999
3000 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3001 (uint64_t)total * s->refcount_table_size, cb_opaque);
3002
3003 return 0;
3004 }
3005
3006 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3007 BlockDriverAmendStatusCB *status_cb,
3008 void *cb_opaque, Error **errp)
3009 {
3010 BDRVQcow2State *s = bs->opaque;
3011 Qcow2GetRefcountFunc *new_get_refcount;
3012 Qcow2SetRefcountFunc *new_set_refcount;
3013 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3014 uint64_t *new_reftable = NULL, new_reftable_size = 0;
3015 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3016 uint64_t new_reftable_index = 0;
3017 uint64_t i;
3018 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3019 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3020 int old_refcount_order;
3021 int walk_index = 0;
3022 int ret;
3023 bool new_allocation;
3024
3025 assert(s->qcow_version >= 3);
3026 assert(refcount_order >= 0 && refcount_order <= 6);
3027
3028 /* see qcow2_open() */
3029 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3030
3031 new_get_refcount = get_refcount_funcs[refcount_order];
3032 new_set_refcount = set_refcount_funcs[refcount_order];
3033
3034
3035 do {
3036 int total_walks;
3037
3038 new_allocation = false;
3039
3040 /* At least we have to do this walk and the one which writes the
3041 * refblocks; also, at least we have to do this loop here at least
3042 * twice (normally), first to do the allocations, and second to
3043 * determine that everything is correctly allocated, this then makes
3044 * three walks in total */
3045 total_walks = MAX(walk_index + 2, 3);
3046
3047 /* First, allocate the structures so they are present in the refcount
3048 * structures */
3049 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3050 &new_reftable_size, NULL, new_refblock_size,
3051 new_refcount_bits, &alloc_refblock,
3052 &new_allocation, NULL, status_cb, cb_opaque,
3053 walk_index++, total_walks, errp);
3054 if (ret < 0) {
3055 goto done;
3056 }
3057
3058 new_reftable_index = 0;
3059
3060 if (new_allocation) {
3061 if (new_reftable_offset) {
3062 qcow2_free_clusters(bs, new_reftable_offset,
3063 allocated_reftable_size * sizeof(uint64_t),
3064 QCOW2_DISCARD_NEVER);
3065 }
3066
3067 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3068 sizeof(uint64_t));
3069 if (new_reftable_offset < 0) {
3070 error_setg_errno(errp, -new_reftable_offset,
3071 "Failed to allocate the new reftable");
3072 ret = new_reftable_offset;
3073 goto done;
3074 }
3075 allocated_reftable_size = new_reftable_size;
3076 }
3077 } while (new_allocation);
3078
3079 /* Second, write the new refblocks */
3080 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3081 &new_reftable_size, new_refblock,
3082 new_refblock_size, new_refcount_bits,
3083 &flush_refblock, &new_allocation, new_set_refcount,
3084 status_cb, cb_opaque, walk_index, walk_index + 1,
3085 errp);
3086 if (ret < 0) {
3087 goto done;
3088 }
3089 assert(!new_allocation);
3090
3091
3092 /* Write the new reftable */
3093 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3094 new_reftable_size * sizeof(uint64_t));
3095 if (ret < 0) {
3096 error_setg_errno(errp, -ret, "Overlap check failed");
3097 goto done;
3098 }
3099
3100 for (i = 0; i < new_reftable_size; i++) {
3101 cpu_to_be64s(&new_reftable[i]);
3102 }
3103
3104 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3105 new_reftable_size * sizeof(uint64_t));
3106
3107 for (i = 0; i < new_reftable_size; i++) {
3108 be64_to_cpus(&new_reftable[i]);
3109 }
3110
3111 if (ret < 0) {
3112 error_setg_errno(errp, -ret, "Failed to write the new reftable");
3113 goto done;
3114 }
3115
3116
3117 /* Empty the refcount cache */
3118 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3119 if (ret < 0) {
3120 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3121 goto done;
3122 }
3123
3124 /* Update the image header to point to the new reftable; this only updates
3125 * the fields which are relevant to qcow2_update_header(); other fields
3126 * such as s->refcount_table or s->refcount_bits stay stale for now
3127 * (because we have to restore everything if qcow2_update_header() fails) */
3128 old_refcount_order = s->refcount_order;
3129 old_reftable_size = s->refcount_table_size;
3130 old_reftable_offset = s->refcount_table_offset;
3131
3132 s->refcount_order = refcount_order;
3133 s->refcount_table_size = new_reftable_size;
3134 s->refcount_table_offset = new_reftable_offset;
3135
3136 ret = qcow2_update_header(bs);
3137 if (ret < 0) {
3138 s->refcount_order = old_refcount_order;
3139 s->refcount_table_size = old_reftable_size;
3140 s->refcount_table_offset = old_reftable_offset;
3141 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3142 goto done;
3143 }
3144
3145 /* Now update the rest of the in-memory information */
3146 old_reftable = s->refcount_table;
3147 s->refcount_table = new_reftable;
3148 update_max_refcount_table_index(s);
3149
3150 s->refcount_bits = 1 << refcount_order;
3151 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3152 s->refcount_max += s->refcount_max - 1;
3153
3154 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3155 s->refcount_block_size = 1 << s->refcount_block_bits;
3156
3157 s->get_refcount = new_get_refcount;
3158 s->set_refcount = new_set_refcount;
3159
3160 /* For cleaning up all old refblocks and the old reftable below the "done"
3161 * label */
3162 new_reftable = old_reftable;
3163 new_reftable_size = old_reftable_size;
3164 new_reftable_offset = old_reftable_offset;
3165
3166 done:
3167 if (new_reftable) {
3168 /* On success, new_reftable actually points to the old reftable (and
3169 * new_reftable_size is the old reftable's size); but that is just
3170 * fine */
3171 for (i = 0; i < new_reftable_size; i++) {
3172 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3173 if (offset) {
3174 qcow2_free_clusters(bs, offset, s->cluster_size,
3175 QCOW2_DISCARD_OTHER);
3176 }
3177 }
3178 g_free(new_reftable);
3179
3180 if (new_reftable_offset > 0) {
3181 qcow2_free_clusters(bs, new_reftable_offset,
3182 new_reftable_size * sizeof(uint64_t),
3183 QCOW2_DISCARD_OTHER);
3184 }
3185 }
3186
3187 qemu_vfree(new_refblock);
3188 return ret;
3189 }
3190
3191 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3192 {
3193 BDRVQcow2State *s = bs->opaque;
3194 uint32_t index = offset_to_reftable_index(s, offset);
3195 int64_t covering_refblock_offset = 0;
3196
3197 if (index < s->refcount_table_size) {
3198 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3199 }
3200 if (!covering_refblock_offset) {
3201 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3202 "not covered by the refcount structures",
3203 offset);
3204 return -EIO;
3205 }
3206
3207 return covering_refblock_offset;
3208 }
3209
3210 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3211 uint64_t discard_block_offs)
3212 {
3213 BDRVQcow2State *s = bs->opaque;
3214 int64_t refblock_offs;
3215 uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3216 uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3217 void *refblock;
3218 int ret;
3219
3220 refblock_offs = get_refblock_offset(bs, discard_block_offs);
3221 if (refblock_offs < 0) {
3222 return refblock_offs;
3223 }
3224
3225 assert(discard_block_offs != 0);
3226
3227 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3228 &refblock);
3229 if (ret < 0) {
3230 return ret;
3231 }
3232
3233 if (s->get_refcount(refblock, block_index) != 1) {
3234 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3235 " refblock offset %#" PRIx64
3236 ", reftable index %u"
3237 ", block offset %#" PRIx64
3238 ", refcount %#" PRIx64,
3239 refblock_offs,
3240 offset_to_reftable_index(s, discard_block_offs),
3241 discard_block_offs,
3242 s->get_refcount(refblock, block_index));
3243 qcow2_cache_put(s->refcount_block_cache, &refblock);
3244 return -EINVAL;
3245 }
3246 s->set_refcount(refblock, block_index, 0);
3247
3248 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3249
3250 qcow2_cache_put(s->refcount_block_cache, &refblock);
3251
3252 if (cluster_index < s->free_cluster_index) {
3253 s->free_cluster_index = cluster_index;
3254 }
3255
3256 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3257 discard_block_offs);
3258 if (refblock) {
3259 /* discard refblock from the cache if refblock is cached */
3260 qcow2_cache_discard(s->refcount_block_cache, refblock);
3261 }
3262 update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3263
3264 return 0;
3265 }
3266
3267 int qcow2_shrink_reftable(BlockDriverState *bs)
3268 {
3269 BDRVQcow2State *s = bs->opaque;
3270 uint64_t *reftable_tmp =
3271 g_malloc(s->refcount_table_size * sizeof(uint64_t));
3272 int i, ret;
3273
3274 for (i = 0; i < s->refcount_table_size; i++) {
3275 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3276 void *refblock;
3277 bool unused_block;
3278
3279 if (refblock_offs == 0) {
3280 reftable_tmp[i] = 0;
3281 continue;
3282 }
3283 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3284 &refblock);
3285 if (ret < 0) {
3286 goto out;
3287 }
3288
3289 /* the refblock has own reference */
3290 if (i == offset_to_reftable_index(s, refblock_offs)) {
3291 uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3292 (s->refcount_block_size - 1);
3293 uint64_t refcount = s->get_refcount(refblock, block_index);
3294
3295 s->set_refcount(refblock, block_index, 0);
3296
3297 unused_block = buffer_is_zero(refblock, s->cluster_size);
3298
3299 s->set_refcount(refblock, block_index, refcount);
3300 } else {
3301 unused_block = buffer_is_zero(refblock, s->cluster_size);
3302 }
3303 qcow2_cache_put(s->refcount_block_cache, &refblock);
3304
3305 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3306 }
3307
3308 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3309 s->refcount_table_size * sizeof(uint64_t));
3310 /*
3311 * If the write in the reftable failed the image may contain a partially
3312 * overwritten reftable. In this case it would be better to clear the
3313 * reftable in memory to avoid possible image corruption.
3314 */
3315 for (i = 0; i < s->refcount_table_size; i++) {
3316 if (s->refcount_table[i] && !reftable_tmp[i]) {
3317 if (ret == 0) {
3318 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3319 REFT_OFFSET_MASK);
3320 }
3321 s->refcount_table[i] = 0;
3322 }
3323 }
3324
3325 if (!s->cache_discards) {
3326 qcow2_process_discards(bs, ret);
3327 }
3328
3329 out:
3330 g_free(reftable_tmp);
3331 return ret;
3332 }
3333
3334 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3335 {
3336 BDRVQcow2State *s = bs->opaque;
3337 int64_t i;
3338
3339 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3340 uint64_t refcount;
3341 int ret = qcow2_get_refcount(bs, i, &refcount);
3342 if (ret < 0) {
3343 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3344 i, strerror(-ret));
3345 return ret;
3346 }
3347 if (refcount > 0) {
3348 return i;
3349 }
3350 }
3351 qcow2_signal_corruption(bs, true, -1, -1,
3352 "There are no references in the refcount table.");
3353 return -EIO;
3354 }