]> git.proxmox.com Git - mirror_qemu.git/blob - block/qcow2-refcount.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / block / qcow2-refcount.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "block/block-io.h"
27 #include "qapi/error.h"
28 #include "qcow2.h"
29 #include "qemu/range.h"
30 #include "qemu/bswap.h"
31 #include "qemu/cutils.h"
32 #include "qemu/memalign.h"
33 #include "trace.h"
34
35 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
36 uint64_t max);
37
38 G_GNUC_WARN_UNUSED_RESULT
39 static int update_refcount(BlockDriverState *bs,
40 int64_t offset, int64_t length, uint64_t addend,
41 bool decrease, enum qcow2_discard_type type);
42
43 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
46 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
47 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
48 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
49 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
50
51 static void set_refcount_ro0(void *refcount_array, uint64_t index,
52 uint64_t value);
53 static void set_refcount_ro1(void *refcount_array, uint64_t index,
54 uint64_t value);
55 static void set_refcount_ro2(void *refcount_array, uint64_t index,
56 uint64_t value);
57 static void set_refcount_ro3(void *refcount_array, uint64_t index,
58 uint64_t value);
59 static void set_refcount_ro4(void *refcount_array, uint64_t index,
60 uint64_t value);
61 static void set_refcount_ro5(void *refcount_array, uint64_t index,
62 uint64_t value);
63 static void set_refcount_ro6(void *refcount_array, uint64_t index,
64 uint64_t value);
65
66
67 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
68 &get_refcount_ro0,
69 &get_refcount_ro1,
70 &get_refcount_ro2,
71 &get_refcount_ro3,
72 &get_refcount_ro4,
73 &get_refcount_ro5,
74 &get_refcount_ro6
75 };
76
77 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
78 &set_refcount_ro0,
79 &set_refcount_ro1,
80 &set_refcount_ro2,
81 &set_refcount_ro3,
82 &set_refcount_ro4,
83 &set_refcount_ro5,
84 &set_refcount_ro6
85 };
86
87
88 /*********************************************************/
89 /* refcount handling */
90
91 static void update_max_refcount_table_index(BDRVQcow2State *s)
92 {
93 unsigned i = s->refcount_table_size - 1;
94 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
95 i--;
96 }
97 /* Set s->max_refcount_table_index to the index of the last used entry */
98 s->max_refcount_table_index = i;
99 }
100
101 int coroutine_fn qcow2_refcount_init(BlockDriverState *bs)
102 {
103 BDRVQcow2State *s = bs->opaque;
104 unsigned int refcount_table_size2, i;
105 int ret;
106
107 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
108
109 s->get_refcount = get_refcount_funcs[s->refcount_order];
110 s->set_refcount = set_refcount_funcs[s->refcount_order];
111
112 assert(s->refcount_table_size <= INT_MAX / REFTABLE_ENTRY_SIZE);
113 refcount_table_size2 = s->refcount_table_size * REFTABLE_ENTRY_SIZE;
114 s->refcount_table = g_try_malloc(refcount_table_size2);
115
116 if (s->refcount_table_size > 0) {
117 if (s->refcount_table == NULL) {
118 ret = -ENOMEM;
119 goto fail;
120 }
121 BLKDBG_CO_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
122 ret = bdrv_co_pread(bs->file, s->refcount_table_offset,
123 refcount_table_size2, s->refcount_table, 0);
124 if (ret < 0) {
125 goto fail;
126 }
127 for(i = 0; i < s->refcount_table_size; i++)
128 be64_to_cpus(&s->refcount_table[i]);
129 update_max_refcount_table_index(s);
130 }
131 return 0;
132 fail:
133 return ret;
134 }
135
136 void qcow2_refcount_close(BlockDriverState *bs)
137 {
138 BDRVQcow2State *s = bs->opaque;
139 g_free(s->refcount_table);
140 }
141
142
143 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
144 {
145 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
146 }
147
148 static void set_refcount_ro0(void *refcount_array, uint64_t index,
149 uint64_t value)
150 {
151 assert(!(value >> 1));
152 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
153 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
154 }
155
156 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
157 {
158 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
159 & 0x3;
160 }
161
162 static void set_refcount_ro1(void *refcount_array, uint64_t index,
163 uint64_t value)
164 {
165 assert(!(value >> 2));
166 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
167 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
168 }
169
170 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
171 {
172 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
173 & 0xf;
174 }
175
176 static void set_refcount_ro2(void *refcount_array, uint64_t index,
177 uint64_t value)
178 {
179 assert(!(value >> 4));
180 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
181 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
182 }
183
184 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
185 {
186 return ((const uint8_t *)refcount_array)[index];
187 }
188
189 static void set_refcount_ro3(void *refcount_array, uint64_t index,
190 uint64_t value)
191 {
192 assert(!(value >> 8));
193 ((uint8_t *)refcount_array)[index] = value;
194 }
195
196 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
197 {
198 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
199 }
200
201 static void set_refcount_ro4(void *refcount_array, uint64_t index,
202 uint64_t value)
203 {
204 assert(!(value >> 16));
205 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
206 }
207
208 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
209 {
210 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
211 }
212
213 static void set_refcount_ro5(void *refcount_array, uint64_t index,
214 uint64_t value)
215 {
216 assert(!(value >> 32));
217 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
218 }
219
220 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
221 {
222 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
223 }
224
225 static void set_refcount_ro6(void *refcount_array, uint64_t index,
226 uint64_t value)
227 {
228 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
229 }
230
231
232 static int load_refcount_block(BlockDriverState *bs,
233 int64_t refcount_block_offset,
234 void **refcount_block)
235 {
236 BDRVQcow2State *s = bs->opaque;
237
238 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
239 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
240 refcount_block);
241 }
242
243 /*
244 * Retrieves the refcount of the cluster given by its index and stores it in
245 * *refcount. Returns 0 on success and -errno on failure.
246 */
247 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
248 uint64_t *refcount)
249 {
250 BDRVQcow2State *s = bs->opaque;
251 uint64_t refcount_table_index, block_index;
252 int64_t refcount_block_offset;
253 int ret;
254 void *refcount_block;
255
256 refcount_table_index = cluster_index >> s->refcount_block_bits;
257 if (refcount_table_index >= s->refcount_table_size) {
258 *refcount = 0;
259 return 0;
260 }
261 refcount_block_offset =
262 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
263 if (!refcount_block_offset) {
264 *refcount = 0;
265 return 0;
266 }
267
268 if (offset_into_cluster(s, refcount_block_offset)) {
269 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
270 " unaligned (reftable index: %#" PRIx64 ")",
271 refcount_block_offset, refcount_table_index);
272 return -EIO;
273 }
274
275 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
276 &refcount_block);
277 if (ret < 0) {
278 return ret;
279 }
280
281 block_index = cluster_index & (s->refcount_block_size - 1);
282 *refcount = s->get_refcount(refcount_block, block_index);
283
284 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
285
286 return 0;
287 }
288
289 /* Checks if two offsets are described by the same refcount block */
290 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
291 uint64_t offset_b)
292 {
293 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
294 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
295
296 return (block_a == block_b);
297 }
298
299 /*
300 * Loads a refcount block. If it doesn't exist yet, it is allocated first
301 * (including growing the refcount table if needed).
302 *
303 * Returns 0 on success or -errno in error case
304 */
305 static int alloc_refcount_block(BlockDriverState *bs,
306 int64_t cluster_index, void **refcount_block)
307 {
308 BDRVQcow2State *s = bs->opaque;
309 unsigned int refcount_table_index;
310 int64_t ret;
311
312 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
313
314 /* Find the refcount block for the given cluster */
315 refcount_table_index = cluster_index >> s->refcount_block_bits;
316
317 if (refcount_table_index < s->refcount_table_size) {
318
319 uint64_t refcount_block_offset =
320 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
321
322 /* If it's already there, we're done */
323 if (refcount_block_offset) {
324 if (offset_into_cluster(s, refcount_block_offset)) {
325 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
326 PRIx64 " unaligned (reftable index: "
327 "%#x)", refcount_block_offset,
328 refcount_table_index);
329 return -EIO;
330 }
331
332 return load_refcount_block(bs, refcount_block_offset,
333 refcount_block);
334 }
335 }
336
337 /*
338 * If we came here, we need to allocate something. Something is at least
339 * a cluster for the new refcount block. It may also include a new refcount
340 * table if the old refcount table is too small.
341 *
342 * Note that allocating clusters here needs some special care:
343 *
344 * - We can't use the normal qcow2_alloc_clusters(), it would try to
345 * increase the refcount and very likely we would end up with an endless
346 * recursion. Instead we must place the refcount blocks in a way that
347 * they can describe them themselves.
348 *
349 * - We need to consider that at this point we are inside update_refcounts
350 * and potentially doing an initial refcount increase. This means that
351 * some clusters have already been allocated by the caller, but their
352 * refcount isn't accurate yet. If we allocate clusters for metadata, we
353 * need to return -EAGAIN to signal the caller that it needs to restart
354 * the search for free clusters.
355 *
356 * - alloc_clusters_noref and qcow2_free_clusters may load a different
357 * refcount block into the cache
358 */
359
360 *refcount_block = NULL;
361
362 /* We write to the refcount table, so we might depend on L2 tables */
363 ret = qcow2_cache_flush(bs, s->l2_table_cache);
364 if (ret < 0) {
365 return ret;
366 }
367
368 /* Allocate the refcount block itself and mark it as used */
369 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size, INT64_MAX);
370 if (new_block < 0) {
371 return new_block;
372 }
373
374 /* The offset must fit in the offset field of the refcount table entry */
375 assert((new_block & REFT_OFFSET_MASK) == new_block);
376
377 /* If we're allocating the block at offset 0 then something is wrong */
378 if (new_block == 0) {
379 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
380 "allocation of refcount block at offset 0");
381 return -EIO;
382 }
383
384 #ifdef DEBUG_ALLOC2
385 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
386 " at %" PRIx64 "\n",
387 refcount_table_index, cluster_index << s->cluster_bits, new_block);
388 #endif
389
390 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
391 /* Zero the new refcount block before updating it */
392 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
393 refcount_block);
394 if (ret < 0) {
395 goto fail;
396 }
397
398 memset(*refcount_block, 0, s->cluster_size);
399
400 /* The block describes itself, need to update the cache */
401 int block_index = (new_block >> s->cluster_bits) &
402 (s->refcount_block_size - 1);
403 s->set_refcount(*refcount_block, block_index, 1);
404 } else {
405 /* Described somewhere else. This can recurse at most twice before we
406 * arrive at a block that describes itself. */
407 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
408 QCOW2_DISCARD_NEVER);
409 if (ret < 0) {
410 goto fail;
411 }
412
413 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
414 if (ret < 0) {
415 goto fail;
416 }
417
418 /* Initialize the new refcount block only after updating its refcount,
419 * update_refcount uses the refcount cache itself */
420 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
421 refcount_block);
422 if (ret < 0) {
423 goto fail;
424 }
425
426 memset(*refcount_block, 0, s->cluster_size);
427 }
428
429 /* Now the new refcount block needs to be written to disk */
430 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
431 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
432 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
433 if (ret < 0) {
434 goto fail;
435 }
436
437 /* If the refcount table is big enough, just hook the block up there */
438 if (refcount_table_index < s->refcount_table_size) {
439 uint64_t data64 = cpu_to_be64(new_block);
440 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
441 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset +
442 refcount_table_index * REFTABLE_ENTRY_SIZE,
443 sizeof(data64), &data64, 0);
444 if (ret < 0) {
445 goto fail;
446 }
447
448 s->refcount_table[refcount_table_index] = new_block;
449 /* If there's a hole in s->refcount_table then it can happen
450 * that refcount_table_index < s->max_refcount_table_index */
451 s->max_refcount_table_index =
452 MAX(s->max_refcount_table_index, refcount_table_index);
453
454 /* The new refcount block may be where the caller intended to put its
455 * data, so let it restart the search. */
456 return -EAGAIN;
457 }
458
459 qcow2_cache_put(s->refcount_block_cache, refcount_block);
460
461 /*
462 * If we come here, we need to grow the refcount table. Again, a new
463 * refcount table needs some space and we can't simply allocate to avoid
464 * endless recursion.
465 *
466 * Therefore let's grab new refcount blocks at the end of the image, which
467 * will describe themselves and the new refcount table. This way we can
468 * reference them only in the new table and do the switch to the new
469 * refcount table at once without producing an inconsistent state in
470 * between.
471 */
472 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
473
474 /* Calculate the number of refcount blocks needed so far; this will be the
475 * basis for calculating the index of the first cluster used for the
476 * self-describing refcount structures which we are about to create.
477 *
478 * Because we reached this point, there cannot be any refcount entries for
479 * cluster_index or higher indices yet. However, because new_block has been
480 * allocated to describe that cluster (and it will assume this role later
481 * on), we cannot use that index; also, new_block may actually have a higher
482 * cluster index than cluster_index, so it needs to be taken into account
483 * here (and 1 needs to be added to its value because that cluster is used).
484 */
485 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
486 (new_block >> s->cluster_bits) + 1),
487 s->refcount_block_size);
488
489 /* Create the new refcount table and blocks */
490 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
491 s->cluster_size;
492
493 ret = qcow2_refcount_area(bs, meta_offset, 0, false,
494 refcount_table_index, new_block);
495 if (ret < 0) {
496 return ret;
497 }
498
499 ret = load_refcount_block(bs, new_block, refcount_block);
500 if (ret < 0) {
501 return ret;
502 }
503
504 /* If we were trying to do the initial refcount update for some cluster
505 * allocation, we might have used the same clusters to store newly
506 * allocated metadata. Make the caller search some new space. */
507 return -EAGAIN;
508
509 fail:
510 if (*refcount_block != NULL) {
511 qcow2_cache_put(s->refcount_block_cache, refcount_block);
512 }
513 return ret;
514 }
515
516 /*
517 * Starting at @start_offset, this function creates new self-covering refcount
518 * structures: A new refcount table and refcount blocks which cover all of
519 * themselves, and a number of @additional_clusters beyond their end.
520 * @start_offset must be at the end of the image file, that is, there must be
521 * only empty space beyond it.
522 * If @exact_size is false, the refcount table will have 50 % more entries than
523 * necessary so it will not need to grow again soon.
524 * If @new_refblock_offset is not zero, it contains the offset of a refcount
525 * block that should be entered into the new refcount table at index
526 * @new_refblock_index.
527 *
528 * Returns: The offset after the new refcount structures (i.e. where the
529 * @additional_clusters may be placed) on success, -errno on error.
530 */
531 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
532 uint64_t additional_clusters, bool exact_size,
533 int new_refblock_index,
534 uint64_t new_refblock_offset)
535 {
536 BDRVQcow2State *s = bs->opaque;
537 uint64_t total_refblock_count_u64, additional_refblock_count;
538 int total_refblock_count, table_size, area_reftable_index, table_clusters;
539 int i;
540 uint64_t table_offset, block_offset, end_offset;
541 int ret;
542 uint64_t *new_table;
543
544 assert(!(start_offset % s->cluster_size));
545
546 qcow2_refcount_metadata_size(start_offset / s->cluster_size +
547 additional_clusters,
548 s->cluster_size, s->refcount_order,
549 !exact_size, &total_refblock_count_u64);
550 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
551 return -EFBIG;
552 }
553 total_refblock_count = total_refblock_count_u64;
554
555 /* Index in the refcount table of the first refcount block to cover the area
556 * of refcount structures we are about to create; we know that
557 * @total_refblock_count can cover @start_offset, so this will definitely
558 * fit into an int. */
559 area_reftable_index = (start_offset / s->cluster_size) /
560 s->refcount_block_size;
561
562 if (exact_size) {
563 table_size = total_refblock_count;
564 } else {
565 table_size = total_refblock_count +
566 DIV_ROUND_UP(total_refblock_count, 2);
567 }
568 /* The qcow2 file can only store the reftable size in number of clusters */
569 table_size = ROUND_UP(table_size, s->cluster_size / REFTABLE_ENTRY_SIZE);
570 table_clusters = (table_size * REFTABLE_ENTRY_SIZE) / s->cluster_size;
571
572 if (table_size > QCOW_MAX_REFTABLE_SIZE) {
573 return -EFBIG;
574 }
575
576 new_table = g_try_new0(uint64_t, table_size);
577
578 assert(table_size > 0);
579 if (new_table == NULL) {
580 ret = -ENOMEM;
581 goto fail;
582 }
583
584 /* Fill the new refcount table */
585 if (table_size > s->max_refcount_table_index) {
586 /* We're actually growing the reftable */
587 memcpy(new_table, s->refcount_table,
588 (s->max_refcount_table_index + 1) * REFTABLE_ENTRY_SIZE);
589 } else {
590 /* Improbable case: We're shrinking the reftable. However, the caller
591 * has assured us that there is only empty space beyond @start_offset,
592 * so we can simply drop all of the refblocks that won't fit into the
593 * new reftable. */
594 memcpy(new_table, s->refcount_table, table_size * REFTABLE_ENTRY_SIZE);
595 }
596
597 if (new_refblock_offset) {
598 assert(new_refblock_index < total_refblock_count);
599 new_table[new_refblock_index] = new_refblock_offset;
600 }
601
602 /* Count how many new refblocks we have to create */
603 additional_refblock_count = 0;
604 for (i = area_reftable_index; i < total_refblock_count; i++) {
605 if (!new_table[i]) {
606 additional_refblock_count++;
607 }
608 }
609
610 table_offset = start_offset + additional_refblock_count * s->cluster_size;
611 end_offset = table_offset + table_clusters * s->cluster_size;
612
613 /* Fill the refcount blocks, and create new ones, if necessary */
614 block_offset = start_offset;
615 for (i = area_reftable_index; i < total_refblock_count; i++) {
616 void *refblock_data;
617 uint64_t first_offset_covered;
618
619 /* Reuse an existing refblock if possible, create a new one otherwise */
620 if (new_table[i]) {
621 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
622 &refblock_data);
623 if (ret < 0) {
624 goto fail;
625 }
626 } else {
627 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
628 block_offset, &refblock_data);
629 if (ret < 0) {
630 goto fail;
631 }
632 memset(refblock_data, 0, s->cluster_size);
633 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
634 refblock_data);
635
636 new_table[i] = block_offset;
637 block_offset += s->cluster_size;
638 }
639
640 /* First host offset covered by this refblock */
641 first_offset_covered = (uint64_t)i * s->refcount_block_size *
642 s->cluster_size;
643 if (first_offset_covered < end_offset) {
644 int j, end_index;
645
646 /* Set the refcount of all of the new refcount structures to 1 */
647
648 if (first_offset_covered < start_offset) {
649 assert(i == area_reftable_index);
650 j = (start_offset - first_offset_covered) / s->cluster_size;
651 assert(j < s->refcount_block_size);
652 } else {
653 j = 0;
654 }
655
656 end_index = MIN((end_offset - first_offset_covered) /
657 s->cluster_size,
658 s->refcount_block_size);
659
660 for (; j < end_index; j++) {
661 /* The caller guaranteed us this space would be empty */
662 assert(s->get_refcount(refblock_data, j) == 0);
663 s->set_refcount(refblock_data, j, 1);
664 }
665
666 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
667 refblock_data);
668 }
669
670 qcow2_cache_put(s->refcount_block_cache, &refblock_data);
671 }
672
673 assert(block_offset == table_offset);
674
675 /* Write refcount blocks to disk */
676 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
677 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
678 if (ret < 0) {
679 goto fail;
680 }
681
682 /* Write refcount table to disk */
683 for (i = 0; i < total_refblock_count; i++) {
684 cpu_to_be64s(&new_table[i]);
685 }
686
687 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
688 ret = bdrv_pwrite_sync(bs->file, table_offset,
689 table_size * REFTABLE_ENTRY_SIZE, new_table, 0);
690 if (ret < 0) {
691 goto fail;
692 }
693
694 for (i = 0; i < total_refblock_count; i++) {
695 be64_to_cpus(&new_table[i]);
696 }
697
698 /* Hook up the new refcount table in the qcow2 header */
699 struct QEMU_PACKED {
700 uint64_t d64;
701 uint32_t d32;
702 } data;
703 data.d64 = cpu_to_be64(table_offset);
704 data.d32 = cpu_to_be32(table_clusters);
705 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
706 ret = bdrv_pwrite_sync(bs->file,
707 offsetof(QCowHeader, refcount_table_offset),
708 sizeof(data), &data, 0);
709 if (ret < 0) {
710 goto fail;
711 }
712
713 /* And switch it in memory */
714 uint64_t old_table_offset = s->refcount_table_offset;
715 uint64_t old_table_size = s->refcount_table_size;
716
717 g_free(s->refcount_table);
718 s->refcount_table = new_table;
719 s->refcount_table_size = table_size;
720 s->refcount_table_offset = table_offset;
721 update_max_refcount_table_index(s);
722
723 /* Free old table. */
724 qcow2_free_clusters(bs, old_table_offset,
725 old_table_size * REFTABLE_ENTRY_SIZE,
726 QCOW2_DISCARD_OTHER);
727
728 return end_offset;
729
730 fail:
731 g_free(new_table);
732 return ret;
733 }
734
735 void qcow2_process_discards(BlockDriverState *bs, int ret)
736 {
737 BDRVQcow2State *s = bs->opaque;
738 Qcow2DiscardRegion *d, *next;
739
740 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
741 QTAILQ_REMOVE(&s->discards, d, next);
742
743 /* Discard is optional, ignore the return value */
744 if (ret >= 0) {
745 int r2 = bdrv_pdiscard(bs->file, d->offset, d->bytes);
746 if (r2 < 0) {
747 trace_qcow2_process_discards_failed_region(d->offset, d->bytes,
748 r2);
749 }
750 }
751
752 g_free(d);
753 }
754 }
755
756 static void update_refcount_discard(BlockDriverState *bs,
757 uint64_t offset, uint64_t length)
758 {
759 BDRVQcow2State *s = bs->opaque;
760 Qcow2DiscardRegion *d, *p, *next;
761
762 QTAILQ_FOREACH(d, &s->discards, next) {
763 uint64_t new_start = MIN(offset, d->offset);
764 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
765
766 if (new_end - new_start <= length + d->bytes) {
767 /* There can't be any overlap, areas ending up here have no
768 * references any more and therefore shouldn't get freed another
769 * time. */
770 assert(d->bytes + length == new_end - new_start);
771 d->offset = new_start;
772 d->bytes = new_end - new_start;
773 goto found;
774 }
775 }
776
777 d = g_malloc(sizeof(*d));
778 *d = (Qcow2DiscardRegion) {
779 .bs = bs,
780 .offset = offset,
781 .bytes = length,
782 };
783 QTAILQ_INSERT_TAIL(&s->discards, d, next);
784
785 found:
786 /* Merge discard requests if they are adjacent now */
787 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
788 if (p == d
789 || p->offset > d->offset + d->bytes
790 || d->offset > p->offset + p->bytes)
791 {
792 continue;
793 }
794
795 /* Still no overlap possible */
796 assert(p->offset == d->offset + d->bytes
797 || d->offset == p->offset + p->bytes);
798
799 QTAILQ_REMOVE(&s->discards, p, next);
800 d->offset = MIN(d->offset, p->offset);
801 d->bytes += p->bytes;
802 g_free(p);
803 }
804 }
805
806 /* XXX: cache several refcount block clusters ? */
807 /* @addend is the absolute value of the addend; if @decrease is set, @addend
808 * will be subtracted from the current refcount, otherwise it will be added */
809 static int update_refcount(BlockDriverState *bs,
810 int64_t offset,
811 int64_t length,
812 uint64_t addend,
813 bool decrease,
814 enum qcow2_discard_type type)
815 {
816 BDRVQcow2State *s = bs->opaque;
817 int64_t start, last, cluster_offset;
818 void *refcount_block = NULL;
819 int64_t old_table_index = -1;
820 int ret;
821
822 #ifdef DEBUG_ALLOC2
823 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
824 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
825 addend);
826 #endif
827 if (length < 0) {
828 return -EINVAL;
829 } else if (length == 0) {
830 return 0;
831 }
832
833 if (decrease) {
834 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
835 s->l2_table_cache);
836 }
837
838 start = start_of_cluster(s, offset);
839 last = start_of_cluster(s, offset + length - 1);
840 for(cluster_offset = start; cluster_offset <= last;
841 cluster_offset += s->cluster_size)
842 {
843 int block_index;
844 uint64_t refcount;
845 int64_t cluster_index = cluster_offset >> s->cluster_bits;
846 int64_t table_index = cluster_index >> s->refcount_block_bits;
847
848 /* Load the refcount block and allocate it if needed */
849 if (table_index != old_table_index) {
850 if (refcount_block) {
851 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
852 }
853 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
854 /* If the caller needs to restart the search for free clusters,
855 * try the same ones first to see if they're still free. */
856 if (ret == -EAGAIN) {
857 if (s->free_cluster_index > (start >> s->cluster_bits)) {
858 s->free_cluster_index = (start >> s->cluster_bits);
859 }
860 }
861 if (ret < 0) {
862 goto fail;
863 }
864 }
865 old_table_index = table_index;
866
867 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
868
869 /* we can update the count and save it */
870 block_index = cluster_index & (s->refcount_block_size - 1);
871
872 refcount = s->get_refcount(refcount_block, block_index);
873 if (decrease ? (refcount - addend > refcount)
874 : (refcount + addend < refcount ||
875 refcount + addend > s->refcount_max))
876 {
877 ret = -EINVAL;
878 goto fail;
879 }
880 if (decrease) {
881 refcount -= addend;
882 } else {
883 refcount += addend;
884 }
885 if (refcount == 0 && cluster_index < s->free_cluster_index) {
886 s->free_cluster_index = cluster_index;
887 }
888 s->set_refcount(refcount_block, block_index, refcount);
889
890 if (refcount == 0) {
891 void *table;
892
893 table = qcow2_cache_is_table_offset(s->refcount_block_cache,
894 offset);
895 if (table != NULL) {
896 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
897 old_table_index = -1;
898 qcow2_cache_discard(s->refcount_block_cache, table);
899 }
900
901 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
902 if (table != NULL) {
903 qcow2_cache_discard(s->l2_table_cache, table);
904 }
905
906 if (s->discard_passthrough[type]) {
907 update_refcount_discard(bs, cluster_offset, s->cluster_size);
908 }
909 }
910 }
911
912 ret = 0;
913 fail:
914 if (!s->cache_discards) {
915 qcow2_process_discards(bs, ret);
916 }
917
918 /* Write last changed block to disk */
919 if (refcount_block) {
920 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
921 }
922
923 /*
924 * Try do undo any updates if an error is returned (This may succeed in
925 * some cases like ENOSPC for allocating a new refcount block)
926 */
927 if (ret < 0) {
928 int dummy;
929 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
930 !decrease, QCOW2_DISCARD_NEVER);
931 (void)dummy;
932 }
933
934 return ret;
935 }
936
937 /*
938 * Increases or decreases the refcount of a given cluster.
939 *
940 * @addend is the absolute value of the addend; if @decrease is set, @addend
941 * will be subtracted from the current refcount, otherwise it will be added.
942 *
943 * On success 0 is returned; on failure -errno is returned.
944 */
945 int qcow2_update_cluster_refcount(BlockDriverState *bs,
946 int64_t cluster_index,
947 uint64_t addend, bool decrease,
948 enum qcow2_discard_type type)
949 {
950 BDRVQcow2State *s = bs->opaque;
951 int ret;
952
953 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
954 decrease, type);
955 if (ret < 0) {
956 return ret;
957 }
958
959 return 0;
960 }
961
962
963
964 /*********************************************************/
965 /* cluster allocation functions */
966
967
968
969 /* return < 0 if error */
970 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size,
971 uint64_t max)
972 {
973 BDRVQcow2State *s = bs->opaque;
974 uint64_t i, nb_clusters, refcount;
975 int ret;
976
977 /* We can't allocate clusters if they may still be queued for discard. */
978 if (s->cache_discards) {
979 qcow2_process_discards(bs, 0);
980 }
981
982 nb_clusters = size_to_clusters(s, size);
983 retry:
984 for(i = 0; i < nb_clusters; i++) {
985 uint64_t next_cluster_index = s->free_cluster_index++;
986 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
987
988 if (ret < 0) {
989 return ret;
990 } else if (refcount != 0) {
991 goto retry;
992 }
993 }
994
995 /* Make sure that all offsets in the "allocated" range are representable
996 * in the requested max */
997 if (s->free_cluster_index > 0 &&
998 s->free_cluster_index - 1 > (max >> s->cluster_bits))
999 {
1000 return -EFBIG;
1001 }
1002
1003 #ifdef DEBUG_ALLOC2
1004 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
1005 size,
1006 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
1007 #endif
1008 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
1009 }
1010
1011 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
1012 {
1013 int64_t offset;
1014 int ret;
1015
1016 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1017 do {
1018 offset = alloc_clusters_noref(bs, size, QCOW_MAX_CLUSTER_OFFSET);
1019 if (offset < 0) {
1020 return offset;
1021 }
1022
1023 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1024 } while (ret == -EAGAIN);
1025
1026 if (ret < 0) {
1027 return ret;
1028 }
1029
1030 return offset;
1031 }
1032
1033 int64_t coroutine_fn qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1034 int64_t nb_clusters)
1035 {
1036 BDRVQcow2State *s = bs->opaque;
1037 uint64_t cluster_index, refcount;
1038 uint64_t i;
1039 int ret;
1040
1041 assert(nb_clusters >= 0);
1042 if (nb_clusters == 0) {
1043 return 0;
1044 }
1045
1046 do {
1047 /* Check how many clusters there are free */
1048 cluster_index = offset >> s->cluster_bits;
1049 for(i = 0; i < nb_clusters; i++) {
1050 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1051 if (ret < 0) {
1052 return ret;
1053 } else if (refcount != 0) {
1054 break;
1055 }
1056 }
1057
1058 /* And then allocate them */
1059 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1060 QCOW2_DISCARD_NEVER);
1061 } while (ret == -EAGAIN);
1062
1063 if (ret < 0) {
1064 return ret;
1065 }
1066
1067 return i;
1068 }
1069
1070 /* only used to allocate compressed sectors. We try to allocate
1071 contiguous sectors. size must be <= cluster_size */
1072 int64_t coroutine_fn GRAPH_RDLOCK qcow2_alloc_bytes(BlockDriverState *bs, int size)
1073 {
1074 BDRVQcow2State *s = bs->opaque;
1075 int64_t offset;
1076 size_t free_in_cluster;
1077 int ret;
1078
1079 BLKDBG_CO_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1080 assert(size > 0 && size <= s->cluster_size);
1081 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1082
1083 offset = s->free_byte_offset;
1084
1085 if (offset) {
1086 uint64_t refcount;
1087 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1088 if (ret < 0) {
1089 return ret;
1090 }
1091
1092 if (refcount == s->refcount_max) {
1093 offset = 0;
1094 }
1095 }
1096
1097 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1098 do {
1099 if (!offset || free_in_cluster < size) {
1100 int64_t new_cluster;
1101
1102 new_cluster = alloc_clusters_noref(bs, s->cluster_size,
1103 MIN(s->cluster_offset_mask,
1104 QCOW_MAX_CLUSTER_OFFSET));
1105 if (new_cluster < 0) {
1106 return new_cluster;
1107 }
1108
1109 if (new_cluster == 0) {
1110 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1111 "allocation of compressed cluster "
1112 "at offset 0");
1113 return -EIO;
1114 }
1115
1116 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1117 offset = new_cluster;
1118 free_in_cluster = s->cluster_size;
1119 } else {
1120 free_in_cluster += s->cluster_size;
1121 }
1122 }
1123
1124 assert(offset);
1125 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1126 if (ret < 0) {
1127 offset = 0;
1128 }
1129 } while (ret == -EAGAIN);
1130 if (ret < 0) {
1131 return ret;
1132 }
1133
1134 /* The cluster refcount was incremented; refcount blocks must be flushed
1135 * before the caller's L2 table updates. */
1136 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1137
1138 s->free_byte_offset = offset + size;
1139 if (!offset_into_cluster(s, s->free_byte_offset)) {
1140 s->free_byte_offset = 0;
1141 }
1142
1143 return offset;
1144 }
1145
1146 void qcow2_free_clusters(BlockDriverState *bs,
1147 int64_t offset, int64_t size,
1148 enum qcow2_discard_type type)
1149 {
1150 int ret;
1151
1152 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1153 ret = update_refcount(bs, offset, size, 1, true, type);
1154 if (ret < 0) {
1155 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1156 /* TODO Remember the clusters to free them later and avoid leaking */
1157 }
1158 }
1159
1160 /*
1161 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1162 * normal cluster, compressed cluster, etc.)
1163 */
1164 void qcow2_free_any_cluster(BlockDriverState *bs, uint64_t l2_entry,
1165 enum qcow2_discard_type type)
1166 {
1167 BDRVQcow2State *s = bs->opaque;
1168 QCow2ClusterType ctype = qcow2_get_cluster_type(bs, l2_entry);
1169
1170 if (has_data_file(bs)) {
1171 if (s->discard_passthrough[type] &&
1172 (ctype == QCOW2_CLUSTER_NORMAL ||
1173 ctype == QCOW2_CLUSTER_ZERO_ALLOC))
1174 {
1175 bdrv_pdiscard(s->data_file, l2_entry & L2E_OFFSET_MASK,
1176 s->cluster_size);
1177 }
1178 return;
1179 }
1180
1181 switch (ctype) {
1182 case QCOW2_CLUSTER_COMPRESSED:
1183 {
1184 uint64_t coffset;
1185 int csize;
1186
1187 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize);
1188 qcow2_free_clusters(bs, coffset, csize, type);
1189 }
1190 break;
1191 case QCOW2_CLUSTER_NORMAL:
1192 case QCOW2_CLUSTER_ZERO_ALLOC:
1193 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1194 qcow2_signal_corruption(bs, false, -1, -1,
1195 "Cannot free unaligned cluster %#llx",
1196 l2_entry & L2E_OFFSET_MASK);
1197 } else {
1198 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1199 s->cluster_size, type);
1200 }
1201 break;
1202 case QCOW2_CLUSTER_ZERO_PLAIN:
1203 case QCOW2_CLUSTER_UNALLOCATED:
1204 break;
1205 default:
1206 abort();
1207 }
1208 }
1209
1210 int qcow2_write_caches(BlockDriverState *bs)
1211 {
1212 BDRVQcow2State *s = bs->opaque;
1213 int ret;
1214
1215 ret = qcow2_cache_write(bs, s->l2_table_cache);
1216 if (ret < 0) {
1217 return ret;
1218 }
1219
1220 if (qcow2_need_accurate_refcounts(s)) {
1221 ret = qcow2_cache_write(bs, s->refcount_block_cache);
1222 if (ret < 0) {
1223 return ret;
1224 }
1225 }
1226
1227 return 0;
1228 }
1229
1230 int qcow2_flush_caches(BlockDriverState *bs)
1231 {
1232 int ret = qcow2_write_caches(bs);
1233 if (ret < 0) {
1234 return ret;
1235 }
1236
1237 return bdrv_flush(bs->file->bs);
1238 }
1239
1240 /*********************************************************/
1241 /* snapshots and image creation */
1242
1243
1244
1245 /* update the refcounts of snapshots and the copied flag */
1246 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1247 int64_t l1_table_offset, int l1_size, int addend)
1248 {
1249 BDRVQcow2State *s = bs->opaque;
1250 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1251 bool l1_allocated = false;
1252 int64_t old_entry, old_l2_offset;
1253 unsigned slice, slice_size2, n_slices;
1254 int i, j, l1_modified = 0;
1255 int ret;
1256
1257 assert(addend >= -1 && addend <= 1);
1258
1259 l2_slice = NULL;
1260 l1_table = NULL;
1261 l1_size2 = l1_size * L1E_SIZE;
1262 slice_size2 = s->l2_slice_size * l2_entry_size(s);
1263 n_slices = s->cluster_size / slice_size2;
1264
1265 s->cache_discards = true;
1266
1267 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1268 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1269 * when changing this! */
1270 if (l1_table_offset != s->l1_table_offset) {
1271 l1_table = g_try_malloc0(l1_size2);
1272 if (l1_size2 && l1_table == NULL) {
1273 ret = -ENOMEM;
1274 goto fail;
1275 }
1276 l1_allocated = true;
1277
1278 ret = bdrv_pread(bs->file, l1_table_offset, l1_size2, l1_table, 0);
1279 if (ret < 0) {
1280 goto fail;
1281 }
1282
1283 for (i = 0; i < l1_size; i++) {
1284 be64_to_cpus(&l1_table[i]);
1285 }
1286 } else {
1287 assert(l1_size == s->l1_size);
1288 l1_table = s->l1_table;
1289 l1_allocated = false;
1290 }
1291
1292 for (i = 0; i < l1_size; i++) {
1293 l2_offset = l1_table[i];
1294 if (l2_offset) {
1295 old_l2_offset = l2_offset;
1296 l2_offset &= L1E_OFFSET_MASK;
1297
1298 if (offset_into_cluster(s, l2_offset)) {
1299 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1300 PRIx64 " unaligned (L1 index: %#x)",
1301 l2_offset, i);
1302 ret = -EIO;
1303 goto fail;
1304 }
1305
1306 for (slice = 0; slice < n_slices; slice++) {
1307 ret = qcow2_cache_get(bs, s->l2_table_cache,
1308 l2_offset + slice * slice_size2,
1309 (void **) &l2_slice);
1310 if (ret < 0) {
1311 goto fail;
1312 }
1313
1314 for (j = 0; j < s->l2_slice_size; j++) {
1315 uint64_t cluster_index;
1316 uint64_t offset;
1317
1318 entry = get_l2_entry(s, l2_slice, j);
1319 old_entry = entry;
1320 entry &= ~QCOW_OFLAG_COPIED;
1321 offset = entry & L2E_OFFSET_MASK;
1322
1323 switch (qcow2_get_cluster_type(bs, entry)) {
1324 case QCOW2_CLUSTER_COMPRESSED:
1325 if (addend != 0) {
1326 uint64_t coffset;
1327 int csize;
1328
1329 qcow2_parse_compressed_l2_entry(bs, entry,
1330 &coffset, &csize);
1331 ret = update_refcount(
1332 bs, coffset, csize,
1333 abs(addend), addend < 0,
1334 QCOW2_DISCARD_SNAPSHOT);
1335 if (ret < 0) {
1336 goto fail;
1337 }
1338 }
1339 /* compressed clusters are never modified */
1340 refcount = 2;
1341 break;
1342
1343 case QCOW2_CLUSTER_NORMAL:
1344 case QCOW2_CLUSTER_ZERO_ALLOC:
1345 if (offset_into_cluster(s, offset)) {
1346 /* Here l2_index means table (not slice) index */
1347 int l2_index = slice * s->l2_slice_size + j;
1348 qcow2_signal_corruption(
1349 bs, true, -1, -1, "Cluster "
1350 "allocation offset %#" PRIx64
1351 " unaligned (L2 offset: %#"
1352 PRIx64 ", L2 index: %#x)",
1353 offset, l2_offset, l2_index);
1354 ret = -EIO;
1355 goto fail;
1356 }
1357
1358 cluster_index = offset >> s->cluster_bits;
1359 assert(cluster_index);
1360 if (addend != 0) {
1361 ret = qcow2_update_cluster_refcount(
1362 bs, cluster_index, abs(addend), addend < 0,
1363 QCOW2_DISCARD_SNAPSHOT);
1364 if (ret < 0) {
1365 goto fail;
1366 }
1367 }
1368
1369 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1370 if (ret < 0) {
1371 goto fail;
1372 }
1373 break;
1374
1375 case QCOW2_CLUSTER_ZERO_PLAIN:
1376 case QCOW2_CLUSTER_UNALLOCATED:
1377 refcount = 0;
1378 break;
1379
1380 default:
1381 abort();
1382 }
1383
1384 if (refcount == 1) {
1385 entry |= QCOW_OFLAG_COPIED;
1386 }
1387 if (entry != old_entry) {
1388 if (addend > 0) {
1389 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1390 s->refcount_block_cache);
1391 }
1392 set_l2_entry(s, l2_slice, j, entry);
1393 qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1394 l2_slice);
1395 }
1396 }
1397
1398 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1399 }
1400
1401 if (addend != 0) {
1402 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1403 s->cluster_bits,
1404 abs(addend), addend < 0,
1405 QCOW2_DISCARD_SNAPSHOT);
1406 if (ret < 0) {
1407 goto fail;
1408 }
1409 }
1410 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1411 &refcount);
1412 if (ret < 0) {
1413 goto fail;
1414 } else if (refcount == 1) {
1415 l2_offset |= QCOW_OFLAG_COPIED;
1416 }
1417 if (l2_offset != old_l2_offset) {
1418 l1_table[i] = l2_offset;
1419 l1_modified = 1;
1420 }
1421 }
1422 }
1423
1424 ret = bdrv_flush(bs);
1425 fail:
1426 if (l2_slice) {
1427 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1428 }
1429
1430 s->cache_discards = false;
1431 qcow2_process_discards(bs, ret);
1432
1433 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1434 if (ret == 0 && addend >= 0 && l1_modified) {
1435 for (i = 0; i < l1_size; i++) {
1436 cpu_to_be64s(&l1_table[i]);
1437 }
1438
1439 ret = bdrv_pwrite_sync(bs->file, l1_table_offset, l1_size2, l1_table,
1440 0);
1441
1442 for (i = 0; i < l1_size; i++) {
1443 be64_to_cpus(&l1_table[i]);
1444 }
1445 }
1446 if (l1_allocated)
1447 g_free(l1_table);
1448 return ret;
1449 }
1450
1451
1452
1453
1454 /*********************************************************/
1455 /* refcount checking functions */
1456
1457
1458 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1459 {
1460 /* This assertion holds because there is no way we can address more than
1461 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1462 * offsets have to be representable in bytes); due to every cluster
1463 * corresponding to one refcount entry, we are well below that limit */
1464 assert(entries < (UINT64_C(1) << (64 - 9)));
1465
1466 /* Thanks to the assertion this will not overflow, because
1467 * s->refcount_order < 7.
1468 * (note: x << s->refcount_order == x * s->refcount_bits) */
1469 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1470 }
1471
1472 /**
1473 * Reallocates *array so that it can hold new_size entries. *size must contain
1474 * the current number of entries in *array. If the reallocation fails, *array
1475 * and *size will not be modified and -errno will be returned. If the
1476 * reallocation is successful, *array will be set to the new buffer, *size
1477 * will be set to new_size and 0 will be returned. The size of the reallocated
1478 * refcount array buffer will be aligned to a cluster boundary, and the newly
1479 * allocated area will be zeroed.
1480 */
1481 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1482 int64_t *size, int64_t new_size)
1483 {
1484 int64_t old_byte_size, new_byte_size;
1485 void *new_ptr;
1486
1487 /* Round to clusters so the array can be directly written to disk */
1488 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1489 * s->cluster_size;
1490 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1491 * s->cluster_size;
1492
1493 if (new_byte_size == old_byte_size) {
1494 *size = new_size;
1495 return 0;
1496 }
1497
1498 assert(new_byte_size > 0);
1499
1500 if (new_byte_size > SIZE_MAX) {
1501 return -ENOMEM;
1502 }
1503
1504 new_ptr = g_try_realloc(*array, new_byte_size);
1505 if (!new_ptr) {
1506 return -ENOMEM;
1507 }
1508
1509 if (new_byte_size > old_byte_size) {
1510 memset((char *)new_ptr + old_byte_size, 0,
1511 new_byte_size - old_byte_size);
1512 }
1513
1514 *array = new_ptr;
1515 *size = new_size;
1516
1517 return 0;
1518 }
1519
1520 /*
1521 * Increases the refcount for a range of clusters in a given refcount table.
1522 * This is used to construct a temporary refcount table out of L1 and L2 tables
1523 * which can be compared to the refcount table saved in the image.
1524 *
1525 * Modifies the number of errors in res.
1526 */
1527 int coroutine_fn GRAPH_RDLOCK
1528 qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1529 void **refcount_table,
1530 int64_t *refcount_table_size,
1531 int64_t offset, int64_t size)
1532 {
1533 BDRVQcow2State *s = bs->opaque;
1534 uint64_t start, last, cluster_offset, k, refcount;
1535 int64_t file_len;
1536 int ret;
1537
1538 if (size <= 0) {
1539 return 0;
1540 }
1541
1542 file_len = bdrv_co_getlength(bs->file->bs);
1543 if (file_len < 0) {
1544 return file_len;
1545 }
1546
1547 /*
1548 * Last cluster of qcow2 image may be semi-allocated, so it may be OK to
1549 * reference some space after file end but it should be less than one
1550 * cluster.
1551 */
1552 if (offset + size - file_len >= s->cluster_size) {
1553 fprintf(stderr, "ERROR: counting reference for region exceeding the "
1554 "end of the file by one cluster or more: offset 0x%" PRIx64
1555 " size 0x%" PRIx64 "\n", offset, size);
1556 res->corruptions++;
1557 return 0;
1558 }
1559
1560 start = start_of_cluster(s, offset);
1561 last = start_of_cluster(s, offset + size - 1);
1562 for(cluster_offset = start; cluster_offset <= last;
1563 cluster_offset += s->cluster_size) {
1564 k = cluster_offset >> s->cluster_bits;
1565 if (k >= *refcount_table_size) {
1566 ret = realloc_refcount_array(s, refcount_table,
1567 refcount_table_size, k + 1);
1568 if (ret < 0) {
1569 res->check_errors++;
1570 return ret;
1571 }
1572 }
1573
1574 refcount = s->get_refcount(*refcount_table, k);
1575 if (refcount == s->refcount_max) {
1576 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1577 "\n", cluster_offset);
1578 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1579 "width or qemu-img convert to create a clean copy if the "
1580 "image cannot be opened for writing\n");
1581 res->corruptions++;
1582 continue;
1583 }
1584 s->set_refcount(*refcount_table, k, refcount + 1);
1585 }
1586
1587 return 0;
1588 }
1589
1590 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1591 enum {
1592 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1593 };
1594
1595 /*
1596 * Fix L2 entry by making it QCOW2_CLUSTER_ZERO_PLAIN (or making all its present
1597 * subclusters QCOW2_SUBCLUSTER_ZERO_PLAIN).
1598 *
1599 * This function decrements res->corruptions on success, so the caller is
1600 * responsible to increment res->corruptions prior to the call.
1601 *
1602 * On failure in-memory @l2_table may be modified.
1603 */
1604 static int coroutine_fn GRAPH_RDLOCK
1605 fix_l2_entry_by_zero(BlockDriverState *bs, BdrvCheckResult *res,
1606 uint64_t l2_offset, uint64_t *l2_table,
1607 int l2_index, bool active,
1608 bool *metadata_overlap)
1609 {
1610 BDRVQcow2State *s = bs->opaque;
1611 int ret;
1612 int idx = l2_index * (l2_entry_size(s) / sizeof(uint64_t));
1613 uint64_t l2e_offset = l2_offset + (uint64_t)l2_index * l2_entry_size(s);
1614 int ign = active ? QCOW2_OL_ACTIVE_L2 : QCOW2_OL_INACTIVE_L2;
1615
1616 if (has_subclusters(s)) {
1617 uint64_t l2_bitmap = get_l2_bitmap(s, l2_table, l2_index);
1618
1619 /* Allocated subclusters become zero */
1620 l2_bitmap |= l2_bitmap << 32;
1621 l2_bitmap &= QCOW_L2_BITMAP_ALL_ZEROES;
1622
1623 set_l2_bitmap(s, l2_table, l2_index, l2_bitmap);
1624 set_l2_entry(s, l2_table, l2_index, 0);
1625 } else {
1626 set_l2_entry(s, l2_table, l2_index, QCOW_OFLAG_ZERO);
1627 }
1628
1629 ret = qcow2_pre_write_overlap_check(bs, ign, l2e_offset, l2_entry_size(s),
1630 false);
1631 if (metadata_overlap) {
1632 *metadata_overlap = ret < 0;
1633 }
1634 if (ret < 0) {
1635 fprintf(stderr, "ERROR: Overlap check failed\n");
1636 goto fail;
1637 }
1638
1639 ret = bdrv_co_pwrite_sync(bs->file, l2e_offset, l2_entry_size(s),
1640 &l2_table[idx], 0);
1641 if (ret < 0) {
1642 fprintf(stderr, "ERROR: Failed to overwrite L2 "
1643 "table entry: %s\n", strerror(-ret));
1644 goto fail;
1645 }
1646
1647 res->corruptions--;
1648 res->corruptions_fixed++;
1649 return 0;
1650
1651 fail:
1652 res->check_errors++;
1653 return ret;
1654 }
1655
1656 /*
1657 * Increases the refcount in the given refcount table for the all clusters
1658 * referenced in the L2 table. While doing so, performs some checks on L2
1659 * entries.
1660 *
1661 * Returns the number of errors found by the checks or -errno if an internal
1662 * error occurred.
1663 */
1664 static int coroutine_fn GRAPH_RDLOCK
1665 check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1666 void **refcount_table,
1667 int64_t *refcount_table_size, int64_t l2_offset,
1668 int flags, BdrvCheckMode fix, bool active)
1669 {
1670 BDRVQcow2State *s = bs->opaque;
1671 uint64_t l2_entry, l2_bitmap;
1672 uint64_t next_contiguous_offset = 0;
1673 int i, ret;
1674 size_t l2_size_bytes = s->l2_size * l2_entry_size(s);
1675 g_autofree uint64_t *l2_table = g_malloc(l2_size_bytes);
1676 bool metadata_overlap;
1677
1678 /* Read L2 table from disk */
1679 ret = bdrv_co_pread(bs->file, l2_offset, l2_size_bytes, l2_table, 0);
1680 if (ret < 0) {
1681 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1682 res->check_errors++;
1683 return ret;
1684 }
1685
1686 /* Do the actual checks */
1687 for (i = 0; i < s->l2_size; i++) {
1688 uint64_t coffset;
1689 int csize;
1690 QCow2ClusterType type;
1691
1692 l2_entry = get_l2_entry(s, l2_table, i);
1693 l2_bitmap = get_l2_bitmap(s, l2_table, i);
1694 type = qcow2_get_cluster_type(bs, l2_entry);
1695
1696 if (type != QCOW2_CLUSTER_COMPRESSED) {
1697 /* Check reserved bits of Standard Cluster Descriptor */
1698 if (l2_entry & L2E_STD_RESERVED_MASK) {
1699 fprintf(stderr, "ERROR found l2 entry with reserved bits set: "
1700 "%" PRIx64 "\n", l2_entry);
1701 res->corruptions++;
1702 }
1703 }
1704
1705 switch (type) {
1706 case QCOW2_CLUSTER_COMPRESSED:
1707 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1708 if (l2_entry & QCOW_OFLAG_COPIED) {
1709 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1710 "copied flag must never be set for compressed "
1711 "clusters\n", l2_entry & s->cluster_offset_mask);
1712 l2_entry &= ~QCOW_OFLAG_COPIED;
1713 res->corruptions++;
1714 }
1715
1716 if (has_data_file(bs)) {
1717 fprintf(stderr, "ERROR compressed cluster %d with data file, "
1718 "entry=0x%" PRIx64 "\n", i, l2_entry);
1719 res->corruptions++;
1720 break;
1721 }
1722
1723 if (l2_bitmap) {
1724 fprintf(stderr, "ERROR compressed cluster %d with non-zero "
1725 "subcluster allocation bitmap, entry=0x%" PRIx64 "\n",
1726 i, l2_entry);
1727 res->corruptions++;
1728 break;
1729 }
1730
1731 /* Mark cluster as used */
1732 qcow2_parse_compressed_l2_entry(bs, l2_entry, &coffset, &csize);
1733 ret = qcow2_inc_refcounts_imrt(
1734 bs, res, refcount_table, refcount_table_size, coffset, csize);
1735 if (ret < 0) {
1736 return ret;
1737 }
1738
1739 if (flags & CHECK_FRAG_INFO) {
1740 res->bfi.allocated_clusters++;
1741 res->bfi.compressed_clusters++;
1742
1743 /*
1744 * Compressed clusters are fragmented by nature. Since they
1745 * take up sub-sector space but we only have sector granularity
1746 * I/O we need to re-read the same sectors even for adjacent
1747 * compressed clusters.
1748 */
1749 res->bfi.fragmented_clusters++;
1750 }
1751 break;
1752
1753 case QCOW2_CLUSTER_ZERO_ALLOC:
1754 case QCOW2_CLUSTER_NORMAL:
1755 {
1756 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1757
1758 if ((l2_bitmap >> 32) & l2_bitmap) {
1759 res->corruptions++;
1760 fprintf(stderr, "ERROR offset=%" PRIx64 ": Allocated "
1761 "cluster has corrupted subcluster allocation bitmap\n",
1762 offset);
1763 }
1764
1765 /* Correct offsets are cluster aligned */
1766 if (offset_into_cluster(s, offset)) {
1767 bool contains_data;
1768 res->corruptions++;
1769
1770 if (has_subclusters(s)) {
1771 contains_data = (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC);
1772 } else {
1773 contains_data = !(l2_entry & QCOW_OFLAG_ZERO);
1774 }
1775
1776 if (!contains_data) {
1777 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated "
1778 "cluster is not properly aligned; L2 entry "
1779 "corrupted.\n",
1780 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1781 offset);
1782 if (fix & BDRV_FIX_ERRORS) {
1783 ret = fix_l2_entry_by_zero(bs, res, l2_offset,
1784 l2_table, i, active,
1785 &metadata_overlap);
1786 if (metadata_overlap) {
1787 /*
1788 * Something is seriously wrong, so abort checking
1789 * this L2 table.
1790 */
1791 return ret;
1792 }
1793
1794 if (ret == 0) {
1795 /*
1796 * Skip marking the cluster as used
1797 * (it is unused now).
1798 */
1799 continue;
1800 }
1801
1802 /*
1803 * Failed to fix.
1804 * Do not abort, continue checking the rest of this
1805 * L2 table's entries.
1806 */
1807 }
1808 } else {
1809 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1810 "not properly aligned; L2 entry corrupted.\n", offset);
1811 }
1812 }
1813
1814 if (flags & CHECK_FRAG_INFO) {
1815 res->bfi.allocated_clusters++;
1816 if (next_contiguous_offset &&
1817 offset != next_contiguous_offset) {
1818 res->bfi.fragmented_clusters++;
1819 }
1820 next_contiguous_offset = offset + s->cluster_size;
1821 }
1822
1823 /* Mark cluster as used */
1824 if (!has_data_file(bs)) {
1825 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table,
1826 refcount_table_size,
1827 offset, s->cluster_size);
1828 if (ret < 0) {
1829 return ret;
1830 }
1831 }
1832 break;
1833 }
1834
1835 case QCOW2_CLUSTER_ZERO_PLAIN:
1836 /* Impossible when image has subclusters */
1837 assert(!l2_bitmap);
1838 break;
1839
1840 case QCOW2_CLUSTER_UNALLOCATED:
1841 if (l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC) {
1842 res->corruptions++;
1843 fprintf(stderr, "ERROR: Unallocated "
1844 "cluster has non-zero subcluster allocation map\n");
1845 }
1846 break;
1847
1848 default:
1849 abort();
1850 }
1851 }
1852
1853 return 0;
1854 }
1855
1856 /*
1857 * Increases the refcount for the L1 table, its L2 tables and all referenced
1858 * clusters in the given refcount table. While doing so, performs some checks
1859 * on L1 and L2 entries.
1860 *
1861 * Returns the number of errors found by the checks or -errno if an internal
1862 * error occurred.
1863 */
1864 static int coroutine_fn GRAPH_RDLOCK
1865 check_refcounts_l1(BlockDriverState *bs, BdrvCheckResult *res,
1866 void **refcount_table, int64_t *refcount_table_size,
1867 int64_t l1_table_offset, int l1_size,
1868 int flags, BdrvCheckMode fix, bool active)
1869 {
1870 BDRVQcow2State *s = bs->opaque;
1871 size_t l1_size_bytes = l1_size * L1E_SIZE;
1872 g_autofree uint64_t *l1_table = NULL;
1873 uint64_t l2_offset;
1874 int i, ret;
1875
1876 if (!l1_size) {
1877 return 0;
1878 }
1879
1880 /* Mark L1 table as used */
1881 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1882 l1_table_offset, l1_size_bytes);
1883 if (ret < 0) {
1884 return ret;
1885 }
1886
1887 l1_table = g_try_malloc(l1_size_bytes);
1888 if (l1_table == NULL) {
1889 res->check_errors++;
1890 return -ENOMEM;
1891 }
1892
1893 /* Read L1 table entries from disk */
1894 ret = bdrv_co_pread(bs->file, l1_table_offset, l1_size_bytes, l1_table, 0);
1895 if (ret < 0) {
1896 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1897 res->check_errors++;
1898 return ret;
1899 }
1900
1901 for (i = 0; i < l1_size; i++) {
1902 be64_to_cpus(&l1_table[i]);
1903 }
1904
1905 /* Do the actual checks */
1906 for (i = 0; i < l1_size; i++) {
1907 if (!l1_table[i]) {
1908 continue;
1909 }
1910
1911 if (l1_table[i] & L1E_RESERVED_MASK) {
1912 fprintf(stderr, "ERROR found L1 entry with reserved bits set: "
1913 "%" PRIx64 "\n", l1_table[i]);
1914 res->corruptions++;
1915 }
1916
1917 l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1918
1919 /* Mark L2 table as used */
1920 ret = qcow2_inc_refcounts_imrt(bs, res,
1921 refcount_table, refcount_table_size,
1922 l2_offset, s->cluster_size);
1923 if (ret < 0) {
1924 return ret;
1925 }
1926
1927 /* L2 tables are cluster aligned */
1928 if (offset_into_cluster(s, l2_offset)) {
1929 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1930 "cluster aligned; L1 entry corrupted\n", l2_offset);
1931 res->corruptions++;
1932 }
1933
1934 /* Process and check L2 entries */
1935 ret = check_refcounts_l2(bs, res, refcount_table,
1936 refcount_table_size, l2_offset, flags,
1937 fix, active);
1938 if (ret < 0) {
1939 return ret;
1940 }
1941 }
1942
1943 return 0;
1944 }
1945
1946 /*
1947 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1948 *
1949 * This function does not print an error message nor does it increment
1950 * check_errors if qcow2_get_refcount fails (this is because such an error will
1951 * have been already detected and sufficiently signaled by the calling function
1952 * (qcow2_check_refcounts) by the time this function is called).
1953 */
1954 static int coroutine_fn GRAPH_RDLOCK
1955 check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1956 {
1957 BDRVQcow2State *s = bs->opaque;
1958 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1959 int ret;
1960 uint64_t refcount;
1961 int i, j;
1962 bool repair;
1963
1964 if (fix & BDRV_FIX_ERRORS) {
1965 /* Always repair */
1966 repair = true;
1967 } else if (fix & BDRV_FIX_LEAKS) {
1968 /* Repair only if that seems safe: This function is always
1969 * called after the refcounts have been fixed, so the refcount
1970 * is accurate if that repair was successful */
1971 repair = !res->check_errors && !res->corruptions && !res->leaks;
1972 } else {
1973 repair = false;
1974 }
1975
1976 for (i = 0; i < s->l1_size; i++) {
1977 uint64_t l1_entry = s->l1_table[i];
1978 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1979 int l2_dirty = 0;
1980
1981 if (!l2_offset) {
1982 continue;
1983 }
1984
1985 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1986 &refcount);
1987 if (ret < 0) {
1988 /* don't print message nor increment check_errors */
1989 continue;
1990 }
1991 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1992 res->corruptions++;
1993 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1994 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1995 repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1996 if (repair) {
1997 s->l1_table[i] = refcount == 1
1998 ? l1_entry | QCOW_OFLAG_COPIED
1999 : l1_entry & ~QCOW_OFLAG_COPIED;
2000 ret = qcow2_write_l1_entry(bs, i);
2001 if (ret < 0) {
2002 res->check_errors++;
2003 goto fail;
2004 }
2005 res->corruptions--;
2006 res->corruptions_fixed++;
2007 }
2008 }
2009
2010 ret = bdrv_co_pread(bs->file, l2_offset, s->l2_size * l2_entry_size(s),
2011 l2_table, 0);
2012 if (ret < 0) {
2013 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
2014 strerror(-ret));
2015 res->check_errors++;
2016 goto fail;
2017 }
2018
2019 for (j = 0; j < s->l2_size; j++) {
2020 uint64_t l2_entry = get_l2_entry(s, l2_table, j);
2021 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
2022 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
2023
2024 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
2025 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
2026 if (has_data_file(bs)) {
2027 refcount = 1;
2028 } else {
2029 ret = qcow2_get_refcount(bs,
2030 data_offset >> s->cluster_bits,
2031 &refcount);
2032 if (ret < 0) {
2033 /* don't print message nor increment check_errors */
2034 continue;
2035 }
2036 }
2037 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
2038 res->corruptions++;
2039 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
2040 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
2041 repair ? "Repairing" : "ERROR", l2_entry, refcount);
2042 if (repair) {
2043 set_l2_entry(s, l2_table, j,
2044 refcount == 1 ?
2045 l2_entry | QCOW_OFLAG_COPIED :
2046 l2_entry & ~QCOW_OFLAG_COPIED);
2047 l2_dirty++;
2048 }
2049 }
2050 }
2051 }
2052
2053 if (l2_dirty > 0) {
2054 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
2055 l2_offset, s->cluster_size,
2056 false);
2057 if (ret < 0) {
2058 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
2059 "overlap check failed: %s\n", strerror(-ret));
2060 res->check_errors++;
2061 goto fail;
2062 }
2063
2064 ret = bdrv_co_pwrite(bs->file, l2_offset, s->cluster_size, l2_table, 0);
2065 if (ret < 0) {
2066 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
2067 strerror(-ret));
2068 res->check_errors++;
2069 goto fail;
2070 }
2071 res->corruptions -= l2_dirty;
2072 res->corruptions_fixed += l2_dirty;
2073 }
2074 }
2075
2076 ret = 0;
2077
2078 fail:
2079 qemu_vfree(l2_table);
2080 return ret;
2081 }
2082
2083 /*
2084 * Checks consistency of refblocks and accounts for each refblock in
2085 * *refcount_table.
2086 */
2087 static int coroutine_fn GRAPH_RDLOCK
2088 check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
2089 BdrvCheckMode fix, bool *rebuild,
2090 void **refcount_table, int64_t *nb_clusters)
2091 {
2092 BDRVQcow2State *s = bs->opaque;
2093 int64_t i, size;
2094 int ret;
2095
2096 for(i = 0; i < s->refcount_table_size; i++) {
2097 uint64_t offset, cluster;
2098 offset = s->refcount_table[i] & REFT_OFFSET_MASK;
2099 cluster = offset >> s->cluster_bits;
2100
2101 if (s->refcount_table[i] & REFT_RESERVED_MASK) {
2102 fprintf(stderr, "ERROR refcount table entry %" PRId64 " has "
2103 "reserved bits set\n", i);
2104 res->corruptions++;
2105 *rebuild = true;
2106 continue;
2107 }
2108
2109 /* Refcount blocks are cluster aligned */
2110 if (offset_into_cluster(s, offset)) {
2111 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
2112 "cluster aligned; refcount table entry corrupted\n", i);
2113 res->corruptions++;
2114 *rebuild = true;
2115 continue;
2116 }
2117
2118 if (cluster >= *nb_clusters) {
2119 res->corruptions++;
2120 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
2121 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
2122
2123 if (fix & BDRV_FIX_ERRORS) {
2124 int64_t new_nb_clusters;
2125 Error *local_err = NULL;
2126
2127 if (offset > INT64_MAX - s->cluster_size) {
2128 ret = -EINVAL;
2129 goto resize_fail;
2130 }
2131
2132 ret = bdrv_co_truncate(bs->file, offset + s->cluster_size, false,
2133 PREALLOC_MODE_OFF, 0, &local_err);
2134 if (ret < 0) {
2135 error_report_err(local_err);
2136 goto resize_fail;
2137 }
2138 size = bdrv_co_getlength(bs->file->bs);
2139 if (size < 0) {
2140 ret = size;
2141 goto resize_fail;
2142 }
2143
2144 new_nb_clusters = size_to_clusters(s, size);
2145 assert(new_nb_clusters >= *nb_clusters);
2146
2147 ret = realloc_refcount_array(s, refcount_table,
2148 nb_clusters, new_nb_clusters);
2149 if (ret < 0) {
2150 res->check_errors++;
2151 return ret;
2152 }
2153
2154 if (cluster >= *nb_clusters) {
2155 ret = -EINVAL;
2156 goto resize_fail;
2157 }
2158
2159 res->corruptions--;
2160 res->corruptions_fixed++;
2161 ret = qcow2_inc_refcounts_imrt(bs, res,
2162 refcount_table, nb_clusters,
2163 offset, s->cluster_size);
2164 if (ret < 0) {
2165 return ret;
2166 }
2167 /* No need to check whether the refcount is now greater than 1:
2168 * This area was just allocated and zeroed, so it can only be
2169 * exactly 1 after qcow2_inc_refcounts_imrt() */
2170 continue;
2171
2172 resize_fail:
2173 *rebuild = true;
2174 fprintf(stderr, "ERROR could not resize image: %s\n",
2175 strerror(-ret));
2176 }
2177 continue;
2178 }
2179
2180 if (offset != 0) {
2181 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2182 offset, s->cluster_size);
2183 if (ret < 0) {
2184 return ret;
2185 }
2186 if (s->get_refcount(*refcount_table, cluster) != 1) {
2187 fprintf(stderr, "ERROR refcount block %" PRId64
2188 " refcount=%" PRIu64 "\n", i,
2189 s->get_refcount(*refcount_table, cluster));
2190 res->corruptions++;
2191 *rebuild = true;
2192 }
2193 }
2194 }
2195
2196 return 0;
2197 }
2198
2199 /*
2200 * Calculates an in-memory refcount table.
2201 */
2202 static int coroutine_fn GRAPH_RDLOCK
2203 calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2204 BdrvCheckMode fix, bool *rebuild,
2205 void **refcount_table, int64_t *nb_clusters)
2206 {
2207 BDRVQcow2State *s = bs->opaque;
2208 int64_t i;
2209 QCowSnapshot *sn;
2210 int ret;
2211
2212 if (!*refcount_table) {
2213 int64_t old_size = 0;
2214 ret = realloc_refcount_array(s, refcount_table,
2215 &old_size, *nb_clusters);
2216 if (ret < 0) {
2217 res->check_errors++;
2218 return ret;
2219 }
2220 }
2221
2222 /* header */
2223 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2224 0, s->cluster_size);
2225 if (ret < 0) {
2226 return ret;
2227 }
2228
2229 /* current L1 table */
2230 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2231 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2232 fix, true);
2233 if (ret < 0) {
2234 return ret;
2235 }
2236
2237 /* snapshots */
2238 if (has_data_file(bs) && s->nb_snapshots) {
2239 fprintf(stderr, "ERROR %d snapshots in image with data file\n",
2240 s->nb_snapshots);
2241 res->corruptions++;
2242 }
2243
2244 for (i = 0; i < s->nb_snapshots; i++) {
2245 sn = s->snapshots + i;
2246 if (offset_into_cluster(s, sn->l1_table_offset)) {
2247 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2248 "L1 table is not cluster aligned; snapshot table entry "
2249 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2250 res->corruptions++;
2251 continue;
2252 }
2253 if (sn->l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
2254 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2255 "L1 table is too large; snapshot table entry corrupted\n",
2256 sn->id_str, sn->name, sn->l1_size);
2257 res->corruptions++;
2258 continue;
2259 }
2260 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2261 sn->l1_table_offset, sn->l1_size, 0, fix,
2262 false);
2263 if (ret < 0) {
2264 return ret;
2265 }
2266 }
2267 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2268 s->snapshots_offset, s->snapshots_size);
2269 if (ret < 0) {
2270 return ret;
2271 }
2272
2273 /* refcount data */
2274 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2275 s->refcount_table_offset,
2276 s->refcount_table_size *
2277 REFTABLE_ENTRY_SIZE);
2278 if (ret < 0) {
2279 return ret;
2280 }
2281
2282 /* encryption */
2283 if (s->crypto_header.length) {
2284 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2285 s->crypto_header.offset,
2286 s->crypto_header.length);
2287 if (ret < 0) {
2288 return ret;
2289 }
2290 }
2291
2292 /* bitmaps */
2293 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2294 if (ret < 0) {
2295 return ret;
2296 }
2297
2298 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2299 }
2300
2301 /*
2302 * Compares the actual reference count for each cluster in the image against the
2303 * refcount as reported by the refcount structures on-disk.
2304 */
2305 static void coroutine_fn
2306 compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2307 BdrvCheckMode fix, bool *rebuild,
2308 int64_t *highest_cluster,
2309 void *refcount_table, int64_t nb_clusters)
2310 {
2311 BDRVQcow2State *s = bs->opaque;
2312 int64_t i;
2313 uint64_t refcount1, refcount2;
2314 int ret;
2315
2316 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2317 ret = qcow2_get_refcount(bs, i, &refcount1);
2318 if (ret < 0) {
2319 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2320 i, strerror(-ret));
2321 res->check_errors++;
2322 continue;
2323 }
2324
2325 refcount2 = s->get_refcount(refcount_table, i);
2326
2327 if (refcount1 > 0 || refcount2 > 0) {
2328 *highest_cluster = i;
2329 }
2330
2331 if (refcount1 != refcount2) {
2332 /* Check if we're allowed to fix the mismatch */
2333 int *num_fixed = NULL;
2334 if (refcount1 == 0) {
2335 *rebuild = true;
2336 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2337 num_fixed = &res->leaks_fixed;
2338 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2339 num_fixed = &res->corruptions_fixed;
2340 }
2341
2342 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2343 " reference=%" PRIu64 "\n",
2344 num_fixed != NULL ? "Repairing" :
2345 refcount1 < refcount2 ? "ERROR" :
2346 "Leaked",
2347 i, refcount1, refcount2);
2348
2349 if (num_fixed) {
2350 ret = update_refcount(bs, i << s->cluster_bits, 1,
2351 refcount_diff(refcount1, refcount2),
2352 refcount1 > refcount2,
2353 QCOW2_DISCARD_ALWAYS);
2354 if (ret >= 0) {
2355 (*num_fixed)++;
2356 continue;
2357 }
2358 }
2359
2360 /* And if we couldn't, print an error */
2361 if (refcount1 < refcount2) {
2362 res->corruptions++;
2363 } else {
2364 res->leaks++;
2365 }
2366 }
2367 }
2368 }
2369
2370 /*
2371 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2372 * the on-disk refcount structures.
2373 *
2374 * On input, *first_free_cluster tells where to start looking, and need not
2375 * actually be a free cluster; the returned offset will not be before that
2376 * cluster. On output, *first_free_cluster points to the first gap found, even
2377 * if that gap was too small to be used as the returned offset.
2378 *
2379 * Note that *first_free_cluster is a cluster index whereas the return value is
2380 * an offset.
2381 */
2382 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2383 int cluster_count,
2384 void **refcount_table,
2385 int64_t *imrt_nb_clusters,
2386 int64_t *first_free_cluster)
2387 {
2388 BDRVQcow2State *s = bs->opaque;
2389 int64_t cluster = *first_free_cluster, i;
2390 bool first_gap = true;
2391 int contiguous_free_clusters;
2392 int ret;
2393
2394 /* Starting at *first_free_cluster, find a range of at least cluster_count
2395 * continuously free clusters */
2396 for (contiguous_free_clusters = 0;
2397 cluster < *imrt_nb_clusters &&
2398 contiguous_free_clusters < cluster_count;
2399 cluster++)
2400 {
2401 if (!s->get_refcount(*refcount_table, cluster)) {
2402 contiguous_free_clusters++;
2403 if (first_gap) {
2404 /* If this is the first free cluster found, update
2405 * *first_free_cluster accordingly */
2406 *first_free_cluster = cluster;
2407 first_gap = false;
2408 }
2409 } else if (contiguous_free_clusters) {
2410 contiguous_free_clusters = 0;
2411 }
2412 }
2413
2414 /* If contiguous_free_clusters is greater than zero, it contains the number
2415 * of continuously free clusters until the current cluster; the first free
2416 * cluster in the current "gap" is therefore
2417 * cluster - contiguous_free_clusters */
2418
2419 /* If no such range could be found, grow the in-memory refcount table
2420 * accordingly to append free clusters at the end of the image */
2421 if (contiguous_free_clusters < cluster_count) {
2422 /* contiguous_free_clusters clusters are already empty at the image end;
2423 * we need cluster_count clusters; therefore, we have to allocate
2424 * cluster_count - contiguous_free_clusters new clusters at the end of
2425 * the image (which is the current value of cluster; note that cluster
2426 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2427 * the image end) */
2428 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2429 cluster + cluster_count
2430 - contiguous_free_clusters);
2431 if (ret < 0) {
2432 return ret;
2433 }
2434 }
2435
2436 /* Go back to the first free cluster */
2437 cluster -= contiguous_free_clusters;
2438 for (i = 0; i < cluster_count; i++) {
2439 s->set_refcount(*refcount_table, cluster + i, 1);
2440 }
2441
2442 return cluster << s->cluster_bits;
2443 }
2444
2445 /*
2446 * Helper function for rebuild_refcount_structure().
2447 *
2448 * Scan the range of clusters [first_cluster, end_cluster) for allocated
2449 * clusters and write all corresponding refblocks to disk. The refblock
2450 * and allocation data is taken from the in-memory refcount table
2451 * *refcount_table[] (of size *nb_clusters), which is basically one big
2452 * (unlimited size) refblock for the whole image.
2453 *
2454 * For these refblocks, clusters are allocated using said in-memory
2455 * refcount table. Care is taken that these allocations are reflected
2456 * in the refblocks written to disk.
2457 *
2458 * The refblocks' offsets are written into a reftable, which is
2459 * *on_disk_reftable_ptr[] (of size *on_disk_reftable_entries_ptr). If
2460 * that reftable is of insufficient size, it will be resized to fit.
2461 * This reftable is not written to disk.
2462 *
2463 * (If *on_disk_reftable_ptr is not NULL, the entries within are assumed
2464 * to point to existing valid refblocks that do not need to be allocated
2465 * again.)
2466 *
2467 * Return whether the on-disk reftable array was resized (true/false),
2468 * or -errno on error.
2469 */
2470 static int coroutine_fn GRAPH_RDLOCK
2471 rebuild_refcounts_write_refblocks(
2472 BlockDriverState *bs, void **refcount_table, int64_t *nb_clusters,
2473 int64_t first_cluster, int64_t end_cluster,
2474 uint64_t **on_disk_reftable_ptr, uint32_t *on_disk_reftable_entries_ptr,
2475 Error **errp
2476 )
2477 {
2478 BDRVQcow2State *s = bs->opaque;
2479 int64_t cluster;
2480 int64_t refblock_offset, refblock_start, refblock_index;
2481 int64_t first_free_cluster = 0;
2482 uint64_t *on_disk_reftable = *on_disk_reftable_ptr;
2483 uint32_t on_disk_reftable_entries = *on_disk_reftable_entries_ptr;
2484 void *on_disk_refblock;
2485 bool reftable_grown = false;
2486 int ret;
2487
2488 for (cluster = first_cluster; cluster < end_cluster; cluster++) {
2489 /* Check all clusters to find refblocks that contain non-zero entries */
2490 if (!s->get_refcount(*refcount_table, cluster)) {
2491 continue;
2492 }
2493
2494 /*
2495 * This cluster is allocated, so we need to create a refblock
2496 * for it. The data we will write to disk is just the
2497 * respective slice from *refcount_table, so it will contain
2498 * accurate refcounts for all clusters belonging to this
2499 * refblock. After we have written it, we will therefore skip
2500 * all remaining clusters in this refblock.
2501 */
2502
2503 refblock_index = cluster >> s->refcount_block_bits;
2504 refblock_start = refblock_index << s->refcount_block_bits;
2505
2506 if (on_disk_reftable_entries > refblock_index &&
2507 on_disk_reftable[refblock_index])
2508 {
2509 /*
2510 * We can get here after a `goto write_refblocks`: We have a
2511 * reftable from a previous run, and the refblock is already
2512 * allocated. No need to allocate it again.
2513 */
2514 refblock_offset = on_disk_reftable[refblock_index];
2515 } else {
2516 int64_t refblock_cluster_index;
2517
2518 /* Don't allocate a cluster in a refblock already written to disk */
2519 if (first_free_cluster < refblock_start) {
2520 first_free_cluster = refblock_start;
2521 }
2522 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2523 nb_clusters,
2524 &first_free_cluster);
2525 if (refblock_offset < 0) {
2526 error_setg_errno(errp, -refblock_offset,
2527 "ERROR allocating refblock");
2528 return refblock_offset;
2529 }
2530
2531 refblock_cluster_index = refblock_offset / s->cluster_size;
2532 if (refblock_cluster_index >= end_cluster) {
2533 /*
2534 * We must write the refblock that holds this refblock's
2535 * refcount
2536 */
2537 end_cluster = refblock_cluster_index + 1;
2538 }
2539
2540 if (on_disk_reftable_entries <= refblock_index) {
2541 on_disk_reftable_entries =
2542 ROUND_UP((refblock_index + 1) * REFTABLE_ENTRY_SIZE,
2543 s->cluster_size) / REFTABLE_ENTRY_SIZE;
2544 on_disk_reftable =
2545 g_try_realloc(on_disk_reftable,
2546 on_disk_reftable_entries *
2547 REFTABLE_ENTRY_SIZE);
2548 if (!on_disk_reftable) {
2549 error_setg(errp, "ERROR allocating reftable memory");
2550 return -ENOMEM;
2551 }
2552
2553 memset(on_disk_reftable + *on_disk_reftable_entries_ptr, 0,
2554 (on_disk_reftable_entries -
2555 *on_disk_reftable_entries_ptr) *
2556 REFTABLE_ENTRY_SIZE);
2557
2558 *on_disk_reftable_ptr = on_disk_reftable;
2559 *on_disk_reftable_entries_ptr = on_disk_reftable_entries;
2560
2561 reftable_grown = true;
2562 } else {
2563 assert(on_disk_reftable);
2564 }
2565 on_disk_reftable[refblock_index] = refblock_offset;
2566 }
2567
2568 /* Refblock is allocated, write it to disk */
2569
2570 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2571 s->cluster_size, false);
2572 if (ret < 0) {
2573 error_setg_errno(errp, -ret, "ERROR writing refblock");
2574 return ret;
2575 }
2576
2577 /*
2578 * The refblock is simply a slice of *refcount_table.
2579 * Note that the size of *refcount_table is always aligned to
2580 * whole clusters, so the write operation will not result in
2581 * out-of-bounds accesses.
2582 */
2583 on_disk_refblock = (void *)((char *) *refcount_table +
2584 refblock_index * s->cluster_size);
2585
2586 ret = bdrv_co_pwrite(bs->file, refblock_offset, s->cluster_size,
2587 on_disk_refblock, 0);
2588 if (ret < 0) {
2589 error_setg_errno(errp, -ret, "ERROR writing refblock");
2590 return ret;
2591 }
2592
2593 /* This refblock is done, skip to its end */
2594 cluster = refblock_start + s->refcount_block_size - 1;
2595 }
2596
2597 return reftable_grown;
2598 }
2599
2600 /*
2601 * Creates a new refcount structure based solely on the in-memory information
2602 * given through *refcount_table (this in-memory information is basically just
2603 * the concatenation of all refblocks). All necessary allocations will be
2604 * reflected in that array.
2605 *
2606 * On success, the old refcount structure is leaked (it will be covered by the
2607 * new refcount structure).
2608 */
2609 static int coroutine_fn GRAPH_RDLOCK
2610 rebuild_refcount_structure(BlockDriverState *bs, BdrvCheckResult *res,
2611 void **refcount_table, int64_t *nb_clusters,
2612 Error **errp)
2613 {
2614 BDRVQcow2State *s = bs->opaque;
2615 int64_t reftable_offset = -1;
2616 int64_t reftable_length = 0;
2617 int64_t reftable_clusters;
2618 int64_t refblock_index;
2619 uint32_t on_disk_reftable_entries = 0;
2620 uint64_t *on_disk_reftable = NULL;
2621 int ret = 0;
2622 int reftable_size_changed = 0;
2623 struct {
2624 uint64_t reftable_offset;
2625 uint32_t reftable_clusters;
2626 } QEMU_PACKED reftable_offset_and_clusters;
2627
2628 qcow2_cache_empty(bs, s->refcount_block_cache);
2629
2630 /*
2631 * For each refblock containing entries, we try to allocate a
2632 * cluster (in the in-memory refcount table) and write its offset
2633 * into on_disk_reftable[]. We then write the whole refblock to
2634 * disk (as a slice of the in-memory refcount table).
2635 * This is done by rebuild_refcounts_write_refblocks().
2636 *
2637 * Once we have scanned all clusters, we try to find space for the
2638 * reftable. This will dirty the in-memory refcount table (i.e.
2639 * make it differ from the refblocks we have already written), so we
2640 * need to run rebuild_refcounts_write_refblocks() again for the
2641 * range of clusters where the reftable has been allocated.
2642 *
2643 * This second run might make the reftable grow again, in which case
2644 * we will need to allocate another space for it, which is why we
2645 * repeat all this until the reftable stops growing.
2646 *
2647 * (This loop will terminate, because with every cluster the
2648 * reftable grows, it can accomodate a multitude of more refcounts,
2649 * so that at some point this must be able to cover the reftable
2650 * and all refblocks describing it.)
2651 *
2652 * We then convert the reftable to big-endian and write it to disk.
2653 *
2654 * Note that we never free any reftable allocations. Doing so would
2655 * needlessly complicate the algorithm: The eventual second check
2656 * run we do will clean up all leaks we have caused.
2657 */
2658
2659 reftable_size_changed =
2660 rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters,
2661 0, *nb_clusters,
2662 &on_disk_reftable,
2663 &on_disk_reftable_entries, errp);
2664 if (reftable_size_changed < 0) {
2665 res->check_errors++;
2666 ret = reftable_size_changed;
2667 goto fail;
2668 }
2669
2670 /*
2671 * There was no reftable before, so rebuild_refcounts_write_refblocks()
2672 * must have increased its size (from 0 to something).
2673 */
2674 assert(reftable_size_changed);
2675
2676 do {
2677 int64_t reftable_start_cluster, reftable_end_cluster;
2678 int64_t first_free_cluster = 0;
2679
2680 reftable_length = on_disk_reftable_entries * REFTABLE_ENTRY_SIZE;
2681 reftable_clusters = size_to_clusters(s, reftable_length);
2682
2683 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2684 refcount_table, nb_clusters,
2685 &first_free_cluster);
2686 if (reftable_offset < 0) {
2687 error_setg_errno(errp, -reftable_offset,
2688 "ERROR allocating reftable");
2689 res->check_errors++;
2690 ret = reftable_offset;
2691 goto fail;
2692 }
2693
2694 /*
2695 * We need to update the affected refblocks, so re-run the
2696 * write_refblocks loop for the reftable's range of clusters.
2697 */
2698 assert(offset_into_cluster(s, reftable_offset) == 0);
2699 reftable_start_cluster = reftable_offset / s->cluster_size;
2700 reftable_end_cluster = reftable_start_cluster + reftable_clusters;
2701 reftable_size_changed =
2702 rebuild_refcounts_write_refblocks(bs, refcount_table, nb_clusters,
2703 reftable_start_cluster,
2704 reftable_end_cluster,
2705 &on_disk_reftable,
2706 &on_disk_reftable_entries, errp);
2707 if (reftable_size_changed < 0) {
2708 res->check_errors++;
2709 ret = reftable_size_changed;
2710 goto fail;
2711 }
2712
2713 /*
2714 * If the reftable size has changed, we will need to find a new
2715 * allocation, repeating the loop.
2716 */
2717 } while (reftable_size_changed);
2718
2719 /* The above loop must have run at least once */
2720 assert(reftable_offset >= 0);
2721
2722 /*
2723 * All allocations are done, all refblocks are written, convert the
2724 * reftable to big-endian and write it to disk.
2725 */
2726
2727 for (refblock_index = 0; refblock_index < on_disk_reftable_entries;
2728 refblock_index++)
2729 {
2730 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2731 }
2732
2733 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset, reftable_length,
2734 false);
2735 if (ret < 0) {
2736 error_setg_errno(errp, -ret, "ERROR writing reftable");
2737 goto fail;
2738 }
2739
2740 assert(reftable_length < INT_MAX);
2741 ret = bdrv_co_pwrite(bs->file, reftable_offset, reftable_length,
2742 on_disk_reftable, 0);
2743 if (ret < 0) {
2744 error_setg_errno(errp, -ret, "ERROR writing reftable");
2745 goto fail;
2746 }
2747
2748 /* Enter new reftable into the image header */
2749 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2750 reftable_offset_and_clusters.reftable_clusters =
2751 cpu_to_be32(reftable_clusters);
2752 ret = bdrv_co_pwrite_sync(bs->file,
2753 offsetof(QCowHeader, refcount_table_offset),
2754 sizeof(reftable_offset_and_clusters),
2755 &reftable_offset_and_clusters, 0);
2756 if (ret < 0) {
2757 error_setg_errno(errp, -ret, "ERROR setting reftable");
2758 goto fail;
2759 }
2760
2761 for (refblock_index = 0; refblock_index < on_disk_reftable_entries;
2762 refblock_index++)
2763 {
2764 be64_to_cpus(&on_disk_reftable[refblock_index]);
2765 }
2766 s->refcount_table = on_disk_reftable;
2767 s->refcount_table_offset = reftable_offset;
2768 s->refcount_table_size = on_disk_reftable_entries;
2769 update_max_refcount_table_index(s);
2770
2771 return 0;
2772
2773 fail:
2774 g_free(on_disk_reftable);
2775 return ret;
2776 }
2777
2778 /*
2779 * Checks an image for refcount consistency.
2780 *
2781 * Returns 0 if no errors are found, the number of errors in case the image is
2782 * detected as corrupted, and -errno when an internal error occurred.
2783 */
2784 int coroutine_fn GRAPH_RDLOCK
2785 qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
2786 {
2787 BDRVQcow2State *s = bs->opaque;
2788 BdrvCheckResult pre_compare_res;
2789 int64_t size, highest_cluster, nb_clusters;
2790 void *refcount_table = NULL;
2791 bool rebuild = false;
2792 int ret;
2793
2794 size = bdrv_co_getlength(bs->file->bs);
2795 if (size < 0) {
2796 res->check_errors++;
2797 return size;
2798 }
2799
2800 nb_clusters = size_to_clusters(s, size);
2801 if (nb_clusters > INT_MAX) {
2802 res->check_errors++;
2803 return -EFBIG;
2804 }
2805
2806 res->bfi.total_clusters =
2807 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2808
2809 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2810 &nb_clusters);
2811 if (ret < 0) {
2812 goto fail;
2813 }
2814
2815 /* In case we don't need to rebuild the refcount structure (but want to fix
2816 * something), this function is immediately called again, in which case the
2817 * result should be ignored */
2818 pre_compare_res = *res;
2819 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2820 nb_clusters);
2821
2822 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2823 BdrvCheckResult old_res = *res;
2824 int fresh_leaks = 0;
2825 Error *local_err = NULL;
2826
2827 fprintf(stderr, "Rebuilding refcount structure\n");
2828 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2829 &nb_clusters, &local_err);
2830 if (ret < 0) {
2831 error_report_err(local_err);
2832 goto fail;
2833 }
2834
2835 res->corruptions = 0;
2836 res->leaks = 0;
2837
2838 /* Because the old reftable has been exchanged for a new one the
2839 * references have to be recalculated */
2840 rebuild = false;
2841 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2842 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2843 &nb_clusters);
2844 if (ret < 0) {
2845 goto fail;
2846 }
2847
2848 if (fix & BDRV_FIX_LEAKS) {
2849 /* The old refcount structures are now leaked, fix it; the result
2850 * can be ignored, aside from leaks which were introduced by
2851 * rebuild_refcount_structure() that could not be fixed */
2852 BdrvCheckResult saved_res = *res;
2853 *res = (BdrvCheckResult){ 0 };
2854
2855 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2856 &highest_cluster, refcount_table, nb_clusters);
2857 if (rebuild) {
2858 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2859 "broken\n");
2860 }
2861
2862 /* Any leaks accounted for here were introduced by
2863 * rebuild_refcount_structure() because that function has created a
2864 * new refcount structure from scratch */
2865 fresh_leaks = res->leaks;
2866 *res = saved_res;
2867 }
2868
2869 if (res->corruptions < old_res.corruptions) {
2870 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2871 }
2872 if (res->leaks < old_res.leaks) {
2873 res->leaks_fixed += old_res.leaks - res->leaks;
2874 }
2875 res->leaks += fresh_leaks;
2876 } else if (fix) {
2877 if (rebuild) {
2878 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2879 res->check_errors++;
2880 ret = -EIO;
2881 goto fail;
2882 }
2883
2884 if (res->leaks || res->corruptions) {
2885 *res = pre_compare_res;
2886 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2887 refcount_table, nb_clusters);
2888 }
2889 }
2890
2891 /* check OFLAG_COPIED */
2892 ret = check_oflag_copied(bs, res, fix);
2893 if (ret < 0) {
2894 goto fail;
2895 }
2896
2897 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2898 ret = 0;
2899
2900 fail:
2901 g_free(refcount_table);
2902
2903 return ret;
2904 }
2905
2906 #define overlaps_with(ofs, sz) \
2907 ranges_overlap(offset, size, ofs, sz)
2908
2909 /*
2910 * Checks if the given offset into the image file is actually free to use by
2911 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2912 * i.e. a sanity check without relying on the refcount tables.
2913 *
2914 * The ign parameter specifies what checks not to perform (being a bitmask of
2915 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2916 *
2917 * Returns:
2918 * - 0 if writing to this offset will not affect the mentioned metadata
2919 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2920 * - a negative value (-errno) indicating an error while performing a check,
2921 * e.g. when bdrv_pread failed on QCOW2_OL_INACTIVE_L2
2922 */
2923 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2924 int64_t size)
2925 {
2926 BDRVQcow2State *s = bs->opaque;
2927 int chk = s->overlap_check & ~ign;
2928 int i, j;
2929
2930 if (!size) {
2931 return 0;
2932 }
2933
2934 if (chk & QCOW2_OL_MAIN_HEADER) {
2935 if (offset < s->cluster_size) {
2936 return QCOW2_OL_MAIN_HEADER;
2937 }
2938 }
2939
2940 /* align range to test to cluster boundaries */
2941 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2942 offset = start_of_cluster(s, offset);
2943
2944 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2945 if (overlaps_with(s->l1_table_offset, s->l1_size * L1E_SIZE)) {
2946 return QCOW2_OL_ACTIVE_L1;
2947 }
2948 }
2949
2950 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2951 if (overlaps_with(s->refcount_table_offset,
2952 s->refcount_table_size * REFTABLE_ENTRY_SIZE)) {
2953 return QCOW2_OL_REFCOUNT_TABLE;
2954 }
2955 }
2956
2957 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2958 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2959 return QCOW2_OL_SNAPSHOT_TABLE;
2960 }
2961 }
2962
2963 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2964 for (i = 0; i < s->nb_snapshots; i++) {
2965 if (s->snapshots[i].l1_size &&
2966 overlaps_with(s->snapshots[i].l1_table_offset,
2967 s->snapshots[i].l1_size * L1E_SIZE)) {
2968 return QCOW2_OL_INACTIVE_L1;
2969 }
2970 }
2971 }
2972
2973 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2974 for (i = 0; i < s->l1_size; i++) {
2975 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2976 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2977 s->cluster_size)) {
2978 return QCOW2_OL_ACTIVE_L2;
2979 }
2980 }
2981 }
2982
2983 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2984 unsigned last_entry = s->max_refcount_table_index;
2985 assert(last_entry < s->refcount_table_size);
2986 assert(last_entry + 1 == s->refcount_table_size ||
2987 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2988 for (i = 0; i <= last_entry; i++) {
2989 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2990 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2991 s->cluster_size)) {
2992 return QCOW2_OL_REFCOUNT_BLOCK;
2993 }
2994 }
2995 }
2996
2997 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2998 for (i = 0; i < s->nb_snapshots; i++) {
2999 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
3000 uint32_t l1_sz = s->snapshots[i].l1_size;
3001 uint64_t l1_sz2 = l1_sz * L1E_SIZE;
3002 uint64_t *l1;
3003 int ret;
3004
3005 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, L1E_SIZE,
3006 QCOW_MAX_L1_SIZE, "", NULL);
3007 if (ret < 0) {
3008 return ret;
3009 }
3010
3011 l1 = g_try_malloc(l1_sz2);
3012
3013 if (l1_sz2 && l1 == NULL) {
3014 return -ENOMEM;
3015 }
3016
3017 ret = bdrv_pread(bs->file, l1_ofs, l1_sz2, l1, 0);
3018 if (ret < 0) {
3019 g_free(l1);
3020 return ret;
3021 }
3022
3023 for (j = 0; j < l1_sz; j++) {
3024 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
3025 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
3026 g_free(l1);
3027 return QCOW2_OL_INACTIVE_L2;
3028 }
3029 }
3030
3031 g_free(l1);
3032 }
3033 }
3034
3035 if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
3036 (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
3037 {
3038 if (overlaps_with(s->bitmap_directory_offset,
3039 s->bitmap_directory_size))
3040 {
3041 return QCOW2_OL_BITMAP_DIRECTORY;
3042 }
3043 }
3044
3045 return 0;
3046 }
3047
3048 static const char *metadata_ol_names[] = {
3049 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
3050 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
3051 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
3052 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
3053 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
3054 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
3055 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
3056 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
3057 [QCOW2_OL_BITMAP_DIRECTORY_BITNR] = "bitmap directory",
3058 };
3059 QEMU_BUILD_BUG_ON(QCOW2_OL_MAX_BITNR != ARRAY_SIZE(metadata_ol_names));
3060
3061 /*
3062 * First performs a check for metadata overlaps (through
3063 * qcow2_check_metadata_overlap); if that fails with a negative value (error
3064 * while performing a check), that value is returned. If an impending overlap
3065 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
3066 * and -EIO returned.
3067 *
3068 * Returns 0 if there were neither overlaps nor errors while checking for
3069 * overlaps; or a negative value (-errno) on error.
3070 */
3071 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
3072 int64_t size, bool data_file)
3073 {
3074 int ret;
3075
3076 if (data_file && has_data_file(bs)) {
3077 return 0;
3078 }
3079
3080 ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
3081 if (ret < 0) {
3082 return ret;
3083 } else if (ret > 0) {
3084 int metadata_ol_bitnr = ctz32(ret);
3085 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
3086
3087 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
3088 "write on metadata (overlaps with %s)",
3089 metadata_ol_names[metadata_ol_bitnr]);
3090 return -EIO;
3091 }
3092
3093 return 0;
3094 }
3095
3096 /* A pointer to a function of this type is given to walk_over_reftable(). That
3097 * function will create refblocks and pass them to a RefblockFinishOp once they
3098 * are completed (@refblock). @refblock_empty is set if the refblock is
3099 * completely empty.
3100 *
3101 * Along with the refblock, a corresponding reftable entry is passed, in the
3102 * reftable @reftable (which may be reallocated) at @reftable_index.
3103 *
3104 * @allocated should be set to true if a new cluster has been allocated.
3105 */
3106 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
3107 uint64_t reftable_index, uint64_t *reftable_size,
3108 void *refblock, bool refblock_empty,
3109 bool *allocated, Error **errp);
3110
3111 /**
3112 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
3113 * it is not empty) and inserts its offset into the new reftable. The size of
3114 * this new reftable is increased as required.
3115 */
3116 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
3117 uint64_t reftable_index, uint64_t *reftable_size,
3118 void *refblock, bool refblock_empty, bool *allocated,
3119 Error **errp)
3120 {
3121 BDRVQcow2State *s = bs->opaque;
3122 int64_t offset;
3123
3124 if (!refblock_empty && reftable_index >= *reftable_size) {
3125 uint64_t *new_reftable;
3126 uint64_t new_reftable_size;
3127
3128 new_reftable_size = ROUND_UP(reftable_index + 1,
3129 s->cluster_size / REFTABLE_ENTRY_SIZE);
3130 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / REFTABLE_ENTRY_SIZE) {
3131 error_setg(errp,
3132 "This operation would make the refcount table grow "
3133 "beyond the maximum size supported by QEMU, aborting");
3134 return -ENOTSUP;
3135 }
3136
3137 new_reftable = g_try_realloc(*reftable, new_reftable_size *
3138 REFTABLE_ENTRY_SIZE);
3139 if (!new_reftable) {
3140 error_setg(errp, "Failed to increase reftable buffer size");
3141 return -ENOMEM;
3142 }
3143
3144 memset(new_reftable + *reftable_size, 0,
3145 (new_reftable_size - *reftable_size) * REFTABLE_ENTRY_SIZE);
3146
3147 *reftable = new_reftable;
3148 *reftable_size = new_reftable_size;
3149 }
3150
3151 if (!refblock_empty && !(*reftable)[reftable_index]) {
3152 offset = qcow2_alloc_clusters(bs, s->cluster_size);
3153 if (offset < 0) {
3154 error_setg_errno(errp, -offset, "Failed to allocate refblock");
3155 return offset;
3156 }
3157 (*reftable)[reftable_index] = offset;
3158 *allocated = true;
3159 }
3160
3161 return 0;
3162 }
3163
3164 /**
3165 * This "operation" for walk_over_reftable() writes the refblock to disk at the
3166 * offset specified by the new reftable's entry. It does not modify the new
3167 * reftable or change any refcounts.
3168 */
3169 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
3170 uint64_t reftable_index, uint64_t *reftable_size,
3171 void *refblock, bool refblock_empty, bool *allocated,
3172 Error **errp)
3173 {
3174 BDRVQcow2State *s = bs->opaque;
3175 int64_t offset;
3176 int ret;
3177
3178 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
3179 offset = (*reftable)[reftable_index];
3180
3181 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size,
3182 false);
3183 if (ret < 0) {
3184 error_setg_errno(errp, -ret, "Overlap check failed");
3185 return ret;
3186 }
3187
3188 ret = bdrv_pwrite(bs->file, offset, s->cluster_size, refblock, 0);
3189 if (ret < 0) {
3190 error_setg_errno(errp, -ret, "Failed to write refblock");
3191 return ret;
3192 }
3193 } else {
3194 assert(refblock_empty);
3195 }
3196
3197 return 0;
3198 }
3199
3200 /**
3201 * This function walks over the existing reftable and every referenced refblock;
3202 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
3203 * create an equal new entry in the passed @new_refblock. Once that
3204 * @new_refblock is completely filled, @operation will be called.
3205 *
3206 * @status_cb and @cb_opaque are used for the amend operation's status callback.
3207 * @index is the index of the walk_over_reftable() calls and @total is the total
3208 * number of walk_over_reftable() calls per amend operation. Both are used for
3209 * calculating the parameters for the status callback.
3210 *
3211 * @allocated is set to true if a new cluster has been allocated.
3212 */
3213 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
3214 uint64_t *new_reftable_index,
3215 uint64_t *new_reftable_size,
3216 void *new_refblock, int new_refblock_size,
3217 int new_refcount_bits,
3218 RefblockFinishOp *operation, bool *allocated,
3219 Qcow2SetRefcountFunc *new_set_refcount,
3220 BlockDriverAmendStatusCB *status_cb,
3221 void *cb_opaque, int index, int total,
3222 Error **errp)
3223 {
3224 BDRVQcow2State *s = bs->opaque;
3225 uint64_t reftable_index;
3226 bool new_refblock_empty = true;
3227 int refblock_index;
3228 int new_refblock_index = 0;
3229 int ret;
3230
3231 for (reftable_index = 0; reftable_index < s->refcount_table_size;
3232 reftable_index++)
3233 {
3234 uint64_t refblock_offset = s->refcount_table[reftable_index]
3235 & REFT_OFFSET_MASK;
3236
3237 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
3238 (uint64_t)total * s->refcount_table_size, cb_opaque);
3239
3240 if (refblock_offset) {
3241 void *refblock;
3242
3243 if (offset_into_cluster(s, refblock_offset)) {
3244 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
3245 PRIx64 " unaligned (reftable index: %#"
3246 PRIx64 ")", refblock_offset,
3247 reftable_index);
3248 error_setg(errp,
3249 "Image is corrupt (unaligned refblock offset)");
3250 return -EIO;
3251 }
3252
3253 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
3254 &refblock);
3255 if (ret < 0) {
3256 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
3257 return ret;
3258 }
3259
3260 for (refblock_index = 0; refblock_index < s->refcount_block_size;
3261 refblock_index++)
3262 {
3263 uint64_t refcount;
3264
3265 if (new_refblock_index >= new_refblock_size) {
3266 /* new_refblock is now complete */
3267 ret = operation(bs, new_reftable, *new_reftable_index,
3268 new_reftable_size, new_refblock,
3269 new_refblock_empty, allocated, errp);
3270 if (ret < 0) {
3271 qcow2_cache_put(s->refcount_block_cache, &refblock);
3272 return ret;
3273 }
3274
3275 (*new_reftable_index)++;
3276 new_refblock_index = 0;
3277 new_refblock_empty = true;
3278 }
3279
3280 refcount = s->get_refcount(refblock, refblock_index);
3281 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
3282 uint64_t offset;
3283
3284 qcow2_cache_put(s->refcount_block_cache, &refblock);
3285
3286 offset = ((reftable_index << s->refcount_block_bits)
3287 + refblock_index) << s->cluster_bits;
3288
3289 error_setg(errp, "Cannot decrease refcount entry width to "
3290 "%i bits: Cluster at offset %#" PRIx64 " has a "
3291 "refcount of %" PRIu64, new_refcount_bits,
3292 offset, refcount);
3293 return -EINVAL;
3294 }
3295
3296 if (new_set_refcount) {
3297 new_set_refcount(new_refblock, new_refblock_index++,
3298 refcount);
3299 } else {
3300 new_refblock_index++;
3301 }
3302 new_refblock_empty = new_refblock_empty && refcount == 0;
3303 }
3304
3305 qcow2_cache_put(s->refcount_block_cache, &refblock);
3306 } else {
3307 /* No refblock means every refcount is 0 */
3308 for (refblock_index = 0; refblock_index < s->refcount_block_size;
3309 refblock_index++)
3310 {
3311 if (new_refblock_index >= new_refblock_size) {
3312 /* new_refblock is now complete */
3313 ret = operation(bs, new_reftable, *new_reftable_index,
3314 new_reftable_size, new_refblock,
3315 new_refblock_empty, allocated, errp);
3316 if (ret < 0) {
3317 return ret;
3318 }
3319
3320 (*new_reftable_index)++;
3321 new_refblock_index = 0;
3322 new_refblock_empty = true;
3323 }
3324
3325 if (new_set_refcount) {
3326 new_set_refcount(new_refblock, new_refblock_index++, 0);
3327 } else {
3328 new_refblock_index++;
3329 }
3330 }
3331 }
3332 }
3333
3334 if (new_refblock_index > 0) {
3335 /* Complete the potentially existing partially filled final refblock */
3336 if (new_set_refcount) {
3337 for (; new_refblock_index < new_refblock_size;
3338 new_refblock_index++)
3339 {
3340 new_set_refcount(new_refblock, new_refblock_index, 0);
3341 }
3342 }
3343
3344 ret = operation(bs, new_reftable, *new_reftable_index,
3345 new_reftable_size, new_refblock, new_refblock_empty,
3346 allocated, errp);
3347 if (ret < 0) {
3348 return ret;
3349 }
3350
3351 (*new_reftable_index)++;
3352 }
3353
3354 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3355 (uint64_t)total * s->refcount_table_size, cb_opaque);
3356
3357 return 0;
3358 }
3359
3360 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3361 BlockDriverAmendStatusCB *status_cb,
3362 void *cb_opaque, Error **errp)
3363 {
3364 BDRVQcow2State *s = bs->opaque;
3365 Qcow2GetRefcountFunc *new_get_refcount;
3366 Qcow2SetRefcountFunc *new_set_refcount;
3367 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3368 uint64_t *new_reftable = NULL, new_reftable_size = 0;
3369 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3370 uint64_t new_reftable_index = 0;
3371 uint64_t i;
3372 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3373 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3374 int old_refcount_order;
3375 int walk_index = 0;
3376 int ret;
3377 bool new_allocation;
3378
3379 assert(s->qcow_version >= 3);
3380 assert(refcount_order >= 0 && refcount_order <= 6);
3381
3382 /* see qcow2_open() */
3383 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3384
3385 new_get_refcount = get_refcount_funcs[refcount_order];
3386 new_set_refcount = set_refcount_funcs[refcount_order];
3387
3388
3389 do {
3390 int total_walks;
3391
3392 new_allocation = false;
3393
3394 /* At least we have to do this walk and the one which writes the
3395 * refblocks; also, at least we have to do this loop here at least
3396 * twice (normally), first to do the allocations, and second to
3397 * determine that everything is correctly allocated, this then makes
3398 * three walks in total */
3399 total_walks = MAX(walk_index + 2, 3);
3400
3401 /* First, allocate the structures so they are present in the refcount
3402 * structures */
3403 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3404 &new_reftable_size, NULL, new_refblock_size,
3405 new_refcount_bits, &alloc_refblock,
3406 &new_allocation, NULL, status_cb, cb_opaque,
3407 walk_index++, total_walks, errp);
3408 if (ret < 0) {
3409 goto done;
3410 }
3411
3412 new_reftable_index = 0;
3413
3414 if (new_allocation) {
3415 if (new_reftable_offset) {
3416 qcow2_free_clusters(
3417 bs, new_reftable_offset,
3418 allocated_reftable_size * REFTABLE_ENTRY_SIZE,
3419 QCOW2_DISCARD_NEVER);
3420 }
3421
3422 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3423 REFTABLE_ENTRY_SIZE);
3424 if (new_reftable_offset < 0) {
3425 error_setg_errno(errp, -new_reftable_offset,
3426 "Failed to allocate the new reftable");
3427 ret = new_reftable_offset;
3428 goto done;
3429 }
3430 allocated_reftable_size = new_reftable_size;
3431 }
3432 } while (new_allocation);
3433
3434 /* Second, write the new refblocks */
3435 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3436 &new_reftable_size, new_refblock,
3437 new_refblock_size, new_refcount_bits,
3438 &flush_refblock, &new_allocation, new_set_refcount,
3439 status_cb, cb_opaque, walk_index, walk_index + 1,
3440 errp);
3441 if (ret < 0) {
3442 goto done;
3443 }
3444 assert(!new_allocation);
3445
3446
3447 /* Write the new reftable */
3448 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3449 new_reftable_size * REFTABLE_ENTRY_SIZE,
3450 false);
3451 if (ret < 0) {
3452 error_setg_errno(errp, -ret, "Overlap check failed");
3453 goto done;
3454 }
3455
3456 for (i = 0; i < new_reftable_size; i++) {
3457 cpu_to_be64s(&new_reftable[i]);
3458 }
3459
3460 ret = bdrv_pwrite(bs->file, new_reftable_offset,
3461 new_reftable_size * REFTABLE_ENTRY_SIZE, new_reftable,
3462 0);
3463
3464 for (i = 0; i < new_reftable_size; i++) {
3465 be64_to_cpus(&new_reftable[i]);
3466 }
3467
3468 if (ret < 0) {
3469 error_setg_errno(errp, -ret, "Failed to write the new reftable");
3470 goto done;
3471 }
3472
3473
3474 /* Empty the refcount cache */
3475 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3476 if (ret < 0) {
3477 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3478 goto done;
3479 }
3480
3481 /* Update the image header to point to the new reftable; this only updates
3482 * the fields which are relevant to qcow2_update_header(); other fields
3483 * such as s->refcount_table or s->refcount_bits stay stale for now
3484 * (because we have to restore everything if qcow2_update_header() fails) */
3485 old_refcount_order = s->refcount_order;
3486 old_reftable_size = s->refcount_table_size;
3487 old_reftable_offset = s->refcount_table_offset;
3488
3489 s->refcount_order = refcount_order;
3490 s->refcount_table_size = new_reftable_size;
3491 s->refcount_table_offset = new_reftable_offset;
3492
3493 ret = qcow2_update_header(bs);
3494 if (ret < 0) {
3495 s->refcount_order = old_refcount_order;
3496 s->refcount_table_size = old_reftable_size;
3497 s->refcount_table_offset = old_reftable_offset;
3498 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3499 goto done;
3500 }
3501
3502 /* Now update the rest of the in-memory information */
3503 old_reftable = s->refcount_table;
3504 s->refcount_table = new_reftable;
3505 update_max_refcount_table_index(s);
3506
3507 s->refcount_bits = 1 << refcount_order;
3508 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3509 s->refcount_max += s->refcount_max - 1;
3510
3511 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3512 s->refcount_block_size = 1 << s->refcount_block_bits;
3513
3514 s->get_refcount = new_get_refcount;
3515 s->set_refcount = new_set_refcount;
3516
3517 /* For cleaning up all old refblocks and the old reftable below the "done"
3518 * label */
3519 new_reftable = old_reftable;
3520 new_reftable_size = old_reftable_size;
3521 new_reftable_offset = old_reftable_offset;
3522
3523 done:
3524 if (new_reftable) {
3525 /* On success, new_reftable actually points to the old reftable (and
3526 * new_reftable_size is the old reftable's size); but that is just
3527 * fine */
3528 for (i = 0; i < new_reftable_size; i++) {
3529 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3530 if (offset) {
3531 qcow2_free_clusters(bs, offset, s->cluster_size,
3532 QCOW2_DISCARD_OTHER);
3533 }
3534 }
3535 g_free(new_reftable);
3536
3537 if (new_reftable_offset > 0) {
3538 qcow2_free_clusters(bs, new_reftable_offset,
3539 new_reftable_size * REFTABLE_ENTRY_SIZE,
3540 QCOW2_DISCARD_OTHER);
3541 }
3542 }
3543
3544 qemu_vfree(new_refblock);
3545 return ret;
3546 }
3547
3548 static int64_t coroutine_fn get_refblock_offset(BlockDriverState *bs,
3549 uint64_t offset)
3550 {
3551 BDRVQcow2State *s = bs->opaque;
3552 uint32_t index = offset_to_reftable_index(s, offset);
3553 int64_t covering_refblock_offset = 0;
3554
3555 if (index < s->refcount_table_size) {
3556 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3557 }
3558 if (!covering_refblock_offset) {
3559 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3560 "not covered by the refcount structures",
3561 offset);
3562 return -EIO;
3563 }
3564
3565 return covering_refblock_offset;
3566 }
3567
3568 static int coroutine_fn
3569 qcow2_discard_refcount_block(BlockDriverState *bs, uint64_t discard_block_offs)
3570 {
3571 BDRVQcow2State *s = bs->opaque;
3572 int64_t refblock_offs;
3573 uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3574 uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3575 void *refblock;
3576 int ret;
3577
3578 refblock_offs = get_refblock_offset(bs, discard_block_offs);
3579 if (refblock_offs < 0) {
3580 return refblock_offs;
3581 }
3582
3583 assert(discard_block_offs != 0);
3584
3585 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3586 &refblock);
3587 if (ret < 0) {
3588 return ret;
3589 }
3590
3591 if (s->get_refcount(refblock, block_index) != 1) {
3592 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3593 " refblock offset %#" PRIx64
3594 ", reftable index %u"
3595 ", block offset %#" PRIx64
3596 ", refcount %#" PRIx64,
3597 refblock_offs,
3598 offset_to_reftable_index(s, discard_block_offs),
3599 discard_block_offs,
3600 s->get_refcount(refblock, block_index));
3601 qcow2_cache_put(s->refcount_block_cache, &refblock);
3602 return -EINVAL;
3603 }
3604 s->set_refcount(refblock, block_index, 0);
3605
3606 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3607
3608 qcow2_cache_put(s->refcount_block_cache, &refblock);
3609
3610 if (cluster_index < s->free_cluster_index) {
3611 s->free_cluster_index = cluster_index;
3612 }
3613
3614 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3615 discard_block_offs);
3616 if (refblock) {
3617 /* discard refblock from the cache if refblock is cached */
3618 qcow2_cache_discard(s->refcount_block_cache, refblock);
3619 }
3620 update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3621
3622 return 0;
3623 }
3624
3625 int coroutine_fn qcow2_shrink_reftable(BlockDriverState *bs)
3626 {
3627 BDRVQcow2State *s = bs->opaque;
3628 uint64_t *reftable_tmp =
3629 g_malloc(s->refcount_table_size * REFTABLE_ENTRY_SIZE);
3630 int i, ret;
3631
3632 for (i = 0; i < s->refcount_table_size; i++) {
3633 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3634 void *refblock;
3635 bool unused_block;
3636
3637 if (refblock_offs == 0) {
3638 reftable_tmp[i] = 0;
3639 continue;
3640 }
3641 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3642 &refblock);
3643 if (ret < 0) {
3644 goto out;
3645 }
3646
3647 /* the refblock has own reference */
3648 if (i == offset_to_reftable_index(s, refblock_offs)) {
3649 uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3650 (s->refcount_block_size - 1);
3651 uint64_t refcount = s->get_refcount(refblock, block_index);
3652
3653 s->set_refcount(refblock, block_index, 0);
3654
3655 unused_block = buffer_is_zero(refblock, s->cluster_size);
3656
3657 s->set_refcount(refblock, block_index, refcount);
3658 } else {
3659 unused_block = buffer_is_zero(refblock, s->cluster_size);
3660 }
3661 qcow2_cache_put(s->refcount_block_cache, &refblock);
3662
3663 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3664 }
3665
3666 ret = bdrv_co_pwrite_sync(bs->file, s->refcount_table_offset,
3667 s->refcount_table_size * REFTABLE_ENTRY_SIZE,
3668 reftable_tmp, 0);
3669 /*
3670 * If the write in the reftable failed the image may contain a partially
3671 * overwritten reftable. In this case it would be better to clear the
3672 * reftable in memory to avoid possible image corruption.
3673 */
3674 for (i = 0; i < s->refcount_table_size; i++) {
3675 if (s->refcount_table[i] && !reftable_tmp[i]) {
3676 if (ret == 0) {
3677 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3678 REFT_OFFSET_MASK);
3679 }
3680 s->refcount_table[i] = 0;
3681 }
3682 }
3683
3684 if (!s->cache_discards) {
3685 qcow2_process_discards(bs, ret);
3686 }
3687
3688 out:
3689 g_free(reftable_tmp);
3690 return ret;
3691 }
3692
3693 int64_t coroutine_fn qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3694 {
3695 BDRVQcow2State *s = bs->opaque;
3696 int64_t i;
3697
3698 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3699 uint64_t refcount;
3700 int ret = qcow2_get_refcount(bs, i, &refcount);
3701 if (ret < 0) {
3702 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3703 i, strerror(-ret));
3704 return ret;
3705 }
3706 if (refcount > 0) {
3707 return i;
3708 }
3709 }
3710 qcow2_signal_corruption(bs, true, -1, -1,
3711 "There are no references in the refcount table.");
3712 return -EIO;
3713 }
3714
3715 int coroutine_fn GRAPH_RDLOCK
3716 qcow2_detect_metadata_preallocation(BlockDriverState *bs)
3717 {
3718 BDRVQcow2State *s = bs->opaque;
3719 int64_t i, end_cluster, cluster_count = 0, threshold;
3720 int64_t file_length, real_allocation, real_clusters;
3721
3722 qemu_co_mutex_assert_locked(&s->lock);
3723
3724 file_length = bdrv_co_getlength(bs->file->bs);
3725 if (file_length < 0) {
3726 return file_length;
3727 }
3728
3729 real_allocation = bdrv_co_get_allocated_file_size(bs->file->bs);
3730 if (real_allocation < 0) {
3731 return real_allocation;
3732 }
3733
3734 real_clusters = real_allocation / s->cluster_size;
3735 threshold = MAX(real_clusters * 10 / 9, real_clusters + 2);
3736
3737 end_cluster = size_to_clusters(s, file_length);
3738 for (i = 0; i < end_cluster && cluster_count < threshold; i++) {
3739 uint64_t refcount;
3740 int ret = qcow2_get_refcount(bs, i, &refcount);
3741 if (ret < 0) {
3742 return ret;
3743 }
3744 cluster_count += !!refcount;
3745 }
3746
3747 return cluster_count >= threshold;
3748 }