]> git.proxmox.com Git - qemu.git/blob - block/qcow2.c
aeb3340f8c0d869666c4b4926c93b669bc306e0d
[qemu.git] / block / qcow2.c
1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu-common.h"
25 #include "block_int.h"
26 #include "module.h"
27 #include <zlib.h>
28 #include "aes.h"
29
30 /*
31 Differences with QCOW:
32
33 - Support for multiple incremental snapshots.
34 - Memory management by reference counts.
35 - Clusters which have a reference count of one have the bit
36 QCOW_OFLAG_COPIED to optimize write performance.
37 - Size of compressed clusters is stored in sectors to reduce bit usage
38 in the cluster offsets.
39 - Support for storing additional data (such as the VM state) in the
40 snapshots.
41 - If a backing store is used, the cluster size is not constrained
42 (could be backported to QCOW).
43 - L2 tables have always a size of one cluster.
44 */
45
46 //#define DEBUG_ALLOC
47 //#define DEBUG_ALLOC2
48 //#define DEBUG_EXT
49
50 #define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
51 #define QCOW_VERSION 2
52
53 #define QCOW_CRYPT_NONE 0
54 #define QCOW_CRYPT_AES 1
55
56 #define QCOW_MAX_CRYPT_CLUSTERS 32
57
58 /* indicate that the refcount of the referenced cluster is exactly one. */
59 #define QCOW_OFLAG_COPIED (1LL << 63)
60 /* indicate that the cluster is compressed (they never have the copied flag) */
61 #define QCOW_OFLAG_COMPRESSED (1LL << 62)
62
63 #define REFCOUNT_SHIFT 1 /* refcount size is 2 bytes */
64
65 #define MIN_CLUSTER_BITS 9
66 #define MAX_CLUSTER_BITS 16
67
68 typedef struct QCowHeader {
69 uint32_t magic;
70 uint32_t version;
71 uint64_t backing_file_offset;
72 uint32_t backing_file_size;
73 uint32_t cluster_bits;
74 uint64_t size; /* in bytes */
75 uint32_t crypt_method;
76 uint32_t l1_size; /* XXX: save number of clusters instead ? */
77 uint64_t l1_table_offset;
78 uint64_t refcount_table_offset;
79 uint32_t refcount_table_clusters;
80 uint32_t nb_snapshots;
81 uint64_t snapshots_offset;
82 } QCowHeader;
83
84
85 typedef struct {
86 uint32_t magic;
87 uint32_t len;
88 } QCowExtension;
89 #define QCOW_EXT_MAGIC_END 0
90 #define QCOW_EXT_MAGIC_BACKING_FORMAT 0xE2792ACA
91
92
93 typedef struct __attribute__((packed)) QCowSnapshotHeader {
94 /* header is 8 byte aligned */
95 uint64_t l1_table_offset;
96
97 uint32_t l1_size;
98 uint16_t id_str_size;
99 uint16_t name_size;
100
101 uint32_t date_sec;
102 uint32_t date_nsec;
103
104 uint64_t vm_clock_nsec;
105
106 uint32_t vm_state_size;
107 uint32_t extra_data_size; /* for extension */
108 /* extra data follows */
109 /* id_str follows */
110 /* name follows */
111 } QCowSnapshotHeader;
112
113 #define L2_CACHE_SIZE 16
114
115 typedef struct QCowSnapshot {
116 uint64_t l1_table_offset;
117 uint32_t l1_size;
118 char *id_str;
119 char *name;
120 uint32_t vm_state_size;
121 uint32_t date_sec;
122 uint32_t date_nsec;
123 uint64_t vm_clock_nsec;
124 } QCowSnapshot;
125
126 typedef struct BDRVQcowState {
127 BlockDriverState *hd;
128 int cluster_bits;
129 int cluster_size;
130 int cluster_sectors;
131 int l2_bits;
132 int l2_size;
133 int l1_size;
134 int l1_vm_state_index;
135 int csize_shift;
136 int csize_mask;
137 uint64_t cluster_offset_mask;
138 uint64_t l1_table_offset;
139 uint64_t *l1_table;
140 uint64_t *l2_cache;
141 uint64_t l2_cache_offsets[L2_CACHE_SIZE];
142 uint32_t l2_cache_counts[L2_CACHE_SIZE];
143 uint8_t *cluster_cache;
144 uint8_t *cluster_data;
145 uint64_t cluster_cache_offset;
146
147 uint64_t *refcount_table;
148 uint64_t refcount_table_offset;
149 uint32_t refcount_table_size;
150 uint64_t refcount_block_cache_offset;
151 uint16_t *refcount_block_cache;
152 int64_t free_cluster_index;
153 int64_t free_byte_offset;
154
155 uint32_t crypt_method; /* current crypt method, 0 if no key yet */
156 uint32_t crypt_method_header;
157 AES_KEY aes_encrypt_key;
158 AES_KEY aes_decrypt_key;
159 uint64_t snapshots_offset;
160 int snapshots_size;
161 int nb_snapshots;
162 QCowSnapshot *snapshots;
163 } BDRVQcowState;
164
165 static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
166 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
167 uint8_t *buf, int nb_sectors);
168 static int qcow_read_snapshots(BlockDriverState *bs);
169 static void qcow_free_snapshots(BlockDriverState *bs);
170 static int refcount_init(BlockDriverState *bs);
171 static void refcount_close(BlockDriverState *bs);
172 static int get_refcount(BlockDriverState *bs, int64_t cluster_index);
173 static int update_cluster_refcount(BlockDriverState *bs,
174 int64_t cluster_index,
175 int addend);
176 static void update_refcount(BlockDriverState *bs,
177 int64_t offset, int64_t length,
178 int addend);
179 static int64_t alloc_clusters(BlockDriverState *bs, int64_t size);
180 static int64_t alloc_bytes(BlockDriverState *bs, int size);
181 static void free_clusters(BlockDriverState *bs,
182 int64_t offset, int64_t size);
183 static int check_refcounts(BlockDriverState *bs);
184
185 static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
186 {
187 const QCowHeader *cow_header = (const void *)buf;
188
189 if (buf_size >= sizeof(QCowHeader) &&
190 be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
191 be32_to_cpu(cow_header->version) == QCOW_VERSION)
192 return 100;
193 else
194 return 0;
195 }
196
197
198 /*
199 * read qcow2 extension and fill bs
200 * start reading from start_offset
201 * finish reading upon magic of value 0 or when end_offset reached
202 * unknown magic is skipped (future extension this version knows nothing about)
203 * return 0 upon success, non-0 otherwise
204 */
205 static int qcow_read_extensions(BlockDriverState *bs, uint64_t start_offset,
206 uint64_t end_offset)
207 {
208 BDRVQcowState *s = bs->opaque;
209 QCowExtension ext;
210 uint64_t offset;
211
212 #ifdef DEBUG_EXT
213 printf("qcow_read_extensions: start=%ld end=%ld\n", start_offset, end_offset);
214 #endif
215 offset = start_offset;
216 while (offset < end_offset) {
217
218 #ifdef DEBUG_EXT
219 /* Sanity check */
220 if (offset > s->cluster_size)
221 printf("qcow_handle_extension: suspicious offset %lu\n", offset);
222
223 printf("attemting to read extended header in offset %lu\n", offset);
224 #endif
225
226 if (bdrv_pread(s->hd, offset, &ext, sizeof(ext)) != sizeof(ext)) {
227 fprintf(stderr, "qcow_handle_extension: ERROR: pread fail from offset %llu\n",
228 (unsigned long long)offset);
229 return 1;
230 }
231 be32_to_cpus(&ext.magic);
232 be32_to_cpus(&ext.len);
233 offset += sizeof(ext);
234 #ifdef DEBUG_EXT
235 printf("ext.magic = 0x%x\n", ext.magic);
236 #endif
237 switch (ext.magic) {
238 case QCOW_EXT_MAGIC_END:
239 return 0;
240
241 case QCOW_EXT_MAGIC_BACKING_FORMAT:
242 if (ext.len >= sizeof(bs->backing_format)) {
243 fprintf(stderr, "ERROR: ext_backing_format: len=%u too large"
244 " (>=%zu)\n",
245 ext.len, sizeof(bs->backing_format));
246 return 2;
247 }
248 if (bdrv_pread(s->hd, offset , bs->backing_format,
249 ext.len) != ext.len)
250 return 3;
251 bs->backing_format[ext.len] = '\0';
252 #ifdef DEBUG_EXT
253 printf("Qcow2: Got format extension %s\n", bs->backing_format);
254 #endif
255 offset += ((ext.len + 7) & ~7);
256 break;
257
258 default:
259 /* unknown magic -- just skip it */
260 offset += ((ext.len + 7) & ~7);
261 break;
262 }
263 }
264
265 return 0;
266 }
267
268
269 static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
270 {
271 BDRVQcowState *s = bs->opaque;
272 int len, i, shift, ret;
273 QCowHeader header;
274 uint64_t ext_end;
275
276 /* Performance is terrible right now with cache=writethrough due mainly
277 * to reference count updates. If the user does not explicitly specify
278 * a caching type, force to writeback caching.
279 */
280 if ((flags & BDRV_O_CACHE_DEF)) {
281 flags |= BDRV_O_CACHE_WB;
282 flags &= ~BDRV_O_CACHE_DEF;
283 }
284 ret = bdrv_file_open(&s->hd, filename, flags);
285 if (ret < 0)
286 return ret;
287 if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
288 goto fail;
289 be32_to_cpus(&header.magic);
290 be32_to_cpus(&header.version);
291 be64_to_cpus(&header.backing_file_offset);
292 be32_to_cpus(&header.backing_file_size);
293 be64_to_cpus(&header.size);
294 be32_to_cpus(&header.cluster_bits);
295 be32_to_cpus(&header.crypt_method);
296 be64_to_cpus(&header.l1_table_offset);
297 be32_to_cpus(&header.l1_size);
298 be64_to_cpus(&header.refcount_table_offset);
299 be32_to_cpus(&header.refcount_table_clusters);
300 be64_to_cpus(&header.snapshots_offset);
301 be32_to_cpus(&header.nb_snapshots);
302
303 if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
304 goto fail;
305 if (header.size <= 1 ||
306 header.cluster_bits < MIN_CLUSTER_BITS ||
307 header.cluster_bits > MAX_CLUSTER_BITS)
308 goto fail;
309 if (header.crypt_method > QCOW_CRYPT_AES)
310 goto fail;
311 s->crypt_method_header = header.crypt_method;
312 if (s->crypt_method_header)
313 bs->encrypted = 1;
314 s->cluster_bits = header.cluster_bits;
315 s->cluster_size = 1 << s->cluster_bits;
316 s->cluster_sectors = 1 << (s->cluster_bits - 9);
317 s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */
318 s->l2_size = 1 << s->l2_bits;
319 bs->total_sectors = header.size / 512;
320 s->csize_shift = (62 - (s->cluster_bits - 8));
321 s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;
322 s->cluster_offset_mask = (1LL << s->csize_shift) - 1;
323 s->refcount_table_offset = header.refcount_table_offset;
324 s->refcount_table_size =
325 header.refcount_table_clusters << (s->cluster_bits - 3);
326
327 s->snapshots_offset = header.snapshots_offset;
328 s->nb_snapshots = header.nb_snapshots;
329
330 /* read the level 1 table */
331 s->l1_size = header.l1_size;
332 shift = s->cluster_bits + s->l2_bits;
333 s->l1_vm_state_index = (header.size + (1LL << shift) - 1) >> shift;
334 /* the L1 table must contain at least enough entries to put
335 header.size bytes */
336 if (s->l1_size < s->l1_vm_state_index)
337 goto fail;
338 s->l1_table_offset = header.l1_table_offset;
339 s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
340 if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
341 s->l1_size * sizeof(uint64_t))
342 goto fail;
343 for(i = 0;i < s->l1_size; i++) {
344 be64_to_cpus(&s->l1_table[i]);
345 }
346 /* alloc L2 cache */
347 s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
348 s->cluster_cache = qemu_malloc(s->cluster_size);
349 /* one more sector for decompressed data alignment */
350 s->cluster_data = qemu_malloc(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size
351 + 512);
352 s->cluster_cache_offset = -1;
353
354 if (refcount_init(bs) < 0)
355 goto fail;
356
357 /* read qcow2 extensions */
358 if (header.backing_file_offset)
359 ext_end = header.backing_file_offset;
360 else
361 ext_end = s->cluster_size;
362 if (qcow_read_extensions(bs, sizeof(header), ext_end))
363 goto fail;
364
365 /* read the backing file name */
366 if (header.backing_file_offset != 0) {
367 len = header.backing_file_size;
368 if (len > 1023)
369 len = 1023;
370 if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
371 goto fail;
372 bs->backing_file[len] = '\0';
373 }
374 if (qcow_read_snapshots(bs) < 0)
375 goto fail;
376
377 #ifdef DEBUG_ALLOC
378 check_refcounts(bs);
379 #endif
380 return 0;
381
382 fail:
383 qcow_free_snapshots(bs);
384 refcount_close(bs);
385 qemu_free(s->l1_table);
386 qemu_free(s->l2_cache);
387 qemu_free(s->cluster_cache);
388 qemu_free(s->cluster_data);
389 bdrv_delete(s->hd);
390 return -1;
391 }
392
393 static int qcow_set_key(BlockDriverState *bs, const char *key)
394 {
395 BDRVQcowState *s = bs->opaque;
396 uint8_t keybuf[16];
397 int len, i;
398
399 memset(keybuf, 0, 16);
400 len = strlen(key);
401 if (len > 16)
402 len = 16;
403 /* XXX: we could compress the chars to 7 bits to increase
404 entropy */
405 for(i = 0;i < len;i++) {
406 keybuf[i] = key[i];
407 }
408 s->crypt_method = s->crypt_method_header;
409
410 if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
411 return -1;
412 if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
413 return -1;
414 #if 0
415 /* test */
416 {
417 uint8_t in[16];
418 uint8_t out[16];
419 uint8_t tmp[16];
420 for(i=0;i<16;i++)
421 in[i] = i;
422 AES_encrypt(in, tmp, &s->aes_encrypt_key);
423 AES_decrypt(tmp, out, &s->aes_decrypt_key);
424 for(i = 0; i < 16; i++)
425 printf(" %02x", tmp[i]);
426 printf("\n");
427 for(i = 0; i < 16; i++)
428 printf(" %02x", out[i]);
429 printf("\n");
430 }
431 #endif
432 return 0;
433 }
434
435 /* The crypt function is compatible with the linux cryptoloop
436 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
437 supported */
438 static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
439 uint8_t *out_buf, const uint8_t *in_buf,
440 int nb_sectors, int enc,
441 const AES_KEY *key)
442 {
443 union {
444 uint64_t ll[2];
445 uint8_t b[16];
446 } ivec;
447 int i;
448
449 for(i = 0; i < nb_sectors; i++) {
450 ivec.ll[0] = cpu_to_le64(sector_num);
451 ivec.ll[1] = 0;
452 AES_cbc_encrypt(in_buf, out_buf, 512, key,
453 ivec.b, enc);
454 sector_num++;
455 in_buf += 512;
456 out_buf += 512;
457 }
458 }
459
460 static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
461 uint64_t cluster_offset, int n_start, int n_end)
462 {
463 BDRVQcowState *s = bs->opaque;
464 int n, ret;
465
466 n = n_end - n_start;
467 if (n <= 0)
468 return 0;
469 ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
470 if (ret < 0)
471 return ret;
472 if (s->crypt_method) {
473 encrypt_sectors(s, start_sect + n_start,
474 s->cluster_data,
475 s->cluster_data, n, 1,
476 &s->aes_encrypt_key);
477 }
478 ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
479 s->cluster_data, n);
480 if (ret < 0)
481 return ret;
482 return 0;
483 }
484
485 static void l2_cache_reset(BlockDriverState *bs)
486 {
487 BDRVQcowState *s = bs->opaque;
488
489 memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
490 memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
491 memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
492 }
493
494 static inline int l2_cache_new_entry(BlockDriverState *bs)
495 {
496 BDRVQcowState *s = bs->opaque;
497 uint32_t min_count;
498 int min_index, i;
499
500 /* find a new entry in the least used one */
501 min_index = 0;
502 min_count = 0xffffffff;
503 for(i = 0; i < L2_CACHE_SIZE; i++) {
504 if (s->l2_cache_counts[i] < min_count) {
505 min_count = s->l2_cache_counts[i];
506 min_index = i;
507 }
508 }
509 return min_index;
510 }
511
512 static int64_t align_offset(int64_t offset, int n)
513 {
514 offset = (offset + n - 1) & ~(n - 1);
515 return offset;
516 }
517
518 static int grow_l1_table(BlockDriverState *bs, int min_size)
519 {
520 BDRVQcowState *s = bs->opaque;
521 int new_l1_size, new_l1_size2, ret, i;
522 uint64_t *new_l1_table;
523 uint64_t new_l1_table_offset;
524 uint8_t data[12];
525
526 new_l1_size = s->l1_size;
527 if (min_size <= new_l1_size)
528 return 0;
529 while (min_size > new_l1_size) {
530 new_l1_size = (new_l1_size * 3 + 1) / 2;
531 }
532 #ifdef DEBUG_ALLOC2
533 printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
534 #endif
535
536 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
537 new_l1_table = qemu_mallocz(new_l1_size2);
538 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
539
540 /* write new table (align to cluster) */
541 new_l1_table_offset = alloc_clusters(bs, new_l1_size2);
542
543 for(i = 0; i < s->l1_size; i++)
544 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
545 ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
546 if (ret != new_l1_size2)
547 goto fail;
548 for(i = 0; i < s->l1_size; i++)
549 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
550
551 /* set new table */
552 cpu_to_be32w((uint32_t*)data, new_l1_size);
553 cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
554 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,
555 sizeof(data)) != sizeof(data))
556 goto fail;
557 qemu_free(s->l1_table);
558 free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
559 s->l1_table_offset = new_l1_table_offset;
560 s->l1_table = new_l1_table;
561 s->l1_size = new_l1_size;
562 return 0;
563 fail:
564 qemu_free(s->l1_table);
565 return -EIO;
566 }
567
568 /*
569 * seek_l2_table
570 *
571 * seek l2_offset in the l2_cache table
572 * if not found, return NULL,
573 * if found,
574 * increments the l2 cache hit count of the entry,
575 * if counter overflow, divide by two all counters
576 * return the pointer to the l2 cache entry
577 *
578 */
579
580 static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
581 {
582 int i, j;
583
584 for(i = 0; i < L2_CACHE_SIZE; i++) {
585 if (l2_offset == s->l2_cache_offsets[i]) {
586 /* increment the hit count */
587 if (++s->l2_cache_counts[i] == 0xffffffff) {
588 for(j = 0; j < L2_CACHE_SIZE; j++) {
589 s->l2_cache_counts[j] >>= 1;
590 }
591 }
592 return s->l2_cache + (i << s->l2_bits);
593 }
594 }
595 return NULL;
596 }
597
598 /*
599 * l2_load
600 *
601 * Loads a L2 table into memory. If the table is in the cache, the cache
602 * is used; otherwise the L2 table is loaded from the image file.
603 *
604 * Returns a pointer to the L2 table on success, or NULL if the read from
605 * the image file failed.
606 */
607
608 static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
609 {
610 BDRVQcowState *s = bs->opaque;
611 int min_index;
612 uint64_t *l2_table;
613
614 /* seek if the table for the given offset is in the cache */
615
616 l2_table = seek_l2_table(s, l2_offset);
617 if (l2_table != NULL)
618 return l2_table;
619
620 /* not found: load a new entry in the least used one */
621
622 min_index = l2_cache_new_entry(bs);
623 l2_table = s->l2_cache + (min_index << s->l2_bits);
624 if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
625 s->l2_size * sizeof(uint64_t))
626 return NULL;
627 s->l2_cache_offsets[min_index] = l2_offset;
628 s->l2_cache_counts[min_index] = 1;
629
630 return l2_table;
631 }
632
633 /*
634 * l2_allocate
635 *
636 * Allocate a new l2 entry in the file. If l1_index points to an already
637 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
638 * table) copy the contents of the old L2 table into the newly allocated one.
639 * Otherwise the new table is initialized with zeros.
640 *
641 */
642
643 static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
644 {
645 BDRVQcowState *s = bs->opaque;
646 int min_index;
647 uint64_t old_l2_offset, tmp;
648 uint64_t *l2_table, l2_offset;
649
650 old_l2_offset = s->l1_table[l1_index];
651
652 /* allocate a new l2 entry */
653
654 l2_offset = alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
655
656 /* update the L1 entry */
657
658 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
659
660 tmp = cpu_to_be64(l2_offset | QCOW_OFLAG_COPIED);
661 if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
662 &tmp, sizeof(tmp)) != sizeof(tmp))
663 return NULL;
664
665 /* allocate a new entry in the l2 cache */
666
667 min_index = l2_cache_new_entry(bs);
668 l2_table = s->l2_cache + (min_index << s->l2_bits);
669
670 if (old_l2_offset == 0) {
671 /* if there was no old l2 table, clear the new table */
672 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
673 } else {
674 /* if there was an old l2 table, read it from the disk */
675 if (bdrv_pread(s->hd, old_l2_offset,
676 l2_table, s->l2_size * sizeof(uint64_t)) !=
677 s->l2_size * sizeof(uint64_t))
678 return NULL;
679 }
680 /* write the l2 table to the file */
681 if (bdrv_pwrite(s->hd, l2_offset,
682 l2_table, s->l2_size * sizeof(uint64_t)) !=
683 s->l2_size * sizeof(uint64_t))
684 return NULL;
685
686 /* update the l2 cache entry */
687
688 s->l2_cache_offsets[min_index] = l2_offset;
689 s->l2_cache_counts[min_index] = 1;
690
691 return l2_table;
692 }
693
694 static int size_to_clusters(BDRVQcowState *s, int64_t size)
695 {
696 return (size + (s->cluster_size - 1)) >> s->cluster_bits;
697 }
698
699 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
700 uint64_t *l2_table, uint64_t start, uint64_t mask)
701 {
702 int i;
703 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
704
705 if (!offset)
706 return 0;
707
708 for (i = start; i < start + nb_clusters; i++)
709 if (offset + i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
710 break;
711
712 return (i - start);
713 }
714
715 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
716 {
717 int i = 0;
718
719 while(nb_clusters-- && l2_table[i] == 0)
720 i++;
721
722 return i;
723 }
724
725 /*
726 * get_cluster_offset
727 *
728 * For a given offset of the disk image, return cluster offset in
729 * qcow2 file.
730 *
731 * on entry, *num is the number of contiguous clusters we'd like to
732 * access following offset.
733 *
734 * on exit, *num is the number of contiguous clusters we can read.
735 *
736 * Return 1, if the offset is found
737 * Return 0, otherwise.
738 *
739 */
740
741 static uint64_t get_cluster_offset(BlockDriverState *bs,
742 uint64_t offset, int *num)
743 {
744 BDRVQcowState *s = bs->opaque;
745 int l1_index, l2_index;
746 uint64_t l2_offset, *l2_table, cluster_offset;
747 int l1_bits, c;
748 int index_in_cluster, nb_available, nb_needed, nb_clusters;
749
750 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
751 nb_needed = *num + index_in_cluster;
752
753 l1_bits = s->l2_bits + s->cluster_bits;
754
755 /* compute how many bytes there are between the offset and
756 * the end of the l1 entry
757 */
758
759 nb_available = (1 << l1_bits) - (offset & ((1 << l1_bits) - 1));
760
761 /* compute the number of available sectors */
762
763 nb_available = (nb_available >> 9) + index_in_cluster;
764
765 if (nb_needed > nb_available) {
766 nb_needed = nb_available;
767 }
768
769 cluster_offset = 0;
770
771 /* seek the the l2 offset in the l1 table */
772
773 l1_index = offset >> l1_bits;
774 if (l1_index >= s->l1_size)
775 goto out;
776
777 l2_offset = s->l1_table[l1_index];
778
779 /* seek the l2 table of the given l2 offset */
780
781 if (!l2_offset)
782 goto out;
783
784 /* load the l2 table in memory */
785
786 l2_offset &= ~QCOW_OFLAG_COPIED;
787 l2_table = l2_load(bs, l2_offset);
788 if (l2_table == NULL)
789 return 0;
790
791 /* find the cluster offset for the given disk offset */
792
793 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
794 cluster_offset = be64_to_cpu(l2_table[l2_index]);
795 nb_clusters = size_to_clusters(s, nb_needed << 9);
796
797 if (!cluster_offset) {
798 /* how many empty clusters ? */
799 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
800 } else {
801 /* how many allocated clusters ? */
802 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
803 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
804 }
805
806 nb_available = (c * s->cluster_sectors);
807 out:
808 if (nb_available > nb_needed)
809 nb_available = nb_needed;
810
811 *num = nb_available - index_in_cluster;
812
813 return cluster_offset & ~QCOW_OFLAG_COPIED;
814 }
815
816 /*
817 * free_any_clusters
818 *
819 * free clusters according to its type: compressed or not
820 *
821 */
822
823 static void free_any_clusters(BlockDriverState *bs,
824 uint64_t cluster_offset, int nb_clusters)
825 {
826 BDRVQcowState *s = bs->opaque;
827
828 /* free the cluster */
829
830 if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
831 int nb_csectors;
832 nb_csectors = ((cluster_offset >> s->csize_shift) &
833 s->csize_mask) + 1;
834 free_clusters(bs, (cluster_offset & s->cluster_offset_mask) & ~511,
835 nb_csectors * 512);
836 return;
837 }
838
839 free_clusters(bs, cluster_offset, nb_clusters << s->cluster_bits);
840
841 return;
842 }
843
844 /*
845 * get_cluster_table
846 *
847 * for a given disk offset, load (and allocate if needed)
848 * the l2 table.
849 *
850 * the l2 table offset in the qcow2 file and the cluster index
851 * in the l2 table are given to the caller.
852 *
853 */
854
855 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
856 uint64_t **new_l2_table,
857 uint64_t *new_l2_offset,
858 int *new_l2_index)
859 {
860 BDRVQcowState *s = bs->opaque;
861 int l1_index, l2_index, ret;
862 uint64_t l2_offset, *l2_table;
863
864 /* seek the the l2 offset in the l1 table */
865
866 l1_index = offset >> (s->l2_bits + s->cluster_bits);
867 if (l1_index >= s->l1_size) {
868 ret = grow_l1_table(bs, l1_index + 1);
869 if (ret < 0)
870 return 0;
871 }
872 l2_offset = s->l1_table[l1_index];
873
874 /* seek the l2 table of the given l2 offset */
875
876 if (l2_offset & QCOW_OFLAG_COPIED) {
877 /* load the l2 table in memory */
878 l2_offset &= ~QCOW_OFLAG_COPIED;
879 l2_table = l2_load(bs, l2_offset);
880 if (l2_table == NULL)
881 return 0;
882 } else {
883 if (l2_offset)
884 free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
885 l2_table = l2_allocate(bs, l1_index);
886 if (l2_table == NULL)
887 return 0;
888 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
889 }
890
891 /* find the cluster offset for the given disk offset */
892
893 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
894
895 *new_l2_table = l2_table;
896 *new_l2_offset = l2_offset;
897 *new_l2_index = l2_index;
898
899 return 1;
900 }
901
902 /*
903 * alloc_compressed_cluster_offset
904 *
905 * For a given offset of the disk image, return cluster offset in
906 * qcow2 file.
907 *
908 * If the offset is not found, allocate a new compressed cluster.
909 *
910 * Return the cluster offset if successful,
911 * Return 0, otherwise.
912 *
913 */
914
915 static uint64_t alloc_compressed_cluster_offset(BlockDriverState *bs,
916 uint64_t offset,
917 int compressed_size)
918 {
919 BDRVQcowState *s = bs->opaque;
920 int l2_index, ret;
921 uint64_t l2_offset, *l2_table, cluster_offset;
922 int nb_csectors;
923
924 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
925 if (ret == 0)
926 return 0;
927
928 cluster_offset = be64_to_cpu(l2_table[l2_index]);
929 if (cluster_offset & QCOW_OFLAG_COPIED)
930 return cluster_offset & ~QCOW_OFLAG_COPIED;
931
932 if (cluster_offset)
933 free_any_clusters(bs, cluster_offset, 1);
934
935 cluster_offset = alloc_bytes(bs, compressed_size);
936 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
937 (cluster_offset >> 9);
938
939 cluster_offset |= QCOW_OFLAG_COMPRESSED |
940 ((uint64_t)nb_csectors << s->csize_shift);
941
942 /* update L2 table */
943
944 /* compressed clusters never have the copied flag */
945
946 l2_table[l2_index] = cpu_to_be64(cluster_offset);
947 if (bdrv_pwrite(s->hd,
948 l2_offset + l2_index * sizeof(uint64_t),
949 l2_table + l2_index,
950 sizeof(uint64_t)) != sizeof(uint64_t))
951 return 0;
952
953 return cluster_offset;
954 }
955
956 typedef struct QCowL2Meta
957 {
958 uint64_t offset;
959 int n_start;
960 int nb_available;
961 int nb_clusters;
962 } QCowL2Meta;
963
964 static int alloc_cluster_link_l2(BlockDriverState *bs, uint64_t cluster_offset,
965 QCowL2Meta *m)
966 {
967 BDRVQcowState *s = bs->opaque;
968 int i, j = 0, l2_index, ret;
969 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
970
971 if (m->nb_clusters == 0)
972 return 0;
973
974 old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
975
976 /* copy content of unmodified sectors */
977 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
978 if (m->n_start) {
979 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
980 if (ret < 0)
981 goto err;
982 }
983
984 if (m->nb_available & (s->cluster_sectors - 1)) {
985 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
986 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
987 m->nb_available - end, s->cluster_sectors);
988 if (ret < 0)
989 goto err;
990 }
991
992 ret = -EIO;
993 /* update L2 table */
994 if (!get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index))
995 goto err;
996
997 for (i = 0; i < m->nb_clusters; i++) {
998 /* if two concurrent writes happen to the same unallocated cluster
999 * each write allocates separate cluster and writes data concurrently.
1000 * The first one to complete updates l2 table with pointer to its
1001 * cluster the second one has to do RMW (which is done above by
1002 * copy_sectors()), update l2 table with its cluster pointer and free
1003 * old cluster. This is what this loop does */
1004 if(l2_table[l2_index + i] != 0)
1005 old_cluster[j++] = l2_table[l2_index + i];
1006
1007 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
1008 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
1009 }
1010
1011 if (bdrv_pwrite(s->hd, l2_offset + l2_index * sizeof(uint64_t),
1012 l2_table + l2_index, m->nb_clusters * sizeof(uint64_t)) !=
1013 m->nb_clusters * sizeof(uint64_t))
1014 goto err;
1015
1016 for (i = 0; i < j; i++)
1017 free_any_clusters(bs, be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED,
1018 1);
1019
1020 ret = 0;
1021 err:
1022 qemu_free(old_cluster);
1023 return ret;
1024 }
1025
1026 /*
1027 * alloc_cluster_offset
1028 *
1029 * For a given offset of the disk image, return cluster offset in
1030 * qcow2 file.
1031 *
1032 * If the offset is not found, allocate a new cluster.
1033 *
1034 * Return the cluster offset if successful,
1035 * Return 0, otherwise.
1036 *
1037 */
1038
1039 static uint64_t alloc_cluster_offset(BlockDriverState *bs,
1040 uint64_t offset,
1041 int n_start, int n_end,
1042 int *num, QCowL2Meta *m)
1043 {
1044 BDRVQcowState *s = bs->opaque;
1045 int l2_index, ret;
1046 uint64_t l2_offset, *l2_table, cluster_offset;
1047 int nb_clusters, i = 0;
1048
1049 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
1050 if (ret == 0)
1051 return 0;
1052
1053 nb_clusters = size_to_clusters(s, n_end << 9);
1054
1055 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1056
1057 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1058
1059 /* We keep all QCOW_OFLAG_COPIED clusters */
1060
1061 if (cluster_offset & QCOW_OFLAG_COPIED) {
1062 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
1063 &l2_table[l2_index], 0, 0);
1064
1065 cluster_offset &= ~QCOW_OFLAG_COPIED;
1066 m->nb_clusters = 0;
1067
1068 goto out;
1069 }
1070
1071 /* for the moment, multiple compressed clusters are not managed */
1072
1073 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
1074 nb_clusters = 1;
1075
1076 /* how many available clusters ? */
1077
1078 while (i < nb_clusters) {
1079 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
1080 &l2_table[l2_index], i, 0);
1081
1082 if(be64_to_cpu(l2_table[l2_index + i]))
1083 break;
1084
1085 i += count_contiguous_free_clusters(nb_clusters - i,
1086 &l2_table[l2_index + i]);
1087
1088 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
1089
1090 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
1091 (cluster_offset & QCOW_OFLAG_COMPRESSED))
1092 break;
1093 }
1094 nb_clusters = i;
1095
1096 /* allocate a new cluster */
1097
1098 cluster_offset = alloc_clusters(bs, nb_clusters * s->cluster_size);
1099
1100 /* save info needed for meta data update */
1101 m->offset = offset;
1102 m->n_start = n_start;
1103 m->nb_clusters = nb_clusters;
1104
1105 out:
1106 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
1107
1108 *num = m->nb_available - n_start;
1109
1110 return cluster_offset;
1111 }
1112
1113 static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
1114 int nb_sectors, int *pnum)
1115 {
1116 uint64_t cluster_offset;
1117
1118 *pnum = nb_sectors;
1119 cluster_offset = get_cluster_offset(bs, sector_num << 9, pnum);
1120
1121 return (cluster_offset != 0);
1122 }
1123
1124 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1125 const uint8_t *buf, int buf_size)
1126 {
1127 z_stream strm1, *strm = &strm1;
1128 int ret, out_len;
1129
1130 memset(strm, 0, sizeof(*strm));
1131
1132 strm->next_in = (uint8_t *)buf;
1133 strm->avail_in = buf_size;
1134 strm->next_out = out_buf;
1135 strm->avail_out = out_buf_size;
1136
1137 ret = inflateInit2(strm, -12);
1138 if (ret != Z_OK)
1139 return -1;
1140 ret = inflate(strm, Z_FINISH);
1141 out_len = strm->next_out - out_buf;
1142 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1143 out_len != out_buf_size) {
1144 inflateEnd(strm);
1145 return -1;
1146 }
1147 inflateEnd(strm);
1148 return 0;
1149 }
1150
1151 static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
1152 {
1153 int ret, csize, nb_csectors, sector_offset;
1154 uint64_t coffset;
1155
1156 coffset = cluster_offset & s->cluster_offset_mask;
1157 if (s->cluster_cache_offset != coffset) {
1158 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1159 sector_offset = coffset & 511;
1160 csize = nb_csectors * 512 - sector_offset;
1161 ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
1162 if (ret < 0) {
1163 return -1;
1164 }
1165 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1166 s->cluster_data + sector_offset, csize) < 0) {
1167 return -1;
1168 }
1169 s->cluster_cache_offset = coffset;
1170 }
1171 return 0;
1172 }
1173
1174 /* handle reading after the end of the backing file */
1175 static int backing_read1(BlockDriverState *bs,
1176 int64_t sector_num, uint8_t *buf, int nb_sectors)
1177 {
1178 int n1;
1179 if ((sector_num + nb_sectors) <= bs->total_sectors)
1180 return nb_sectors;
1181 if (sector_num >= bs->total_sectors)
1182 n1 = 0;
1183 else
1184 n1 = bs->total_sectors - sector_num;
1185 memset(buf + n1 * 512, 0, 512 * (nb_sectors - n1));
1186 return n1;
1187 }
1188
1189 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
1190 uint8_t *buf, int nb_sectors)
1191 {
1192 BDRVQcowState *s = bs->opaque;
1193 int ret, index_in_cluster, n, n1;
1194 uint64_t cluster_offset;
1195
1196 while (nb_sectors > 0) {
1197 n = nb_sectors;
1198 cluster_offset = get_cluster_offset(bs, sector_num << 9, &n);
1199 index_in_cluster = sector_num & (s->cluster_sectors - 1);
1200 if (!cluster_offset) {
1201 if (bs->backing_hd) {
1202 /* read from the base image */
1203 n1 = backing_read1(bs->backing_hd, sector_num, buf, n);
1204 if (n1 > 0) {
1205 ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
1206 if (ret < 0)
1207 return -1;
1208 }
1209 } else {
1210 memset(buf, 0, 512 * n);
1211 }
1212 } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
1213 if (decompress_cluster(s, cluster_offset) < 0)
1214 return -1;
1215 memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
1216 } else {
1217 ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
1218 if (ret != n * 512)
1219 return -1;
1220 if (s->crypt_method) {
1221 encrypt_sectors(s, sector_num, buf, buf, n, 0,
1222 &s->aes_decrypt_key);
1223 }
1224 }
1225 nb_sectors -= n;
1226 sector_num += n;
1227 buf += n * 512;
1228 }
1229 return 0;
1230 }
1231
1232 typedef struct QCowAIOCB {
1233 BlockDriverAIOCB common;
1234 int64_t sector_num;
1235 QEMUIOVector *qiov;
1236 uint8_t *buf;
1237 void *orig_buf;
1238 int nb_sectors;
1239 int n;
1240 uint64_t cluster_offset;
1241 uint8_t *cluster_data;
1242 BlockDriverAIOCB *hd_aiocb;
1243 struct iovec hd_iov;
1244 QEMUIOVector hd_qiov;
1245 QEMUBH *bh;
1246 QCowL2Meta l2meta;
1247 } QCowAIOCB;
1248
1249 static void qcow_aio_read_cb(void *opaque, int ret);
1250 static void qcow_aio_read_bh(void *opaque)
1251 {
1252 QCowAIOCB *acb = opaque;
1253 qemu_bh_delete(acb->bh);
1254 acb->bh = NULL;
1255 qcow_aio_read_cb(opaque, 0);
1256 }
1257
1258 static int qcow_schedule_bh(QEMUBHFunc *cb, QCowAIOCB *acb)
1259 {
1260 if (acb->bh)
1261 return -EIO;
1262
1263 acb->bh = qemu_bh_new(cb, acb);
1264 if (!acb->bh)
1265 return -EIO;
1266
1267 qemu_bh_schedule(acb->bh);
1268
1269 return 0;
1270 }
1271
1272 static void qcow_aio_read_cb(void *opaque, int ret)
1273 {
1274 QCowAIOCB *acb = opaque;
1275 BlockDriverState *bs = acb->common.bs;
1276 BDRVQcowState *s = bs->opaque;
1277 int index_in_cluster, n1;
1278
1279 acb->hd_aiocb = NULL;
1280 if (ret < 0)
1281 goto done;
1282
1283 /* post process the read buffer */
1284 if (!acb->cluster_offset) {
1285 /* nothing to do */
1286 } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
1287 /* nothing to do */
1288 } else {
1289 if (s->crypt_method) {
1290 encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
1291 acb->n, 0,
1292 &s->aes_decrypt_key);
1293 }
1294 }
1295
1296 acb->nb_sectors -= acb->n;
1297 acb->sector_num += acb->n;
1298 acb->buf += acb->n * 512;
1299
1300 if (acb->nb_sectors == 0) {
1301 /* request completed */
1302 ret = 0;
1303 goto done;
1304 }
1305
1306 /* prepare next AIO request */
1307 acb->n = acb->nb_sectors;
1308 acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, &acb->n);
1309 index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
1310
1311 if (!acb->cluster_offset) {
1312 if (bs->backing_hd) {
1313 /* read from the base image */
1314 n1 = backing_read1(bs->backing_hd, acb->sector_num,
1315 acb->buf, acb->n);
1316 if (n1 > 0) {
1317 acb->hd_iov.iov_base = (void *)acb->buf;
1318 acb->hd_iov.iov_len = acb->n * 512;
1319 qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
1320 acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num,
1321 &acb->hd_qiov, acb->n,
1322 qcow_aio_read_cb, acb);
1323 if (acb->hd_aiocb == NULL)
1324 goto done;
1325 } else {
1326 ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1327 if (ret < 0)
1328 goto done;
1329 }
1330 } else {
1331 /* Note: in this case, no need to wait */
1332 memset(acb->buf, 0, 512 * acb->n);
1333 ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1334 if (ret < 0)
1335 goto done;
1336 }
1337 } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
1338 /* add AIO support for compressed blocks ? */
1339 if (decompress_cluster(s, acb->cluster_offset) < 0)
1340 goto done;
1341 memcpy(acb->buf,
1342 s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
1343 ret = qcow_schedule_bh(qcow_aio_read_bh, acb);
1344 if (ret < 0)
1345 goto done;
1346 } else {
1347 if ((acb->cluster_offset & 511) != 0) {
1348 ret = -EIO;
1349 goto done;
1350 }
1351
1352 acb->hd_iov.iov_base = (void *)acb->buf;
1353 acb->hd_iov.iov_len = acb->n * 512;
1354 qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
1355 acb->hd_aiocb = bdrv_aio_readv(s->hd,
1356 (acb->cluster_offset >> 9) + index_in_cluster,
1357 &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
1358 if (acb->hd_aiocb == NULL)
1359 goto done;
1360 }
1361
1362 return;
1363 done:
1364 if (acb->qiov->niov > 1) {
1365 qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
1366 qemu_vfree(acb->orig_buf);
1367 }
1368 acb->common.cb(acb->common.opaque, ret);
1369 qemu_aio_release(acb);
1370 }
1371
1372 static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
1373 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1374 BlockDriverCompletionFunc *cb, void *opaque, int is_write)
1375 {
1376 QCowAIOCB *acb;
1377
1378 acb = qemu_aio_get(bs, cb, opaque);
1379 if (!acb)
1380 return NULL;
1381 acb->hd_aiocb = NULL;
1382 acb->sector_num = sector_num;
1383 acb->qiov = qiov;
1384 if (qiov->niov > 1) {
1385 acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
1386 if (is_write)
1387 qemu_iovec_to_buffer(qiov, acb->buf);
1388 } else {
1389 acb->buf = (uint8_t *)qiov->iov->iov_base;
1390 }
1391 acb->nb_sectors = nb_sectors;
1392 acb->n = 0;
1393 acb->cluster_offset = 0;
1394 acb->l2meta.nb_clusters = 0;
1395 return acb;
1396 }
1397
1398 static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs,
1399 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1400 BlockDriverCompletionFunc *cb, void *opaque)
1401 {
1402 QCowAIOCB *acb;
1403
1404 acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1405 if (!acb)
1406 return NULL;
1407
1408 qcow_aio_read_cb(acb, 0);
1409 return &acb->common;
1410 }
1411
1412 static void qcow_aio_write_cb(void *opaque, int ret)
1413 {
1414 QCowAIOCB *acb = opaque;
1415 BlockDriverState *bs = acb->common.bs;
1416 BDRVQcowState *s = bs->opaque;
1417 int index_in_cluster;
1418 const uint8_t *src_buf;
1419 int n_end;
1420
1421 acb->hd_aiocb = NULL;
1422
1423 if (ret < 0)
1424 goto done;
1425
1426 if (alloc_cluster_link_l2(bs, acb->cluster_offset, &acb->l2meta) < 0) {
1427 free_any_clusters(bs, acb->cluster_offset, acb->l2meta.nb_clusters);
1428 goto done;
1429 }
1430
1431 acb->nb_sectors -= acb->n;
1432 acb->sector_num += acb->n;
1433 acb->buf += acb->n * 512;
1434
1435 if (acb->nb_sectors == 0) {
1436 /* request completed */
1437 ret = 0;
1438 goto done;
1439 }
1440
1441 index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
1442 n_end = index_in_cluster + acb->nb_sectors;
1443 if (s->crypt_method &&
1444 n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors)
1445 n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
1446
1447 acb->cluster_offset = alloc_cluster_offset(bs, acb->sector_num << 9,
1448 index_in_cluster,
1449 n_end, &acb->n, &acb->l2meta);
1450 if (!acb->cluster_offset || (acb->cluster_offset & 511) != 0) {
1451 ret = -EIO;
1452 goto done;
1453 }
1454 if (s->crypt_method) {
1455 if (!acb->cluster_data) {
1456 acb->cluster_data = qemu_mallocz(QCOW_MAX_CRYPT_CLUSTERS *
1457 s->cluster_size);
1458 }
1459 encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
1460 acb->n, 1, &s->aes_encrypt_key);
1461 src_buf = acb->cluster_data;
1462 } else {
1463 src_buf = acb->buf;
1464 }
1465 acb->hd_iov.iov_base = (void *)src_buf;
1466 acb->hd_iov.iov_len = acb->n * 512;
1467 qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
1468 acb->hd_aiocb = bdrv_aio_writev(s->hd,
1469 (acb->cluster_offset >> 9) + index_in_cluster,
1470 &acb->hd_qiov, acb->n,
1471 qcow_aio_write_cb, acb);
1472 if (acb->hd_aiocb == NULL)
1473 goto done;
1474
1475 return;
1476
1477 done:
1478 if (acb->qiov->niov > 1)
1479 qemu_vfree(acb->orig_buf);
1480 acb->common.cb(acb->common.opaque, ret);
1481 qemu_aio_release(acb);
1482 }
1483
1484 static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs,
1485 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
1486 BlockDriverCompletionFunc *cb, void *opaque)
1487 {
1488 BDRVQcowState *s = bs->opaque;
1489 QCowAIOCB *acb;
1490
1491 s->cluster_cache_offset = -1; /* disable compressed cache */
1492
1493 acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
1494 if (!acb)
1495 return NULL;
1496
1497 qcow_aio_write_cb(acb, 0);
1498 return &acb->common;
1499 }
1500
1501 static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
1502 {
1503 QCowAIOCB *acb = (QCowAIOCB *)blockacb;
1504 if (acb->hd_aiocb)
1505 bdrv_aio_cancel(acb->hd_aiocb);
1506 qemu_aio_release(acb);
1507 }
1508
1509 static void qcow_close(BlockDriverState *bs)
1510 {
1511 BDRVQcowState *s = bs->opaque;
1512 qemu_free(s->l1_table);
1513 qemu_free(s->l2_cache);
1514 qemu_free(s->cluster_cache);
1515 qemu_free(s->cluster_data);
1516 refcount_close(bs);
1517 bdrv_delete(s->hd);
1518 }
1519
1520 /* XXX: use std qcow open function ? */
1521 typedef struct QCowCreateState {
1522 int cluster_size;
1523 int cluster_bits;
1524 uint16_t *refcount_block;
1525 uint64_t *refcount_table;
1526 int64_t l1_table_offset;
1527 int64_t refcount_table_offset;
1528 int64_t refcount_block_offset;
1529 } QCowCreateState;
1530
1531 static void create_refcount_update(QCowCreateState *s,
1532 int64_t offset, int64_t size)
1533 {
1534 int refcount;
1535 int64_t start, last, cluster_offset;
1536 uint16_t *p;
1537
1538 start = offset & ~(s->cluster_size - 1);
1539 last = (offset + size - 1) & ~(s->cluster_size - 1);
1540 for(cluster_offset = start; cluster_offset <= last;
1541 cluster_offset += s->cluster_size) {
1542 p = &s->refcount_block[cluster_offset >> s->cluster_bits];
1543 refcount = be16_to_cpu(*p);
1544 refcount++;
1545 *p = cpu_to_be16(refcount);
1546 }
1547 }
1548
1549 static int get_bits_from_size(size_t size)
1550 {
1551 int res = 0;
1552
1553 if (size == 0) {
1554 return -1;
1555 }
1556
1557 while (size != 1) {
1558 /* Not a power of two */
1559 if (size & 1) {
1560 return -1;
1561 }
1562
1563 size >>= 1;
1564 res++;
1565 }
1566
1567 return res;
1568 }
1569
1570 static int qcow_create2(const char *filename, int64_t total_size,
1571 const char *backing_file, const char *backing_format,
1572 int flags, size_t cluster_size)
1573 {
1574
1575 int fd, header_size, backing_filename_len, l1_size, i, shift, l2_bits;
1576 int ref_clusters, backing_format_len = 0;
1577 QCowHeader header;
1578 uint64_t tmp, offset;
1579 QCowCreateState s1, *s = &s1;
1580 QCowExtension ext_bf = {0, 0};
1581
1582
1583 memset(s, 0, sizeof(*s));
1584
1585 fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
1586 if (fd < 0)
1587 return -1;
1588 memset(&header, 0, sizeof(header));
1589 header.magic = cpu_to_be32(QCOW_MAGIC);
1590 header.version = cpu_to_be32(QCOW_VERSION);
1591 header.size = cpu_to_be64(total_size * 512);
1592 header_size = sizeof(header);
1593 backing_filename_len = 0;
1594 if (backing_file) {
1595 if (backing_format) {
1596 ext_bf.magic = QCOW_EXT_MAGIC_BACKING_FORMAT;
1597 backing_format_len = strlen(backing_format);
1598 ext_bf.len = (backing_format_len + 7) & ~7;
1599 header_size += ((sizeof(ext_bf) + ext_bf.len + 7) & ~7);
1600 }
1601 header.backing_file_offset = cpu_to_be64(header_size);
1602 backing_filename_len = strlen(backing_file);
1603 header.backing_file_size = cpu_to_be32(backing_filename_len);
1604 header_size += backing_filename_len;
1605 }
1606
1607 /* Cluster size */
1608 s->cluster_bits = get_bits_from_size(cluster_size);
1609 if (s->cluster_bits < MIN_CLUSTER_BITS ||
1610 s->cluster_bits > MAX_CLUSTER_BITS)
1611 {
1612 fprintf(stderr, "Cluster size must be a power of two between "
1613 "%d and %dk\n",
1614 1 << MIN_CLUSTER_BITS,
1615 1 << (MAX_CLUSTER_BITS - 10));
1616 return -EINVAL;
1617 }
1618 s->cluster_size = 1 << s->cluster_bits;
1619
1620 header.cluster_bits = cpu_to_be32(s->cluster_bits);
1621 header_size = (header_size + 7) & ~7;
1622 if (flags & BLOCK_FLAG_ENCRYPT) {
1623 header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
1624 } else {
1625 header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
1626 }
1627 l2_bits = s->cluster_bits - 3;
1628 shift = s->cluster_bits + l2_bits;
1629 l1_size = (((total_size * 512) + (1LL << shift) - 1) >> shift);
1630 offset = align_offset(header_size, s->cluster_size);
1631 s->l1_table_offset = offset;
1632 header.l1_table_offset = cpu_to_be64(s->l1_table_offset);
1633 header.l1_size = cpu_to_be32(l1_size);
1634 offset += align_offset(l1_size * sizeof(uint64_t), s->cluster_size);
1635
1636 s->refcount_table = qemu_mallocz(s->cluster_size);
1637
1638 s->refcount_table_offset = offset;
1639 header.refcount_table_offset = cpu_to_be64(offset);
1640 header.refcount_table_clusters = cpu_to_be32(1);
1641 offset += s->cluster_size;
1642 s->refcount_block_offset = offset;
1643
1644 /* count how many refcount blocks needed */
1645 tmp = offset >> s->cluster_bits;
1646 ref_clusters = (tmp >> (s->cluster_bits - REFCOUNT_SHIFT)) + 1;
1647 for (i=0; i < ref_clusters; i++) {
1648 s->refcount_table[i] = cpu_to_be64(offset);
1649 offset += s->cluster_size;
1650 }
1651
1652 s->refcount_block = qemu_mallocz(ref_clusters * s->cluster_size);
1653
1654 /* update refcounts */
1655 create_refcount_update(s, 0, header_size);
1656 create_refcount_update(s, s->l1_table_offset, l1_size * sizeof(uint64_t));
1657 create_refcount_update(s, s->refcount_table_offset, s->cluster_size);
1658 create_refcount_update(s, s->refcount_block_offset, ref_clusters * s->cluster_size);
1659
1660 /* write all the data */
1661 write(fd, &header, sizeof(header));
1662 if (backing_file) {
1663 if (backing_format_len) {
1664 char zero[16];
1665 int d = ext_bf.len - backing_format_len;
1666
1667 memset(zero, 0, sizeof(zero));
1668 cpu_to_be32s(&ext_bf.magic);
1669 cpu_to_be32s(&ext_bf.len);
1670 write(fd, &ext_bf, sizeof(ext_bf));
1671 write(fd, backing_format, backing_format_len);
1672 if (d>0) {
1673 write(fd, zero, d);
1674 }
1675 }
1676 write(fd, backing_file, backing_filename_len);
1677 }
1678 lseek(fd, s->l1_table_offset, SEEK_SET);
1679 tmp = 0;
1680 for(i = 0;i < l1_size; i++) {
1681 write(fd, &tmp, sizeof(tmp));
1682 }
1683 lseek(fd, s->refcount_table_offset, SEEK_SET);
1684 write(fd, s->refcount_table, s->cluster_size);
1685
1686 lseek(fd, s->refcount_block_offset, SEEK_SET);
1687 write(fd, s->refcount_block, ref_clusters * s->cluster_size);
1688
1689 qemu_free(s->refcount_table);
1690 qemu_free(s->refcount_block);
1691 close(fd);
1692 return 0;
1693 }
1694
1695 static int qcow_create(const char *filename, QEMUOptionParameter *options)
1696 {
1697 const char *backing_file = NULL;
1698 const char *backing_fmt = NULL;
1699 uint64_t sectors = 0;
1700 int flags = 0;
1701 size_t cluster_size = 4096;
1702
1703 /* Read out options */
1704 while (options && options->name) {
1705 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
1706 sectors = options->value.n / 512;
1707 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
1708 backing_file = options->value.s;
1709 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
1710 backing_fmt = options->value.s;
1711 } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
1712 flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
1713 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
1714 if (options->value.n) {
1715 cluster_size = options->value.n;
1716 }
1717 }
1718 options++;
1719 }
1720
1721 return qcow_create2(filename, sectors, backing_file, backing_fmt, flags,
1722 cluster_size);
1723 }
1724
1725 static int qcow_make_empty(BlockDriverState *bs)
1726 {
1727 #if 0
1728 /* XXX: not correct */
1729 BDRVQcowState *s = bs->opaque;
1730 uint32_t l1_length = s->l1_size * sizeof(uint64_t);
1731 int ret;
1732
1733 memset(s->l1_table, 0, l1_length);
1734 if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
1735 return -1;
1736 ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
1737 if (ret < 0)
1738 return ret;
1739
1740 l2_cache_reset(bs);
1741 #endif
1742 return 0;
1743 }
1744
1745 /* XXX: put compressed sectors first, then all the cluster aligned
1746 tables to avoid losing bytes in alignment */
1747 static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
1748 const uint8_t *buf, int nb_sectors)
1749 {
1750 BDRVQcowState *s = bs->opaque;
1751 z_stream strm;
1752 int ret, out_len;
1753 uint8_t *out_buf;
1754 uint64_t cluster_offset;
1755
1756 if (nb_sectors == 0) {
1757 /* align end of file to a sector boundary to ease reading with
1758 sector based I/Os */
1759 cluster_offset = bdrv_getlength(s->hd);
1760 cluster_offset = (cluster_offset + 511) & ~511;
1761 bdrv_truncate(s->hd, cluster_offset);
1762 return 0;
1763 }
1764
1765 if (nb_sectors != s->cluster_sectors)
1766 return -EINVAL;
1767
1768 out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
1769
1770 /* best compression, small window, no zlib header */
1771 memset(&strm, 0, sizeof(strm));
1772 ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
1773 Z_DEFLATED, -12,
1774 9, Z_DEFAULT_STRATEGY);
1775 if (ret != 0) {
1776 qemu_free(out_buf);
1777 return -1;
1778 }
1779
1780 strm.avail_in = s->cluster_size;
1781 strm.next_in = (uint8_t *)buf;
1782 strm.avail_out = s->cluster_size;
1783 strm.next_out = out_buf;
1784
1785 ret = deflate(&strm, Z_FINISH);
1786 if (ret != Z_STREAM_END && ret != Z_OK) {
1787 qemu_free(out_buf);
1788 deflateEnd(&strm);
1789 return -1;
1790 }
1791 out_len = strm.next_out - out_buf;
1792
1793 deflateEnd(&strm);
1794
1795 if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
1796 /* could not compress: write normal cluster */
1797 bdrv_write(bs, sector_num, buf, s->cluster_sectors);
1798 } else {
1799 cluster_offset = alloc_compressed_cluster_offset(bs, sector_num << 9,
1800 out_len);
1801 if (!cluster_offset)
1802 return -1;
1803 cluster_offset &= s->cluster_offset_mask;
1804 if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
1805 qemu_free(out_buf);
1806 return -1;
1807 }
1808 }
1809
1810 qemu_free(out_buf);
1811 return 0;
1812 }
1813
1814 static void qcow_flush(BlockDriverState *bs)
1815 {
1816 BDRVQcowState *s = bs->opaque;
1817 bdrv_flush(s->hd);
1818 }
1819
1820 static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1821 {
1822 BDRVQcowState *s = bs->opaque;
1823 bdi->cluster_size = s->cluster_size;
1824 bdi->vm_state_offset = (int64_t)s->l1_vm_state_index <<
1825 (s->cluster_bits + s->l2_bits);
1826 return 0;
1827 }
1828
1829 /*********************************************************/
1830 /* snapshot support */
1831
1832 /* update the refcounts of snapshots and the copied flag */
1833 static int update_snapshot_refcount(BlockDriverState *bs,
1834 int64_t l1_table_offset,
1835 int l1_size,
1836 int addend)
1837 {
1838 BDRVQcowState *s = bs->opaque;
1839 uint64_t *l1_table, *l2_table, l2_offset, offset, l1_size2, l1_allocated;
1840 int64_t old_offset, old_l2_offset;
1841 int l2_size, i, j, l1_modified, l2_modified, nb_csectors, refcount;
1842
1843 l2_cache_reset(bs);
1844
1845 l2_table = NULL;
1846 l1_table = NULL;
1847 l1_size2 = l1_size * sizeof(uint64_t);
1848 l1_allocated = 0;
1849 if (l1_table_offset != s->l1_table_offset) {
1850 l1_table = qemu_malloc(l1_size2);
1851 l1_allocated = 1;
1852 if (bdrv_pread(s->hd, l1_table_offset,
1853 l1_table, l1_size2) != l1_size2)
1854 goto fail;
1855 for(i = 0;i < l1_size; i++)
1856 be64_to_cpus(&l1_table[i]);
1857 } else {
1858 assert(l1_size == s->l1_size);
1859 l1_table = s->l1_table;
1860 l1_allocated = 0;
1861 }
1862
1863 l2_size = s->l2_size * sizeof(uint64_t);
1864 l2_table = qemu_malloc(l2_size);
1865 l1_modified = 0;
1866 for(i = 0; i < l1_size; i++) {
1867 l2_offset = l1_table[i];
1868 if (l2_offset) {
1869 old_l2_offset = l2_offset;
1870 l2_offset &= ~QCOW_OFLAG_COPIED;
1871 l2_modified = 0;
1872 if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size)
1873 goto fail;
1874 for(j = 0; j < s->l2_size; j++) {
1875 offset = be64_to_cpu(l2_table[j]);
1876 if (offset != 0) {
1877 old_offset = offset;
1878 offset &= ~QCOW_OFLAG_COPIED;
1879 if (offset & QCOW_OFLAG_COMPRESSED) {
1880 nb_csectors = ((offset >> s->csize_shift) &
1881 s->csize_mask) + 1;
1882 if (addend != 0)
1883 update_refcount(bs, (offset & s->cluster_offset_mask) & ~511,
1884 nb_csectors * 512, addend);
1885 /* compressed clusters are never modified */
1886 refcount = 2;
1887 } else {
1888 if (addend != 0) {
1889 refcount = update_cluster_refcount(bs, offset >> s->cluster_bits, addend);
1890 } else {
1891 refcount = get_refcount(bs, offset >> s->cluster_bits);
1892 }
1893 }
1894
1895 if (refcount == 1) {
1896 offset |= QCOW_OFLAG_COPIED;
1897 }
1898 if (offset != old_offset) {
1899 l2_table[j] = cpu_to_be64(offset);
1900 l2_modified = 1;
1901 }
1902 }
1903 }
1904 if (l2_modified) {
1905 if (bdrv_pwrite(s->hd,
1906 l2_offset, l2_table, l2_size) != l2_size)
1907 goto fail;
1908 }
1909
1910 if (addend != 0) {
1911 refcount = update_cluster_refcount(bs, l2_offset >> s->cluster_bits, addend);
1912 } else {
1913 refcount = get_refcount(bs, l2_offset >> s->cluster_bits);
1914 }
1915 if (refcount == 1) {
1916 l2_offset |= QCOW_OFLAG_COPIED;
1917 }
1918 if (l2_offset != old_l2_offset) {
1919 l1_table[i] = l2_offset;
1920 l1_modified = 1;
1921 }
1922 }
1923 }
1924 if (l1_modified) {
1925 for(i = 0; i < l1_size; i++)
1926 cpu_to_be64s(&l1_table[i]);
1927 if (bdrv_pwrite(s->hd, l1_table_offset, l1_table,
1928 l1_size2) != l1_size2)
1929 goto fail;
1930 for(i = 0; i < l1_size; i++)
1931 be64_to_cpus(&l1_table[i]);
1932 }
1933 if (l1_allocated)
1934 qemu_free(l1_table);
1935 qemu_free(l2_table);
1936 return 0;
1937 fail:
1938 if (l1_allocated)
1939 qemu_free(l1_table);
1940 qemu_free(l2_table);
1941 return -EIO;
1942 }
1943
1944 static void qcow_free_snapshots(BlockDriverState *bs)
1945 {
1946 BDRVQcowState *s = bs->opaque;
1947 int i;
1948
1949 for(i = 0; i < s->nb_snapshots; i++) {
1950 qemu_free(s->snapshots[i].name);
1951 qemu_free(s->snapshots[i].id_str);
1952 }
1953 qemu_free(s->snapshots);
1954 s->snapshots = NULL;
1955 s->nb_snapshots = 0;
1956 }
1957
1958 static int qcow_read_snapshots(BlockDriverState *bs)
1959 {
1960 BDRVQcowState *s = bs->opaque;
1961 QCowSnapshotHeader h;
1962 QCowSnapshot *sn;
1963 int i, id_str_size, name_size;
1964 int64_t offset;
1965 uint32_t extra_data_size;
1966
1967 if (!s->nb_snapshots) {
1968 s->snapshots = NULL;
1969 s->snapshots_size = 0;
1970 return 0;
1971 }
1972
1973 offset = s->snapshots_offset;
1974 s->snapshots = qemu_mallocz(s->nb_snapshots * sizeof(QCowSnapshot));
1975 for(i = 0; i < s->nb_snapshots; i++) {
1976 offset = align_offset(offset, 8);
1977 if (bdrv_pread(s->hd, offset, &h, sizeof(h)) != sizeof(h))
1978 goto fail;
1979 offset += sizeof(h);
1980 sn = s->snapshots + i;
1981 sn->l1_table_offset = be64_to_cpu(h.l1_table_offset);
1982 sn->l1_size = be32_to_cpu(h.l1_size);
1983 sn->vm_state_size = be32_to_cpu(h.vm_state_size);
1984 sn->date_sec = be32_to_cpu(h.date_sec);
1985 sn->date_nsec = be32_to_cpu(h.date_nsec);
1986 sn->vm_clock_nsec = be64_to_cpu(h.vm_clock_nsec);
1987 extra_data_size = be32_to_cpu(h.extra_data_size);
1988
1989 id_str_size = be16_to_cpu(h.id_str_size);
1990 name_size = be16_to_cpu(h.name_size);
1991
1992 offset += extra_data_size;
1993
1994 sn->id_str = qemu_malloc(id_str_size + 1);
1995 if (bdrv_pread(s->hd, offset, sn->id_str, id_str_size) != id_str_size)
1996 goto fail;
1997 offset += id_str_size;
1998 sn->id_str[id_str_size] = '\0';
1999
2000 sn->name = qemu_malloc(name_size + 1);
2001 if (bdrv_pread(s->hd, offset, sn->name, name_size) != name_size)
2002 goto fail;
2003 offset += name_size;
2004 sn->name[name_size] = '\0';
2005 }
2006 s->snapshots_size = offset - s->snapshots_offset;
2007 return 0;
2008 fail:
2009 qcow_free_snapshots(bs);
2010 return -1;
2011 }
2012
2013 /* add at the end of the file a new list of snapshots */
2014 static int qcow_write_snapshots(BlockDriverState *bs)
2015 {
2016 BDRVQcowState *s = bs->opaque;
2017 QCowSnapshot *sn;
2018 QCowSnapshotHeader h;
2019 int i, name_size, id_str_size, snapshots_size;
2020 uint64_t data64;
2021 uint32_t data32;
2022 int64_t offset, snapshots_offset;
2023
2024 /* compute the size of the snapshots */
2025 offset = 0;
2026 for(i = 0; i < s->nb_snapshots; i++) {
2027 sn = s->snapshots + i;
2028 offset = align_offset(offset, 8);
2029 offset += sizeof(h);
2030 offset += strlen(sn->id_str);
2031 offset += strlen(sn->name);
2032 }
2033 snapshots_size = offset;
2034
2035 snapshots_offset = alloc_clusters(bs, snapshots_size);
2036 offset = snapshots_offset;
2037
2038 for(i = 0; i < s->nb_snapshots; i++) {
2039 sn = s->snapshots + i;
2040 memset(&h, 0, sizeof(h));
2041 h.l1_table_offset = cpu_to_be64(sn->l1_table_offset);
2042 h.l1_size = cpu_to_be32(sn->l1_size);
2043 h.vm_state_size = cpu_to_be32(sn->vm_state_size);
2044 h.date_sec = cpu_to_be32(sn->date_sec);
2045 h.date_nsec = cpu_to_be32(sn->date_nsec);
2046 h.vm_clock_nsec = cpu_to_be64(sn->vm_clock_nsec);
2047
2048 id_str_size = strlen(sn->id_str);
2049 name_size = strlen(sn->name);
2050 h.id_str_size = cpu_to_be16(id_str_size);
2051 h.name_size = cpu_to_be16(name_size);
2052 offset = align_offset(offset, 8);
2053 if (bdrv_pwrite(s->hd, offset, &h, sizeof(h)) != sizeof(h))
2054 goto fail;
2055 offset += sizeof(h);
2056 if (bdrv_pwrite(s->hd, offset, sn->id_str, id_str_size) != id_str_size)
2057 goto fail;
2058 offset += id_str_size;
2059 if (bdrv_pwrite(s->hd, offset, sn->name, name_size) != name_size)
2060 goto fail;
2061 offset += name_size;
2062 }
2063
2064 /* update the various header fields */
2065 data64 = cpu_to_be64(snapshots_offset);
2066 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, snapshots_offset),
2067 &data64, sizeof(data64)) != sizeof(data64))
2068 goto fail;
2069 data32 = cpu_to_be32(s->nb_snapshots);
2070 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, nb_snapshots),
2071 &data32, sizeof(data32)) != sizeof(data32))
2072 goto fail;
2073
2074 /* free the old snapshot table */
2075 free_clusters(bs, s->snapshots_offset, s->snapshots_size);
2076 s->snapshots_offset = snapshots_offset;
2077 s->snapshots_size = snapshots_size;
2078 return 0;
2079 fail:
2080 return -1;
2081 }
2082
2083 static void find_new_snapshot_id(BlockDriverState *bs,
2084 char *id_str, int id_str_size)
2085 {
2086 BDRVQcowState *s = bs->opaque;
2087 QCowSnapshot *sn;
2088 int i, id, id_max = 0;
2089
2090 for(i = 0; i < s->nb_snapshots; i++) {
2091 sn = s->snapshots + i;
2092 id = strtoul(sn->id_str, NULL, 10);
2093 if (id > id_max)
2094 id_max = id;
2095 }
2096 snprintf(id_str, id_str_size, "%d", id_max + 1);
2097 }
2098
2099 static int find_snapshot_by_id(BlockDriverState *bs, const char *id_str)
2100 {
2101 BDRVQcowState *s = bs->opaque;
2102 int i;
2103
2104 for(i = 0; i < s->nb_snapshots; i++) {
2105 if (!strcmp(s->snapshots[i].id_str, id_str))
2106 return i;
2107 }
2108 return -1;
2109 }
2110
2111 static int find_snapshot_by_id_or_name(BlockDriverState *bs, const char *name)
2112 {
2113 BDRVQcowState *s = bs->opaque;
2114 int i, ret;
2115
2116 ret = find_snapshot_by_id(bs, name);
2117 if (ret >= 0)
2118 return ret;
2119 for(i = 0; i < s->nb_snapshots; i++) {
2120 if (!strcmp(s->snapshots[i].name, name))
2121 return i;
2122 }
2123 return -1;
2124 }
2125
2126 /* if no id is provided, a new one is constructed */
2127 static int qcow_snapshot_create(BlockDriverState *bs,
2128 QEMUSnapshotInfo *sn_info)
2129 {
2130 BDRVQcowState *s = bs->opaque;
2131 QCowSnapshot *snapshots1, sn1, *sn = &sn1;
2132 int i, ret;
2133 uint64_t *l1_table = NULL;
2134
2135 memset(sn, 0, sizeof(*sn));
2136
2137 if (sn_info->id_str[0] == '\0') {
2138 /* compute a new id */
2139 find_new_snapshot_id(bs, sn_info->id_str, sizeof(sn_info->id_str));
2140 }
2141
2142 /* check that the ID is unique */
2143 if (find_snapshot_by_id(bs, sn_info->id_str) >= 0)
2144 return -ENOENT;
2145
2146 sn->id_str = qemu_strdup(sn_info->id_str);
2147 if (!sn->id_str)
2148 goto fail;
2149 sn->name = qemu_strdup(sn_info->name);
2150 if (!sn->name)
2151 goto fail;
2152 sn->vm_state_size = sn_info->vm_state_size;
2153 sn->date_sec = sn_info->date_sec;
2154 sn->date_nsec = sn_info->date_nsec;
2155 sn->vm_clock_nsec = sn_info->vm_clock_nsec;
2156
2157 ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1);
2158 if (ret < 0)
2159 goto fail;
2160
2161 /* create the L1 table of the snapshot */
2162 sn->l1_table_offset = alloc_clusters(bs, s->l1_size * sizeof(uint64_t));
2163 sn->l1_size = s->l1_size;
2164
2165 l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
2166 for(i = 0; i < s->l1_size; i++) {
2167 l1_table[i] = cpu_to_be64(s->l1_table[i]);
2168 }
2169 if (bdrv_pwrite(s->hd, sn->l1_table_offset,
2170 l1_table, s->l1_size * sizeof(uint64_t)) !=
2171 (s->l1_size * sizeof(uint64_t)))
2172 goto fail;
2173 qemu_free(l1_table);
2174 l1_table = NULL;
2175
2176 snapshots1 = qemu_malloc((s->nb_snapshots + 1) * sizeof(QCowSnapshot));
2177 if (s->snapshots) {
2178 memcpy(snapshots1, s->snapshots, s->nb_snapshots * sizeof(QCowSnapshot));
2179 qemu_free(s->snapshots);
2180 }
2181 s->snapshots = snapshots1;
2182 s->snapshots[s->nb_snapshots++] = *sn;
2183
2184 if (qcow_write_snapshots(bs) < 0)
2185 goto fail;
2186 #ifdef DEBUG_ALLOC
2187 check_refcounts(bs);
2188 #endif
2189 return 0;
2190 fail:
2191 qemu_free(sn->name);
2192 qemu_free(l1_table);
2193 return -1;
2194 }
2195
2196 /* copy the snapshot 'snapshot_name' into the current disk image */
2197 static int qcow_snapshot_goto(BlockDriverState *bs,
2198 const char *snapshot_id)
2199 {
2200 BDRVQcowState *s = bs->opaque;
2201 QCowSnapshot *sn;
2202 int i, snapshot_index, l1_size2;
2203
2204 snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
2205 if (snapshot_index < 0)
2206 return -ENOENT;
2207 sn = &s->snapshots[snapshot_index];
2208
2209 if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, -1) < 0)
2210 goto fail;
2211
2212 if (grow_l1_table(bs, sn->l1_size) < 0)
2213 goto fail;
2214
2215 s->l1_size = sn->l1_size;
2216 l1_size2 = s->l1_size * sizeof(uint64_t);
2217 /* copy the snapshot l1 table to the current l1 table */
2218 if (bdrv_pread(s->hd, sn->l1_table_offset,
2219 s->l1_table, l1_size2) != l1_size2)
2220 goto fail;
2221 if (bdrv_pwrite(s->hd, s->l1_table_offset,
2222 s->l1_table, l1_size2) != l1_size2)
2223 goto fail;
2224 for(i = 0;i < s->l1_size; i++) {
2225 be64_to_cpus(&s->l1_table[i]);
2226 }
2227
2228 if (update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 1) < 0)
2229 goto fail;
2230
2231 #ifdef DEBUG_ALLOC
2232 check_refcounts(bs);
2233 #endif
2234 return 0;
2235 fail:
2236 return -EIO;
2237 }
2238
2239 static int qcow_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2240 {
2241 BDRVQcowState *s = bs->opaque;
2242 QCowSnapshot *sn;
2243 int snapshot_index, ret;
2244
2245 snapshot_index = find_snapshot_by_id_or_name(bs, snapshot_id);
2246 if (snapshot_index < 0)
2247 return -ENOENT;
2248 sn = &s->snapshots[snapshot_index];
2249
2250 ret = update_snapshot_refcount(bs, sn->l1_table_offset, sn->l1_size, -1);
2251 if (ret < 0)
2252 return ret;
2253 /* must update the copied flag on the current cluster offsets */
2254 ret = update_snapshot_refcount(bs, s->l1_table_offset, s->l1_size, 0);
2255 if (ret < 0)
2256 return ret;
2257 free_clusters(bs, sn->l1_table_offset, sn->l1_size * sizeof(uint64_t));
2258
2259 qemu_free(sn->id_str);
2260 qemu_free(sn->name);
2261 memmove(sn, sn + 1, (s->nb_snapshots - snapshot_index - 1) * sizeof(*sn));
2262 s->nb_snapshots--;
2263 ret = qcow_write_snapshots(bs);
2264 if (ret < 0) {
2265 /* XXX: restore snapshot if error ? */
2266 return ret;
2267 }
2268 #ifdef DEBUG_ALLOC
2269 check_refcounts(bs);
2270 #endif
2271 return 0;
2272 }
2273
2274 static int qcow_snapshot_list(BlockDriverState *bs,
2275 QEMUSnapshotInfo **psn_tab)
2276 {
2277 BDRVQcowState *s = bs->opaque;
2278 QEMUSnapshotInfo *sn_tab, *sn_info;
2279 QCowSnapshot *sn;
2280 int i;
2281
2282 if (!s->nb_snapshots) {
2283 *psn_tab = NULL;
2284 return s->nb_snapshots;
2285 }
2286
2287 sn_tab = qemu_mallocz(s->nb_snapshots * sizeof(QEMUSnapshotInfo));
2288 for(i = 0; i < s->nb_snapshots; i++) {
2289 sn_info = sn_tab + i;
2290 sn = s->snapshots + i;
2291 pstrcpy(sn_info->id_str, sizeof(sn_info->id_str),
2292 sn->id_str);
2293 pstrcpy(sn_info->name, sizeof(sn_info->name),
2294 sn->name);
2295 sn_info->vm_state_size = sn->vm_state_size;
2296 sn_info->date_sec = sn->date_sec;
2297 sn_info->date_nsec = sn->date_nsec;
2298 sn_info->vm_clock_nsec = sn->vm_clock_nsec;
2299 }
2300 *psn_tab = sn_tab;
2301 return s->nb_snapshots;
2302 }
2303
2304 /*********************************************************/
2305 /* refcount handling */
2306
2307 static int refcount_init(BlockDriverState *bs)
2308 {
2309 BDRVQcowState *s = bs->opaque;
2310 int ret, refcount_table_size2, i;
2311
2312 s->refcount_block_cache = qemu_malloc(s->cluster_size);
2313 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
2314 s->refcount_table = qemu_malloc(refcount_table_size2);
2315 if (s->refcount_table_size > 0) {
2316 ret = bdrv_pread(s->hd, s->refcount_table_offset,
2317 s->refcount_table, refcount_table_size2);
2318 if (ret != refcount_table_size2)
2319 goto fail;
2320 for(i = 0; i < s->refcount_table_size; i++)
2321 be64_to_cpus(&s->refcount_table[i]);
2322 }
2323 return 0;
2324 fail:
2325 return -ENOMEM;
2326 }
2327
2328 static void refcount_close(BlockDriverState *bs)
2329 {
2330 BDRVQcowState *s = bs->opaque;
2331 qemu_free(s->refcount_block_cache);
2332 qemu_free(s->refcount_table);
2333 }
2334
2335
2336 static int load_refcount_block(BlockDriverState *bs,
2337 int64_t refcount_block_offset)
2338 {
2339 BDRVQcowState *s = bs->opaque;
2340 int ret;
2341 ret = bdrv_pread(s->hd, refcount_block_offset, s->refcount_block_cache,
2342 s->cluster_size);
2343 if (ret != s->cluster_size)
2344 return -EIO;
2345 s->refcount_block_cache_offset = refcount_block_offset;
2346 return 0;
2347 }
2348
2349 static int get_refcount(BlockDriverState *bs, int64_t cluster_index)
2350 {
2351 BDRVQcowState *s = bs->opaque;
2352 int refcount_table_index, block_index;
2353 int64_t refcount_block_offset;
2354
2355 refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
2356 if (refcount_table_index >= s->refcount_table_size)
2357 return 0;
2358 refcount_block_offset = s->refcount_table[refcount_table_index];
2359 if (!refcount_block_offset)
2360 return 0;
2361 if (refcount_block_offset != s->refcount_block_cache_offset) {
2362 /* better than nothing: return allocated if read error */
2363 if (load_refcount_block(bs, refcount_block_offset) < 0)
2364 return 1;
2365 }
2366 block_index = cluster_index &
2367 ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
2368 return be16_to_cpu(s->refcount_block_cache[block_index]);
2369 }
2370
2371 /* return < 0 if error */
2372 static int64_t alloc_clusters_noref(BlockDriverState *bs, int64_t size)
2373 {
2374 BDRVQcowState *s = bs->opaque;
2375 int i, nb_clusters;
2376
2377 nb_clusters = size_to_clusters(s, size);
2378 retry:
2379 for(i = 0; i < nb_clusters; i++) {
2380 int64_t i = s->free_cluster_index++;
2381 if (get_refcount(bs, i) != 0)
2382 goto retry;
2383 }
2384 #ifdef DEBUG_ALLOC2
2385 printf("alloc_clusters: size=%lld -> %lld\n",
2386 size,
2387 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
2388 #endif
2389 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
2390 }
2391
2392 static int64_t alloc_clusters(BlockDriverState *bs, int64_t size)
2393 {
2394 int64_t offset;
2395
2396 offset = alloc_clusters_noref(bs, size);
2397 update_refcount(bs, offset, size, 1);
2398 return offset;
2399 }
2400
2401 /* only used to allocate compressed sectors. We try to allocate
2402 contiguous sectors. size must be <= cluster_size */
2403 static int64_t alloc_bytes(BlockDriverState *bs, int size)
2404 {
2405 BDRVQcowState *s = bs->opaque;
2406 int64_t offset, cluster_offset;
2407 int free_in_cluster;
2408
2409 assert(size > 0 && size <= s->cluster_size);
2410 if (s->free_byte_offset == 0) {
2411 s->free_byte_offset = alloc_clusters(bs, s->cluster_size);
2412 }
2413 redo:
2414 free_in_cluster = s->cluster_size -
2415 (s->free_byte_offset & (s->cluster_size - 1));
2416 if (size <= free_in_cluster) {
2417 /* enough space in current cluster */
2418 offset = s->free_byte_offset;
2419 s->free_byte_offset += size;
2420 free_in_cluster -= size;
2421 if (free_in_cluster == 0)
2422 s->free_byte_offset = 0;
2423 if ((offset & (s->cluster_size - 1)) != 0)
2424 update_cluster_refcount(bs, offset >> s->cluster_bits, 1);
2425 } else {
2426 offset = alloc_clusters(bs, s->cluster_size);
2427 cluster_offset = s->free_byte_offset & ~(s->cluster_size - 1);
2428 if ((cluster_offset + s->cluster_size) == offset) {
2429 /* we are lucky: contiguous data */
2430 offset = s->free_byte_offset;
2431 update_cluster_refcount(bs, offset >> s->cluster_bits, 1);
2432 s->free_byte_offset += size;
2433 } else {
2434 s->free_byte_offset = offset;
2435 goto redo;
2436 }
2437 }
2438 return offset;
2439 }
2440
2441 static void free_clusters(BlockDriverState *bs,
2442 int64_t offset, int64_t size)
2443 {
2444 update_refcount(bs, offset, size, -1);
2445 }
2446
2447 static int grow_refcount_table(BlockDriverState *bs, int min_size)
2448 {
2449 BDRVQcowState *s = bs->opaque;
2450 int new_table_size, new_table_size2, refcount_table_clusters, i, ret;
2451 uint64_t *new_table;
2452 int64_t table_offset;
2453 uint8_t data[12];
2454 int old_table_size;
2455 int64_t old_table_offset;
2456
2457 if (min_size <= s->refcount_table_size)
2458 return 0;
2459 /* compute new table size */
2460 refcount_table_clusters = s->refcount_table_size >> (s->cluster_bits - 3);
2461 for(;;) {
2462 if (refcount_table_clusters == 0) {
2463 refcount_table_clusters = 1;
2464 } else {
2465 refcount_table_clusters = (refcount_table_clusters * 3 + 1) / 2;
2466 }
2467 new_table_size = refcount_table_clusters << (s->cluster_bits - 3);
2468 if (min_size <= new_table_size)
2469 break;
2470 }
2471 #ifdef DEBUG_ALLOC2
2472 printf("grow_refcount_table from %d to %d\n",
2473 s->refcount_table_size,
2474 new_table_size);
2475 #endif
2476 new_table_size2 = new_table_size * sizeof(uint64_t);
2477 new_table = qemu_mallocz(new_table_size2);
2478 memcpy(new_table, s->refcount_table,
2479 s->refcount_table_size * sizeof(uint64_t));
2480 for(i = 0; i < s->refcount_table_size; i++)
2481 cpu_to_be64s(&new_table[i]);
2482 /* Note: we cannot update the refcount now to avoid recursion */
2483 table_offset = alloc_clusters_noref(bs, new_table_size2);
2484 ret = bdrv_pwrite(s->hd, table_offset, new_table, new_table_size2);
2485 if (ret != new_table_size2)
2486 goto fail;
2487 for(i = 0; i < s->refcount_table_size; i++)
2488 be64_to_cpus(&new_table[i]);
2489
2490 cpu_to_be64w((uint64_t*)data, table_offset);
2491 cpu_to_be32w((uint32_t*)(data + 8), refcount_table_clusters);
2492 if (bdrv_pwrite(s->hd, offsetof(QCowHeader, refcount_table_offset),
2493 data, sizeof(data)) != sizeof(data))
2494 goto fail;
2495 qemu_free(s->refcount_table);
2496 old_table_offset = s->refcount_table_offset;
2497 old_table_size = s->refcount_table_size;
2498 s->refcount_table = new_table;
2499 s->refcount_table_size = new_table_size;
2500 s->refcount_table_offset = table_offset;
2501
2502 update_refcount(bs, table_offset, new_table_size2, 1);
2503 free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t));
2504 return 0;
2505 fail:
2506 free_clusters(bs, table_offset, new_table_size2);
2507 qemu_free(new_table);
2508 return -EIO;
2509 }
2510
2511 /* addend must be 1 or -1 */
2512 /* XXX: cache several refcount block clusters ? */
2513 static int update_cluster_refcount(BlockDriverState *bs,
2514 int64_t cluster_index,
2515 int addend)
2516 {
2517 BDRVQcowState *s = bs->opaque;
2518 int64_t offset, refcount_block_offset;
2519 int ret, refcount_table_index, block_index, refcount;
2520 uint64_t data64;
2521
2522 refcount_table_index = cluster_index >> (s->cluster_bits - REFCOUNT_SHIFT);
2523 if (refcount_table_index >= s->refcount_table_size) {
2524 if (addend < 0)
2525 return -EINVAL;
2526 ret = grow_refcount_table(bs, refcount_table_index + 1);
2527 if (ret < 0)
2528 return ret;
2529 }
2530 refcount_block_offset = s->refcount_table[refcount_table_index];
2531 if (!refcount_block_offset) {
2532 if (addend < 0)
2533 return -EINVAL;
2534 /* create a new refcount block */
2535 /* Note: we cannot update the refcount now to avoid recursion */
2536 offset = alloc_clusters_noref(bs, s->cluster_size);
2537 memset(s->refcount_block_cache, 0, s->cluster_size);
2538 ret = bdrv_pwrite(s->hd, offset, s->refcount_block_cache, s->cluster_size);
2539 if (ret != s->cluster_size)
2540 return -EINVAL;
2541 s->refcount_table[refcount_table_index] = offset;
2542 data64 = cpu_to_be64(offset);
2543 ret = bdrv_pwrite(s->hd, s->refcount_table_offset +
2544 refcount_table_index * sizeof(uint64_t),
2545 &data64, sizeof(data64));
2546 if (ret != sizeof(data64))
2547 return -EINVAL;
2548
2549 refcount_block_offset = offset;
2550 s->refcount_block_cache_offset = offset;
2551 update_refcount(bs, offset, s->cluster_size, 1);
2552 } else {
2553 if (refcount_block_offset != s->refcount_block_cache_offset) {
2554 if (load_refcount_block(bs, refcount_block_offset) < 0)
2555 return -EIO;
2556 }
2557 }
2558 /* we can update the count and save it */
2559 block_index = cluster_index &
2560 ((1 << (s->cluster_bits - REFCOUNT_SHIFT)) - 1);
2561 refcount = be16_to_cpu(s->refcount_block_cache[block_index]);
2562 refcount += addend;
2563 if (refcount < 0 || refcount > 0xffff)
2564 return -EINVAL;
2565 if (refcount == 0 && cluster_index < s->free_cluster_index) {
2566 s->free_cluster_index = cluster_index;
2567 }
2568 s->refcount_block_cache[block_index] = cpu_to_be16(refcount);
2569 if (bdrv_pwrite(s->hd,
2570 refcount_block_offset + (block_index << REFCOUNT_SHIFT),
2571 &s->refcount_block_cache[block_index], 2) != 2)
2572 return -EIO;
2573 return refcount;
2574 }
2575
2576 static void update_refcount(BlockDriverState *bs,
2577 int64_t offset, int64_t length,
2578 int addend)
2579 {
2580 BDRVQcowState *s = bs->opaque;
2581 int64_t start, last, cluster_offset;
2582
2583 #ifdef DEBUG_ALLOC2
2584 printf("update_refcount: offset=%lld size=%lld addend=%d\n",
2585 offset, length, addend);
2586 #endif
2587 if (length <= 0)
2588 return;
2589 start = offset & ~(s->cluster_size - 1);
2590 last = (offset + length - 1) & ~(s->cluster_size - 1);
2591 for(cluster_offset = start; cluster_offset <= last;
2592 cluster_offset += s->cluster_size) {
2593 update_cluster_refcount(bs, cluster_offset >> s->cluster_bits, addend);
2594 }
2595 }
2596
2597 /*
2598 * Increases the refcount for a range of clusters in a given refcount table.
2599 * This is used to construct a temporary refcount table out of L1 and L2 tables
2600 * which can be compared the the refcount table saved in the image.
2601 *
2602 * Returns the number of errors in the image that were found
2603 */
2604 static int inc_refcounts(BlockDriverState *bs,
2605 uint16_t *refcount_table,
2606 int refcount_table_size,
2607 int64_t offset, int64_t size)
2608 {
2609 BDRVQcowState *s = bs->opaque;
2610 int64_t start, last, cluster_offset;
2611 int k;
2612 int errors = 0;
2613
2614 if (size <= 0)
2615 return 0;
2616
2617 start = offset & ~(s->cluster_size - 1);
2618 last = (offset + size - 1) & ~(s->cluster_size - 1);
2619 for(cluster_offset = start; cluster_offset <= last;
2620 cluster_offset += s->cluster_size) {
2621 k = cluster_offset >> s->cluster_bits;
2622 if (k < 0 || k >= refcount_table_size) {
2623 fprintf(stderr, "ERROR: invalid cluster offset=0x%" PRIx64 "\n",
2624 cluster_offset);
2625 errors++;
2626 } else {
2627 if (++refcount_table[k] == 0) {
2628 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
2629 "\n", cluster_offset);
2630 errors++;
2631 }
2632 }
2633 }
2634
2635 return errors;
2636 }
2637
2638 /*
2639 * Increases the refcount in the given refcount table for the all clusters
2640 * referenced in the L2 table. While doing so, performs some checks on L2
2641 * entries.
2642 *
2643 * Returns the number of errors found by the checks or -errno if an internal
2644 * error occurred.
2645 */
2646 static int check_refcounts_l2(BlockDriverState *bs,
2647 uint16_t *refcount_table, int refcount_table_size, int64_t l2_offset,
2648 int check_copied)
2649 {
2650 BDRVQcowState *s = bs->opaque;
2651 uint64_t *l2_table, offset;
2652 int i, l2_size, nb_csectors, refcount;
2653 int errors = 0;
2654
2655 /* Read L2 table from disk */
2656 l2_size = s->l2_size * sizeof(uint64_t);
2657 l2_table = qemu_malloc(l2_size);
2658
2659 if (bdrv_pread(s->hd, l2_offset, l2_table, l2_size) != l2_size)
2660 goto fail;
2661
2662 /* Do the actual checks */
2663 for(i = 0; i < s->l2_size; i++) {
2664 offset = be64_to_cpu(l2_table[i]);
2665 if (offset != 0) {
2666 if (offset & QCOW_OFLAG_COMPRESSED) {
2667 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
2668 if (offset & QCOW_OFLAG_COPIED) {
2669 fprintf(stderr, "ERROR: cluster %" PRId64 ": "
2670 "copied flag must never be set for compressed "
2671 "clusters\n", offset >> s->cluster_bits);
2672 offset &= ~QCOW_OFLAG_COPIED;
2673 errors++;
2674 }
2675
2676 /* Mark cluster as used */
2677 nb_csectors = ((offset >> s->csize_shift) &
2678 s->csize_mask) + 1;
2679 offset &= s->cluster_offset_mask;
2680 errors += inc_refcounts(bs, refcount_table,
2681 refcount_table_size,
2682 offset & ~511, nb_csectors * 512);
2683 } else {
2684 /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */
2685 if (check_copied) {
2686 uint64_t entry = offset;
2687 offset &= ~QCOW_OFLAG_COPIED;
2688 refcount = get_refcount(bs, offset >> s->cluster_bits);
2689 if ((refcount == 1) != ((entry & QCOW_OFLAG_COPIED) != 0)) {
2690 fprintf(stderr, "ERROR OFLAG_COPIED: offset=%"
2691 PRIx64 " refcount=%d\n", entry, refcount);
2692 errors++;
2693 }
2694 }
2695
2696 /* Mark cluster as used */
2697 offset &= ~QCOW_OFLAG_COPIED;
2698 errors += inc_refcounts(bs, refcount_table,
2699 refcount_table_size,
2700 offset, s->cluster_size);
2701
2702 /* Correct offsets are cluster aligned */
2703 if (offset & (s->cluster_size - 1)) {
2704 fprintf(stderr, "ERROR offset=%" PRIx64 ": Cluster is not "
2705 "properly aligned; L2 entry corrupted.\n", offset);
2706 errors++;
2707 }
2708 }
2709 }
2710 }
2711
2712 qemu_free(l2_table);
2713 return errors;
2714
2715 fail:
2716 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
2717 qemu_free(l2_table);
2718 return -EIO;
2719 }
2720
2721 /*
2722 * Increases the refcount for the L1 table, its L2 tables and all referenced
2723 * clusters in the given refcount table. While doing so, performs some checks
2724 * on L1 and L2 entries.
2725 *
2726 * Returns the number of errors found by the checks or -errno if an internal
2727 * error occurred.
2728 */
2729 static int check_refcounts_l1(BlockDriverState *bs,
2730 uint16_t *refcount_table,
2731 int refcount_table_size,
2732 int64_t l1_table_offset, int l1_size,
2733 int check_copied)
2734 {
2735 BDRVQcowState *s = bs->opaque;
2736 uint64_t *l1_table, l2_offset, l1_size2;
2737 int i, refcount, ret;
2738 int errors = 0;
2739
2740 l1_size2 = l1_size * sizeof(uint64_t);
2741
2742 /* Mark L1 table as used */
2743 errors += inc_refcounts(bs, refcount_table, refcount_table_size,
2744 l1_table_offset, l1_size2);
2745
2746 /* Read L1 table entries from disk */
2747 l1_table = qemu_malloc(l1_size2);
2748 if (bdrv_pread(s->hd, l1_table_offset,
2749 l1_table, l1_size2) != l1_size2)
2750 goto fail;
2751 for(i = 0;i < l1_size; i++)
2752 be64_to_cpus(&l1_table[i]);
2753
2754 /* Do the actual checks */
2755 for(i = 0; i < l1_size; i++) {
2756 l2_offset = l1_table[i];
2757 if (l2_offset) {
2758 /* QCOW_OFLAG_COPIED must be set iff refcount == 1 */
2759 if (check_copied) {
2760 refcount = get_refcount(bs, (l2_offset & ~QCOW_OFLAG_COPIED)
2761 >> s->cluster_bits);
2762 if ((refcount == 1) != ((l2_offset & QCOW_OFLAG_COPIED) != 0)) {
2763 fprintf(stderr, "ERROR OFLAG_COPIED: l2_offset=%" PRIx64
2764 " refcount=%d\n", l2_offset, refcount);
2765 errors++;
2766 }
2767 }
2768
2769 /* Mark L2 table as used */
2770 l2_offset &= ~QCOW_OFLAG_COPIED;
2771 errors += inc_refcounts(bs, refcount_table,
2772 refcount_table_size,
2773 l2_offset,
2774 s->cluster_size);
2775
2776 /* L2 tables are cluster aligned */
2777 if (l2_offset & (s->cluster_size - 1)) {
2778 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
2779 "cluster aligned; L1 entry corrupted\n", l2_offset);
2780 errors++;
2781 }
2782
2783 /* Process and check L2 entries */
2784 ret = check_refcounts_l2(bs, refcount_table, refcount_table_size,
2785 l2_offset, check_copied);
2786 if (ret < 0) {
2787 goto fail;
2788 }
2789 errors += ret;
2790 }
2791 }
2792 qemu_free(l1_table);
2793 return errors;
2794
2795 fail:
2796 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
2797 qemu_free(l1_table);
2798 return -EIO;
2799 }
2800
2801 /*
2802 * Checks an image for refcount consistency.
2803 *
2804 * Returns 0 if no errors are found, the number of errors in case the image is
2805 * detected as corrupted, and -errno when an internal error occured.
2806 */
2807 static int check_refcounts(BlockDriverState *bs)
2808 {
2809 BDRVQcowState *s = bs->opaque;
2810 int64_t size;
2811 int nb_clusters, refcount1, refcount2, i;
2812 QCowSnapshot *sn;
2813 uint16_t *refcount_table;
2814 int ret, errors = 0;
2815
2816 size = bdrv_getlength(s->hd);
2817 nb_clusters = size_to_clusters(s, size);
2818 refcount_table = qemu_mallocz(nb_clusters * sizeof(uint16_t));
2819
2820 /* header */
2821 errors += inc_refcounts(bs, refcount_table, nb_clusters,
2822 0, s->cluster_size);
2823
2824 /* current L1 table */
2825 ret = check_refcounts_l1(bs, refcount_table, nb_clusters,
2826 s->l1_table_offset, s->l1_size, 1);
2827 if (ret < 0) {
2828 return ret;
2829 }
2830 errors += ret;
2831
2832 /* snapshots */
2833 for(i = 0; i < s->nb_snapshots; i++) {
2834 sn = s->snapshots + i;
2835 check_refcounts_l1(bs, refcount_table, nb_clusters,
2836 sn->l1_table_offset, sn->l1_size, 0);
2837 }
2838 errors += inc_refcounts(bs, refcount_table, nb_clusters,
2839 s->snapshots_offset, s->snapshots_size);
2840
2841 /* refcount data */
2842 errors += inc_refcounts(bs, refcount_table, nb_clusters,
2843 s->refcount_table_offset,
2844 s->refcount_table_size * sizeof(uint64_t));
2845 for(i = 0; i < s->refcount_table_size; i++) {
2846 int64_t offset;
2847 offset = s->refcount_table[i];
2848 if (offset != 0) {
2849 errors += inc_refcounts(bs, refcount_table, nb_clusters,
2850 offset, s->cluster_size);
2851 }
2852 }
2853
2854 /* compare ref counts */
2855 for(i = 0; i < nb_clusters; i++) {
2856 refcount1 = get_refcount(bs, i);
2857 refcount2 = refcount_table[i];
2858 if (refcount1 != refcount2) {
2859 fprintf(stderr, "ERROR cluster %d refcount=%d reference=%d\n",
2860 i, refcount1, refcount2);
2861 errors++;
2862 }
2863 }
2864
2865 qemu_free(refcount_table);
2866
2867 return errors;
2868 }
2869
2870 static int qcow_check(BlockDriverState *bs)
2871 {
2872 return check_refcounts(bs);
2873 }
2874
2875 #if 0
2876 static void dump_refcounts(BlockDriverState *bs)
2877 {
2878 BDRVQcowState *s = bs->opaque;
2879 int64_t nb_clusters, k, k1, size;
2880 int refcount;
2881
2882 size = bdrv_getlength(s->hd);
2883 nb_clusters = size_to_clusters(s, size);
2884 for(k = 0; k < nb_clusters;) {
2885 k1 = k;
2886 refcount = get_refcount(bs, k);
2887 k++;
2888 while (k < nb_clusters && get_refcount(bs, k) == refcount)
2889 k++;
2890 printf("%lld: refcount=%d nb=%lld\n", k, refcount, k - k1);
2891 }
2892 }
2893 #endif
2894
2895 static int qcow_put_buffer(BlockDriverState *bs, const uint8_t *buf,
2896 int64_t pos, int size)
2897 {
2898 int growable = bs->growable;
2899
2900 bs->growable = 1;
2901 bdrv_pwrite(bs, pos, buf, size);
2902 bs->growable = growable;
2903
2904 return size;
2905 }
2906
2907 static int qcow_get_buffer(BlockDriverState *bs, uint8_t *buf,
2908 int64_t pos, int size)
2909 {
2910 int growable = bs->growable;
2911 int ret;
2912
2913 bs->growable = 1;
2914 ret = bdrv_pread(bs, pos, buf, size);
2915 bs->growable = growable;
2916
2917 return ret;
2918 }
2919
2920 static QEMUOptionParameter qcow_create_options[] = {
2921 { BLOCK_OPT_SIZE, OPT_SIZE },
2922 { BLOCK_OPT_BACKING_FILE, OPT_STRING },
2923 { BLOCK_OPT_BACKING_FMT, OPT_STRING },
2924 { BLOCK_OPT_ENCRYPT, OPT_FLAG },
2925 { BLOCK_OPT_CLUSTER_SIZE, OPT_SIZE },
2926 { NULL }
2927 };
2928
2929 static BlockDriver bdrv_qcow2 = {
2930 .format_name = "qcow2",
2931 .instance_size = sizeof(BDRVQcowState),
2932 .bdrv_probe = qcow_probe,
2933 .bdrv_open = qcow_open,
2934 .bdrv_close = qcow_close,
2935 .bdrv_create = qcow_create,
2936 .bdrv_flush = qcow_flush,
2937 .bdrv_is_allocated = qcow_is_allocated,
2938 .bdrv_set_key = qcow_set_key,
2939 .bdrv_make_empty = qcow_make_empty,
2940
2941 .bdrv_aio_readv = qcow_aio_readv,
2942 .bdrv_aio_writev = qcow_aio_writev,
2943 .bdrv_aio_cancel = qcow_aio_cancel,
2944 .aiocb_size = sizeof(QCowAIOCB),
2945 .bdrv_write_compressed = qcow_write_compressed,
2946
2947 .bdrv_snapshot_create = qcow_snapshot_create,
2948 .bdrv_snapshot_goto = qcow_snapshot_goto,
2949 .bdrv_snapshot_delete = qcow_snapshot_delete,
2950 .bdrv_snapshot_list = qcow_snapshot_list,
2951 .bdrv_get_info = qcow_get_info,
2952
2953 .bdrv_put_buffer = qcow_put_buffer,
2954 .bdrv_get_buffer = qcow_get_buffer,
2955
2956 .create_options = qcow_create_options,
2957 .bdrv_check = qcow_check,
2958 };
2959
2960 static void bdrv_qcow2_init(void)
2961 {
2962 bdrv_register(&bdrv_qcow2);
2963 }
2964
2965 block_init(bdrv_qcow2_init);