]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
qed: remove spurious BDRV_POLL_WHILE()
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30
31 static QemuOptsList qed_create_opts;
32
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
35 {
36 const QEDHeader *header = (const QEDHeader *)buf;
37
38 if (buf_size < sizeof(*header)) {
39 return 0;
40 }
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
43 }
44 return 100;
45 }
46
47 /**
48 * Check whether an image format is raw
49 *
50 * @fmt: Backing file format, may be NULL
51 */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54 return fmt && strcmp(fmt, "raw") == 0;
55 }
56
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89 QEDHeader le;
90
91 qed_header_cpu_to_le(&s->header, &le);
92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
97 *
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
100 *
101 * No new allocating reqs can start while this function runs.
102 */
103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
109 */
110
111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112 size_t len = nsectors * BDRV_SECTOR_SIZE;
113 uint8_t *buf;
114 int ret;
115
116 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117
118 buf = qemu_blockalign(s->bs, len);
119
120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121 if (ret < 0) {
122 goto out;
123 }
124
125 /* Update header */
126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127
128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
129 if (ret < 0) {
130 goto out;
131 }
132
133 ret = 0;
134 out:
135 qemu_vfree(buf);
136 return ret;
137 }
138
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141 uint64_t table_entries;
142 uint64_t l2_size;
143
144 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145 l2_size = table_entries * cluster_size;
146
147 return l2_size * table_entries;
148 }
149
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153 cluster_size > QED_MAX_CLUSTER_SIZE) {
154 return false;
155 }
156 if (cluster_size & (cluster_size - 1)) {
157 return false; /* not power of 2 */
158 }
159 return true;
160 }
161
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164 if (table_size < QED_MIN_TABLE_SIZE ||
165 table_size > QED_MAX_TABLE_SIZE) {
166 return false;
167 }
168 if (table_size & (table_size - 1)) {
169 return false; /* not power of 2 */
170 }
171 return true;
172 }
173
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175 uint32_t table_size)
176 {
177 if (image_size % BDRV_SECTOR_SIZE != 0) {
178 return false; /* not multiple of sector size */
179 }
180 if (image_size > qed_max_image_size(cluster_size, table_size)) {
181 return false; /* image is too large */
182 }
183 return true;
184 }
185
186 /**
187 * Read a string of known length from the image file
188 *
189 * @file: Image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
195 *
196 * The string is NUL-terminated.
197 */
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199 char *buf, size_t buflen)
200 {
201 int ret;
202 if (n >= buflen) {
203 return -EINVAL;
204 }
205 ret = bdrv_pread(file, offset, n, buf, 0);
206 if (ret < 0) {
207 return ret;
208 }
209 buf[n] = '\0';
210 return 0;
211 }
212
213 /**
214 * Allocate new clusters
215 *
216 * @s: QED state
217 * @n: Number of contiguous clusters to allocate
218 * @ret: Offset of first allocated cluster
219 *
220 * This function only produces the offset where the new clusters should be
221 * written. It updates BDRVQEDState but does not make any changes to the image
222 * file.
223 *
224 * Called with table_lock held.
225 */
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
227 {
228 uint64_t offset = s->file_size;
229 s->file_size += n * s->header.cluster_size;
230 return offset;
231 }
232
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
234 {
235 /* Honor O_DIRECT memory alignment requirements */
236 return qemu_blockalign(s->bs,
237 s->header.cluster_size * s->header.table_size);
238 }
239
240 /**
241 * Allocate a new zeroed L2 table
242 *
243 * Called with table_lock held.
244 */
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
246 {
247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
248
249 l2_table->table = qed_alloc_table(s);
250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
251
252 memset(l2_table->table->offsets, 0,
253 s->header.cluster_size * s->header.table_size);
254 return l2_table;
255 }
256
257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
258 {
259 qemu_co_mutex_lock(&s->table_lock);
260
261 /* No reentrancy is allowed. */
262 assert(!s->allocating_write_reqs_plugged);
263 if (s->allocating_acb != NULL) {
264 /* Another allocating write came concurrently. This cannot happen
265 * from bdrv_qed_drain_begin, but it can happen when the timer runs.
266 */
267 qemu_co_mutex_unlock(&s->table_lock);
268 return false;
269 }
270
271 s->allocating_write_reqs_plugged = true;
272 qemu_co_mutex_unlock(&s->table_lock);
273 return true;
274 }
275
276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
277 {
278 qemu_co_mutex_lock(&s->table_lock);
279 assert(s->allocating_write_reqs_plugged);
280 s->allocating_write_reqs_plugged = false;
281 qemu_co_queue_next(&s->allocating_write_reqs);
282 qemu_co_mutex_unlock(&s->table_lock);
283 }
284
285 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
286 {
287 int ret;
288
289 trace_qed_need_check_timer_cb(s);
290 assert_bdrv_graph_readable();
291
292 if (!qed_plug_allocating_write_reqs(s)) {
293 return;
294 }
295
296 /* Ensure writes are on disk before clearing flag */
297 ret = bdrv_co_flush(s->bs->file->bs);
298 if (ret < 0) {
299 qed_unplug_allocating_write_reqs(s);
300 return;
301 }
302
303 s->header.features &= ~QED_F_NEED_CHECK;
304 ret = qed_write_header(s);
305 (void) ret;
306
307 qed_unplug_allocating_write_reqs(s);
308
309 ret = bdrv_co_flush(s->bs);
310 (void) ret;
311 }
312
313 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
314 {
315 BDRVQEDState *s = opaque;
316 GRAPH_RDLOCK_GUARD();
317
318 qed_need_check_timer(opaque);
319 bdrv_dec_in_flight(s->bs);
320 }
321
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324 BDRVQEDState *s = opaque;
325 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
326
327 bdrv_inc_in_flight(s->bs);
328 qemu_coroutine_enter(co);
329 }
330
331 static void qed_start_need_check_timer(BDRVQEDState *s)
332 {
333 trace_qed_start_need_check_timer(s);
334
335 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
336 * migration.
337 */
338 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
339 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
340 }
341
342 /* It's okay to call this multiple times or when no timer is started */
343 static void qed_cancel_need_check_timer(BDRVQEDState *s)
344 {
345 trace_qed_cancel_need_check_timer(s);
346 timer_del(s->need_check_timer);
347 }
348
349 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
350 {
351 BDRVQEDState *s = bs->opaque;
352
353 qed_cancel_need_check_timer(s);
354 timer_free(s->need_check_timer);
355 }
356
357 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
358 AioContext *new_context)
359 {
360 BDRVQEDState *s = bs->opaque;
361
362 s->need_check_timer = aio_timer_new(new_context,
363 QEMU_CLOCK_VIRTUAL, SCALE_NS,
364 qed_need_check_timer_cb, s);
365 if (s->header.features & QED_F_NEED_CHECK) {
366 qed_start_need_check_timer(s);
367 }
368 }
369
370 static void bdrv_qed_drain_begin(BlockDriverState *bs)
371 {
372 BDRVQEDState *s = bs->opaque;
373
374 /* Fire the timer immediately in order to start doing I/O as soon as the
375 * header is flushed.
376 */
377 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
378 Coroutine *co;
379
380 qed_cancel_need_check_timer(s);
381 co = qemu_coroutine_create(qed_need_check_timer_entry, s);
382 bdrv_inc_in_flight(bs);
383 aio_co_enter(bdrv_get_aio_context(bs), co);
384 }
385 }
386
387 static void bdrv_qed_init_state(BlockDriverState *bs)
388 {
389 BDRVQEDState *s = bs->opaque;
390
391 memset(s, 0, sizeof(BDRVQEDState));
392 s->bs = bs;
393 qemu_co_mutex_init(&s->table_lock);
394 qemu_co_queue_init(&s->allocating_write_reqs);
395 }
396
397 /* Called with table_lock held. */
398 static int coroutine_fn GRAPH_RDLOCK
399 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
400 {
401 BDRVQEDState *s = bs->opaque;
402 QEDHeader le_header;
403 int64_t file_size;
404 int ret;
405
406 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
407 if (ret < 0) {
408 error_setg(errp, "Failed to read QED header");
409 return ret;
410 }
411 qed_header_le_to_cpu(&le_header, &s->header);
412
413 if (s->header.magic != QED_MAGIC) {
414 error_setg(errp, "Image not in QED format");
415 return -EINVAL;
416 }
417 if (s->header.features & ~QED_FEATURE_MASK) {
418 /* image uses unsupported feature bits */
419 error_setg(errp, "Unsupported QED features: %" PRIx64,
420 s->header.features & ~QED_FEATURE_MASK);
421 return -ENOTSUP;
422 }
423 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
424 error_setg(errp, "QED cluster size is invalid");
425 return -EINVAL;
426 }
427
428 /* Round down file size to the last cluster */
429 file_size = bdrv_co_getlength(bs->file->bs);
430 if (file_size < 0) {
431 error_setg(errp, "Failed to get file length");
432 return file_size;
433 }
434 s->file_size = qed_start_of_cluster(s, file_size);
435
436 if (!qed_is_table_size_valid(s->header.table_size)) {
437 error_setg(errp, "QED table size is invalid");
438 return -EINVAL;
439 }
440 if (!qed_is_image_size_valid(s->header.image_size,
441 s->header.cluster_size,
442 s->header.table_size)) {
443 error_setg(errp, "QED image size is invalid");
444 return -EINVAL;
445 }
446 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
447 error_setg(errp, "QED table offset is invalid");
448 return -EINVAL;
449 }
450
451 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
452 sizeof(uint64_t);
453 s->l2_shift = ctz32(s->header.cluster_size);
454 s->l2_mask = s->table_nelems - 1;
455 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
456
457 /* Header size calculation must not overflow uint32_t */
458 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
459 error_setg(errp, "QED header size is too large");
460 return -EINVAL;
461 }
462
463 if ((s->header.features & QED_F_BACKING_FILE)) {
464 g_autofree char *backing_file_str = NULL;
465
466 if ((uint64_t)s->header.backing_filename_offset +
467 s->header.backing_filename_size >
468 s->header.cluster_size * s->header.header_size) {
469 error_setg(errp, "QED backing filename offset is invalid");
470 return -EINVAL;
471 }
472
473 backing_file_str = g_malloc(sizeof(bs->backing_file));
474 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
475 s->header.backing_filename_size,
476 backing_file_str, sizeof(bs->backing_file));
477 if (ret < 0) {
478 error_setg(errp, "Failed to read backing filename");
479 return ret;
480 }
481
482 if (!g_str_equal(backing_file_str, bs->backing_file)) {
483 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
484 backing_file_str);
485 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
486 backing_file_str);
487 }
488
489 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
490 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
491 }
492 }
493
494 /* Reset unknown autoclear feature bits. This is a backwards
495 * compatibility mechanism that allows images to be opened by older
496 * programs, which "knock out" unknown feature bits. When an image is
497 * opened by a newer program again it can detect that the autoclear
498 * feature is no longer valid.
499 */
500 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
501 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
502 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
503
504 ret = qed_write_header_sync(s);
505 if (ret) {
506 error_setg(errp, "Failed to update header");
507 return ret;
508 }
509
510 /* From here on only known autoclear feature bits are valid */
511 bdrv_co_flush(bs->file->bs);
512 }
513
514 s->l1_table = qed_alloc_table(s);
515 qed_init_l2_cache(&s->l2_cache);
516
517 ret = qed_read_l1_table_sync(s);
518 if (ret) {
519 error_setg(errp, "Failed to read L1 table");
520 goto out;
521 }
522
523 /* If image was not closed cleanly, check consistency */
524 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
525 /* Read-only images cannot be fixed. There is no risk of corruption
526 * since write operations are not possible. Therefore, allow
527 * potentially inconsistent images to be opened read-only. This can
528 * aid data recovery from an otherwise inconsistent image.
529 */
530 if (!bdrv_is_read_only(bs->file->bs) &&
531 !(flags & BDRV_O_INACTIVE)) {
532 BdrvCheckResult result = {0};
533
534 ret = qed_check(s, &result, true);
535 if (ret) {
536 error_setg(errp, "Image corrupted");
537 goto out;
538 }
539 }
540 }
541
542 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
543
544 out:
545 if (ret) {
546 qed_free_l2_cache(&s->l2_cache);
547 qemu_vfree(s->l1_table);
548 }
549 return ret;
550 }
551
552 typedef struct QEDOpenCo {
553 BlockDriverState *bs;
554 QDict *options;
555 int flags;
556 Error **errp;
557 int ret;
558 } QEDOpenCo;
559
560 static void coroutine_fn GRAPH_RDLOCK bdrv_qed_open_entry(void *opaque)
561 {
562 QEDOpenCo *qoc = opaque;
563 BDRVQEDState *s = qoc->bs->opaque;
564
565 qemu_co_mutex_lock(&s->table_lock);
566 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
567 qemu_co_mutex_unlock(&s->table_lock);
568 }
569
570 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
571 Error **errp)
572 {
573 QEDOpenCo qoc = {
574 .bs = bs,
575 .options = options,
576 .flags = flags,
577 .errp = errp,
578 .ret = -EINPROGRESS
579 };
580 int ret;
581
582 assume_graph_lock(); /* FIXME */
583
584 ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
585 if (ret < 0) {
586 return ret;
587 }
588
589 bdrv_qed_init_state(bs);
590 if (qemu_in_coroutine()) {
591 bdrv_qed_open_entry(&qoc);
592 } else {
593 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
594 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
595 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
596 }
597 return qoc.ret;
598 }
599
600 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
601 {
602 BDRVQEDState *s = bs->opaque;
603
604 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
605 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
606 }
607
608 /* We have nothing to do for QED reopen, stubs just return
609 * success */
610 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
611 BlockReopenQueue *queue, Error **errp)
612 {
613 return 0;
614 }
615
616 static void bdrv_qed_close(BlockDriverState *bs)
617 {
618 BDRVQEDState *s = bs->opaque;
619
620 bdrv_qed_detach_aio_context(bs);
621
622 /* Ensure writes reach stable storage */
623 bdrv_flush(bs->file->bs);
624
625 /* Clean shutdown, no check required on next open */
626 if (s->header.features & QED_F_NEED_CHECK) {
627 s->header.features &= ~QED_F_NEED_CHECK;
628 qed_write_header_sync(s);
629 }
630
631 qed_free_l2_cache(&s->l2_cache);
632 qemu_vfree(s->l1_table);
633 }
634
635 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
636 Error **errp)
637 {
638 BlockdevCreateOptionsQed *qed_opts;
639 BlockBackend *blk = NULL;
640 BlockDriverState *bs = NULL;
641
642 QEDHeader header;
643 QEDHeader le_header;
644 uint8_t *l1_table = NULL;
645 size_t l1_size;
646 int ret = 0;
647
648 assert(opts->driver == BLOCKDEV_DRIVER_QED);
649 qed_opts = &opts->u.qed;
650
651 /* Validate options and set default values */
652 if (!qed_opts->has_cluster_size) {
653 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
654 }
655 if (!qed_opts->has_table_size) {
656 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
657 }
658
659 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
660 error_setg(errp, "QED cluster size must be within range [%u, %u] "
661 "and power of 2",
662 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
663 return -EINVAL;
664 }
665 if (!qed_is_table_size_valid(qed_opts->table_size)) {
666 error_setg(errp, "QED table size must be within range [%u, %u] "
667 "and power of 2",
668 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
669 return -EINVAL;
670 }
671 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
672 qed_opts->table_size))
673 {
674 error_setg(errp, "QED image size must be a non-zero multiple of "
675 "cluster size and less than %" PRIu64 " bytes",
676 qed_max_image_size(qed_opts->cluster_size,
677 qed_opts->table_size));
678 return -EINVAL;
679 }
680
681 /* Create BlockBackend to write to the image */
682 bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
683 if (bs == NULL) {
684 return -EIO;
685 }
686
687 blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
688 errp);
689 if (!blk) {
690 ret = -EPERM;
691 goto out;
692 }
693 blk_set_allow_write_beyond_eof(blk, true);
694
695 /* Prepare image format */
696 header = (QEDHeader) {
697 .magic = QED_MAGIC,
698 .cluster_size = qed_opts->cluster_size,
699 .table_size = qed_opts->table_size,
700 .header_size = 1,
701 .features = 0,
702 .compat_features = 0,
703 .l1_table_offset = qed_opts->cluster_size,
704 .image_size = qed_opts->size,
705 };
706
707 l1_size = header.cluster_size * header.table_size;
708
709 /*
710 * The QED format associates file length with allocation status,
711 * so a new file (which is empty) must have a length of 0.
712 */
713 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
714 if (ret < 0) {
715 goto out;
716 }
717
718 if (qed_opts->backing_file) {
719 header.features |= QED_F_BACKING_FILE;
720 header.backing_filename_offset = sizeof(le_header);
721 header.backing_filename_size = strlen(qed_opts->backing_file);
722
723 if (qed_opts->has_backing_fmt) {
724 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
725 if (qed_fmt_is_raw(backing_fmt)) {
726 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
727 }
728 }
729 }
730
731 qed_header_cpu_to_le(&header, &le_header);
732 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
733 if (ret < 0) {
734 goto out;
735 }
736 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
737 qed_opts->backing_file, 0);
738 if (ret < 0) {
739 goto out;
740 }
741
742 l1_table = g_malloc0(l1_size);
743 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
744 if (ret < 0) {
745 goto out;
746 }
747
748 ret = 0; /* success */
749 out:
750 g_free(l1_table);
751 blk_unref(blk);
752 bdrv_unref(bs);
753 return ret;
754 }
755
756 static int coroutine_fn GRAPH_RDLOCK
757 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
758 QemuOpts *opts, Error **errp)
759 {
760 BlockdevCreateOptions *create_options = NULL;
761 QDict *qdict;
762 Visitor *v;
763 BlockDriverState *bs = NULL;
764 int ret;
765
766 static const QDictRenames opt_renames[] = {
767 { BLOCK_OPT_BACKING_FILE, "backing-file" },
768 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
769 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
770 { BLOCK_OPT_TABLE_SIZE, "table-size" },
771 { NULL, NULL },
772 };
773
774 /* Parse options and convert legacy syntax */
775 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
776
777 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
778 ret = -EINVAL;
779 goto fail;
780 }
781
782 /* Create and open the file (protocol layer) */
783 ret = bdrv_co_create_file(filename, opts, errp);
784 if (ret < 0) {
785 goto fail;
786 }
787
788 bs = bdrv_co_open(filename, NULL, NULL,
789 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
790 if (bs == NULL) {
791 ret = -EIO;
792 goto fail;
793 }
794
795 /* Now get the QAPI type BlockdevCreateOptions */
796 qdict_put_str(qdict, "driver", "qed");
797 qdict_put_str(qdict, "file", bs->node_name);
798
799 v = qobject_input_visitor_new_flat_confused(qdict, errp);
800 if (!v) {
801 ret = -EINVAL;
802 goto fail;
803 }
804
805 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
806 visit_free(v);
807 if (!create_options) {
808 ret = -EINVAL;
809 goto fail;
810 }
811
812 /* Silently round up size */
813 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
814 create_options->u.qed.size =
815 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
816
817 /* Create the qed image (format layer) */
818 ret = bdrv_qed_co_create(create_options, errp);
819
820 fail:
821 qobject_unref(qdict);
822 bdrv_unref(bs);
823 qapi_free_BlockdevCreateOptions(create_options);
824 return ret;
825 }
826
827 static int coroutine_fn GRAPH_RDLOCK
828 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
829 int64_t bytes, int64_t *pnum, int64_t *map,
830 BlockDriverState **file)
831 {
832 BDRVQEDState *s = bs->opaque;
833 size_t len = MIN(bytes, SIZE_MAX);
834 int status;
835 QEDRequest request = { .l2_table = NULL };
836 uint64_t offset;
837 int ret;
838
839 qemu_co_mutex_lock(&s->table_lock);
840 ret = qed_find_cluster(s, &request, pos, &len, &offset);
841
842 *pnum = len;
843 switch (ret) {
844 case QED_CLUSTER_FOUND:
845 *map = offset | qed_offset_into_cluster(s, pos);
846 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
847 *file = bs->file->bs;
848 break;
849 case QED_CLUSTER_ZERO:
850 status = BDRV_BLOCK_ZERO;
851 break;
852 case QED_CLUSTER_L2:
853 case QED_CLUSTER_L1:
854 status = 0;
855 break;
856 default:
857 assert(ret < 0);
858 status = ret;
859 break;
860 }
861
862 qed_unref_l2_cache_entry(request.l2_table);
863 qemu_co_mutex_unlock(&s->table_lock);
864
865 return status;
866 }
867
868 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
869 {
870 return acb->bs->opaque;
871 }
872
873 /**
874 * Read from the backing file or zero-fill if no backing file
875 *
876 * @s: QED state
877 * @pos: Byte position in device
878 * @qiov: Destination I/O vector
879 *
880 * This function reads qiov->size bytes starting at pos from the backing file.
881 * If there is no backing file then zeroes are read.
882 */
883 static int coroutine_fn GRAPH_RDLOCK
884 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
885 {
886 if (s->bs->backing) {
887 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
888 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
889 }
890 qemu_iovec_memset(qiov, 0, 0, qiov->size);
891 return 0;
892 }
893
894 /**
895 * Copy data from backing file into the image
896 *
897 * @s: QED state
898 * @pos: Byte position in device
899 * @len: Number of bytes
900 * @offset: Byte offset in image file
901 */
902 static int coroutine_fn GRAPH_RDLOCK
903 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
904 uint64_t offset)
905 {
906 QEMUIOVector qiov;
907 int ret;
908
909 /* Skip copy entirely if there is no work to do */
910 if (len == 0) {
911 return 0;
912 }
913
914 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
915
916 ret = qed_read_backing_file(s, pos, &qiov);
917
918 if (ret) {
919 goto out;
920 }
921
922 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
923 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
924 if (ret < 0) {
925 goto out;
926 }
927 ret = 0;
928 out:
929 qemu_vfree(qemu_iovec_buf(&qiov));
930 return ret;
931 }
932
933 /**
934 * Link one or more contiguous clusters into a table
935 *
936 * @s: QED state
937 * @table: L2 table
938 * @index: First cluster index
939 * @n: Number of contiguous clusters
940 * @cluster: First cluster offset
941 *
942 * The cluster offset may be an allocated byte offset in the image file, the
943 * zero cluster marker, or the unallocated cluster marker.
944 *
945 * Called with table_lock held.
946 */
947 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
948 int index, unsigned int n,
949 uint64_t cluster)
950 {
951 int i;
952 for (i = index; i < index + n; i++) {
953 table->offsets[i] = cluster;
954 if (!qed_offset_is_unalloc_cluster(cluster) &&
955 !qed_offset_is_zero_cluster(cluster)) {
956 cluster += s->header.cluster_size;
957 }
958 }
959 }
960
961 /* Called with table_lock held. */
962 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
963 {
964 BDRVQEDState *s = acb_to_s(acb);
965
966 /* Free resources */
967 qemu_iovec_destroy(&acb->cur_qiov);
968 qed_unref_l2_cache_entry(acb->request.l2_table);
969
970 /* Free the buffer we may have allocated for zero writes */
971 if (acb->flags & QED_AIOCB_ZERO) {
972 qemu_vfree(acb->qiov->iov[0].iov_base);
973 acb->qiov->iov[0].iov_base = NULL;
974 }
975
976 /* Start next allocating write request waiting behind this one. Note that
977 * requests enqueue themselves when they first hit an unallocated cluster
978 * but they wait until the entire request is finished before waking up the
979 * next request in the queue. This ensures that we don't cycle through
980 * requests multiple times but rather finish one at a time completely.
981 */
982 if (acb == s->allocating_acb) {
983 s->allocating_acb = NULL;
984 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
985 qemu_co_queue_next(&s->allocating_write_reqs);
986 } else if (s->header.features & QED_F_NEED_CHECK) {
987 qed_start_need_check_timer(s);
988 }
989 }
990 }
991
992 /**
993 * Update L1 table with new L2 table offset and write it out
994 *
995 * Called with table_lock held.
996 */
997 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
998 {
999 BDRVQEDState *s = acb_to_s(acb);
1000 CachedL2Table *l2_table = acb->request.l2_table;
1001 uint64_t l2_offset = l2_table->offset;
1002 int index, ret;
1003
1004 index = qed_l1_index(s, acb->cur_pos);
1005 s->l1_table->offsets[index] = l2_table->offset;
1006
1007 ret = qed_write_l1_table(s, index, 1);
1008
1009 /* Commit the current L2 table to the cache */
1010 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1011
1012 /* This is guaranteed to succeed because we just committed the entry to the
1013 * cache.
1014 */
1015 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1016 assert(acb->request.l2_table != NULL);
1017
1018 return ret;
1019 }
1020
1021
1022 /**
1023 * Update L2 table with new cluster offsets and write them out
1024 *
1025 * Called with table_lock held.
1026 */
1027 static int coroutine_fn GRAPH_RDLOCK
1028 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1029 {
1030 BDRVQEDState *s = acb_to_s(acb);
1031 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1032 int index, ret;
1033
1034 if (need_alloc) {
1035 qed_unref_l2_cache_entry(acb->request.l2_table);
1036 acb->request.l2_table = qed_new_l2_table(s);
1037 }
1038
1039 index = qed_l2_index(s, acb->cur_pos);
1040 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1041 offset);
1042
1043 if (need_alloc) {
1044 /* Write out the whole new L2 table */
1045 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1046 if (ret) {
1047 return ret;
1048 }
1049 return qed_aio_write_l1_update(acb);
1050 } else {
1051 /* Write out only the updated part of the L2 table */
1052 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1053 false);
1054 if (ret) {
1055 return ret;
1056 }
1057 }
1058 return 0;
1059 }
1060
1061 /**
1062 * Write data to the image file
1063 *
1064 * Called with table_lock *not* held.
1065 */
1066 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1067 {
1068 BDRVQEDState *s = acb_to_s(acb);
1069 uint64_t offset = acb->cur_cluster +
1070 qed_offset_into_cluster(s, acb->cur_pos);
1071
1072 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1073
1074 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1075 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1076 &acb->cur_qiov, 0);
1077 }
1078
1079 /**
1080 * Populate untouched regions of new data cluster
1081 *
1082 * Called with table_lock held.
1083 */
1084 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1085 {
1086 BDRVQEDState *s = acb_to_s(acb);
1087 uint64_t start, len, offset;
1088 int ret;
1089
1090 qemu_co_mutex_unlock(&s->table_lock);
1091
1092 /* Populate front untouched region of new data cluster */
1093 start = qed_start_of_cluster(s, acb->cur_pos);
1094 len = qed_offset_into_cluster(s, acb->cur_pos);
1095
1096 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1097 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1098 if (ret < 0) {
1099 goto out;
1100 }
1101
1102 /* Populate back untouched region of new data cluster */
1103 start = acb->cur_pos + acb->cur_qiov.size;
1104 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1105 offset = acb->cur_cluster +
1106 qed_offset_into_cluster(s, acb->cur_pos) +
1107 acb->cur_qiov.size;
1108
1109 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1110 ret = qed_copy_from_backing_file(s, start, len, offset);
1111 if (ret < 0) {
1112 goto out;
1113 }
1114
1115 ret = qed_aio_write_main(acb);
1116 if (ret < 0) {
1117 goto out;
1118 }
1119
1120 if (s->bs->backing) {
1121 /*
1122 * Flush new data clusters before updating the L2 table
1123 *
1124 * This flush is necessary when a backing file is in use. A crash
1125 * during an allocating write could result in empty clusters in the
1126 * image. If the write only touched a subregion of the cluster,
1127 * then backing image sectors have been lost in the untouched
1128 * region. The solution is to flush after writing a new data
1129 * cluster and before updating the L2 table.
1130 */
1131 ret = bdrv_co_flush(s->bs->file->bs);
1132 }
1133
1134 out:
1135 qemu_co_mutex_lock(&s->table_lock);
1136 return ret;
1137 }
1138
1139 /**
1140 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1141 */
1142 static bool qed_should_set_need_check(BDRVQEDState *s)
1143 {
1144 /* The flush before L2 update path ensures consistency */
1145 if (s->bs->backing) {
1146 return false;
1147 }
1148
1149 return !(s->header.features & QED_F_NEED_CHECK);
1150 }
1151
1152 /**
1153 * Write new data cluster
1154 *
1155 * @acb: Write request
1156 * @len: Length in bytes
1157 *
1158 * This path is taken when writing to previously unallocated clusters.
1159 *
1160 * Called with table_lock held.
1161 */
1162 static int coroutine_fn GRAPH_RDLOCK
1163 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1164 {
1165 BDRVQEDState *s = acb_to_s(acb);
1166 int ret;
1167
1168 /* Cancel timer when the first allocating request comes in */
1169 if (s->allocating_acb == NULL) {
1170 qed_cancel_need_check_timer(s);
1171 }
1172
1173 /* Freeze this request if another allocating write is in progress */
1174 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1175 if (s->allocating_acb != NULL) {
1176 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1177 assert(s->allocating_acb == NULL);
1178 }
1179 s->allocating_acb = acb;
1180 return -EAGAIN; /* start over with looking up table entries */
1181 }
1182
1183 acb->cur_nclusters = qed_bytes_to_clusters(s,
1184 qed_offset_into_cluster(s, acb->cur_pos) + len);
1185 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1186
1187 if (acb->flags & QED_AIOCB_ZERO) {
1188 /* Skip ahead if the clusters are already zero */
1189 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1190 return 0;
1191 }
1192 acb->cur_cluster = 1;
1193 } else {
1194 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1195 }
1196
1197 if (qed_should_set_need_check(s)) {
1198 s->header.features |= QED_F_NEED_CHECK;
1199 ret = qed_write_header(s);
1200 if (ret < 0) {
1201 return ret;
1202 }
1203 }
1204
1205 if (!(acb->flags & QED_AIOCB_ZERO)) {
1206 ret = qed_aio_write_cow(acb);
1207 if (ret < 0) {
1208 return ret;
1209 }
1210 }
1211
1212 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1213 }
1214
1215 /**
1216 * Write data cluster in place
1217 *
1218 * @acb: Write request
1219 * @offset: Cluster offset in bytes
1220 * @len: Length in bytes
1221 *
1222 * This path is taken when writing to already allocated clusters.
1223 *
1224 * Called with table_lock held.
1225 */
1226 static int coroutine_fn GRAPH_RDLOCK
1227 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1228 {
1229 BDRVQEDState *s = acb_to_s(acb);
1230 int r;
1231
1232 qemu_co_mutex_unlock(&s->table_lock);
1233
1234 /* Allocate buffer for zero writes */
1235 if (acb->flags & QED_AIOCB_ZERO) {
1236 struct iovec *iov = acb->qiov->iov;
1237
1238 if (!iov->iov_base) {
1239 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1240 if (iov->iov_base == NULL) {
1241 r = -ENOMEM;
1242 goto out;
1243 }
1244 memset(iov->iov_base, 0, iov->iov_len);
1245 }
1246 }
1247
1248 /* Calculate the I/O vector */
1249 acb->cur_cluster = offset;
1250 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1251
1252 /* Do the actual write. */
1253 r = qed_aio_write_main(acb);
1254 out:
1255 qemu_co_mutex_lock(&s->table_lock);
1256 return r;
1257 }
1258
1259 /**
1260 * Write data cluster
1261 *
1262 * @opaque: Write request
1263 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1264 * @offset: Cluster offset in bytes
1265 * @len: Length in bytes
1266 *
1267 * Called with table_lock held.
1268 */
1269 static int coroutine_fn GRAPH_RDLOCK
1270 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1271 {
1272 QEDAIOCB *acb = opaque;
1273
1274 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1275
1276 acb->find_cluster_ret = ret;
1277
1278 switch (ret) {
1279 case QED_CLUSTER_FOUND:
1280 return qed_aio_write_inplace(acb, offset, len);
1281
1282 case QED_CLUSTER_L2:
1283 case QED_CLUSTER_L1:
1284 case QED_CLUSTER_ZERO:
1285 return qed_aio_write_alloc(acb, len);
1286
1287 default:
1288 g_assert_not_reached();
1289 }
1290 }
1291
1292 /**
1293 * Read data cluster
1294 *
1295 * @opaque: Read request
1296 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1297 * @offset: Cluster offset in bytes
1298 * @len: Length in bytes
1299 *
1300 * Called with table_lock held.
1301 */
1302 static int coroutine_fn GRAPH_RDLOCK
1303 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1304 {
1305 QEDAIOCB *acb = opaque;
1306 BDRVQEDState *s = acb_to_s(acb);
1307 BlockDriverState *bs = acb->bs;
1308 int r;
1309
1310 qemu_co_mutex_unlock(&s->table_lock);
1311
1312 /* Adjust offset into cluster */
1313 offset += qed_offset_into_cluster(s, acb->cur_pos);
1314
1315 trace_qed_aio_read_data(s, acb, ret, offset, len);
1316
1317 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1318
1319 /* Handle zero cluster and backing file reads, otherwise read
1320 * data cluster directly.
1321 */
1322 if (ret == QED_CLUSTER_ZERO) {
1323 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1324 r = 0;
1325 } else if (ret != QED_CLUSTER_FOUND) {
1326 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1327 } else {
1328 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1329 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1330 &acb->cur_qiov, 0);
1331 }
1332
1333 qemu_co_mutex_lock(&s->table_lock);
1334 return r;
1335 }
1336
1337 /**
1338 * Begin next I/O or complete the request
1339 */
1340 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1341 {
1342 BDRVQEDState *s = acb_to_s(acb);
1343 uint64_t offset;
1344 size_t len;
1345 int ret;
1346
1347 qemu_co_mutex_lock(&s->table_lock);
1348 while (1) {
1349 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1350
1351 acb->qiov_offset += acb->cur_qiov.size;
1352 acb->cur_pos += acb->cur_qiov.size;
1353 qemu_iovec_reset(&acb->cur_qiov);
1354
1355 /* Complete request */
1356 if (acb->cur_pos >= acb->end_pos) {
1357 ret = 0;
1358 break;
1359 }
1360
1361 /* Find next cluster and start I/O */
1362 len = acb->end_pos - acb->cur_pos;
1363 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1364 if (ret < 0) {
1365 break;
1366 }
1367
1368 if (acb->flags & QED_AIOCB_WRITE) {
1369 ret = qed_aio_write_data(acb, ret, offset, len);
1370 } else {
1371 ret = qed_aio_read_data(acb, ret, offset, len);
1372 }
1373
1374 if (ret < 0 && ret != -EAGAIN) {
1375 break;
1376 }
1377 }
1378
1379 trace_qed_aio_complete(s, acb, ret);
1380 qed_aio_complete(acb);
1381 qemu_co_mutex_unlock(&s->table_lock);
1382 return ret;
1383 }
1384
1385 static int coroutine_fn GRAPH_RDLOCK
1386 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1387 int nb_sectors, int flags)
1388 {
1389 QEDAIOCB acb = {
1390 .bs = bs,
1391 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1392 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1393 .qiov = qiov,
1394 .flags = flags,
1395 };
1396 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1397
1398 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1399
1400 /* Start request */
1401 return qed_aio_next_io(&acb);
1402 }
1403
1404 static int coroutine_fn GRAPH_RDLOCK
1405 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1406 QEMUIOVector *qiov)
1407 {
1408 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1409 }
1410
1411 static int coroutine_fn GRAPH_RDLOCK
1412 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1413 QEMUIOVector *qiov, int flags)
1414 {
1415 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1416 }
1417
1418 static int coroutine_fn GRAPH_RDLOCK
1419 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1420 BdrvRequestFlags flags)
1421 {
1422 BDRVQEDState *s = bs->opaque;
1423
1424 /*
1425 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1426 * then it will be allocated during request processing.
1427 */
1428 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1429
1430 /*
1431 * QED is not prepared for 63bit write-zero requests, so rely on
1432 * max_pwrite_zeroes.
1433 */
1434 assert(bytes <= INT_MAX);
1435
1436 /* Fall back if the request is not aligned */
1437 if (qed_offset_into_cluster(s, offset) ||
1438 qed_offset_into_cluster(s, bytes)) {
1439 return -ENOTSUP;
1440 }
1441
1442 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1443 bytes >> BDRV_SECTOR_BITS,
1444 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1445 }
1446
1447 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1448 int64_t offset,
1449 bool exact,
1450 PreallocMode prealloc,
1451 BdrvRequestFlags flags,
1452 Error **errp)
1453 {
1454 BDRVQEDState *s = bs->opaque;
1455 uint64_t old_image_size;
1456 int ret;
1457
1458 if (prealloc != PREALLOC_MODE_OFF) {
1459 error_setg(errp, "Unsupported preallocation mode '%s'",
1460 PreallocMode_str(prealloc));
1461 return -ENOTSUP;
1462 }
1463
1464 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1465 s->header.table_size)) {
1466 error_setg(errp, "Invalid image size specified");
1467 return -EINVAL;
1468 }
1469
1470 if ((uint64_t)offset < s->header.image_size) {
1471 error_setg(errp, "Shrinking images is currently not supported");
1472 return -ENOTSUP;
1473 }
1474
1475 old_image_size = s->header.image_size;
1476 s->header.image_size = offset;
1477 ret = qed_write_header_sync(s);
1478 if (ret < 0) {
1479 s->header.image_size = old_image_size;
1480 error_setg_errno(errp, -ret, "Failed to update the image size");
1481 }
1482 return ret;
1483 }
1484
1485 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1486 {
1487 BDRVQEDState *s = bs->opaque;
1488 return s->header.image_size;
1489 }
1490
1491 static int coroutine_fn
1492 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1493 {
1494 BDRVQEDState *s = bs->opaque;
1495
1496 memset(bdi, 0, sizeof(*bdi));
1497 bdi->cluster_size = s->header.cluster_size;
1498 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1499 return 0;
1500 }
1501
1502 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1503 const char *backing_file,
1504 const char *backing_fmt)
1505 {
1506 BDRVQEDState *s = bs->opaque;
1507 QEDHeader new_header, le_header;
1508 void *buffer;
1509 size_t buffer_len, backing_file_len;
1510 int ret;
1511
1512 /* Refuse to set backing filename if unknown compat feature bits are
1513 * active. If the image uses an unknown compat feature then we may not
1514 * know the layout of data following the header structure and cannot safely
1515 * add a new string.
1516 */
1517 if (backing_file && (s->header.compat_features &
1518 ~QED_COMPAT_FEATURE_MASK)) {
1519 return -ENOTSUP;
1520 }
1521
1522 memcpy(&new_header, &s->header, sizeof(new_header));
1523
1524 new_header.features &= ~(QED_F_BACKING_FILE |
1525 QED_F_BACKING_FORMAT_NO_PROBE);
1526
1527 /* Adjust feature flags */
1528 if (backing_file) {
1529 new_header.features |= QED_F_BACKING_FILE;
1530
1531 if (qed_fmt_is_raw(backing_fmt)) {
1532 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1533 }
1534 }
1535
1536 /* Calculate new header size */
1537 backing_file_len = 0;
1538
1539 if (backing_file) {
1540 backing_file_len = strlen(backing_file);
1541 }
1542
1543 buffer_len = sizeof(new_header);
1544 new_header.backing_filename_offset = buffer_len;
1545 new_header.backing_filename_size = backing_file_len;
1546 buffer_len += backing_file_len;
1547
1548 /* Make sure we can rewrite header without failing */
1549 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1550 return -ENOSPC;
1551 }
1552
1553 /* Prepare new header */
1554 buffer = g_malloc(buffer_len);
1555
1556 qed_header_cpu_to_le(&new_header, &le_header);
1557 memcpy(buffer, &le_header, sizeof(le_header));
1558 buffer_len = sizeof(le_header);
1559
1560 if (backing_file) {
1561 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1562 buffer_len += backing_file_len;
1563 }
1564
1565 /* Write new header */
1566 ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1567 g_free(buffer);
1568 if (ret == 0) {
1569 memcpy(&s->header, &new_header, sizeof(new_header));
1570 }
1571 return ret;
1572 }
1573
1574 static void coroutine_fn GRAPH_RDLOCK
1575 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1576 {
1577 BDRVQEDState *s = bs->opaque;
1578 int ret;
1579
1580 bdrv_qed_close(bs);
1581
1582 bdrv_qed_init_state(bs);
1583 qemu_co_mutex_lock(&s->table_lock);
1584 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1585 qemu_co_mutex_unlock(&s->table_lock);
1586 if (ret < 0) {
1587 error_prepend(errp, "Could not reopen qed layer: ");
1588 }
1589 }
1590
1591 static int coroutine_fn GRAPH_RDLOCK
1592 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1593 BdrvCheckMode fix)
1594 {
1595 BDRVQEDState *s = bs->opaque;
1596 int ret;
1597
1598 qemu_co_mutex_lock(&s->table_lock);
1599 ret = qed_check(s, result, !!fix);
1600 qemu_co_mutex_unlock(&s->table_lock);
1601
1602 return ret;
1603 }
1604
1605 static QemuOptsList qed_create_opts = {
1606 .name = "qed-create-opts",
1607 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1608 .desc = {
1609 {
1610 .name = BLOCK_OPT_SIZE,
1611 .type = QEMU_OPT_SIZE,
1612 .help = "Virtual disk size"
1613 },
1614 {
1615 .name = BLOCK_OPT_BACKING_FILE,
1616 .type = QEMU_OPT_STRING,
1617 .help = "File name of a base image"
1618 },
1619 {
1620 .name = BLOCK_OPT_BACKING_FMT,
1621 .type = QEMU_OPT_STRING,
1622 .help = "Image format of the base image"
1623 },
1624 {
1625 .name = BLOCK_OPT_CLUSTER_SIZE,
1626 .type = QEMU_OPT_SIZE,
1627 .help = "Cluster size (in bytes)",
1628 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1629 },
1630 {
1631 .name = BLOCK_OPT_TABLE_SIZE,
1632 .type = QEMU_OPT_SIZE,
1633 .help = "L1/L2 table size (in clusters)"
1634 },
1635 { /* end of list */ }
1636 }
1637 };
1638
1639 static BlockDriver bdrv_qed = {
1640 .format_name = "qed",
1641 .instance_size = sizeof(BDRVQEDState),
1642 .create_opts = &qed_create_opts,
1643 .is_format = true,
1644 .supports_backing = true,
1645
1646 .bdrv_probe = bdrv_qed_probe,
1647 .bdrv_open = bdrv_qed_open,
1648 .bdrv_close = bdrv_qed_close,
1649 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1650 .bdrv_child_perm = bdrv_default_perms,
1651 .bdrv_co_create = bdrv_qed_co_create,
1652 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1653 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1654 .bdrv_co_block_status = bdrv_qed_co_block_status,
1655 .bdrv_co_readv = bdrv_qed_co_readv,
1656 .bdrv_co_writev = bdrv_qed_co_writev,
1657 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1658 .bdrv_co_truncate = bdrv_qed_co_truncate,
1659 .bdrv_co_getlength = bdrv_qed_co_getlength,
1660 .bdrv_co_get_info = bdrv_qed_co_get_info,
1661 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1662 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1663 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1664 .bdrv_co_check = bdrv_qed_co_check,
1665 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1666 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1667 .bdrv_drain_begin = bdrv_qed_drain_begin,
1668 };
1669
1670 static void bdrv_qed_init(void)
1671 {
1672 bdrv_register(&bdrv_qed);
1673 }
1674
1675 block_init(bdrv_qed_init);