]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
250fa89b0f3d1708cc2b9e849f8d5cdde1e397ad
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qapi/qmp/qerror.h"
19 #include "migration/migration.h"
20
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24 bool finished = false;
25
26 /* Wait for the request to finish */
27 acb->finished = &finished;
28 while (!finished) {
29 qemu_aio_wait();
30 }
31 }
32
33 static const AIOCBInfo qed_aiocb_info = {
34 .aiocb_size = sizeof(QEDAIOCB),
35 .cancel = qed_aio_cancel,
36 };
37
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39 const char *filename)
40 {
41 const QEDHeader *header = (const QEDHeader *)buf;
42
43 if (buf_size < sizeof(*header)) {
44 return 0;
45 }
46 if (le32_to_cpu(header->magic) != QED_MAGIC) {
47 return 0;
48 }
49 return 100;
50 }
51
52 /**
53 * Check whether an image format is raw
54 *
55 * @fmt: Backing file format, may be NULL
56 */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59 return fmt && strcmp(fmt, "raw") == 0;
60 }
61
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64 cpu->magic = le32_to_cpu(le->magic);
65 cpu->cluster_size = le32_to_cpu(le->cluster_size);
66 cpu->table_size = le32_to_cpu(le->table_size);
67 cpu->header_size = le32_to_cpu(le->header_size);
68 cpu->features = le64_to_cpu(le->features);
69 cpu->compat_features = le64_to_cpu(le->compat_features);
70 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72 cpu->image_size = le64_to_cpu(le->image_size);
73 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79 le->magic = cpu_to_le32(cpu->magic);
80 le->cluster_size = cpu_to_le32(cpu->cluster_size);
81 le->table_size = cpu_to_le32(cpu->table_size);
82 le->header_size = cpu_to_le32(cpu->header_size);
83 le->features = cpu_to_le64(cpu->features);
84 le->compat_features = cpu_to_le64(cpu->compat_features);
85 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87 le->image_size = cpu_to_le64(cpu->image_size);
88 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91
92 int qed_write_header_sync(BDRVQEDState *s)
93 {
94 QEDHeader le;
95 int ret;
96
97 qed_header_cpu_to_le(&s->header, &le);
98 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99 if (ret != sizeof(le)) {
100 return ret;
101 }
102 return 0;
103 }
104
105 typedef struct {
106 GenericCB gencb;
107 BDRVQEDState *s;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int nsectors;
111 uint8_t *buf;
112 } QEDWriteHeaderCB;
113
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116 QEDWriteHeaderCB *write_header_cb = opaque;
117
118 qemu_vfree(write_header_cb->buf);
119 gencb_complete(write_header_cb, ret);
120 }
121
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124 QEDWriteHeaderCB *write_header_cb = opaque;
125 BDRVQEDState *s = write_header_cb->s;
126
127 if (ret) {
128 qed_write_header_cb(write_header_cb, ret);
129 return;
130 }
131
132 /* Update header */
133 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134
135 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136 write_header_cb->nsectors, qed_write_header_cb,
137 write_header_cb);
138 }
139
140 /**
141 * Update header in-place (does not rewrite backing filename or other strings)
142 *
143 * This function only updates known header fields in-place and does not affect
144 * extra data after the QED header.
145 */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147 void *opaque)
148 {
149 /* We must write full sectors for O_DIRECT but cannot necessarily generate
150 * the data following the header if an unrecognized compat feature is
151 * active. Therefore, first read the sectors containing the header, update
152 * them, and write back.
153 */
154
155 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156 BDRV_SECTOR_SIZE;
157 size_t len = nsectors * BDRV_SECTOR_SIZE;
158 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159 cb, opaque);
160
161 write_header_cb->s = s;
162 write_header_cb->nsectors = nsectors;
163 write_header_cb->buf = qemu_blockalign(s->bs, len);
164 write_header_cb->iov.iov_base = write_header_cb->buf;
165 write_header_cb->iov.iov_len = len;
166 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167
168 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169 qed_write_header_read_cb, write_header_cb);
170 }
171
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174 uint64_t table_entries;
175 uint64_t l2_size;
176
177 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178 l2_size = table_entries * cluster_size;
179
180 return l2_size * table_entries;
181 }
182
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186 cluster_size > QED_MAX_CLUSTER_SIZE) {
187 return false;
188 }
189 if (cluster_size & (cluster_size - 1)) {
190 return false; /* not power of 2 */
191 }
192 return true;
193 }
194
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197 if (table_size < QED_MIN_TABLE_SIZE ||
198 table_size > QED_MAX_TABLE_SIZE) {
199 return false;
200 }
201 if (table_size & (table_size - 1)) {
202 return false; /* not power of 2 */
203 }
204 return true;
205 }
206
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208 uint32_t table_size)
209 {
210 if (image_size % BDRV_SECTOR_SIZE != 0) {
211 return false; /* not multiple of sector size */
212 }
213 if (image_size > qed_max_image_size(cluster_size, table_size)) {
214 return false; /* image is too large */
215 }
216 return true;
217 }
218
219 /**
220 * Read a string of known length from the image file
221 *
222 * @file: Image file
223 * @offset: File offset to start of string, in bytes
224 * @n: String length in bytes
225 * @buf: Destination buffer
226 * @buflen: Destination buffer length in bytes
227 * @ret: 0 on success, -errno on failure
228 *
229 * The string is NUL-terminated.
230 */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232 char *buf, size_t buflen)
233 {
234 int ret;
235 if (n >= buflen) {
236 return -EINVAL;
237 }
238 ret = bdrv_pread(file, offset, buf, n);
239 if (ret < 0) {
240 return ret;
241 }
242 buf[n] = '\0';
243 return 0;
244 }
245
246 /**
247 * Allocate new clusters
248 *
249 * @s: QED state
250 * @n: Number of contiguous clusters to allocate
251 * @ret: Offset of first allocated cluster
252 *
253 * This function only produces the offset where the new clusters should be
254 * written. It updates BDRVQEDState but does not make any changes to the image
255 * file.
256 */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259 uint64_t offset = s->file_size;
260 s->file_size += n * s->header.cluster_size;
261 return offset;
262 }
263
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266 /* Honor O_DIRECT memory alignment requirements */
267 return qemu_blockalign(s->bs,
268 s->header.cluster_size * s->header.table_size);
269 }
270
271 /**
272 * Allocate a new zeroed L2 table
273 */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277
278 l2_table->table = qed_alloc_table(s);
279 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280
281 memset(l2_table->table->offsets, 0,
282 s->header.cluster_size * s->header.table_size);
283 return l2_table;
284 }
285
286 static void qed_aio_next_io(void *opaque, int ret);
287
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290 assert(!s->allocating_write_reqs_plugged);
291
292 s->allocating_write_reqs_plugged = true;
293 }
294
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297 QEDAIOCB *acb;
298
299 assert(s->allocating_write_reqs_plugged);
300
301 s->allocating_write_reqs_plugged = false;
302
303 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304 if (acb) {
305 qed_aio_next_io(acb, 0);
306 }
307 }
308
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311 /* Do nothing */
312 }
313
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316 BDRVQEDState *s = opaque;
317
318 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319
320 /* No need to wait until flush completes */
321 qed_unplug_allocating_write_reqs(s);
322 }
323
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326 BDRVQEDState *s = opaque;
327
328 if (ret) {
329 qed_unplug_allocating_write_reqs(s);
330 return;
331 }
332
333 s->header.features &= ~QED_F_NEED_CHECK;
334 qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339 BDRVQEDState *s = opaque;
340
341 /* The timer should only fire when allocating writes have drained */
342 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343
344 trace_qed_need_check_timer_cb(s);
345
346 qed_plug_allocating_write_reqs(s);
347
348 /* Ensure writes are on disk before clearing flag */
349 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354 trace_qed_start_need_check_timer(s);
355
356 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
357 * migration.
358 */
359 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366 trace_qed_cancel_need_check_timer(s);
367 timer_del(s->need_check_timer);
368 }
369
370 static void bdrv_qed_rebind(BlockDriverState *bs)
371 {
372 BDRVQEDState *s = bs->opaque;
373 s->bs = bs;
374 }
375
376 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
377 Error **errp)
378 {
379 BDRVQEDState *s = bs->opaque;
380 QEDHeader le_header;
381 int64_t file_size;
382 int ret;
383
384 s->bs = bs;
385 QSIMPLEQ_INIT(&s->allocating_write_reqs);
386
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388 if (ret < 0) {
389 return ret;
390 }
391 qed_header_le_to_cpu(&le_header, &s->header);
392
393 if (s->header.magic != QED_MAGIC) {
394 return -EMEDIUMTYPE;
395 }
396 if (s->header.features & ~QED_FEATURE_MASK) {
397 /* image uses unsupported feature bits */
398 char buf[64];
399 snprintf(buf, sizeof(buf), "%" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
401 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
402 bs->device_name, "QED", buf);
403 return -ENOTSUP;
404 }
405 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
406 return -EINVAL;
407 }
408
409 /* Round down file size to the last cluster */
410 file_size = bdrv_getlength(bs->file);
411 if (file_size < 0) {
412 return file_size;
413 }
414 s->file_size = qed_start_of_cluster(s, file_size);
415
416 if (!qed_is_table_size_valid(s->header.table_size)) {
417 return -EINVAL;
418 }
419 if (!qed_is_image_size_valid(s->header.image_size,
420 s->header.cluster_size,
421 s->header.table_size)) {
422 return -EINVAL;
423 }
424 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
425 return -EINVAL;
426 }
427
428 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
429 sizeof(uint64_t);
430 s->l2_shift = ffs(s->header.cluster_size) - 1;
431 s->l2_mask = s->table_nelems - 1;
432 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
433
434 if ((s->header.features & QED_F_BACKING_FILE)) {
435 if ((uint64_t)s->header.backing_filename_offset +
436 s->header.backing_filename_size >
437 s->header.cluster_size * s->header.header_size) {
438 return -EINVAL;
439 }
440
441 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
442 s->header.backing_filename_size, bs->backing_file,
443 sizeof(bs->backing_file));
444 if (ret < 0) {
445 return ret;
446 }
447
448 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
449 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
450 }
451 }
452
453 /* Reset unknown autoclear feature bits. This is a backwards
454 * compatibility mechanism that allows images to be opened by older
455 * programs, which "knock out" unknown feature bits. When an image is
456 * opened by a newer program again it can detect that the autoclear
457 * feature is no longer valid.
458 */
459 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
460 !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
461 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
462
463 ret = qed_write_header_sync(s);
464 if (ret) {
465 return ret;
466 }
467
468 /* From here on only known autoclear feature bits are valid */
469 bdrv_flush(bs->file);
470 }
471
472 s->l1_table = qed_alloc_table(s);
473 qed_init_l2_cache(&s->l2_cache);
474
475 ret = qed_read_l1_table_sync(s);
476 if (ret) {
477 goto out;
478 }
479
480 /* If image was not closed cleanly, check consistency */
481 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
482 /* Read-only images cannot be fixed. There is no risk of corruption
483 * since write operations are not possible. Therefore, allow
484 * potentially inconsistent images to be opened read-only. This can
485 * aid data recovery from an otherwise inconsistent image.
486 */
487 if (!bdrv_is_read_only(bs->file) &&
488 !(flags & BDRV_O_INCOMING)) {
489 BdrvCheckResult result = {0};
490
491 ret = qed_check(s, &result, true);
492 if (ret) {
493 goto out;
494 }
495 }
496 }
497
498 s->need_check_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
499 qed_need_check_timer_cb, s);
500
501 out:
502 if (ret) {
503 qed_free_l2_cache(&s->l2_cache);
504 qemu_vfree(s->l1_table);
505 }
506 return ret;
507 }
508
509 /* We have nothing to do for QED reopen, stubs just return
510 * success */
511 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
512 BlockReopenQueue *queue, Error **errp)
513 {
514 return 0;
515 }
516
517 static void bdrv_qed_close(BlockDriverState *bs)
518 {
519 BDRVQEDState *s = bs->opaque;
520
521 qed_cancel_need_check_timer(s);
522 timer_free(s->need_check_timer);
523
524 /* Ensure writes reach stable storage */
525 bdrv_flush(bs->file);
526
527 /* Clean shutdown, no check required on next open */
528 if (s->header.features & QED_F_NEED_CHECK) {
529 s->header.features &= ~QED_F_NEED_CHECK;
530 qed_write_header_sync(s);
531 }
532
533 qed_free_l2_cache(&s->l2_cache);
534 qemu_vfree(s->l1_table);
535 }
536
537 static int qed_create(const char *filename, uint32_t cluster_size,
538 uint64_t image_size, uint32_t table_size,
539 const char *backing_file, const char *backing_fmt)
540 {
541 QEDHeader header = {
542 .magic = QED_MAGIC,
543 .cluster_size = cluster_size,
544 .table_size = table_size,
545 .header_size = 1,
546 .features = 0,
547 .compat_features = 0,
548 .l1_table_offset = cluster_size,
549 .image_size = image_size,
550 };
551 QEDHeader le_header;
552 uint8_t *l1_table = NULL;
553 size_t l1_size = header.cluster_size * header.table_size;
554 int ret = 0;
555 BlockDriverState *bs = NULL;
556
557 ret = bdrv_create_file(filename, NULL);
558 if (ret < 0) {
559 return ret;
560 }
561
562 ret = bdrv_file_open(&bs, filename, NULL, BDRV_O_RDWR | BDRV_O_CACHE_WB);
563 if (ret < 0) {
564 return ret;
565 }
566
567 /* File must start empty and grow, check truncate is supported */
568 ret = bdrv_truncate(bs, 0);
569 if (ret < 0) {
570 goto out;
571 }
572
573 if (backing_file) {
574 header.features |= QED_F_BACKING_FILE;
575 header.backing_filename_offset = sizeof(le_header);
576 header.backing_filename_size = strlen(backing_file);
577
578 if (qed_fmt_is_raw(backing_fmt)) {
579 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
580 }
581 }
582
583 qed_header_cpu_to_le(&header, &le_header);
584 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
585 if (ret < 0) {
586 goto out;
587 }
588 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
589 header.backing_filename_size);
590 if (ret < 0) {
591 goto out;
592 }
593
594 l1_table = g_malloc0(l1_size);
595 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
596 if (ret < 0) {
597 goto out;
598 }
599
600 ret = 0; /* success */
601 out:
602 g_free(l1_table);
603 bdrv_unref(bs);
604 return ret;
605 }
606
607 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options,
608 Error **errp)
609 {
610 uint64_t image_size = 0;
611 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
612 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
613 const char *backing_file = NULL;
614 const char *backing_fmt = NULL;
615
616 while (options && options->name) {
617 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
618 image_size = options->value.n;
619 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
620 backing_file = options->value.s;
621 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
622 backing_fmt = options->value.s;
623 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
624 if (options->value.n) {
625 cluster_size = options->value.n;
626 }
627 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
628 if (options->value.n) {
629 table_size = options->value.n;
630 }
631 }
632 options++;
633 }
634
635 if (!qed_is_cluster_size_valid(cluster_size)) {
636 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
637 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
638 return -EINVAL;
639 }
640 if (!qed_is_table_size_valid(table_size)) {
641 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
642 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
643 return -EINVAL;
644 }
645 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
646 fprintf(stderr, "QED image size must be a non-zero multiple of "
647 "cluster size and less than %" PRIu64 " bytes\n",
648 qed_max_image_size(cluster_size, table_size));
649 return -EINVAL;
650 }
651
652 return qed_create(filename, cluster_size, image_size, table_size,
653 backing_file, backing_fmt);
654 }
655
656 typedef struct {
657 BlockDriverState *bs;
658 Coroutine *co;
659 uint64_t pos;
660 int64_t status;
661 int *pnum;
662 } QEDIsAllocatedCB;
663
664 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
665 {
666 QEDIsAllocatedCB *cb = opaque;
667 BDRVQEDState *s = cb->bs->opaque;
668 *cb->pnum = len / BDRV_SECTOR_SIZE;
669 switch (ret) {
670 case QED_CLUSTER_FOUND:
671 offset |= qed_offset_into_cluster(s, cb->pos);
672 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
673 break;
674 case QED_CLUSTER_ZERO:
675 cb->status = BDRV_BLOCK_ZERO;
676 break;
677 case QED_CLUSTER_L2:
678 case QED_CLUSTER_L1:
679 cb->status = 0;
680 break;
681 default:
682 assert(ret < 0);
683 cb->status = ret;
684 break;
685 }
686
687 if (cb->co) {
688 qemu_coroutine_enter(cb->co, NULL);
689 }
690 }
691
692 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
693 int64_t sector_num,
694 int nb_sectors, int *pnum)
695 {
696 BDRVQEDState *s = bs->opaque;
697 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
698 QEDIsAllocatedCB cb = {
699 .bs = bs,
700 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
701 .status = BDRV_BLOCK_OFFSET_MASK,
702 .pnum = pnum,
703 };
704 QEDRequest request = { .l2_table = NULL };
705
706 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
707
708 /* Now sleep if the callback wasn't invoked immediately */
709 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
710 cb.co = qemu_coroutine_self();
711 qemu_coroutine_yield();
712 }
713
714 qed_unref_l2_cache_entry(request.l2_table);
715
716 return cb.status;
717 }
718
719 static int bdrv_qed_make_empty(BlockDriverState *bs)
720 {
721 return -ENOTSUP;
722 }
723
724 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
725 {
726 return acb->common.bs->opaque;
727 }
728
729 /**
730 * Read from the backing file or zero-fill if no backing file
731 *
732 * @s: QED state
733 * @pos: Byte position in device
734 * @qiov: Destination I/O vector
735 * @cb: Completion function
736 * @opaque: User data for completion function
737 *
738 * This function reads qiov->size bytes starting at pos from the backing file.
739 * If there is no backing file then zeroes are read.
740 */
741 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
742 QEMUIOVector *qiov,
743 BlockDriverCompletionFunc *cb, void *opaque)
744 {
745 uint64_t backing_length = 0;
746 size_t size;
747
748 /* If there is a backing file, get its length. Treat the absence of a
749 * backing file like a zero length backing file.
750 */
751 if (s->bs->backing_hd) {
752 int64_t l = bdrv_getlength(s->bs->backing_hd);
753 if (l < 0) {
754 cb(opaque, l);
755 return;
756 }
757 backing_length = l;
758 }
759
760 /* Zero all sectors if reading beyond the end of the backing file */
761 if (pos >= backing_length ||
762 pos + qiov->size > backing_length) {
763 qemu_iovec_memset(qiov, 0, 0, qiov->size);
764 }
765
766 /* Complete now if there are no backing file sectors to read */
767 if (pos >= backing_length) {
768 cb(opaque, 0);
769 return;
770 }
771
772 /* If the read straddles the end of the backing file, shorten it */
773 size = MIN((uint64_t)backing_length - pos, qiov->size);
774
775 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
776 bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
777 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
778 }
779
780 typedef struct {
781 GenericCB gencb;
782 BDRVQEDState *s;
783 QEMUIOVector qiov;
784 struct iovec iov;
785 uint64_t offset;
786 } CopyFromBackingFileCB;
787
788 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
789 {
790 CopyFromBackingFileCB *copy_cb = opaque;
791 qemu_vfree(copy_cb->iov.iov_base);
792 gencb_complete(&copy_cb->gencb, ret);
793 }
794
795 static void qed_copy_from_backing_file_write(void *opaque, int ret)
796 {
797 CopyFromBackingFileCB *copy_cb = opaque;
798 BDRVQEDState *s = copy_cb->s;
799
800 if (ret) {
801 qed_copy_from_backing_file_cb(copy_cb, ret);
802 return;
803 }
804
805 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
806 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
807 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
808 qed_copy_from_backing_file_cb, copy_cb);
809 }
810
811 /**
812 * Copy data from backing file into the image
813 *
814 * @s: QED state
815 * @pos: Byte position in device
816 * @len: Number of bytes
817 * @offset: Byte offset in image file
818 * @cb: Completion function
819 * @opaque: User data for completion function
820 */
821 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
822 uint64_t len, uint64_t offset,
823 BlockDriverCompletionFunc *cb,
824 void *opaque)
825 {
826 CopyFromBackingFileCB *copy_cb;
827
828 /* Skip copy entirely if there is no work to do */
829 if (len == 0) {
830 cb(opaque, 0);
831 return;
832 }
833
834 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
835 copy_cb->s = s;
836 copy_cb->offset = offset;
837 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
838 copy_cb->iov.iov_len = len;
839 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
840
841 qed_read_backing_file(s, pos, &copy_cb->qiov,
842 qed_copy_from_backing_file_write, copy_cb);
843 }
844
845 /**
846 * Link one or more contiguous clusters into a table
847 *
848 * @s: QED state
849 * @table: L2 table
850 * @index: First cluster index
851 * @n: Number of contiguous clusters
852 * @cluster: First cluster offset
853 *
854 * The cluster offset may be an allocated byte offset in the image file, the
855 * zero cluster marker, or the unallocated cluster marker.
856 */
857 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
858 unsigned int n, uint64_t cluster)
859 {
860 int i;
861 for (i = index; i < index + n; i++) {
862 table->offsets[i] = cluster;
863 if (!qed_offset_is_unalloc_cluster(cluster) &&
864 !qed_offset_is_zero_cluster(cluster)) {
865 cluster += s->header.cluster_size;
866 }
867 }
868 }
869
870 static void qed_aio_complete_bh(void *opaque)
871 {
872 QEDAIOCB *acb = opaque;
873 BlockDriverCompletionFunc *cb = acb->common.cb;
874 void *user_opaque = acb->common.opaque;
875 int ret = acb->bh_ret;
876 bool *finished = acb->finished;
877
878 qemu_bh_delete(acb->bh);
879 qemu_aio_release(acb);
880
881 /* Invoke callback */
882 cb(user_opaque, ret);
883
884 /* Signal cancel completion */
885 if (finished) {
886 *finished = true;
887 }
888 }
889
890 static void qed_aio_complete(QEDAIOCB *acb, int ret)
891 {
892 BDRVQEDState *s = acb_to_s(acb);
893
894 trace_qed_aio_complete(s, acb, ret);
895
896 /* Free resources */
897 qemu_iovec_destroy(&acb->cur_qiov);
898 qed_unref_l2_cache_entry(acb->request.l2_table);
899
900 /* Free the buffer we may have allocated for zero writes */
901 if (acb->flags & QED_AIOCB_ZERO) {
902 qemu_vfree(acb->qiov->iov[0].iov_base);
903 acb->qiov->iov[0].iov_base = NULL;
904 }
905
906 /* Arrange for a bh to invoke the completion function */
907 acb->bh_ret = ret;
908 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
909 qemu_bh_schedule(acb->bh);
910
911 /* Start next allocating write request waiting behind this one. Note that
912 * requests enqueue themselves when they first hit an unallocated cluster
913 * but they wait until the entire request is finished before waking up the
914 * next request in the queue. This ensures that we don't cycle through
915 * requests multiple times but rather finish one at a time completely.
916 */
917 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
918 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
919 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
920 if (acb) {
921 qed_aio_next_io(acb, 0);
922 } else if (s->header.features & QED_F_NEED_CHECK) {
923 qed_start_need_check_timer(s);
924 }
925 }
926 }
927
928 /**
929 * Commit the current L2 table to the cache
930 */
931 static void qed_commit_l2_update(void *opaque, int ret)
932 {
933 QEDAIOCB *acb = opaque;
934 BDRVQEDState *s = acb_to_s(acb);
935 CachedL2Table *l2_table = acb->request.l2_table;
936 uint64_t l2_offset = l2_table->offset;
937
938 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
939
940 /* This is guaranteed to succeed because we just committed the entry to the
941 * cache.
942 */
943 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
944 assert(acb->request.l2_table != NULL);
945
946 qed_aio_next_io(opaque, ret);
947 }
948
949 /**
950 * Update L1 table with new L2 table offset and write it out
951 */
952 static void qed_aio_write_l1_update(void *opaque, int ret)
953 {
954 QEDAIOCB *acb = opaque;
955 BDRVQEDState *s = acb_to_s(acb);
956 int index;
957
958 if (ret) {
959 qed_aio_complete(acb, ret);
960 return;
961 }
962
963 index = qed_l1_index(s, acb->cur_pos);
964 s->l1_table->offsets[index] = acb->request.l2_table->offset;
965
966 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
967 }
968
969 /**
970 * Update L2 table with new cluster offsets and write them out
971 */
972 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
973 {
974 BDRVQEDState *s = acb_to_s(acb);
975 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
976 int index;
977
978 if (ret) {
979 goto err;
980 }
981
982 if (need_alloc) {
983 qed_unref_l2_cache_entry(acb->request.l2_table);
984 acb->request.l2_table = qed_new_l2_table(s);
985 }
986
987 index = qed_l2_index(s, acb->cur_pos);
988 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
989 offset);
990
991 if (need_alloc) {
992 /* Write out the whole new L2 table */
993 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
994 qed_aio_write_l1_update, acb);
995 } else {
996 /* Write out only the updated part of the L2 table */
997 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
998 qed_aio_next_io, acb);
999 }
1000 return;
1001
1002 err:
1003 qed_aio_complete(acb, ret);
1004 }
1005
1006 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1007 {
1008 QEDAIOCB *acb = opaque;
1009 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1010 }
1011
1012 /**
1013 * Flush new data clusters before updating the L2 table
1014 *
1015 * This flush is necessary when a backing file is in use. A crash during an
1016 * allocating write could result in empty clusters in the image. If the write
1017 * only touched a subregion of the cluster, then backing image sectors have
1018 * been lost in the untouched region. The solution is to flush after writing a
1019 * new data cluster and before updating the L2 table.
1020 */
1021 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1022 {
1023 QEDAIOCB *acb = opaque;
1024 BDRVQEDState *s = acb_to_s(acb);
1025
1026 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1027 qed_aio_complete(acb, -EIO);
1028 }
1029 }
1030
1031 /**
1032 * Write data to the image file
1033 */
1034 static void qed_aio_write_main(void *opaque, int ret)
1035 {
1036 QEDAIOCB *acb = opaque;
1037 BDRVQEDState *s = acb_to_s(acb);
1038 uint64_t offset = acb->cur_cluster +
1039 qed_offset_into_cluster(s, acb->cur_pos);
1040 BlockDriverCompletionFunc *next_fn;
1041
1042 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1043
1044 if (ret) {
1045 qed_aio_complete(acb, ret);
1046 return;
1047 }
1048
1049 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1050 next_fn = qed_aio_next_io;
1051 } else {
1052 if (s->bs->backing_hd) {
1053 next_fn = qed_aio_write_flush_before_l2_update;
1054 } else {
1055 next_fn = qed_aio_write_l2_update_cb;
1056 }
1057 }
1058
1059 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1060 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1061 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1062 next_fn, acb);
1063 }
1064
1065 /**
1066 * Populate back untouched region of new data cluster
1067 */
1068 static void qed_aio_write_postfill(void *opaque, int ret)
1069 {
1070 QEDAIOCB *acb = opaque;
1071 BDRVQEDState *s = acb_to_s(acb);
1072 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1073 uint64_t len =
1074 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1075 uint64_t offset = acb->cur_cluster +
1076 qed_offset_into_cluster(s, acb->cur_pos) +
1077 acb->cur_qiov.size;
1078
1079 if (ret) {
1080 qed_aio_complete(acb, ret);
1081 return;
1082 }
1083
1084 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1085 qed_copy_from_backing_file(s, start, len, offset,
1086 qed_aio_write_main, acb);
1087 }
1088
1089 /**
1090 * Populate front untouched region of new data cluster
1091 */
1092 static void qed_aio_write_prefill(void *opaque, int ret)
1093 {
1094 QEDAIOCB *acb = opaque;
1095 BDRVQEDState *s = acb_to_s(acb);
1096 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1097 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1098
1099 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1100 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1101 qed_aio_write_postfill, acb);
1102 }
1103
1104 /**
1105 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1106 */
1107 static bool qed_should_set_need_check(BDRVQEDState *s)
1108 {
1109 /* The flush before L2 update path ensures consistency */
1110 if (s->bs->backing_hd) {
1111 return false;
1112 }
1113
1114 return !(s->header.features & QED_F_NEED_CHECK);
1115 }
1116
1117 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1118 {
1119 QEDAIOCB *acb = opaque;
1120
1121 if (ret) {
1122 qed_aio_complete(acb, ret);
1123 return;
1124 }
1125
1126 qed_aio_write_l2_update(acb, 0, 1);
1127 }
1128
1129 /**
1130 * Write new data cluster
1131 *
1132 * @acb: Write request
1133 * @len: Length in bytes
1134 *
1135 * This path is taken when writing to previously unallocated clusters.
1136 */
1137 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1138 {
1139 BDRVQEDState *s = acb_to_s(acb);
1140 BlockDriverCompletionFunc *cb;
1141
1142 /* Cancel timer when the first allocating request comes in */
1143 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1144 qed_cancel_need_check_timer(s);
1145 }
1146
1147 /* Freeze this request if another allocating write is in progress */
1148 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1149 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1150 }
1151 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1152 s->allocating_write_reqs_plugged) {
1153 return; /* wait for existing request to finish */
1154 }
1155
1156 acb->cur_nclusters = qed_bytes_to_clusters(s,
1157 qed_offset_into_cluster(s, acb->cur_pos) + len);
1158 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1159
1160 if (acb->flags & QED_AIOCB_ZERO) {
1161 /* Skip ahead if the clusters are already zero */
1162 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1163 qed_aio_next_io(acb, 0);
1164 return;
1165 }
1166
1167 cb = qed_aio_write_zero_cluster;
1168 } else {
1169 cb = qed_aio_write_prefill;
1170 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1171 }
1172
1173 if (qed_should_set_need_check(s)) {
1174 s->header.features |= QED_F_NEED_CHECK;
1175 qed_write_header(s, cb, acb);
1176 } else {
1177 cb(acb, 0);
1178 }
1179 }
1180
1181 /**
1182 * Write data cluster in place
1183 *
1184 * @acb: Write request
1185 * @offset: Cluster offset in bytes
1186 * @len: Length in bytes
1187 *
1188 * This path is taken when writing to already allocated clusters.
1189 */
1190 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1191 {
1192 /* Allocate buffer for zero writes */
1193 if (acb->flags & QED_AIOCB_ZERO) {
1194 struct iovec *iov = acb->qiov->iov;
1195
1196 if (!iov->iov_base) {
1197 iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1198 memset(iov->iov_base, 0, iov->iov_len);
1199 }
1200 }
1201
1202 /* Calculate the I/O vector */
1203 acb->cur_cluster = offset;
1204 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1205
1206 /* Do the actual write */
1207 qed_aio_write_main(acb, 0);
1208 }
1209
1210 /**
1211 * Write data cluster
1212 *
1213 * @opaque: Write request
1214 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1215 * or -errno
1216 * @offset: Cluster offset in bytes
1217 * @len: Length in bytes
1218 *
1219 * Callback from qed_find_cluster().
1220 */
1221 static void qed_aio_write_data(void *opaque, int ret,
1222 uint64_t offset, size_t len)
1223 {
1224 QEDAIOCB *acb = opaque;
1225
1226 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1227
1228 acb->find_cluster_ret = ret;
1229
1230 switch (ret) {
1231 case QED_CLUSTER_FOUND:
1232 qed_aio_write_inplace(acb, offset, len);
1233 break;
1234
1235 case QED_CLUSTER_L2:
1236 case QED_CLUSTER_L1:
1237 case QED_CLUSTER_ZERO:
1238 qed_aio_write_alloc(acb, len);
1239 break;
1240
1241 default:
1242 qed_aio_complete(acb, ret);
1243 break;
1244 }
1245 }
1246
1247 /**
1248 * Read data cluster
1249 *
1250 * @opaque: Read request
1251 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1252 * or -errno
1253 * @offset: Cluster offset in bytes
1254 * @len: Length in bytes
1255 *
1256 * Callback from qed_find_cluster().
1257 */
1258 static void qed_aio_read_data(void *opaque, int ret,
1259 uint64_t offset, size_t len)
1260 {
1261 QEDAIOCB *acb = opaque;
1262 BDRVQEDState *s = acb_to_s(acb);
1263 BlockDriverState *bs = acb->common.bs;
1264
1265 /* Adjust offset into cluster */
1266 offset += qed_offset_into_cluster(s, acb->cur_pos);
1267
1268 trace_qed_aio_read_data(s, acb, ret, offset, len);
1269
1270 if (ret < 0) {
1271 goto err;
1272 }
1273
1274 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1275
1276 /* Handle zero cluster and backing file reads */
1277 if (ret == QED_CLUSTER_ZERO) {
1278 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1279 qed_aio_next_io(acb, 0);
1280 return;
1281 } else if (ret != QED_CLUSTER_FOUND) {
1282 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1283 qed_aio_next_io, acb);
1284 return;
1285 }
1286
1287 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1288 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1289 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1290 qed_aio_next_io, acb);
1291 return;
1292
1293 err:
1294 qed_aio_complete(acb, ret);
1295 }
1296
1297 /**
1298 * Begin next I/O or complete the request
1299 */
1300 static void qed_aio_next_io(void *opaque, int ret)
1301 {
1302 QEDAIOCB *acb = opaque;
1303 BDRVQEDState *s = acb_to_s(acb);
1304 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1305 qed_aio_write_data : qed_aio_read_data;
1306
1307 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1308
1309 /* Handle I/O error */
1310 if (ret) {
1311 qed_aio_complete(acb, ret);
1312 return;
1313 }
1314
1315 acb->qiov_offset += acb->cur_qiov.size;
1316 acb->cur_pos += acb->cur_qiov.size;
1317 qemu_iovec_reset(&acb->cur_qiov);
1318
1319 /* Complete request */
1320 if (acb->cur_pos >= acb->end_pos) {
1321 qed_aio_complete(acb, 0);
1322 return;
1323 }
1324
1325 /* Find next cluster and start I/O */
1326 qed_find_cluster(s, &acb->request,
1327 acb->cur_pos, acb->end_pos - acb->cur_pos,
1328 io_fn, acb);
1329 }
1330
1331 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1332 int64_t sector_num,
1333 QEMUIOVector *qiov, int nb_sectors,
1334 BlockDriverCompletionFunc *cb,
1335 void *opaque, int flags)
1336 {
1337 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1338
1339 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1340 opaque, flags);
1341
1342 acb->flags = flags;
1343 acb->finished = NULL;
1344 acb->qiov = qiov;
1345 acb->qiov_offset = 0;
1346 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1347 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1348 acb->request.l2_table = NULL;
1349 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1350
1351 /* Start request */
1352 qed_aio_next_io(acb, 0);
1353 return &acb->common;
1354 }
1355
1356 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1357 int64_t sector_num,
1358 QEMUIOVector *qiov, int nb_sectors,
1359 BlockDriverCompletionFunc *cb,
1360 void *opaque)
1361 {
1362 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1363 }
1364
1365 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1366 int64_t sector_num,
1367 QEMUIOVector *qiov, int nb_sectors,
1368 BlockDriverCompletionFunc *cb,
1369 void *opaque)
1370 {
1371 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1372 opaque, QED_AIOCB_WRITE);
1373 }
1374
1375 typedef struct {
1376 Coroutine *co;
1377 int ret;
1378 bool done;
1379 } QEDWriteZeroesCB;
1380
1381 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1382 {
1383 QEDWriteZeroesCB *cb = opaque;
1384
1385 cb->done = true;
1386 cb->ret = ret;
1387 if (cb->co) {
1388 qemu_coroutine_enter(cb->co, NULL);
1389 }
1390 }
1391
1392 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1393 int64_t sector_num,
1394 int nb_sectors)
1395 {
1396 BlockDriverAIOCB *blockacb;
1397 BDRVQEDState *s = bs->opaque;
1398 QEDWriteZeroesCB cb = { .done = false };
1399 QEMUIOVector qiov;
1400 struct iovec iov;
1401
1402 /* Refuse if there are untouched backing file sectors */
1403 if (bs->backing_hd) {
1404 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1405 return -ENOTSUP;
1406 }
1407 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1408 return -ENOTSUP;
1409 }
1410 }
1411
1412 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1413 * then it will be allocated during request processing.
1414 */
1415 iov.iov_base = NULL,
1416 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1417
1418 qemu_iovec_init_external(&qiov, &iov, 1);
1419 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1420 qed_co_write_zeroes_cb, &cb,
1421 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1422 if (!blockacb) {
1423 return -EIO;
1424 }
1425 if (!cb.done) {
1426 cb.co = qemu_coroutine_self();
1427 qemu_coroutine_yield();
1428 }
1429 assert(cb.done);
1430 return cb.ret;
1431 }
1432
1433 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1434 {
1435 BDRVQEDState *s = bs->opaque;
1436 uint64_t old_image_size;
1437 int ret;
1438
1439 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1440 s->header.table_size)) {
1441 return -EINVAL;
1442 }
1443
1444 /* Shrinking is currently not supported */
1445 if ((uint64_t)offset < s->header.image_size) {
1446 return -ENOTSUP;
1447 }
1448
1449 old_image_size = s->header.image_size;
1450 s->header.image_size = offset;
1451 ret = qed_write_header_sync(s);
1452 if (ret < 0) {
1453 s->header.image_size = old_image_size;
1454 }
1455 return ret;
1456 }
1457
1458 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1459 {
1460 BDRVQEDState *s = bs->opaque;
1461 return s->header.image_size;
1462 }
1463
1464 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1465 {
1466 BDRVQEDState *s = bs->opaque;
1467
1468 memset(bdi, 0, sizeof(*bdi));
1469 bdi->cluster_size = s->header.cluster_size;
1470 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1471 return 0;
1472 }
1473
1474 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1475 const char *backing_file,
1476 const char *backing_fmt)
1477 {
1478 BDRVQEDState *s = bs->opaque;
1479 QEDHeader new_header, le_header;
1480 void *buffer;
1481 size_t buffer_len, backing_file_len;
1482 int ret;
1483
1484 /* Refuse to set backing filename if unknown compat feature bits are
1485 * active. If the image uses an unknown compat feature then we may not
1486 * know the layout of data following the header structure and cannot safely
1487 * add a new string.
1488 */
1489 if (backing_file && (s->header.compat_features &
1490 ~QED_COMPAT_FEATURE_MASK)) {
1491 return -ENOTSUP;
1492 }
1493
1494 memcpy(&new_header, &s->header, sizeof(new_header));
1495
1496 new_header.features &= ~(QED_F_BACKING_FILE |
1497 QED_F_BACKING_FORMAT_NO_PROBE);
1498
1499 /* Adjust feature flags */
1500 if (backing_file) {
1501 new_header.features |= QED_F_BACKING_FILE;
1502
1503 if (qed_fmt_is_raw(backing_fmt)) {
1504 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1505 }
1506 }
1507
1508 /* Calculate new header size */
1509 backing_file_len = 0;
1510
1511 if (backing_file) {
1512 backing_file_len = strlen(backing_file);
1513 }
1514
1515 buffer_len = sizeof(new_header);
1516 new_header.backing_filename_offset = buffer_len;
1517 new_header.backing_filename_size = backing_file_len;
1518 buffer_len += backing_file_len;
1519
1520 /* Make sure we can rewrite header without failing */
1521 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1522 return -ENOSPC;
1523 }
1524
1525 /* Prepare new header */
1526 buffer = g_malloc(buffer_len);
1527
1528 qed_header_cpu_to_le(&new_header, &le_header);
1529 memcpy(buffer, &le_header, sizeof(le_header));
1530 buffer_len = sizeof(le_header);
1531
1532 if (backing_file) {
1533 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1534 buffer_len += backing_file_len;
1535 }
1536
1537 /* Write new header */
1538 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1539 g_free(buffer);
1540 if (ret == 0) {
1541 memcpy(&s->header, &new_header, sizeof(new_header));
1542 }
1543 return ret;
1544 }
1545
1546 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1547 {
1548 BDRVQEDState *s = bs->opaque;
1549
1550 bdrv_qed_close(bs);
1551 memset(s, 0, sizeof(BDRVQEDState));
1552 bdrv_qed_open(bs, NULL, bs->open_flags, NULL);
1553 }
1554
1555 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1556 BdrvCheckMode fix)
1557 {
1558 BDRVQEDState *s = bs->opaque;
1559
1560 return qed_check(s, result, !!fix);
1561 }
1562
1563 static QEMUOptionParameter qed_create_options[] = {
1564 {
1565 .name = BLOCK_OPT_SIZE,
1566 .type = OPT_SIZE,
1567 .help = "Virtual disk size (in bytes)"
1568 }, {
1569 .name = BLOCK_OPT_BACKING_FILE,
1570 .type = OPT_STRING,
1571 .help = "File name of a base image"
1572 }, {
1573 .name = BLOCK_OPT_BACKING_FMT,
1574 .type = OPT_STRING,
1575 .help = "Image format of the base image"
1576 }, {
1577 .name = BLOCK_OPT_CLUSTER_SIZE,
1578 .type = OPT_SIZE,
1579 .help = "Cluster size (in bytes)",
1580 .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1581 }, {
1582 .name = BLOCK_OPT_TABLE_SIZE,
1583 .type = OPT_SIZE,
1584 .help = "L1/L2 table size (in clusters)"
1585 },
1586 { /* end of list */ }
1587 };
1588
1589 static BlockDriver bdrv_qed = {
1590 .format_name = "qed",
1591 .instance_size = sizeof(BDRVQEDState),
1592 .create_options = qed_create_options,
1593
1594 .bdrv_probe = bdrv_qed_probe,
1595 .bdrv_rebind = bdrv_qed_rebind,
1596 .bdrv_open = bdrv_qed_open,
1597 .bdrv_close = bdrv_qed_close,
1598 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1599 .bdrv_create = bdrv_qed_create,
1600 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1601 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1602 .bdrv_make_empty = bdrv_qed_make_empty,
1603 .bdrv_aio_readv = bdrv_qed_aio_readv,
1604 .bdrv_aio_writev = bdrv_qed_aio_writev,
1605 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1606 .bdrv_truncate = bdrv_qed_truncate,
1607 .bdrv_getlength = bdrv_qed_getlength,
1608 .bdrv_get_info = bdrv_qed_get_info,
1609 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1610 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1611 .bdrv_check = bdrv_qed_check,
1612 };
1613
1614 static void bdrv_qed_init(void)
1615 {
1616 bdrv_register(&bdrv_qed);
1617 }
1618
1619 block_init(bdrv_qed_init);