]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
qapi: Add burst length fields to BlockDeviceInfo
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qemu/timer.h"
17 #include "trace.h"
18 #include "qed.h"
19 #include "qapi/qmp/qerror.h"
20 #include "migration/migration.h"
21
22 static const AIOCBInfo qed_aiocb_info = {
23 .aiocb_size = sizeof(QEDAIOCB),
24 };
25
26 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
27 const char *filename)
28 {
29 const QEDHeader *header = (const QEDHeader *)buf;
30
31 if (buf_size < sizeof(*header)) {
32 return 0;
33 }
34 if (le32_to_cpu(header->magic) != QED_MAGIC) {
35 return 0;
36 }
37 return 100;
38 }
39
40 /**
41 * Check whether an image format is raw
42 *
43 * @fmt: Backing file format, may be NULL
44 */
45 static bool qed_fmt_is_raw(const char *fmt)
46 {
47 return fmt && strcmp(fmt, "raw") == 0;
48 }
49
50 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
51 {
52 cpu->magic = le32_to_cpu(le->magic);
53 cpu->cluster_size = le32_to_cpu(le->cluster_size);
54 cpu->table_size = le32_to_cpu(le->table_size);
55 cpu->header_size = le32_to_cpu(le->header_size);
56 cpu->features = le64_to_cpu(le->features);
57 cpu->compat_features = le64_to_cpu(le->compat_features);
58 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
59 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
60 cpu->image_size = le64_to_cpu(le->image_size);
61 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
62 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
63 }
64
65 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
66 {
67 le->magic = cpu_to_le32(cpu->magic);
68 le->cluster_size = cpu_to_le32(cpu->cluster_size);
69 le->table_size = cpu_to_le32(cpu->table_size);
70 le->header_size = cpu_to_le32(cpu->header_size);
71 le->features = cpu_to_le64(cpu->features);
72 le->compat_features = cpu_to_le64(cpu->compat_features);
73 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
74 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
75 le->image_size = cpu_to_le64(cpu->image_size);
76 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
77 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
78 }
79
80 int qed_write_header_sync(BDRVQEDState *s)
81 {
82 QEDHeader le;
83 int ret;
84
85 qed_header_cpu_to_le(&s->header, &le);
86 ret = bdrv_pwrite(s->bs->file->bs, 0, &le, sizeof(le));
87 if (ret != sizeof(le)) {
88 return ret;
89 }
90 return 0;
91 }
92
93 typedef struct {
94 GenericCB gencb;
95 BDRVQEDState *s;
96 struct iovec iov;
97 QEMUIOVector qiov;
98 int nsectors;
99 uint8_t *buf;
100 } QEDWriteHeaderCB;
101
102 static void qed_write_header_cb(void *opaque, int ret)
103 {
104 QEDWriteHeaderCB *write_header_cb = opaque;
105
106 qemu_vfree(write_header_cb->buf);
107 gencb_complete(write_header_cb, ret);
108 }
109
110 static void qed_write_header_read_cb(void *opaque, int ret)
111 {
112 QEDWriteHeaderCB *write_header_cb = opaque;
113 BDRVQEDState *s = write_header_cb->s;
114
115 if (ret) {
116 qed_write_header_cb(write_header_cb, ret);
117 return;
118 }
119
120 /* Update header */
121 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
122
123 bdrv_aio_writev(s->bs->file->bs, 0, &write_header_cb->qiov,
124 write_header_cb->nsectors, qed_write_header_cb,
125 write_header_cb);
126 }
127
128 /**
129 * Update header in-place (does not rewrite backing filename or other strings)
130 *
131 * This function only updates known header fields in-place and does not affect
132 * extra data after the QED header.
133 */
134 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
135 void *opaque)
136 {
137 /* We must write full sectors for O_DIRECT but cannot necessarily generate
138 * the data following the header if an unrecognized compat feature is
139 * active. Therefore, first read the sectors containing the header, update
140 * them, and write back.
141 */
142
143 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
144 BDRV_SECTOR_SIZE;
145 size_t len = nsectors * BDRV_SECTOR_SIZE;
146 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
147 cb, opaque);
148
149 write_header_cb->s = s;
150 write_header_cb->nsectors = nsectors;
151 write_header_cb->buf = qemu_blockalign(s->bs, len);
152 write_header_cb->iov.iov_base = write_header_cb->buf;
153 write_header_cb->iov.iov_len = len;
154 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
155
156 bdrv_aio_readv(s->bs->file->bs, 0, &write_header_cb->qiov, nsectors,
157 qed_write_header_read_cb, write_header_cb);
158 }
159
160 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
161 {
162 uint64_t table_entries;
163 uint64_t l2_size;
164
165 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
166 l2_size = table_entries * cluster_size;
167
168 return l2_size * table_entries;
169 }
170
171 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
172 {
173 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
174 cluster_size > QED_MAX_CLUSTER_SIZE) {
175 return false;
176 }
177 if (cluster_size & (cluster_size - 1)) {
178 return false; /* not power of 2 */
179 }
180 return true;
181 }
182
183 static bool qed_is_table_size_valid(uint32_t table_size)
184 {
185 if (table_size < QED_MIN_TABLE_SIZE ||
186 table_size > QED_MAX_TABLE_SIZE) {
187 return false;
188 }
189 if (table_size & (table_size - 1)) {
190 return false; /* not power of 2 */
191 }
192 return true;
193 }
194
195 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
196 uint32_t table_size)
197 {
198 if (image_size % BDRV_SECTOR_SIZE != 0) {
199 return false; /* not multiple of sector size */
200 }
201 if (image_size > qed_max_image_size(cluster_size, table_size)) {
202 return false; /* image is too large */
203 }
204 return true;
205 }
206
207 /**
208 * Read a string of known length from the image file
209 *
210 * @file: Image file
211 * @offset: File offset to start of string, in bytes
212 * @n: String length in bytes
213 * @buf: Destination buffer
214 * @buflen: Destination buffer length in bytes
215 * @ret: 0 on success, -errno on failure
216 *
217 * The string is NUL-terminated.
218 */
219 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
220 char *buf, size_t buflen)
221 {
222 int ret;
223 if (n >= buflen) {
224 return -EINVAL;
225 }
226 ret = bdrv_pread(file, offset, buf, n);
227 if (ret < 0) {
228 return ret;
229 }
230 buf[n] = '\0';
231 return 0;
232 }
233
234 /**
235 * Allocate new clusters
236 *
237 * @s: QED state
238 * @n: Number of contiguous clusters to allocate
239 * @ret: Offset of first allocated cluster
240 *
241 * This function only produces the offset where the new clusters should be
242 * written. It updates BDRVQEDState but does not make any changes to the image
243 * file.
244 */
245 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
246 {
247 uint64_t offset = s->file_size;
248 s->file_size += n * s->header.cluster_size;
249 return offset;
250 }
251
252 QEDTable *qed_alloc_table(BDRVQEDState *s)
253 {
254 /* Honor O_DIRECT memory alignment requirements */
255 return qemu_blockalign(s->bs,
256 s->header.cluster_size * s->header.table_size);
257 }
258
259 /**
260 * Allocate a new zeroed L2 table
261 */
262 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
263 {
264 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
265
266 l2_table->table = qed_alloc_table(s);
267 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
268
269 memset(l2_table->table->offsets, 0,
270 s->header.cluster_size * s->header.table_size);
271 return l2_table;
272 }
273
274 static void qed_aio_next_io(void *opaque, int ret);
275
276 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
277 {
278 assert(!s->allocating_write_reqs_plugged);
279
280 s->allocating_write_reqs_plugged = true;
281 }
282
283 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
284 {
285 QEDAIOCB *acb;
286
287 assert(s->allocating_write_reqs_plugged);
288
289 s->allocating_write_reqs_plugged = false;
290
291 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
292 if (acb) {
293 qed_aio_next_io(acb, 0);
294 }
295 }
296
297 static void qed_finish_clear_need_check(void *opaque, int ret)
298 {
299 /* Do nothing */
300 }
301
302 static void qed_flush_after_clear_need_check(void *opaque, int ret)
303 {
304 BDRVQEDState *s = opaque;
305
306 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
307
308 /* No need to wait until flush completes */
309 qed_unplug_allocating_write_reqs(s);
310 }
311
312 static void qed_clear_need_check(void *opaque, int ret)
313 {
314 BDRVQEDState *s = opaque;
315
316 if (ret) {
317 qed_unplug_allocating_write_reqs(s);
318 return;
319 }
320
321 s->header.features &= ~QED_F_NEED_CHECK;
322 qed_write_header(s, qed_flush_after_clear_need_check, s);
323 }
324
325 static void qed_need_check_timer_cb(void *opaque)
326 {
327 BDRVQEDState *s = opaque;
328
329 /* The timer should only fire when allocating writes have drained */
330 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
331
332 trace_qed_need_check_timer_cb(s);
333
334 qed_plug_allocating_write_reqs(s);
335
336 /* Ensure writes are on disk before clearing flag */
337 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
338 }
339
340 static void qed_start_need_check_timer(BDRVQEDState *s)
341 {
342 trace_qed_start_need_check_timer(s);
343
344 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
345 * migration.
346 */
347 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
348 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
349 }
350
351 /* It's okay to call this multiple times or when no timer is started */
352 static void qed_cancel_need_check_timer(BDRVQEDState *s)
353 {
354 trace_qed_cancel_need_check_timer(s);
355 timer_del(s->need_check_timer);
356 }
357
358 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
359 {
360 BDRVQEDState *s = bs->opaque;
361
362 qed_cancel_need_check_timer(s);
363 timer_free(s->need_check_timer);
364 }
365
366 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
367 AioContext *new_context)
368 {
369 BDRVQEDState *s = bs->opaque;
370
371 s->need_check_timer = aio_timer_new(new_context,
372 QEMU_CLOCK_VIRTUAL, SCALE_NS,
373 qed_need_check_timer_cb, s);
374 if (s->header.features & QED_F_NEED_CHECK) {
375 qed_start_need_check_timer(s);
376 }
377 }
378
379 static void bdrv_qed_drain(BlockDriverState *bs)
380 {
381 BDRVQEDState *s = bs->opaque;
382
383 /* Cancel timer and start doing I/O that were meant to happen as if it
384 * fired, that way we get bdrv_drain() taking care of the ongoing requests
385 * correctly. */
386 qed_cancel_need_check_timer(s);
387 qed_plug_allocating_write_reqs(s);
388 bdrv_aio_flush(s->bs, qed_clear_need_check, s);
389 }
390
391 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
392 Error **errp)
393 {
394 BDRVQEDState *s = bs->opaque;
395 QEDHeader le_header;
396 int64_t file_size;
397 int ret;
398
399 s->bs = bs;
400 QSIMPLEQ_INIT(&s->allocating_write_reqs);
401
402 ret = bdrv_pread(bs->file->bs, 0, &le_header, sizeof(le_header));
403 if (ret < 0) {
404 return ret;
405 }
406 qed_header_le_to_cpu(&le_header, &s->header);
407
408 if (s->header.magic != QED_MAGIC) {
409 error_setg(errp, "Image not in QED format");
410 return -EINVAL;
411 }
412 if (s->header.features & ~QED_FEATURE_MASK) {
413 /* image uses unsupported feature bits */
414 char buf[64];
415 snprintf(buf, sizeof(buf), "%" PRIx64,
416 s->header.features & ~QED_FEATURE_MASK);
417 error_setg(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
418 bdrv_get_device_or_node_name(bs), "QED", buf);
419 return -ENOTSUP;
420 }
421 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
422 return -EINVAL;
423 }
424
425 /* Round down file size to the last cluster */
426 file_size = bdrv_getlength(bs->file->bs);
427 if (file_size < 0) {
428 return file_size;
429 }
430 s->file_size = qed_start_of_cluster(s, file_size);
431
432 if (!qed_is_table_size_valid(s->header.table_size)) {
433 return -EINVAL;
434 }
435 if (!qed_is_image_size_valid(s->header.image_size,
436 s->header.cluster_size,
437 s->header.table_size)) {
438 return -EINVAL;
439 }
440 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
441 return -EINVAL;
442 }
443
444 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
445 sizeof(uint64_t);
446 s->l2_shift = ctz32(s->header.cluster_size);
447 s->l2_mask = s->table_nelems - 1;
448 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
449
450 /* Header size calculation must not overflow uint32_t */
451 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
452 return -EINVAL;
453 }
454
455 if ((s->header.features & QED_F_BACKING_FILE)) {
456 if ((uint64_t)s->header.backing_filename_offset +
457 s->header.backing_filename_size >
458 s->header.cluster_size * s->header.header_size) {
459 return -EINVAL;
460 }
461
462 ret = qed_read_string(bs->file->bs, s->header.backing_filename_offset,
463 s->header.backing_filename_size, bs->backing_file,
464 sizeof(bs->backing_file));
465 if (ret < 0) {
466 return ret;
467 }
468
469 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
470 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
471 }
472 }
473
474 /* Reset unknown autoclear feature bits. This is a backwards
475 * compatibility mechanism that allows images to be opened by older
476 * programs, which "knock out" unknown feature bits. When an image is
477 * opened by a newer program again it can detect that the autoclear
478 * feature is no longer valid.
479 */
480 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
481 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
482 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
483
484 ret = qed_write_header_sync(s);
485 if (ret) {
486 return ret;
487 }
488
489 /* From here on only known autoclear feature bits are valid */
490 bdrv_flush(bs->file->bs);
491 }
492
493 s->l1_table = qed_alloc_table(s);
494 qed_init_l2_cache(&s->l2_cache);
495
496 ret = qed_read_l1_table_sync(s);
497 if (ret) {
498 goto out;
499 }
500
501 /* If image was not closed cleanly, check consistency */
502 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
503 /* Read-only images cannot be fixed. There is no risk of corruption
504 * since write operations are not possible. Therefore, allow
505 * potentially inconsistent images to be opened read-only. This can
506 * aid data recovery from an otherwise inconsistent image.
507 */
508 if (!bdrv_is_read_only(bs->file->bs) &&
509 !(flags & BDRV_O_INACTIVE)) {
510 BdrvCheckResult result = {0};
511
512 ret = qed_check(s, &result, true);
513 if (ret) {
514 goto out;
515 }
516 }
517 }
518
519 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
520
521 out:
522 if (ret) {
523 qed_free_l2_cache(&s->l2_cache);
524 qemu_vfree(s->l1_table);
525 }
526 return ret;
527 }
528
529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
530 {
531 BDRVQEDState *s = bs->opaque;
532
533 bs->bl.write_zeroes_alignment = s->header.cluster_size >> BDRV_SECTOR_BITS;
534 }
535
536 /* We have nothing to do for QED reopen, stubs just return
537 * success */
538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
539 BlockReopenQueue *queue, Error **errp)
540 {
541 return 0;
542 }
543
544 static void bdrv_qed_close(BlockDriverState *bs)
545 {
546 BDRVQEDState *s = bs->opaque;
547
548 bdrv_qed_detach_aio_context(bs);
549
550 /* Ensure writes reach stable storage */
551 bdrv_flush(bs->file->bs);
552
553 /* Clean shutdown, no check required on next open */
554 if (s->header.features & QED_F_NEED_CHECK) {
555 s->header.features &= ~QED_F_NEED_CHECK;
556 qed_write_header_sync(s);
557 }
558
559 qed_free_l2_cache(&s->l2_cache);
560 qemu_vfree(s->l1_table);
561 }
562
563 static int qed_create(const char *filename, uint32_t cluster_size,
564 uint64_t image_size, uint32_t table_size,
565 const char *backing_file, const char *backing_fmt,
566 QemuOpts *opts, Error **errp)
567 {
568 QEDHeader header = {
569 .magic = QED_MAGIC,
570 .cluster_size = cluster_size,
571 .table_size = table_size,
572 .header_size = 1,
573 .features = 0,
574 .compat_features = 0,
575 .l1_table_offset = cluster_size,
576 .image_size = image_size,
577 };
578 QEDHeader le_header;
579 uint8_t *l1_table = NULL;
580 size_t l1_size = header.cluster_size * header.table_size;
581 Error *local_err = NULL;
582 int ret = 0;
583 BlockDriverState *bs;
584
585 ret = bdrv_create_file(filename, opts, &local_err);
586 if (ret < 0) {
587 error_propagate(errp, local_err);
588 return ret;
589 }
590
591 bs = NULL;
592 ret = bdrv_open(&bs, filename, NULL, NULL,
593 BDRV_O_RDWR | BDRV_O_CACHE_WB | BDRV_O_PROTOCOL,
594 &local_err);
595 if (ret < 0) {
596 error_propagate(errp, local_err);
597 return ret;
598 }
599
600 /* File must start empty and grow, check truncate is supported */
601 ret = bdrv_truncate(bs, 0);
602 if (ret < 0) {
603 goto out;
604 }
605
606 if (backing_file) {
607 header.features |= QED_F_BACKING_FILE;
608 header.backing_filename_offset = sizeof(le_header);
609 header.backing_filename_size = strlen(backing_file);
610
611 if (qed_fmt_is_raw(backing_fmt)) {
612 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
613 }
614 }
615
616 qed_header_cpu_to_le(&header, &le_header);
617 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
618 if (ret < 0) {
619 goto out;
620 }
621 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
622 header.backing_filename_size);
623 if (ret < 0) {
624 goto out;
625 }
626
627 l1_table = g_malloc0(l1_size);
628 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
629 if (ret < 0) {
630 goto out;
631 }
632
633 ret = 0; /* success */
634 out:
635 g_free(l1_table);
636 bdrv_unref(bs);
637 return ret;
638 }
639
640 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
641 {
642 uint64_t image_size = 0;
643 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
644 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
645 char *backing_file = NULL;
646 char *backing_fmt = NULL;
647 int ret;
648
649 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
650 BDRV_SECTOR_SIZE);
651 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
652 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
653 cluster_size = qemu_opt_get_size_del(opts,
654 BLOCK_OPT_CLUSTER_SIZE,
655 QED_DEFAULT_CLUSTER_SIZE);
656 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
657 QED_DEFAULT_TABLE_SIZE);
658
659 if (!qed_is_cluster_size_valid(cluster_size)) {
660 error_setg(errp, "QED cluster size must be within range [%u, %u] "
661 "and power of 2",
662 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
663 ret = -EINVAL;
664 goto finish;
665 }
666 if (!qed_is_table_size_valid(table_size)) {
667 error_setg(errp, "QED table size must be within range [%u, %u] "
668 "and power of 2",
669 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
670 ret = -EINVAL;
671 goto finish;
672 }
673 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
674 error_setg(errp, "QED image size must be a non-zero multiple of "
675 "cluster size and less than %" PRIu64 " bytes",
676 qed_max_image_size(cluster_size, table_size));
677 ret = -EINVAL;
678 goto finish;
679 }
680
681 ret = qed_create(filename, cluster_size, image_size, table_size,
682 backing_file, backing_fmt, opts, errp);
683
684 finish:
685 g_free(backing_file);
686 g_free(backing_fmt);
687 return ret;
688 }
689
690 typedef struct {
691 BlockDriverState *bs;
692 Coroutine *co;
693 uint64_t pos;
694 int64_t status;
695 int *pnum;
696 BlockDriverState **file;
697 } QEDIsAllocatedCB;
698
699 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
700 {
701 QEDIsAllocatedCB *cb = opaque;
702 BDRVQEDState *s = cb->bs->opaque;
703 *cb->pnum = len / BDRV_SECTOR_SIZE;
704 switch (ret) {
705 case QED_CLUSTER_FOUND:
706 offset |= qed_offset_into_cluster(s, cb->pos);
707 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
708 *cb->file = cb->bs->file->bs;
709 break;
710 case QED_CLUSTER_ZERO:
711 cb->status = BDRV_BLOCK_ZERO;
712 break;
713 case QED_CLUSTER_L2:
714 case QED_CLUSTER_L1:
715 cb->status = 0;
716 break;
717 default:
718 assert(ret < 0);
719 cb->status = ret;
720 break;
721 }
722
723 if (cb->co) {
724 qemu_coroutine_enter(cb->co, NULL);
725 }
726 }
727
728 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
729 int64_t sector_num,
730 int nb_sectors, int *pnum,
731 BlockDriverState **file)
732 {
733 BDRVQEDState *s = bs->opaque;
734 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
735 QEDIsAllocatedCB cb = {
736 .bs = bs,
737 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
738 .status = BDRV_BLOCK_OFFSET_MASK,
739 .pnum = pnum,
740 .file = file,
741 };
742 QEDRequest request = { .l2_table = NULL };
743
744 qed_find_cluster(s, &request, cb.pos, len, qed_is_allocated_cb, &cb);
745
746 /* Now sleep if the callback wasn't invoked immediately */
747 while (cb.status == BDRV_BLOCK_OFFSET_MASK) {
748 cb.co = qemu_coroutine_self();
749 qemu_coroutine_yield();
750 }
751
752 qed_unref_l2_cache_entry(request.l2_table);
753
754 return cb.status;
755 }
756
757 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
758 {
759 return acb->common.bs->opaque;
760 }
761
762 /**
763 * Read from the backing file or zero-fill if no backing file
764 *
765 * @s: QED state
766 * @pos: Byte position in device
767 * @qiov: Destination I/O vector
768 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
769 * @cb: Completion function
770 * @opaque: User data for completion function
771 *
772 * This function reads qiov->size bytes starting at pos from the backing file.
773 * If there is no backing file then zeroes are read.
774 */
775 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
776 QEMUIOVector *qiov,
777 QEMUIOVector **backing_qiov,
778 BlockCompletionFunc *cb, void *opaque)
779 {
780 uint64_t backing_length = 0;
781 size_t size;
782
783 /* If there is a backing file, get its length. Treat the absence of a
784 * backing file like a zero length backing file.
785 */
786 if (s->bs->backing) {
787 int64_t l = bdrv_getlength(s->bs->backing->bs);
788 if (l < 0) {
789 cb(opaque, l);
790 return;
791 }
792 backing_length = l;
793 }
794
795 /* Zero all sectors if reading beyond the end of the backing file */
796 if (pos >= backing_length ||
797 pos + qiov->size > backing_length) {
798 qemu_iovec_memset(qiov, 0, 0, qiov->size);
799 }
800
801 /* Complete now if there are no backing file sectors to read */
802 if (pos >= backing_length) {
803 cb(opaque, 0);
804 return;
805 }
806
807 /* If the read straddles the end of the backing file, shorten it */
808 size = MIN((uint64_t)backing_length - pos, qiov->size);
809
810 assert(*backing_qiov == NULL);
811 *backing_qiov = g_new(QEMUIOVector, 1);
812 qemu_iovec_init(*backing_qiov, qiov->niov);
813 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
814
815 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
816 bdrv_aio_readv(s->bs->backing->bs, pos / BDRV_SECTOR_SIZE,
817 *backing_qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
818 }
819
820 typedef struct {
821 GenericCB gencb;
822 BDRVQEDState *s;
823 QEMUIOVector qiov;
824 QEMUIOVector *backing_qiov;
825 struct iovec iov;
826 uint64_t offset;
827 } CopyFromBackingFileCB;
828
829 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
830 {
831 CopyFromBackingFileCB *copy_cb = opaque;
832 qemu_vfree(copy_cb->iov.iov_base);
833 gencb_complete(&copy_cb->gencb, ret);
834 }
835
836 static void qed_copy_from_backing_file_write(void *opaque, int ret)
837 {
838 CopyFromBackingFileCB *copy_cb = opaque;
839 BDRVQEDState *s = copy_cb->s;
840
841 if (copy_cb->backing_qiov) {
842 qemu_iovec_destroy(copy_cb->backing_qiov);
843 g_free(copy_cb->backing_qiov);
844 copy_cb->backing_qiov = NULL;
845 }
846
847 if (ret) {
848 qed_copy_from_backing_file_cb(copy_cb, ret);
849 return;
850 }
851
852 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
853 bdrv_aio_writev(s->bs->file->bs, copy_cb->offset / BDRV_SECTOR_SIZE,
854 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
855 qed_copy_from_backing_file_cb, copy_cb);
856 }
857
858 /**
859 * Copy data from backing file into the image
860 *
861 * @s: QED state
862 * @pos: Byte position in device
863 * @len: Number of bytes
864 * @offset: Byte offset in image file
865 * @cb: Completion function
866 * @opaque: User data for completion function
867 */
868 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
869 uint64_t len, uint64_t offset,
870 BlockCompletionFunc *cb,
871 void *opaque)
872 {
873 CopyFromBackingFileCB *copy_cb;
874
875 /* Skip copy entirely if there is no work to do */
876 if (len == 0) {
877 cb(opaque, 0);
878 return;
879 }
880
881 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
882 copy_cb->s = s;
883 copy_cb->offset = offset;
884 copy_cb->backing_qiov = NULL;
885 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
886 copy_cb->iov.iov_len = len;
887 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
888
889 qed_read_backing_file(s, pos, &copy_cb->qiov, &copy_cb->backing_qiov,
890 qed_copy_from_backing_file_write, copy_cb);
891 }
892
893 /**
894 * Link one or more contiguous clusters into a table
895 *
896 * @s: QED state
897 * @table: L2 table
898 * @index: First cluster index
899 * @n: Number of contiguous clusters
900 * @cluster: First cluster offset
901 *
902 * The cluster offset may be an allocated byte offset in the image file, the
903 * zero cluster marker, or the unallocated cluster marker.
904 */
905 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
906 unsigned int n, uint64_t cluster)
907 {
908 int i;
909 for (i = index; i < index + n; i++) {
910 table->offsets[i] = cluster;
911 if (!qed_offset_is_unalloc_cluster(cluster) &&
912 !qed_offset_is_zero_cluster(cluster)) {
913 cluster += s->header.cluster_size;
914 }
915 }
916 }
917
918 static void qed_aio_complete_bh(void *opaque)
919 {
920 QEDAIOCB *acb = opaque;
921 BlockCompletionFunc *cb = acb->common.cb;
922 void *user_opaque = acb->common.opaque;
923 int ret = acb->bh_ret;
924
925 qemu_bh_delete(acb->bh);
926 qemu_aio_unref(acb);
927
928 /* Invoke callback */
929 cb(user_opaque, ret);
930 }
931
932 static void qed_aio_complete(QEDAIOCB *acb, int ret)
933 {
934 BDRVQEDState *s = acb_to_s(acb);
935
936 trace_qed_aio_complete(s, acb, ret);
937
938 /* Free resources */
939 qemu_iovec_destroy(&acb->cur_qiov);
940 qed_unref_l2_cache_entry(acb->request.l2_table);
941
942 /* Free the buffer we may have allocated for zero writes */
943 if (acb->flags & QED_AIOCB_ZERO) {
944 qemu_vfree(acb->qiov->iov[0].iov_base);
945 acb->qiov->iov[0].iov_base = NULL;
946 }
947
948 /* Arrange for a bh to invoke the completion function */
949 acb->bh_ret = ret;
950 acb->bh = aio_bh_new(bdrv_get_aio_context(acb->common.bs),
951 qed_aio_complete_bh, acb);
952 qemu_bh_schedule(acb->bh);
953
954 /* Start next allocating write request waiting behind this one. Note that
955 * requests enqueue themselves when they first hit an unallocated cluster
956 * but they wait until the entire request is finished before waking up the
957 * next request in the queue. This ensures that we don't cycle through
958 * requests multiple times but rather finish one at a time completely.
959 */
960 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
961 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
962 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
963 if (acb) {
964 qed_aio_next_io(acb, 0);
965 } else if (s->header.features & QED_F_NEED_CHECK) {
966 qed_start_need_check_timer(s);
967 }
968 }
969 }
970
971 /**
972 * Commit the current L2 table to the cache
973 */
974 static void qed_commit_l2_update(void *opaque, int ret)
975 {
976 QEDAIOCB *acb = opaque;
977 BDRVQEDState *s = acb_to_s(acb);
978 CachedL2Table *l2_table = acb->request.l2_table;
979 uint64_t l2_offset = l2_table->offset;
980
981 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
982
983 /* This is guaranteed to succeed because we just committed the entry to the
984 * cache.
985 */
986 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
987 assert(acb->request.l2_table != NULL);
988
989 qed_aio_next_io(opaque, ret);
990 }
991
992 /**
993 * Update L1 table with new L2 table offset and write it out
994 */
995 static void qed_aio_write_l1_update(void *opaque, int ret)
996 {
997 QEDAIOCB *acb = opaque;
998 BDRVQEDState *s = acb_to_s(acb);
999 int index;
1000
1001 if (ret) {
1002 qed_aio_complete(acb, ret);
1003 return;
1004 }
1005
1006 index = qed_l1_index(s, acb->cur_pos);
1007 s->l1_table->offsets[index] = acb->request.l2_table->offset;
1008
1009 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1010 }
1011
1012 /**
1013 * Update L2 table with new cluster offsets and write them out
1014 */
1015 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1016 {
1017 BDRVQEDState *s = acb_to_s(acb);
1018 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1019 int index;
1020
1021 if (ret) {
1022 goto err;
1023 }
1024
1025 if (need_alloc) {
1026 qed_unref_l2_cache_entry(acb->request.l2_table);
1027 acb->request.l2_table = qed_new_l2_table(s);
1028 }
1029
1030 index = qed_l2_index(s, acb->cur_pos);
1031 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1032 offset);
1033
1034 if (need_alloc) {
1035 /* Write out the whole new L2 table */
1036 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1037 qed_aio_write_l1_update, acb);
1038 } else {
1039 /* Write out only the updated part of the L2 table */
1040 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1041 qed_aio_next_io, acb);
1042 }
1043 return;
1044
1045 err:
1046 qed_aio_complete(acb, ret);
1047 }
1048
1049 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1050 {
1051 QEDAIOCB *acb = opaque;
1052 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1053 }
1054
1055 /**
1056 * Flush new data clusters before updating the L2 table
1057 *
1058 * This flush is necessary when a backing file is in use. A crash during an
1059 * allocating write could result in empty clusters in the image. If the write
1060 * only touched a subregion of the cluster, then backing image sectors have
1061 * been lost in the untouched region. The solution is to flush after writing a
1062 * new data cluster and before updating the L2 table.
1063 */
1064 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1065 {
1066 QEDAIOCB *acb = opaque;
1067 BDRVQEDState *s = acb_to_s(acb);
1068
1069 if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1070 qed_aio_complete(acb, -EIO);
1071 }
1072 }
1073
1074 /**
1075 * Write data to the image file
1076 */
1077 static void qed_aio_write_main(void *opaque, int ret)
1078 {
1079 QEDAIOCB *acb = opaque;
1080 BDRVQEDState *s = acb_to_s(acb);
1081 uint64_t offset = acb->cur_cluster +
1082 qed_offset_into_cluster(s, acb->cur_pos);
1083 BlockCompletionFunc *next_fn;
1084
1085 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1086
1087 if (ret) {
1088 qed_aio_complete(acb, ret);
1089 return;
1090 }
1091
1092 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1093 next_fn = qed_aio_next_io;
1094 } else {
1095 if (s->bs->backing) {
1096 next_fn = qed_aio_write_flush_before_l2_update;
1097 } else {
1098 next_fn = qed_aio_write_l2_update_cb;
1099 }
1100 }
1101
1102 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1103 bdrv_aio_writev(s->bs->file->bs, offset / BDRV_SECTOR_SIZE,
1104 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1105 next_fn, acb);
1106 }
1107
1108 /**
1109 * Populate back untouched region of new data cluster
1110 */
1111 static void qed_aio_write_postfill(void *opaque, int ret)
1112 {
1113 QEDAIOCB *acb = opaque;
1114 BDRVQEDState *s = acb_to_s(acb);
1115 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1116 uint64_t len =
1117 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1118 uint64_t offset = acb->cur_cluster +
1119 qed_offset_into_cluster(s, acb->cur_pos) +
1120 acb->cur_qiov.size;
1121
1122 if (ret) {
1123 qed_aio_complete(acb, ret);
1124 return;
1125 }
1126
1127 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1128 qed_copy_from_backing_file(s, start, len, offset,
1129 qed_aio_write_main, acb);
1130 }
1131
1132 /**
1133 * Populate front untouched region of new data cluster
1134 */
1135 static void qed_aio_write_prefill(void *opaque, int ret)
1136 {
1137 QEDAIOCB *acb = opaque;
1138 BDRVQEDState *s = acb_to_s(acb);
1139 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1140 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1141
1142 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1143 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1144 qed_aio_write_postfill, acb);
1145 }
1146
1147 /**
1148 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1149 */
1150 static bool qed_should_set_need_check(BDRVQEDState *s)
1151 {
1152 /* The flush before L2 update path ensures consistency */
1153 if (s->bs->backing) {
1154 return false;
1155 }
1156
1157 return !(s->header.features & QED_F_NEED_CHECK);
1158 }
1159
1160 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1161 {
1162 QEDAIOCB *acb = opaque;
1163
1164 if (ret) {
1165 qed_aio_complete(acb, ret);
1166 return;
1167 }
1168
1169 qed_aio_write_l2_update(acb, 0, 1);
1170 }
1171
1172 /**
1173 * Write new data cluster
1174 *
1175 * @acb: Write request
1176 * @len: Length in bytes
1177 *
1178 * This path is taken when writing to previously unallocated clusters.
1179 */
1180 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1181 {
1182 BDRVQEDState *s = acb_to_s(acb);
1183 BlockCompletionFunc *cb;
1184
1185 /* Cancel timer when the first allocating request comes in */
1186 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1187 qed_cancel_need_check_timer(s);
1188 }
1189
1190 /* Freeze this request if another allocating write is in progress */
1191 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1192 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1193 }
1194 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1195 s->allocating_write_reqs_plugged) {
1196 return; /* wait for existing request to finish */
1197 }
1198
1199 acb->cur_nclusters = qed_bytes_to_clusters(s,
1200 qed_offset_into_cluster(s, acb->cur_pos) + len);
1201 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1202
1203 if (acb->flags & QED_AIOCB_ZERO) {
1204 /* Skip ahead if the clusters are already zero */
1205 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1206 qed_aio_next_io(acb, 0);
1207 return;
1208 }
1209
1210 cb = qed_aio_write_zero_cluster;
1211 } else {
1212 cb = qed_aio_write_prefill;
1213 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1214 }
1215
1216 if (qed_should_set_need_check(s)) {
1217 s->header.features |= QED_F_NEED_CHECK;
1218 qed_write_header(s, cb, acb);
1219 } else {
1220 cb(acb, 0);
1221 }
1222 }
1223
1224 /**
1225 * Write data cluster in place
1226 *
1227 * @acb: Write request
1228 * @offset: Cluster offset in bytes
1229 * @len: Length in bytes
1230 *
1231 * This path is taken when writing to already allocated clusters.
1232 */
1233 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1234 {
1235 /* Allocate buffer for zero writes */
1236 if (acb->flags & QED_AIOCB_ZERO) {
1237 struct iovec *iov = acb->qiov->iov;
1238
1239 if (!iov->iov_base) {
1240 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1241 if (iov->iov_base == NULL) {
1242 qed_aio_complete(acb, -ENOMEM);
1243 return;
1244 }
1245 memset(iov->iov_base, 0, iov->iov_len);
1246 }
1247 }
1248
1249 /* Calculate the I/O vector */
1250 acb->cur_cluster = offset;
1251 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1252
1253 /* Do the actual write */
1254 qed_aio_write_main(acb, 0);
1255 }
1256
1257 /**
1258 * Write data cluster
1259 *
1260 * @opaque: Write request
1261 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1262 * or -errno
1263 * @offset: Cluster offset in bytes
1264 * @len: Length in bytes
1265 *
1266 * Callback from qed_find_cluster().
1267 */
1268 static void qed_aio_write_data(void *opaque, int ret,
1269 uint64_t offset, size_t len)
1270 {
1271 QEDAIOCB *acb = opaque;
1272
1273 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1274
1275 acb->find_cluster_ret = ret;
1276
1277 switch (ret) {
1278 case QED_CLUSTER_FOUND:
1279 qed_aio_write_inplace(acb, offset, len);
1280 break;
1281
1282 case QED_CLUSTER_L2:
1283 case QED_CLUSTER_L1:
1284 case QED_CLUSTER_ZERO:
1285 qed_aio_write_alloc(acb, len);
1286 break;
1287
1288 default:
1289 qed_aio_complete(acb, ret);
1290 break;
1291 }
1292 }
1293
1294 /**
1295 * Read data cluster
1296 *
1297 * @opaque: Read request
1298 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1299 * or -errno
1300 * @offset: Cluster offset in bytes
1301 * @len: Length in bytes
1302 *
1303 * Callback from qed_find_cluster().
1304 */
1305 static void qed_aio_read_data(void *opaque, int ret,
1306 uint64_t offset, size_t len)
1307 {
1308 QEDAIOCB *acb = opaque;
1309 BDRVQEDState *s = acb_to_s(acb);
1310 BlockDriverState *bs = acb->common.bs;
1311
1312 /* Adjust offset into cluster */
1313 offset += qed_offset_into_cluster(s, acb->cur_pos);
1314
1315 trace_qed_aio_read_data(s, acb, ret, offset, len);
1316
1317 if (ret < 0) {
1318 goto err;
1319 }
1320
1321 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1322
1323 /* Handle zero cluster and backing file reads */
1324 if (ret == QED_CLUSTER_ZERO) {
1325 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1326 qed_aio_next_io(acb, 0);
1327 return;
1328 } else if (ret != QED_CLUSTER_FOUND) {
1329 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1330 &acb->backing_qiov, qed_aio_next_io, acb);
1331 return;
1332 }
1333
1334 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1335 bdrv_aio_readv(bs->file->bs, offset / BDRV_SECTOR_SIZE,
1336 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1337 qed_aio_next_io, acb);
1338 return;
1339
1340 err:
1341 qed_aio_complete(acb, ret);
1342 }
1343
1344 /**
1345 * Begin next I/O or complete the request
1346 */
1347 static void qed_aio_next_io(void *opaque, int ret)
1348 {
1349 QEDAIOCB *acb = opaque;
1350 BDRVQEDState *s = acb_to_s(acb);
1351 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1352 qed_aio_write_data : qed_aio_read_data;
1353
1354 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1355
1356 if (acb->backing_qiov) {
1357 qemu_iovec_destroy(acb->backing_qiov);
1358 g_free(acb->backing_qiov);
1359 acb->backing_qiov = NULL;
1360 }
1361
1362 /* Handle I/O error */
1363 if (ret) {
1364 qed_aio_complete(acb, ret);
1365 return;
1366 }
1367
1368 acb->qiov_offset += acb->cur_qiov.size;
1369 acb->cur_pos += acb->cur_qiov.size;
1370 qemu_iovec_reset(&acb->cur_qiov);
1371
1372 /* Complete request */
1373 if (acb->cur_pos >= acb->end_pos) {
1374 qed_aio_complete(acb, 0);
1375 return;
1376 }
1377
1378 /* Find next cluster and start I/O */
1379 qed_find_cluster(s, &acb->request,
1380 acb->cur_pos, acb->end_pos - acb->cur_pos,
1381 io_fn, acb);
1382 }
1383
1384 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1385 int64_t sector_num,
1386 QEMUIOVector *qiov, int nb_sectors,
1387 BlockCompletionFunc *cb,
1388 void *opaque, int flags)
1389 {
1390 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1391
1392 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1393 opaque, flags);
1394
1395 acb->flags = flags;
1396 acb->qiov = qiov;
1397 acb->qiov_offset = 0;
1398 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1399 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1400 acb->backing_qiov = NULL;
1401 acb->request.l2_table = NULL;
1402 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1403
1404 /* Start request */
1405 qed_aio_next_io(acb, 0);
1406 return &acb->common;
1407 }
1408
1409 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1410 int64_t sector_num,
1411 QEMUIOVector *qiov, int nb_sectors,
1412 BlockCompletionFunc *cb,
1413 void *opaque)
1414 {
1415 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1416 }
1417
1418 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1419 int64_t sector_num,
1420 QEMUIOVector *qiov, int nb_sectors,
1421 BlockCompletionFunc *cb,
1422 void *opaque)
1423 {
1424 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1425 opaque, QED_AIOCB_WRITE);
1426 }
1427
1428 typedef struct {
1429 Coroutine *co;
1430 int ret;
1431 bool done;
1432 } QEDWriteZeroesCB;
1433
1434 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1435 {
1436 QEDWriteZeroesCB *cb = opaque;
1437
1438 cb->done = true;
1439 cb->ret = ret;
1440 if (cb->co) {
1441 qemu_coroutine_enter(cb->co, NULL);
1442 }
1443 }
1444
1445 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1446 int64_t sector_num,
1447 int nb_sectors,
1448 BdrvRequestFlags flags)
1449 {
1450 BlockAIOCB *blockacb;
1451 BDRVQEDState *s = bs->opaque;
1452 QEDWriteZeroesCB cb = { .done = false };
1453 QEMUIOVector qiov;
1454 struct iovec iov;
1455
1456 /* Refuse if there are untouched backing file sectors */
1457 if (bs->backing) {
1458 if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1459 return -ENOTSUP;
1460 }
1461 if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1462 return -ENOTSUP;
1463 }
1464 }
1465
1466 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1467 * then it will be allocated during request processing.
1468 */
1469 iov.iov_base = NULL,
1470 iov.iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1471
1472 qemu_iovec_init_external(&qiov, &iov, 1);
1473 blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1474 qed_co_write_zeroes_cb, &cb,
1475 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1476 if (!blockacb) {
1477 return -EIO;
1478 }
1479 if (!cb.done) {
1480 cb.co = qemu_coroutine_self();
1481 qemu_coroutine_yield();
1482 }
1483 assert(cb.done);
1484 return cb.ret;
1485 }
1486
1487 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1488 {
1489 BDRVQEDState *s = bs->opaque;
1490 uint64_t old_image_size;
1491 int ret;
1492
1493 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1494 s->header.table_size)) {
1495 return -EINVAL;
1496 }
1497
1498 /* Shrinking is currently not supported */
1499 if ((uint64_t)offset < s->header.image_size) {
1500 return -ENOTSUP;
1501 }
1502
1503 old_image_size = s->header.image_size;
1504 s->header.image_size = offset;
1505 ret = qed_write_header_sync(s);
1506 if (ret < 0) {
1507 s->header.image_size = old_image_size;
1508 }
1509 return ret;
1510 }
1511
1512 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1513 {
1514 BDRVQEDState *s = bs->opaque;
1515 return s->header.image_size;
1516 }
1517
1518 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1519 {
1520 BDRVQEDState *s = bs->opaque;
1521
1522 memset(bdi, 0, sizeof(*bdi));
1523 bdi->cluster_size = s->header.cluster_size;
1524 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1525 bdi->unallocated_blocks_are_zero = true;
1526 bdi->can_write_zeroes_with_unmap = true;
1527 return 0;
1528 }
1529
1530 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1531 const char *backing_file,
1532 const char *backing_fmt)
1533 {
1534 BDRVQEDState *s = bs->opaque;
1535 QEDHeader new_header, le_header;
1536 void *buffer;
1537 size_t buffer_len, backing_file_len;
1538 int ret;
1539
1540 /* Refuse to set backing filename if unknown compat feature bits are
1541 * active. If the image uses an unknown compat feature then we may not
1542 * know the layout of data following the header structure and cannot safely
1543 * add a new string.
1544 */
1545 if (backing_file && (s->header.compat_features &
1546 ~QED_COMPAT_FEATURE_MASK)) {
1547 return -ENOTSUP;
1548 }
1549
1550 memcpy(&new_header, &s->header, sizeof(new_header));
1551
1552 new_header.features &= ~(QED_F_BACKING_FILE |
1553 QED_F_BACKING_FORMAT_NO_PROBE);
1554
1555 /* Adjust feature flags */
1556 if (backing_file) {
1557 new_header.features |= QED_F_BACKING_FILE;
1558
1559 if (qed_fmt_is_raw(backing_fmt)) {
1560 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1561 }
1562 }
1563
1564 /* Calculate new header size */
1565 backing_file_len = 0;
1566
1567 if (backing_file) {
1568 backing_file_len = strlen(backing_file);
1569 }
1570
1571 buffer_len = sizeof(new_header);
1572 new_header.backing_filename_offset = buffer_len;
1573 new_header.backing_filename_size = backing_file_len;
1574 buffer_len += backing_file_len;
1575
1576 /* Make sure we can rewrite header without failing */
1577 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1578 return -ENOSPC;
1579 }
1580
1581 /* Prepare new header */
1582 buffer = g_malloc(buffer_len);
1583
1584 qed_header_cpu_to_le(&new_header, &le_header);
1585 memcpy(buffer, &le_header, sizeof(le_header));
1586 buffer_len = sizeof(le_header);
1587
1588 if (backing_file) {
1589 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1590 buffer_len += backing_file_len;
1591 }
1592
1593 /* Write new header */
1594 ret = bdrv_pwrite_sync(bs->file->bs, 0, buffer, buffer_len);
1595 g_free(buffer);
1596 if (ret == 0) {
1597 memcpy(&s->header, &new_header, sizeof(new_header));
1598 }
1599 return ret;
1600 }
1601
1602 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1603 {
1604 BDRVQEDState *s = bs->opaque;
1605 Error *local_err = NULL;
1606 int ret;
1607
1608 bdrv_qed_close(bs);
1609
1610 bdrv_invalidate_cache(bs->file->bs, &local_err);
1611 if (local_err) {
1612 error_propagate(errp, local_err);
1613 return;
1614 }
1615
1616 memset(s, 0, sizeof(BDRVQEDState));
1617 ret = bdrv_qed_open(bs, NULL, bs->open_flags, &local_err);
1618 if (local_err) {
1619 error_propagate(errp, local_err);
1620 error_prepend(errp, "Could not reopen qed layer: ");
1621 return;
1622 } else if (ret < 0) {
1623 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1624 return;
1625 }
1626 }
1627
1628 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1629 BdrvCheckMode fix)
1630 {
1631 BDRVQEDState *s = bs->opaque;
1632
1633 return qed_check(s, result, !!fix);
1634 }
1635
1636 static QemuOptsList qed_create_opts = {
1637 .name = "qed-create-opts",
1638 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1639 .desc = {
1640 {
1641 .name = BLOCK_OPT_SIZE,
1642 .type = QEMU_OPT_SIZE,
1643 .help = "Virtual disk size"
1644 },
1645 {
1646 .name = BLOCK_OPT_BACKING_FILE,
1647 .type = QEMU_OPT_STRING,
1648 .help = "File name of a base image"
1649 },
1650 {
1651 .name = BLOCK_OPT_BACKING_FMT,
1652 .type = QEMU_OPT_STRING,
1653 .help = "Image format of the base image"
1654 },
1655 {
1656 .name = BLOCK_OPT_CLUSTER_SIZE,
1657 .type = QEMU_OPT_SIZE,
1658 .help = "Cluster size (in bytes)",
1659 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1660 },
1661 {
1662 .name = BLOCK_OPT_TABLE_SIZE,
1663 .type = QEMU_OPT_SIZE,
1664 .help = "L1/L2 table size (in clusters)"
1665 },
1666 { /* end of list */ }
1667 }
1668 };
1669
1670 static BlockDriver bdrv_qed = {
1671 .format_name = "qed",
1672 .instance_size = sizeof(BDRVQEDState),
1673 .create_opts = &qed_create_opts,
1674 .supports_backing = true,
1675
1676 .bdrv_probe = bdrv_qed_probe,
1677 .bdrv_open = bdrv_qed_open,
1678 .bdrv_close = bdrv_qed_close,
1679 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1680 .bdrv_create = bdrv_qed_create,
1681 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1682 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1683 .bdrv_aio_readv = bdrv_qed_aio_readv,
1684 .bdrv_aio_writev = bdrv_qed_aio_writev,
1685 .bdrv_co_write_zeroes = bdrv_qed_co_write_zeroes,
1686 .bdrv_truncate = bdrv_qed_truncate,
1687 .bdrv_getlength = bdrv_qed_getlength,
1688 .bdrv_get_info = bdrv_qed_get_info,
1689 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1690 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1691 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1692 .bdrv_check = bdrv_qed_check,
1693 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1694 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1695 .bdrv_drain = bdrv_qed_drain,
1696 };
1697
1698 static void bdrv_qed_init(void)
1699 {
1700 bdrv_register(&bdrv_qed);
1701 }
1702
1703 block_init(bdrv_qed_init);