]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
Merge remote-tracking branch 'remotes/kevin/tags/for-upstream' into staging
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "qemu/option.h"
20 #include "trace.h"
21 #include "qed.h"
22 #include "sysemu/block-backend.h"
23
24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
25 const char *filename)
26 {
27 const QEDHeader *header = (const QEDHeader *)buf;
28
29 if (buf_size < sizeof(*header)) {
30 return 0;
31 }
32 if (le32_to_cpu(header->magic) != QED_MAGIC) {
33 return 0;
34 }
35 return 100;
36 }
37
38 /**
39 * Check whether an image format is raw
40 *
41 * @fmt: Backing file format, may be NULL
42 */
43 static bool qed_fmt_is_raw(const char *fmt)
44 {
45 return fmt && strcmp(fmt, "raw") == 0;
46 }
47
48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
49 {
50 cpu->magic = le32_to_cpu(le->magic);
51 cpu->cluster_size = le32_to_cpu(le->cluster_size);
52 cpu->table_size = le32_to_cpu(le->table_size);
53 cpu->header_size = le32_to_cpu(le->header_size);
54 cpu->features = le64_to_cpu(le->features);
55 cpu->compat_features = le64_to_cpu(le->compat_features);
56 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
57 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
58 cpu->image_size = le64_to_cpu(le->image_size);
59 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
60 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
61 }
62
63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
64 {
65 le->magic = cpu_to_le32(cpu->magic);
66 le->cluster_size = cpu_to_le32(cpu->cluster_size);
67 le->table_size = cpu_to_le32(cpu->table_size);
68 le->header_size = cpu_to_le32(cpu->header_size);
69 le->features = cpu_to_le64(cpu->features);
70 le->compat_features = cpu_to_le64(cpu->compat_features);
71 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
72 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
73 le->image_size = cpu_to_le64(cpu->image_size);
74 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
75 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
76 }
77
78 int qed_write_header_sync(BDRVQEDState *s)
79 {
80 QEDHeader le;
81 int ret;
82
83 qed_header_cpu_to_le(&s->header, &le);
84 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
85 if (ret != sizeof(le)) {
86 return ret;
87 }
88 return 0;
89 }
90
91 /**
92 * Update header in-place (does not rewrite backing filename or other strings)
93 *
94 * This function only updates known header fields in-place and does not affect
95 * extra data after the QED header.
96 *
97 * No new allocating reqs can start while this function runs.
98 */
99 static int coroutine_fn qed_write_header(BDRVQEDState *s)
100 {
101 /* We must write full sectors for O_DIRECT but cannot necessarily generate
102 * the data following the header if an unrecognized compat feature is
103 * active. Therefore, first read the sectors containing the header, update
104 * them, and write back.
105 */
106
107 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
108 size_t len = nsectors * BDRV_SECTOR_SIZE;
109 uint8_t *buf;
110 struct iovec iov;
111 QEMUIOVector qiov;
112 int ret;
113
114 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
115
116 buf = qemu_blockalign(s->bs, len);
117 iov = (struct iovec) {
118 .iov_base = buf,
119 .iov_len = len,
120 };
121 qemu_iovec_init_external(&qiov, &iov, 1);
122
123 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
124 if (ret < 0) {
125 goto out;
126 }
127
128 /* Update header */
129 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
130
131 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0);
132 if (ret < 0) {
133 goto out;
134 }
135
136 ret = 0;
137 out:
138 qemu_vfree(buf);
139 return ret;
140 }
141
142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
143 {
144 uint64_t table_entries;
145 uint64_t l2_size;
146
147 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
148 l2_size = table_entries * cluster_size;
149
150 return l2_size * table_entries;
151 }
152
153 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
154 {
155 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
156 cluster_size > QED_MAX_CLUSTER_SIZE) {
157 return false;
158 }
159 if (cluster_size & (cluster_size - 1)) {
160 return false; /* not power of 2 */
161 }
162 return true;
163 }
164
165 static bool qed_is_table_size_valid(uint32_t table_size)
166 {
167 if (table_size < QED_MIN_TABLE_SIZE ||
168 table_size > QED_MAX_TABLE_SIZE) {
169 return false;
170 }
171 if (table_size & (table_size - 1)) {
172 return false; /* not power of 2 */
173 }
174 return true;
175 }
176
177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
178 uint32_t table_size)
179 {
180 if (image_size % BDRV_SECTOR_SIZE != 0) {
181 return false; /* not multiple of sector size */
182 }
183 if (image_size > qed_max_image_size(cluster_size, table_size)) {
184 return false; /* image is too large */
185 }
186 return true;
187 }
188
189 /**
190 * Read a string of known length from the image file
191 *
192 * @file: Image file
193 * @offset: File offset to start of string, in bytes
194 * @n: String length in bytes
195 * @buf: Destination buffer
196 * @buflen: Destination buffer length in bytes
197 * @ret: 0 on success, -errno on failure
198 *
199 * The string is NUL-terminated.
200 */
201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
202 char *buf, size_t buflen)
203 {
204 int ret;
205 if (n >= buflen) {
206 return -EINVAL;
207 }
208 ret = bdrv_pread(file, offset, buf, n);
209 if (ret < 0) {
210 return ret;
211 }
212 buf[n] = '\0';
213 return 0;
214 }
215
216 /**
217 * Allocate new clusters
218 *
219 * @s: QED state
220 * @n: Number of contiguous clusters to allocate
221 * @ret: Offset of first allocated cluster
222 *
223 * This function only produces the offset where the new clusters should be
224 * written. It updates BDRVQEDState but does not make any changes to the image
225 * file.
226 *
227 * Called with table_lock held.
228 */
229 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
230 {
231 uint64_t offset = s->file_size;
232 s->file_size += n * s->header.cluster_size;
233 return offset;
234 }
235
236 QEDTable *qed_alloc_table(BDRVQEDState *s)
237 {
238 /* Honor O_DIRECT memory alignment requirements */
239 return qemu_blockalign(s->bs,
240 s->header.cluster_size * s->header.table_size);
241 }
242
243 /**
244 * Allocate a new zeroed L2 table
245 *
246 * Called with table_lock held.
247 */
248 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
249 {
250 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
251
252 l2_table->table = qed_alloc_table(s);
253 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
254
255 memset(l2_table->table->offsets, 0,
256 s->header.cluster_size * s->header.table_size);
257 return l2_table;
258 }
259
260 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
261 {
262 qemu_co_mutex_lock(&s->table_lock);
263
264 /* No reentrancy is allowed. */
265 assert(!s->allocating_write_reqs_plugged);
266 if (s->allocating_acb != NULL) {
267 /* Another allocating write came concurrently. This cannot happen
268 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
269 */
270 qemu_co_mutex_unlock(&s->table_lock);
271 return false;
272 }
273
274 s->allocating_write_reqs_plugged = true;
275 qemu_co_mutex_unlock(&s->table_lock);
276 return true;
277 }
278
279 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
280 {
281 qemu_co_mutex_lock(&s->table_lock);
282 assert(s->allocating_write_reqs_plugged);
283 s->allocating_write_reqs_plugged = false;
284 qemu_co_queue_next(&s->allocating_write_reqs);
285 qemu_co_mutex_unlock(&s->table_lock);
286 }
287
288 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
289 {
290 BDRVQEDState *s = opaque;
291 int ret;
292
293 trace_qed_need_check_timer_cb(s);
294
295 if (!qed_plug_allocating_write_reqs(s)) {
296 return;
297 }
298
299 /* Ensure writes are on disk before clearing flag */
300 ret = bdrv_co_flush(s->bs->file->bs);
301 if (ret < 0) {
302 qed_unplug_allocating_write_reqs(s);
303 return;
304 }
305
306 s->header.features &= ~QED_F_NEED_CHECK;
307 ret = qed_write_header(s);
308 (void) ret;
309
310 qed_unplug_allocating_write_reqs(s);
311
312 ret = bdrv_co_flush(s->bs);
313 (void) ret;
314 }
315
316 static void qed_need_check_timer_cb(void *opaque)
317 {
318 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
319 qemu_coroutine_enter(co);
320 }
321
322 static void qed_start_need_check_timer(BDRVQEDState *s)
323 {
324 trace_qed_start_need_check_timer(s);
325
326 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
327 * migration.
328 */
329 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
330 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
331 }
332
333 /* It's okay to call this multiple times or when no timer is started */
334 static void qed_cancel_need_check_timer(BDRVQEDState *s)
335 {
336 trace_qed_cancel_need_check_timer(s);
337 timer_del(s->need_check_timer);
338 }
339
340 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
341 {
342 BDRVQEDState *s = bs->opaque;
343
344 qed_cancel_need_check_timer(s);
345 timer_free(s->need_check_timer);
346 }
347
348 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
349 AioContext *new_context)
350 {
351 BDRVQEDState *s = bs->opaque;
352
353 s->need_check_timer = aio_timer_new(new_context,
354 QEMU_CLOCK_VIRTUAL, SCALE_NS,
355 qed_need_check_timer_cb, s);
356 if (s->header.features & QED_F_NEED_CHECK) {
357 qed_start_need_check_timer(s);
358 }
359 }
360
361 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
362 {
363 BDRVQEDState *s = bs->opaque;
364
365 /* Fire the timer immediately in order to start doing I/O as soon as the
366 * header is flushed.
367 */
368 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
369 qed_cancel_need_check_timer(s);
370 qed_need_check_timer_entry(s);
371 }
372 }
373
374 static void bdrv_qed_init_state(BlockDriverState *bs)
375 {
376 BDRVQEDState *s = bs->opaque;
377
378 memset(s, 0, sizeof(BDRVQEDState));
379 s->bs = bs;
380 qemu_co_mutex_init(&s->table_lock);
381 qemu_co_queue_init(&s->allocating_write_reqs);
382 }
383
384 /* Called with table_lock held. */
385 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
386 int flags, Error **errp)
387 {
388 BDRVQEDState *s = bs->opaque;
389 QEDHeader le_header;
390 int64_t file_size;
391 int ret;
392
393 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
394 if (ret < 0) {
395 return ret;
396 }
397 qed_header_le_to_cpu(&le_header, &s->header);
398
399 if (s->header.magic != QED_MAGIC) {
400 error_setg(errp, "Image not in QED format");
401 return -EINVAL;
402 }
403 if (s->header.features & ~QED_FEATURE_MASK) {
404 /* image uses unsupported feature bits */
405 error_setg(errp, "Unsupported QED features: %" PRIx64,
406 s->header.features & ~QED_FEATURE_MASK);
407 return -ENOTSUP;
408 }
409 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
410 return -EINVAL;
411 }
412
413 /* Round down file size to the last cluster */
414 file_size = bdrv_getlength(bs->file->bs);
415 if (file_size < 0) {
416 return file_size;
417 }
418 s->file_size = qed_start_of_cluster(s, file_size);
419
420 if (!qed_is_table_size_valid(s->header.table_size)) {
421 return -EINVAL;
422 }
423 if (!qed_is_image_size_valid(s->header.image_size,
424 s->header.cluster_size,
425 s->header.table_size)) {
426 return -EINVAL;
427 }
428 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
429 return -EINVAL;
430 }
431
432 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
433 sizeof(uint64_t);
434 s->l2_shift = ctz32(s->header.cluster_size);
435 s->l2_mask = s->table_nelems - 1;
436 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
437
438 /* Header size calculation must not overflow uint32_t */
439 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
440 return -EINVAL;
441 }
442
443 if ((s->header.features & QED_F_BACKING_FILE)) {
444 if ((uint64_t)s->header.backing_filename_offset +
445 s->header.backing_filename_size >
446 s->header.cluster_size * s->header.header_size) {
447 return -EINVAL;
448 }
449
450 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
451 s->header.backing_filename_size, bs->backing_file,
452 sizeof(bs->backing_file));
453 if (ret < 0) {
454 return ret;
455 }
456
457 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
458 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
459 }
460 }
461
462 /* Reset unknown autoclear feature bits. This is a backwards
463 * compatibility mechanism that allows images to be opened by older
464 * programs, which "knock out" unknown feature bits. When an image is
465 * opened by a newer program again it can detect that the autoclear
466 * feature is no longer valid.
467 */
468 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
469 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
470 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
471
472 ret = qed_write_header_sync(s);
473 if (ret) {
474 return ret;
475 }
476
477 /* From here on only known autoclear feature bits are valid */
478 bdrv_flush(bs->file->bs);
479 }
480
481 s->l1_table = qed_alloc_table(s);
482 qed_init_l2_cache(&s->l2_cache);
483
484 ret = qed_read_l1_table_sync(s);
485 if (ret) {
486 goto out;
487 }
488
489 /* If image was not closed cleanly, check consistency */
490 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
491 /* Read-only images cannot be fixed. There is no risk of corruption
492 * since write operations are not possible. Therefore, allow
493 * potentially inconsistent images to be opened read-only. This can
494 * aid data recovery from an otherwise inconsistent image.
495 */
496 if (!bdrv_is_read_only(bs->file->bs) &&
497 !(flags & BDRV_O_INACTIVE)) {
498 BdrvCheckResult result = {0};
499
500 ret = qed_check(s, &result, true);
501 if (ret) {
502 goto out;
503 }
504 }
505 }
506
507 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
508
509 out:
510 if (ret) {
511 qed_free_l2_cache(&s->l2_cache);
512 qemu_vfree(s->l1_table);
513 }
514 return ret;
515 }
516
517 typedef struct QEDOpenCo {
518 BlockDriverState *bs;
519 QDict *options;
520 int flags;
521 Error **errp;
522 int ret;
523 } QEDOpenCo;
524
525 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
526 {
527 QEDOpenCo *qoc = opaque;
528 BDRVQEDState *s = qoc->bs->opaque;
529
530 qemu_co_mutex_lock(&s->table_lock);
531 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
532 qemu_co_mutex_unlock(&s->table_lock);
533 }
534
535 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
536 Error **errp)
537 {
538 QEDOpenCo qoc = {
539 .bs = bs,
540 .options = options,
541 .flags = flags,
542 .errp = errp,
543 .ret = -EINPROGRESS
544 };
545
546 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
547 false, errp);
548 if (!bs->file) {
549 return -EINVAL;
550 }
551
552 bdrv_qed_init_state(bs);
553 if (qemu_in_coroutine()) {
554 bdrv_qed_open_entry(&qoc);
555 } else {
556 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
557 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
558 }
559 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
560 return qoc.ret;
561 }
562
563 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
564 {
565 BDRVQEDState *s = bs->opaque;
566
567 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
568 }
569
570 /* We have nothing to do for QED reopen, stubs just return
571 * success */
572 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
573 BlockReopenQueue *queue, Error **errp)
574 {
575 return 0;
576 }
577
578 static void bdrv_qed_close(BlockDriverState *bs)
579 {
580 BDRVQEDState *s = bs->opaque;
581
582 bdrv_qed_detach_aio_context(bs);
583
584 /* Ensure writes reach stable storage */
585 bdrv_flush(bs->file->bs);
586
587 /* Clean shutdown, no check required on next open */
588 if (s->header.features & QED_F_NEED_CHECK) {
589 s->header.features &= ~QED_F_NEED_CHECK;
590 qed_write_header_sync(s);
591 }
592
593 qed_free_l2_cache(&s->l2_cache);
594 qemu_vfree(s->l1_table);
595 }
596
597 static int qed_create(const char *filename, uint32_t cluster_size,
598 uint64_t image_size, uint32_t table_size,
599 const char *backing_file, const char *backing_fmt,
600 QemuOpts *opts, Error **errp)
601 {
602 QEDHeader header = {
603 .magic = QED_MAGIC,
604 .cluster_size = cluster_size,
605 .table_size = table_size,
606 .header_size = 1,
607 .features = 0,
608 .compat_features = 0,
609 .l1_table_offset = cluster_size,
610 .image_size = image_size,
611 };
612 QEDHeader le_header;
613 uint8_t *l1_table = NULL;
614 size_t l1_size = header.cluster_size * header.table_size;
615 Error *local_err = NULL;
616 int ret = 0;
617 BlockBackend *blk;
618
619 ret = bdrv_create_file(filename, opts, &local_err);
620 if (ret < 0) {
621 error_propagate(errp, local_err);
622 return ret;
623 }
624
625 blk = blk_new_open(filename, NULL, NULL,
626 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
627 &local_err);
628 if (blk == NULL) {
629 error_propagate(errp, local_err);
630 return -EIO;
631 }
632
633 blk_set_allow_write_beyond_eof(blk, true);
634
635 /* File must start empty and grow, check truncate is supported */
636 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
637 if (ret < 0) {
638 goto out;
639 }
640
641 if (backing_file) {
642 header.features |= QED_F_BACKING_FILE;
643 header.backing_filename_offset = sizeof(le_header);
644 header.backing_filename_size = strlen(backing_file);
645
646 if (qed_fmt_is_raw(backing_fmt)) {
647 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
648 }
649 }
650
651 qed_header_cpu_to_le(&header, &le_header);
652 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
653 if (ret < 0) {
654 goto out;
655 }
656 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
657 header.backing_filename_size, 0);
658 if (ret < 0) {
659 goto out;
660 }
661
662 l1_table = g_malloc0(l1_size);
663 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
664 if (ret < 0) {
665 goto out;
666 }
667
668 ret = 0; /* success */
669 out:
670 g_free(l1_table);
671 blk_unref(blk);
672 return ret;
673 }
674
675 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
676 QemuOpts *opts,
677 Error **errp)
678 {
679 uint64_t image_size = 0;
680 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
681 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
682 char *backing_file = NULL;
683 char *backing_fmt = NULL;
684 int ret;
685
686 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
687 BDRV_SECTOR_SIZE);
688 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
689 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
690 cluster_size = qemu_opt_get_size_del(opts,
691 BLOCK_OPT_CLUSTER_SIZE,
692 QED_DEFAULT_CLUSTER_SIZE);
693 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
694 QED_DEFAULT_TABLE_SIZE);
695
696 if (!qed_is_cluster_size_valid(cluster_size)) {
697 error_setg(errp, "QED cluster size must be within range [%u, %u] "
698 "and power of 2",
699 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
700 ret = -EINVAL;
701 goto finish;
702 }
703 if (!qed_is_table_size_valid(table_size)) {
704 error_setg(errp, "QED table size must be within range [%u, %u] "
705 "and power of 2",
706 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
707 ret = -EINVAL;
708 goto finish;
709 }
710 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
711 error_setg(errp, "QED image size must be a non-zero multiple of "
712 "cluster size and less than %" PRIu64 " bytes",
713 qed_max_image_size(cluster_size, table_size));
714 ret = -EINVAL;
715 goto finish;
716 }
717
718 ret = qed_create(filename, cluster_size, image_size, table_size,
719 backing_file, backing_fmt, opts, errp);
720
721 finish:
722 g_free(backing_file);
723 g_free(backing_fmt);
724 return ret;
725 }
726
727 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
728 bool want_zero,
729 int64_t pos, int64_t bytes,
730 int64_t *pnum, int64_t *map,
731 BlockDriverState **file)
732 {
733 BDRVQEDState *s = bs->opaque;
734 size_t len = MIN(bytes, SIZE_MAX);
735 int status;
736 QEDRequest request = { .l2_table = NULL };
737 uint64_t offset;
738 int ret;
739
740 qemu_co_mutex_lock(&s->table_lock);
741 ret = qed_find_cluster(s, &request, pos, &len, &offset);
742
743 *pnum = len;
744 switch (ret) {
745 case QED_CLUSTER_FOUND:
746 *map = offset | qed_offset_into_cluster(s, pos);
747 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
748 *file = bs->file->bs;
749 break;
750 case QED_CLUSTER_ZERO:
751 status = BDRV_BLOCK_ZERO;
752 break;
753 case QED_CLUSTER_L2:
754 case QED_CLUSTER_L1:
755 status = 0;
756 break;
757 default:
758 assert(ret < 0);
759 status = ret;
760 break;
761 }
762
763 qed_unref_l2_cache_entry(request.l2_table);
764 qemu_co_mutex_unlock(&s->table_lock);
765
766 return status;
767 }
768
769 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
770 {
771 return acb->bs->opaque;
772 }
773
774 /**
775 * Read from the backing file or zero-fill if no backing file
776 *
777 * @s: QED state
778 * @pos: Byte position in device
779 * @qiov: Destination I/O vector
780 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
781 * @cb: Completion function
782 * @opaque: User data for completion function
783 *
784 * This function reads qiov->size bytes starting at pos from the backing file.
785 * If there is no backing file then zeroes are read.
786 */
787 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
788 QEMUIOVector *qiov,
789 QEMUIOVector **backing_qiov)
790 {
791 uint64_t backing_length = 0;
792 size_t size;
793 int ret;
794
795 /* If there is a backing file, get its length. Treat the absence of a
796 * backing file like a zero length backing file.
797 */
798 if (s->bs->backing) {
799 int64_t l = bdrv_getlength(s->bs->backing->bs);
800 if (l < 0) {
801 return l;
802 }
803 backing_length = l;
804 }
805
806 /* Zero all sectors if reading beyond the end of the backing file */
807 if (pos >= backing_length ||
808 pos + qiov->size > backing_length) {
809 qemu_iovec_memset(qiov, 0, 0, qiov->size);
810 }
811
812 /* Complete now if there are no backing file sectors to read */
813 if (pos >= backing_length) {
814 return 0;
815 }
816
817 /* If the read straddles the end of the backing file, shorten it */
818 size = MIN((uint64_t)backing_length - pos, qiov->size);
819
820 assert(*backing_qiov == NULL);
821 *backing_qiov = g_new(QEMUIOVector, 1);
822 qemu_iovec_init(*backing_qiov, qiov->niov);
823 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
824
825 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
826 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
827 if (ret < 0) {
828 return ret;
829 }
830 return 0;
831 }
832
833 /**
834 * Copy data from backing file into the image
835 *
836 * @s: QED state
837 * @pos: Byte position in device
838 * @len: Number of bytes
839 * @offset: Byte offset in image file
840 */
841 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
842 uint64_t pos, uint64_t len,
843 uint64_t offset)
844 {
845 QEMUIOVector qiov;
846 QEMUIOVector *backing_qiov = NULL;
847 struct iovec iov;
848 int ret;
849
850 /* Skip copy entirely if there is no work to do */
851 if (len == 0) {
852 return 0;
853 }
854
855 iov = (struct iovec) {
856 .iov_base = qemu_blockalign(s->bs, len),
857 .iov_len = len,
858 };
859 qemu_iovec_init_external(&qiov, &iov, 1);
860
861 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
862
863 if (backing_qiov) {
864 qemu_iovec_destroy(backing_qiov);
865 g_free(backing_qiov);
866 backing_qiov = NULL;
867 }
868
869 if (ret) {
870 goto out;
871 }
872
873 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
874 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
875 if (ret < 0) {
876 goto out;
877 }
878 ret = 0;
879 out:
880 qemu_vfree(iov.iov_base);
881 return ret;
882 }
883
884 /**
885 * Link one or more contiguous clusters into a table
886 *
887 * @s: QED state
888 * @table: L2 table
889 * @index: First cluster index
890 * @n: Number of contiguous clusters
891 * @cluster: First cluster offset
892 *
893 * The cluster offset may be an allocated byte offset in the image file, the
894 * zero cluster marker, or the unallocated cluster marker.
895 *
896 * Called with table_lock held.
897 */
898 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
899 int index, unsigned int n,
900 uint64_t cluster)
901 {
902 int i;
903 for (i = index; i < index + n; i++) {
904 table->offsets[i] = cluster;
905 if (!qed_offset_is_unalloc_cluster(cluster) &&
906 !qed_offset_is_zero_cluster(cluster)) {
907 cluster += s->header.cluster_size;
908 }
909 }
910 }
911
912 /* Called with table_lock held. */
913 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
914 {
915 BDRVQEDState *s = acb_to_s(acb);
916
917 /* Free resources */
918 qemu_iovec_destroy(&acb->cur_qiov);
919 qed_unref_l2_cache_entry(acb->request.l2_table);
920
921 /* Free the buffer we may have allocated for zero writes */
922 if (acb->flags & QED_AIOCB_ZERO) {
923 qemu_vfree(acb->qiov->iov[0].iov_base);
924 acb->qiov->iov[0].iov_base = NULL;
925 }
926
927 /* Start next allocating write request waiting behind this one. Note that
928 * requests enqueue themselves when they first hit an unallocated cluster
929 * but they wait until the entire request is finished before waking up the
930 * next request in the queue. This ensures that we don't cycle through
931 * requests multiple times but rather finish one at a time completely.
932 */
933 if (acb == s->allocating_acb) {
934 s->allocating_acb = NULL;
935 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
936 qemu_co_queue_next(&s->allocating_write_reqs);
937 } else if (s->header.features & QED_F_NEED_CHECK) {
938 qed_start_need_check_timer(s);
939 }
940 }
941 }
942
943 /**
944 * Update L1 table with new L2 table offset and write it out
945 *
946 * Called with table_lock held.
947 */
948 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
949 {
950 BDRVQEDState *s = acb_to_s(acb);
951 CachedL2Table *l2_table = acb->request.l2_table;
952 uint64_t l2_offset = l2_table->offset;
953 int index, ret;
954
955 index = qed_l1_index(s, acb->cur_pos);
956 s->l1_table->offsets[index] = l2_table->offset;
957
958 ret = qed_write_l1_table(s, index, 1);
959
960 /* Commit the current L2 table to the cache */
961 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
962
963 /* This is guaranteed to succeed because we just committed the entry to the
964 * cache.
965 */
966 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
967 assert(acb->request.l2_table != NULL);
968
969 return ret;
970 }
971
972
973 /**
974 * Update L2 table with new cluster offsets and write them out
975 *
976 * Called with table_lock held.
977 */
978 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
979 {
980 BDRVQEDState *s = acb_to_s(acb);
981 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
982 int index, ret;
983
984 if (need_alloc) {
985 qed_unref_l2_cache_entry(acb->request.l2_table);
986 acb->request.l2_table = qed_new_l2_table(s);
987 }
988
989 index = qed_l2_index(s, acb->cur_pos);
990 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
991 offset);
992
993 if (need_alloc) {
994 /* Write out the whole new L2 table */
995 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
996 if (ret) {
997 return ret;
998 }
999 return qed_aio_write_l1_update(acb);
1000 } else {
1001 /* Write out only the updated part of the L2 table */
1002 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1003 false);
1004 if (ret) {
1005 return ret;
1006 }
1007 }
1008 return 0;
1009 }
1010
1011 /**
1012 * Write data to the image file
1013 *
1014 * Called with table_lock *not* held.
1015 */
1016 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1017 {
1018 BDRVQEDState *s = acb_to_s(acb);
1019 uint64_t offset = acb->cur_cluster +
1020 qed_offset_into_cluster(s, acb->cur_pos);
1021
1022 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1023
1024 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1025 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1026 &acb->cur_qiov, 0);
1027 }
1028
1029 /**
1030 * Populate untouched regions of new data cluster
1031 *
1032 * Called with table_lock held.
1033 */
1034 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1035 {
1036 BDRVQEDState *s = acb_to_s(acb);
1037 uint64_t start, len, offset;
1038 int ret;
1039
1040 qemu_co_mutex_unlock(&s->table_lock);
1041
1042 /* Populate front untouched region of new data cluster */
1043 start = qed_start_of_cluster(s, acb->cur_pos);
1044 len = qed_offset_into_cluster(s, acb->cur_pos);
1045
1046 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1047 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1048 if (ret < 0) {
1049 goto out;
1050 }
1051
1052 /* Populate back untouched region of new data cluster */
1053 start = acb->cur_pos + acb->cur_qiov.size;
1054 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1055 offset = acb->cur_cluster +
1056 qed_offset_into_cluster(s, acb->cur_pos) +
1057 acb->cur_qiov.size;
1058
1059 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1060 ret = qed_copy_from_backing_file(s, start, len, offset);
1061 if (ret < 0) {
1062 goto out;
1063 }
1064
1065 ret = qed_aio_write_main(acb);
1066 if (ret < 0) {
1067 goto out;
1068 }
1069
1070 if (s->bs->backing) {
1071 /*
1072 * Flush new data clusters before updating the L2 table
1073 *
1074 * This flush is necessary when a backing file is in use. A crash
1075 * during an allocating write could result in empty clusters in the
1076 * image. If the write only touched a subregion of the cluster,
1077 * then backing image sectors have been lost in the untouched
1078 * region. The solution is to flush after writing a new data
1079 * cluster and before updating the L2 table.
1080 */
1081 ret = bdrv_co_flush(s->bs->file->bs);
1082 }
1083
1084 out:
1085 qemu_co_mutex_lock(&s->table_lock);
1086 return ret;
1087 }
1088
1089 /**
1090 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1091 */
1092 static bool qed_should_set_need_check(BDRVQEDState *s)
1093 {
1094 /* The flush before L2 update path ensures consistency */
1095 if (s->bs->backing) {
1096 return false;
1097 }
1098
1099 return !(s->header.features & QED_F_NEED_CHECK);
1100 }
1101
1102 /**
1103 * Write new data cluster
1104 *
1105 * @acb: Write request
1106 * @len: Length in bytes
1107 *
1108 * This path is taken when writing to previously unallocated clusters.
1109 *
1110 * Called with table_lock held.
1111 */
1112 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1113 {
1114 BDRVQEDState *s = acb_to_s(acb);
1115 int ret;
1116
1117 /* Cancel timer when the first allocating request comes in */
1118 if (s->allocating_acb == NULL) {
1119 qed_cancel_need_check_timer(s);
1120 }
1121
1122 /* Freeze this request if another allocating write is in progress */
1123 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1124 if (s->allocating_acb != NULL) {
1125 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1126 assert(s->allocating_acb == NULL);
1127 }
1128 s->allocating_acb = acb;
1129 return -EAGAIN; /* start over with looking up table entries */
1130 }
1131
1132 acb->cur_nclusters = qed_bytes_to_clusters(s,
1133 qed_offset_into_cluster(s, acb->cur_pos) + len);
1134 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1135
1136 if (acb->flags & QED_AIOCB_ZERO) {
1137 /* Skip ahead if the clusters are already zero */
1138 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1139 return 0;
1140 }
1141 acb->cur_cluster = 1;
1142 } else {
1143 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1144 }
1145
1146 if (qed_should_set_need_check(s)) {
1147 s->header.features |= QED_F_NEED_CHECK;
1148 ret = qed_write_header(s);
1149 if (ret < 0) {
1150 return ret;
1151 }
1152 }
1153
1154 if (!(acb->flags & QED_AIOCB_ZERO)) {
1155 ret = qed_aio_write_cow(acb);
1156 if (ret < 0) {
1157 return ret;
1158 }
1159 }
1160
1161 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1162 }
1163
1164 /**
1165 * Write data cluster in place
1166 *
1167 * @acb: Write request
1168 * @offset: Cluster offset in bytes
1169 * @len: Length in bytes
1170 *
1171 * This path is taken when writing to already allocated clusters.
1172 *
1173 * Called with table_lock held.
1174 */
1175 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1176 size_t len)
1177 {
1178 BDRVQEDState *s = acb_to_s(acb);
1179 int r;
1180
1181 qemu_co_mutex_unlock(&s->table_lock);
1182
1183 /* Allocate buffer for zero writes */
1184 if (acb->flags & QED_AIOCB_ZERO) {
1185 struct iovec *iov = acb->qiov->iov;
1186
1187 if (!iov->iov_base) {
1188 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1189 if (iov->iov_base == NULL) {
1190 r = -ENOMEM;
1191 goto out;
1192 }
1193 memset(iov->iov_base, 0, iov->iov_len);
1194 }
1195 }
1196
1197 /* Calculate the I/O vector */
1198 acb->cur_cluster = offset;
1199 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1200
1201 /* Do the actual write. */
1202 r = qed_aio_write_main(acb);
1203 out:
1204 qemu_co_mutex_lock(&s->table_lock);
1205 return r;
1206 }
1207
1208 /**
1209 * Write data cluster
1210 *
1211 * @opaque: Write request
1212 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1213 * @offset: Cluster offset in bytes
1214 * @len: Length in bytes
1215 *
1216 * Called with table_lock held.
1217 */
1218 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1219 uint64_t offset, size_t len)
1220 {
1221 QEDAIOCB *acb = opaque;
1222
1223 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1224
1225 acb->find_cluster_ret = ret;
1226
1227 switch (ret) {
1228 case QED_CLUSTER_FOUND:
1229 return qed_aio_write_inplace(acb, offset, len);
1230
1231 case QED_CLUSTER_L2:
1232 case QED_CLUSTER_L1:
1233 case QED_CLUSTER_ZERO:
1234 return qed_aio_write_alloc(acb, len);
1235
1236 default:
1237 g_assert_not_reached();
1238 }
1239 }
1240
1241 /**
1242 * Read data cluster
1243 *
1244 * @opaque: Read request
1245 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1246 * @offset: Cluster offset in bytes
1247 * @len: Length in bytes
1248 *
1249 * Called with table_lock held.
1250 */
1251 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1252 uint64_t offset, size_t len)
1253 {
1254 QEDAIOCB *acb = opaque;
1255 BDRVQEDState *s = acb_to_s(acb);
1256 BlockDriverState *bs = acb->bs;
1257 int r;
1258
1259 qemu_co_mutex_unlock(&s->table_lock);
1260
1261 /* Adjust offset into cluster */
1262 offset += qed_offset_into_cluster(s, acb->cur_pos);
1263
1264 trace_qed_aio_read_data(s, acb, ret, offset, len);
1265
1266 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1267
1268 /* Handle zero cluster and backing file reads, otherwise read
1269 * data cluster directly.
1270 */
1271 if (ret == QED_CLUSTER_ZERO) {
1272 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1273 r = 0;
1274 } else if (ret != QED_CLUSTER_FOUND) {
1275 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1276 &acb->backing_qiov);
1277 } else {
1278 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1279 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1280 &acb->cur_qiov, 0);
1281 }
1282
1283 qemu_co_mutex_lock(&s->table_lock);
1284 return r;
1285 }
1286
1287 /**
1288 * Begin next I/O or complete the request
1289 */
1290 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1291 {
1292 BDRVQEDState *s = acb_to_s(acb);
1293 uint64_t offset;
1294 size_t len;
1295 int ret;
1296
1297 qemu_co_mutex_lock(&s->table_lock);
1298 while (1) {
1299 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1300
1301 if (acb->backing_qiov) {
1302 qemu_iovec_destroy(acb->backing_qiov);
1303 g_free(acb->backing_qiov);
1304 acb->backing_qiov = NULL;
1305 }
1306
1307 acb->qiov_offset += acb->cur_qiov.size;
1308 acb->cur_pos += acb->cur_qiov.size;
1309 qemu_iovec_reset(&acb->cur_qiov);
1310
1311 /* Complete request */
1312 if (acb->cur_pos >= acb->end_pos) {
1313 ret = 0;
1314 break;
1315 }
1316
1317 /* Find next cluster and start I/O */
1318 len = acb->end_pos - acb->cur_pos;
1319 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1320 if (ret < 0) {
1321 break;
1322 }
1323
1324 if (acb->flags & QED_AIOCB_WRITE) {
1325 ret = qed_aio_write_data(acb, ret, offset, len);
1326 } else {
1327 ret = qed_aio_read_data(acb, ret, offset, len);
1328 }
1329
1330 if (ret < 0 && ret != -EAGAIN) {
1331 break;
1332 }
1333 }
1334
1335 trace_qed_aio_complete(s, acb, ret);
1336 qed_aio_complete(acb);
1337 qemu_co_mutex_unlock(&s->table_lock);
1338 return ret;
1339 }
1340
1341 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1342 QEMUIOVector *qiov, int nb_sectors,
1343 int flags)
1344 {
1345 QEDAIOCB acb = {
1346 .bs = bs,
1347 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1348 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1349 .qiov = qiov,
1350 .flags = flags,
1351 };
1352 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1353
1354 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1355
1356 /* Start request */
1357 return qed_aio_next_io(&acb);
1358 }
1359
1360 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1361 int64_t sector_num, int nb_sectors,
1362 QEMUIOVector *qiov)
1363 {
1364 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1365 }
1366
1367 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1368 int64_t sector_num, int nb_sectors,
1369 QEMUIOVector *qiov)
1370 {
1371 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1372 }
1373
1374 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1375 int64_t offset,
1376 int bytes,
1377 BdrvRequestFlags flags)
1378 {
1379 BDRVQEDState *s = bs->opaque;
1380 QEMUIOVector qiov;
1381 struct iovec iov;
1382
1383 /* Fall back if the request is not aligned */
1384 if (qed_offset_into_cluster(s, offset) ||
1385 qed_offset_into_cluster(s, bytes)) {
1386 return -ENOTSUP;
1387 }
1388
1389 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1390 * then it will be allocated during request processing.
1391 */
1392 iov.iov_base = NULL;
1393 iov.iov_len = bytes;
1394
1395 qemu_iovec_init_external(&qiov, &iov, 1);
1396 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1397 bytes >> BDRV_SECTOR_BITS,
1398 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1399 }
1400
1401 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset,
1402 PreallocMode prealloc, Error **errp)
1403 {
1404 BDRVQEDState *s = bs->opaque;
1405 uint64_t old_image_size;
1406 int ret;
1407
1408 if (prealloc != PREALLOC_MODE_OFF) {
1409 error_setg(errp, "Unsupported preallocation mode '%s'",
1410 PreallocMode_str(prealloc));
1411 return -ENOTSUP;
1412 }
1413
1414 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1415 s->header.table_size)) {
1416 error_setg(errp, "Invalid image size specified");
1417 return -EINVAL;
1418 }
1419
1420 if ((uint64_t)offset < s->header.image_size) {
1421 error_setg(errp, "Shrinking images is currently not supported");
1422 return -ENOTSUP;
1423 }
1424
1425 old_image_size = s->header.image_size;
1426 s->header.image_size = offset;
1427 ret = qed_write_header_sync(s);
1428 if (ret < 0) {
1429 s->header.image_size = old_image_size;
1430 error_setg_errno(errp, -ret, "Failed to update the image size");
1431 }
1432 return ret;
1433 }
1434
1435 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1436 {
1437 BDRVQEDState *s = bs->opaque;
1438 return s->header.image_size;
1439 }
1440
1441 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1442 {
1443 BDRVQEDState *s = bs->opaque;
1444
1445 memset(bdi, 0, sizeof(*bdi));
1446 bdi->cluster_size = s->header.cluster_size;
1447 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1448 bdi->unallocated_blocks_are_zero = true;
1449 return 0;
1450 }
1451
1452 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1453 const char *backing_file,
1454 const char *backing_fmt)
1455 {
1456 BDRVQEDState *s = bs->opaque;
1457 QEDHeader new_header, le_header;
1458 void *buffer;
1459 size_t buffer_len, backing_file_len;
1460 int ret;
1461
1462 /* Refuse to set backing filename if unknown compat feature bits are
1463 * active. If the image uses an unknown compat feature then we may not
1464 * know the layout of data following the header structure and cannot safely
1465 * add a new string.
1466 */
1467 if (backing_file && (s->header.compat_features &
1468 ~QED_COMPAT_FEATURE_MASK)) {
1469 return -ENOTSUP;
1470 }
1471
1472 memcpy(&new_header, &s->header, sizeof(new_header));
1473
1474 new_header.features &= ~(QED_F_BACKING_FILE |
1475 QED_F_BACKING_FORMAT_NO_PROBE);
1476
1477 /* Adjust feature flags */
1478 if (backing_file) {
1479 new_header.features |= QED_F_BACKING_FILE;
1480
1481 if (qed_fmt_is_raw(backing_fmt)) {
1482 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1483 }
1484 }
1485
1486 /* Calculate new header size */
1487 backing_file_len = 0;
1488
1489 if (backing_file) {
1490 backing_file_len = strlen(backing_file);
1491 }
1492
1493 buffer_len = sizeof(new_header);
1494 new_header.backing_filename_offset = buffer_len;
1495 new_header.backing_filename_size = backing_file_len;
1496 buffer_len += backing_file_len;
1497
1498 /* Make sure we can rewrite header without failing */
1499 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1500 return -ENOSPC;
1501 }
1502
1503 /* Prepare new header */
1504 buffer = g_malloc(buffer_len);
1505
1506 qed_header_cpu_to_le(&new_header, &le_header);
1507 memcpy(buffer, &le_header, sizeof(le_header));
1508 buffer_len = sizeof(le_header);
1509
1510 if (backing_file) {
1511 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1512 buffer_len += backing_file_len;
1513 }
1514
1515 /* Write new header */
1516 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1517 g_free(buffer);
1518 if (ret == 0) {
1519 memcpy(&s->header, &new_header, sizeof(new_header));
1520 }
1521 return ret;
1522 }
1523
1524 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1525 Error **errp)
1526 {
1527 BDRVQEDState *s = bs->opaque;
1528 Error *local_err = NULL;
1529 int ret;
1530
1531 bdrv_qed_close(bs);
1532
1533 bdrv_qed_init_state(bs);
1534 qemu_co_mutex_lock(&s->table_lock);
1535 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1536 qemu_co_mutex_unlock(&s->table_lock);
1537 if (local_err) {
1538 error_propagate(errp, local_err);
1539 error_prepend(errp, "Could not reopen qed layer: ");
1540 return;
1541 } else if (ret < 0) {
1542 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1543 return;
1544 }
1545 }
1546
1547 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1548 BdrvCheckMode fix)
1549 {
1550 BDRVQEDState *s = bs->opaque;
1551 int ret;
1552
1553 qemu_co_mutex_lock(&s->table_lock);
1554 ret = qed_check(s, result, !!fix);
1555 qemu_co_mutex_unlock(&s->table_lock);
1556
1557 return ret;
1558 }
1559
1560 static QemuOptsList qed_create_opts = {
1561 .name = "qed-create-opts",
1562 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1563 .desc = {
1564 {
1565 .name = BLOCK_OPT_SIZE,
1566 .type = QEMU_OPT_SIZE,
1567 .help = "Virtual disk size"
1568 },
1569 {
1570 .name = BLOCK_OPT_BACKING_FILE,
1571 .type = QEMU_OPT_STRING,
1572 .help = "File name of a base image"
1573 },
1574 {
1575 .name = BLOCK_OPT_BACKING_FMT,
1576 .type = QEMU_OPT_STRING,
1577 .help = "Image format of the base image"
1578 },
1579 {
1580 .name = BLOCK_OPT_CLUSTER_SIZE,
1581 .type = QEMU_OPT_SIZE,
1582 .help = "Cluster size (in bytes)",
1583 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1584 },
1585 {
1586 .name = BLOCK_OPT_TABLE_SIZE,
1587 .type = QEMU_OPT_SIZE,
1588 .help = "L1/L2 table size (in clusters)"
1589 },
1590 { /* end of list */ }
1591 }
1592 };
1593
1594 static BlockDriver bdrv_qed = {
1595 .format_name = "qed",
1596 .instance_size = sizeof(BDRVQEDState),
1597 .create_opts = &qed_create_opts,
1598 .supports_backing = true,
1599
1600 .bdrv_probe = bdrv_qed_probe,
1601 .bdrv_open = bdrv_qed_open,
1602 .bdrv_close = bdrv_qed_close,
1603 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1604 .bdrv_child_perm = bdrv_format_default_perms,
1605 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1606 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1607 .bdrv_co_block_status = bdrv_qed_co_block_status,
1608 .bdrv_co_readv = bdrv_qed_co_readv,
1609 .bdrv_co_writev = bdrv_qed_co_writev,
1610 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1611 .bdrv_truncate = bdrv_qed_truncate,
1612 .bdrv_getlength = bdrv_qed_getlength,
1613 .bdrv_get_info = bdrv_qed_get_info,
1614 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1615 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1616 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1617 .bdrv_co_check = bdrv_qed_co_check,
1618 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1619 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1620 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1621 };
1622
1623 static void bdrv_qed_init(void)
1624 {
1625 bdrv_register(&bdrv_qed);
1626 }
1627
1628 block_init(bdrv_qed_init);