]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
Merge tag 'linux-user-for-8.1-pull-request' of https://github.com/vivier/qemu into...
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/option.h"
23 #include "qemu/memalign.h"
24 #include "trace.h"
25 #include "qed.h"
26 #include "sysemu/block-backend.h"
27 #include "qapi/qmp/qdict.h"
28 #include "qapi/qobject-input-visitor.h"
29 #include "qapi/qapi-visit-block-core.h"
30
31 static QemuOptsList qed_create_opts;
32
33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
34 const char *filename)
35 {
36 const QEDHeader *header = (const QEDHeader *)buf;
37
38 if (buf_size < sizeof(*header)) {
39 return 0;
40 }
41 if (le32_to_cpu(header->magic) != QED_MAGIC) {
42 return 0;
43 }
44 return 100;
45 }
46
47 /**
48 * Check whether an image format is raw
49 *
50 * @fmt: Backing file format, may be NULL
51 */
52 static bool qed_fmt_is_raw(const char *fmt)
53 {
54 return fmt && strcmp(fmt, "raw") == 0;
55 }
56
57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
58 {
59 cpu->magic = le32_to_cpu(le->magic);
60 cpu->cluster_size = le32_to_cpu(le->cluster_size);
61 cpu->table_size = le32_to_cpu(le->table_size);
62 cpu->header_size = le32_to_cpu(le->header_size);
63 cpu->features = le64_to_cpu(le->features);
64 cpu->compat_features = le64_to_cpu(le->compat_features);
65 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
66 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
67 cpu->image_size = le64_to_cpu(le->image_size);
68 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
69 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
70 }
71
72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
73 {
74 le->magic = cpu_to_le32(cpu->magic);
75 le->cluster_size = cpu_to_le32(cpu->cluster_size);
76 le->table_size = cpu_to_le32(cpu->table_size);
77 le->header_size = cpu_to_le32(cpu->header_size);
78 le->features = cpu_to_le64(cpu->features);
79 le->compat_features = cpu_to_le64(cpu->compat_features);
80 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
81 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
82 le->image_size = cpu_to_le64(cpu->image_size);
83 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
84 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
85 }
86
87 int qed_write_header_sync(BDRVQEDState *s)
88 {
89 QEDHeader le;
90
91 qed_header_cpu_to_le(&s->header, &le);
92 return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
93 }
94
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
97 *
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
100 *
101 * No new allocating reqs can start while this function runs.
102 */
103 static int coroutine_fn GRAPH_RDLOCK qed_write_header(BDRVQEDState *s)
104 {
105 /* We must write full sectors for O_DIRECT but cannot necessarily generate
106 * the data following the header if an unrecognized compat feature is
107 * active. Therefore, first read the sectors containing the header, update
108 * them, and write back.
109 */
110
111 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
112 size_t len = nsectors * BDRV_SECTOR_SIZE;
113 uint8_t *buf;
114 int ret;
115
116 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
117
118 buf = qemu_blockalign(s->bs, len);
119
120 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
121 if (ret < 0) {
122 goto out;
123 }
124
125 /* Update header */
126 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
127
128 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
129 if (ret < 0) {
130 goto out;
131 }
132
133 ret = 0;
134 out:
135 qemu_vfree(buf);
136 return ret;
137 }
138
139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
140 {
141 uint64_t table_entries;
142 uint64_t l2_size;
143
144 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
145 l2_size = table_entries * cluster_size;
146
147 return l2_size * table_entries;
148 }
149
150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
151 {
152 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
153 cluster_size > QED_MAX_CLUSTER_SIZE) {
154 return false;
155 }
156 if (cluster_size & (cluster_size - 1)) {
157 return false; /* not power of 2 */
158 }
159 return true;
160 }
161
162 static bool qed_is_table_size_valid(uint32_t table_size)
163 {
164 if (table_size < QED_MIN_TABLE_SIZE ||
165 table_size > QED_MAX_TABLE_SIZE) {
166 return false;
167 }
168 if (table_size & (table_size - 1)) {
169 return false; /* not power of 2 */
170 }
171 return true;
172 }
173
174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
175 uint32_t table_size)
176 {
177 if (image_size % BDRV_SECTOR_SIZE != 0) {
178 return false; /* not multiple of sector size */
179 }
180 if (image_size > qed_max_image_size(cluster_size, table_size)) {
181 return false; /* image is too large */
182 }
183 return true;
184 }
185
186 /**
187 * Read a string of known length from the image file
188 *
189 * @file: Image file
190 * @offset: File offset to start of string, in bytes
191 * @n: String length in bytes
192 * @buf: Destination buffer
193 * @buflen: Destination buffer length in bytes
194 * @ret: 0 on success, -errno on failure
195 *
196 * The string is NUL-terminated.
197 */
198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
199 char *buf, size_t buflen)
200 {
201 int ret;
202 if (n >= buflen) {
203 return -EINVAL;
204 }
205 ret = bdrv_pread(file, offset, n, buf, 0);
206 if (ret < 0) {
207 return ret;
208 }
209 buf[n] = '\0';
210 return 0;
211 }
212
213 /**
214 * Allocate new clusters
215 *
216 * @s: QED state
217 * @n: Number of contiguous clusters to allocate
218 * @ret: Offset of first allocated cluster
219 *
220 * This function only produces the offset where the new clusters should be
221 * written. It updates BDRVQEDState but does not make any changes to the image
222 * file.
223 *
224 * Called with table_lock held.
225 */
226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
227 {
228 uint64_t offset = s->file_size;
229 s->file_size += n * s->header.cluster_size;
230 return offset;
231 }
232
233 QEDTable *qed_alloc_table(BDRVQEDState *s)
234 {
235 /* Honor O_DIRECT memory alignment requirements */
236 return qemu_blockalign(s->bs,
237 s->header.cluster_size * s->header.table_size);
238 }
239
240 /**
241 * Allocate a new zeroed L2 table
242 *
243 * Called with table_lock held.
244 */
245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
246 {
247 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
248
249 l2_table->table = qed_alloc_table(s);
250 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
251
252 memset(l2_table->table->offsets, 0,
253 s->header.cluster_size * s->header.table_size);
254 return l2_table;
255 }
256
257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
258 {
259 qemu_co_mutex_lock(&s->table_lock);
260
261 /* No reentrancy is allowed. */
262 assert(!s->allocating_write_reqs_plugged);
263 if (s->allocating_acb != NULL) {
264 /* Another allocating write came concurrently. This cannot happen
265 * from bdrv_qed_drain_begin, but it can happen when the timer runs.
266 */
267 qemu_co_mutex_unlock(&s->table_lock);
268 return false;
269 }
270
271 s->allocating_write_reqs_plugged = true;
272 qemu_co_mutex_unlock(&s->table_lock);
273 return true;
274 }
275
276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
277 {
278 qemu_co_mutex_lock(&s->table_lock);
279 assert(s->allocating_write_reqs_plugged);
280 s->allocating_write_reqs_plugged = false;
281 qemu_co_queue_next(&s->allocating_write_reqs);
282 qemu_co_mutex_unlock(&s->table_lock);
283 }
284
285 static void coroutine_fn GRAPH_RDLOCK qed_need_check_timer(BDRVQEDState *s)
286 {
287 int ret;
288
289 trace_qed_need_check_timer_cb(s);
290 assert_bdrv_graph_readable();
291
292 if (!qed_plug_allocating_write_reqs(s)) {
293 return;
294 }
295
296 /* Ensure writes are on disk before clearing flag */
297 ret = bdrv_co_flush(s->bs->file->bs);
298 if (ret < 0) {
299 qed_unplug_allocating_write_reqs(s);
300 return;
301 }
302
303 s->header.features &= ~QED_F_NEED_CHECK;
304 ret = qed_write_header(s);
305 (void) ret;
306
307 qed_unplug_allocating_write_reqs(s);
308
309 ret = bdrv_co_flush(s->bs);
310 (void) ret;
311 }
312
313 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
314 {
315 BDRVQEDState *s = opaque;
316 GRAPH_RDLOCK_GUARD();
317
318 qed_need_check_timer(opaque);
319 bdrv_dec_in_flight(s->bs);
320 }
321
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324 BDRVQEDState *s = opaque;
325 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
326
327 bdrv_inc_in_flight(s->bs);
328 qemu_coroutine_enter(co);
329 }
330
331 static void qed_start_need_check_timer(BDRVQEDState *s)
332 {
333 trace_qed_start_need_check_timer(s);
334
335 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
336 * migration.
337 */
338 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
339 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
340 }
341
342 /* It's okay to call this multiple times or when no timer is started */
343 static void qed_cancel_need_check_timer(BDRVQEDState *s)
344 {
345 trace_qed_cancel_need_check_timer(s);
346 timer_del(s->need_check_timer);
347 }
348
349 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
350 {
351 BDRVQEDState *s = bs->opaque;
352
353 qed_cancel_need_check_timer(s);
354 timer_free(s->need_check_timer);
355 }
356
357 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
358 AioContext *new_context)
359 {
360 BDRVQEDState *s = bs->opaque;
361
362 s->need_check_timer = aio_timer_new(new_context,
363 QEMU_CLOCK_VIRTUAL, SCALE_NS,
364 qed_need_check_timer_cb, s);
365 if (s->header.features & QED_F_NEED_CHECK) {
366 qed_start_need_check_timer(s);
367 }
368 }
369
370 static void bdrv_qed_drain_begin(BlockDriverState *bs)
371 {
372 BDRVQEDState *s = bs->opaque;
373
374 /* Fire the timer immediately in order to start doing I/O as soon as the
375 * header is flushed.
376 */
377 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
378 Coroutine *co;
379
380 qed_cancel_need_check_timer(s);
381 co = qemu_coroutine_create(qed_need_check_timer_entry, s);
382 bdrv_inc_in_flight(bs);
383 aio_co_enter(bdrv_get_aio_context(bs), co);
384 }
385 }
386
387 static void bdrv_qed_init_state(BlockDriverState *bs)
388 {
389 BDRVQEDState *s = bs->opaque;
390
391 memset(s, 0, sizeof(BDRVQEDState));
392 s->bs = bs;
393 qemu_co_mutex_init(&s->table_lock);
394 qemu_co_queue_init(&s->allocating_write_reqs);
395 }
396
397 /* Called with table_lock held. */
398 static int coroutine_fn GRAPH_RDLOCK
399 bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags, Error **errp)
400 {
401 BDRVQEDState *s = bs->opaque;
402 QEDHeader le_header;
403 int64_t file_size;
404 int ret;
405
406 ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
407 if (ret < 0) {
408 error_setg(errp, "Failed to read QED header");
409 return ret;
410 }
411 qed_header_le_to_cpu(&le_header, &s->header);
412
413 if (s->header.magic != QED_MAGIC) {
414 error_setg(errp, "Image not in QED format");
415 return -EINVAL;
416 }
417 if (s->header.features & ~QED_FEATURE_MASK) {
418 /* image uses unsupported feature bits */
419 error_setg(errp, "Unsupported QED features: %" PRIx64,
420 s->header.features & ~QED_FEATURE_MASK);
421 return -ENOTSUP;
422 }
423 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
424 error_setg(errp, "QED cluster size is invalid");
425 return -EINVAL;
426 }
427
428 /* Round down file size to the last cluster */
429 file_size = bdrv_co_getlength(bs->file->bs);
430 if (file_size < 0) {
431 error_setg(errp, "Failed to get file length");
432 return file_size;
433 }
434 s->file_size = qed_start_of_cluster(s, file_size);
435
436 if (!qed_is_table_size_valid(s->header.table_size)) {
437 error_setg(errp, "QED table size is invalid");
438 return -EINVAL;
439 }
440 if (!qed_is_image_size_valid(s->header.image_size,
441 s->header.cluster_size,
442 s->header.table_size)) {
443 error_setg(errp, "QED image size is invalid");
444 return -EINVAL;
445 }
446 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
447 error_setg(errp, "QED table offset is invalid");
448 return -EINVAL;
449 }
450
451 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
452 sizeof(uint64_t);
453 s->l2_shift = ctz32(s->header.cluster_size);
454 s->l2_mask = s->table_nelems - 1;
455 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
456
457 /* Header size calculation must not overflow uint32_t */
458 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
459 error_setg(errp, "QED header size is too large");
460 return -EINVAL;
461 }
462
463 if ((s->header.features & QED_F_BACKING_FILE)) {
464 g_autofree char *backing_file_str = NULL;
465
466 if ((uint64_t)s->header.backing_filename_offset +
467 s->header.backing_filename_size >
468 s->header.cluster_size * s->header.header_size) {
469 error_setg(errp, "QED backing filename offset is invalid");
470 return -EINVAL;
471 }
472
473 backing_file_str = g_malloc(sizeof(bs->backing_file));
474 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
475 s->header.backing_filename_size,
476 backing_file_str, sizeof(bs->backing_file));
477 if (ret < 0) {
478 error_setg(errp, "Failed to read backing filename");
479 return ret;
480 }
481
482 if (!g_str_equal(backing_file_str, bs->backing_file)) {
483 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
484 backing_file_str);
485 pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
486 backing_file_str);
487 }
488
489 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
490 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
491 }
492 }
493
494 /* Reset unknown autoclear feature bits. This is a backwards
495 * compatibility mechanism that allows images to be opened by older
496 * programs, which "knock out" unknown feature bits. When an image is
497 * opened by a newer program again it can detect that the autoclear
498 * feature is no longer valid.
499 */
500 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
501 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
502 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
503
504 ret = qed_write_header_sync(s);
505 if (ret) {
506 error_setg(errp, "Failed to update header");
507 return ret;
508 }
509
510 /* From here on only known autoclear feature bits are valid */
511 bdrv_co_flush(bs->file->bs);
512 }
513
514 s->l1_table = qed_alloc_table(s);
515 qed_init_l2_cache(&s->l2_cache);
516
517 ret = qed_read_l1_table_sync(s);
518 if (ret) {
519 error_setg(errp, "Failed to read L1 table");
520 goto out;
521 }
522
523 /* If image was not closed cleanly, check consistency */
524 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
525 /* Read-only images cannot be fixed. There is no risk of corruption
526 * since write operations are not possible. Therefore, allow
527 * potentially inconsistent images to be opened read-only. This can
528 * aid data recovery from an otherwise inconsistent image.
529 */
530 if (!bdrv_is_read_only(bs->file->bs) &&
531 !(flags & BDRV_O_INACTIVE)) {
532 BdrvCheckResult result = {0};
533
534 ret = qed_check(s, &result, true);
535 if (ret) {
536 error_setg(errp, "Image corrupted");
537 goto out;
538 }
539 }
540 }
541
542 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
543
544 out:
545 if (ret) {
546 qed_free_l2_cache(&s->l2_cache);
547 qemu_vfree(s->l1_table);
548 }
549 return ret;
550 }
551
552 typedef struct QEDOpenCo {
553 BlockDriverState *bs;
554 QDict *options;
555 int flags;
556 Error **errp;
557 int ret;
558 } QEDOpenCo;
559
560 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
561 {
562 QEDOpenCo *qoc = opaque;
563 BDRVQEDState *s = qoc->bs->opaque;
564
565 GRAPH_RDLOCK_GUARD();
566
567 qemu_co_mutex_lock(&s->table_lock);
568 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
569 qemu_co_mutex_unlock(&s->table_lock);
570 }
571
572 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
573 Error **errp)
574 {
575 QEDOpenCo qoc = {
576 .bs = bs,
577 .options = options,
578 .flags = flags,
579 .errp = errp,
580 .ret = -EINPROGRESS
581 };
582 int ret;
583
584 ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
585 if (ret < 0) {
586 return ret;
587 }
588
589 bdrv_qed_init_state(bs);
590 assert(!qemu_in_coroutine());
591 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
592 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
593 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
594
595 return qoc.ret;
596 }
597
598 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
599 {
600 BDRVQEDState *s = bs->opaque;
601
602 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
603 bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
604 }
605
606 /* We have nothing to do for QED reopen, stubs just return
607 * success */
608 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
609 BlockReopenQueue *queue, Error **errp)
610 {
611 return 0;
612 }
613
614 static void bdrv_qed_close(BlockDriverState *bs)
615 {
616 BDRVQEDState *s = bs->opaque;
617
618 bdrv_qed_detach_aio_context(bs);
619
620 /* Ensure writes reach stable storage */
621 bdrv_flush(bs->file->bs);
622
623 /* Clean shutdown, no check required on next open */
624 if (s->header.features & QED_F_NEED_CHECK) {
625 s->header.features &= ~QED_F_NEED_CHECK;
626 qed_write_header_sync(s);
627 }
628
629 qed_free_l2_cache(&s->l2_cache);
630 qemu_vfree(s->l1_table);
631 }
632
633 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
634 Error **errp)
635 {
636 BlockdevCreateOptionsQed *qed_opts;
637 BlockBackend *blk = NULL;
638 BlockDriverState *bs = NULL;
639
640 QEDHeader header;
641 QEDHeader le_header;
642 uint8_t *l1_table = NULL;
643 size_t l1_size;
644 int ret = 0;
645
646 assert(opts->driver == BLOCKDEV_DRIVER_QED);
647 qed_opts = &opts->u.qed;
648
649 /* Validate options and set default values */
650 if (!qed_opts->has_cluster_size) {
651 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
652 }
653 if (!qed_opts->has_table_size) {
654 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
655 }
656
657 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
658 error_setg(errp, "QED cluster size must be within range [%u, %u] "
659 "and power of 2",
660 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
661 return -EINVAL;
662 }
663 if (!qed_is_table_size_valid(qed_opts->table_size)) {
664 error_setg(errp, "QED table size must be within range [%u, %u] "
665 "and power of 2",
666 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
667 return -EINVAL;
668 }
669 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
670 qed_opts->table_size))
671 {
672 error_setg(errp, "QED image size must be a non-zero multiple of "
673 "cluster size and less than %" PRIu64 " bytes",
674 qed_max_image_size(qed_opts->cluster_size,
675 qed_opts->table_size));
676 return -EINVAL;
677 }
678
679 /* Create BlockBackend to write to the image */
680 bs = bdrv_co_open_blockdev_ref(qed_opts->file, errp);
681 if (bs == NULL) {
682 return -EIO;
683 }
684
685 blk = blk_co_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
686 errp);
687 if (!blk) {
688 ret = -EPERM;
689 goto out;
690 }
691 blk_set_allow_write_beyond_eof(blk, true);
692
693 /* Prepare image format */
694 header = (QEDHeader) {
695 .magic = QED_MAGIC,
696 .cluster_size = qed_opts->cluster_size,
697 .table_size = qed_opts->table_size,
698 .header_size = 1,
699 .features = 0,
700 .compat_features = 0,
701 .l1_table_offset = qed_opts->cluster_size,
702 .image_size = qed_opts->size,
703 };
704
705 l1_size = header.cluster_size * header.table_size;
706
707 /*
708 * The QED format associates file length with allocation status,
709 * so a new file (which is empty) must have a length of 0.
710 */
711 ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
712 if (ret < 0) {
713 goto out;
714 }
715
716 if (qed_opts->backing_file) {
717 header.features |= QED_F_BACKING_FILE;
718 header.backing_filename_offset = sizeof(le_header);
719 header.backing_filename_size = strlen(qed_opts->backing_file);
720
721 if (qed_opts->has_backing_fmt) {
722 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
723 if (qed_fmt_is_raw(backing_fmt)) {
724 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
725 }
726 }
727 }
728
729 qed_header_cpu_to_le(&header, &le_header);
730 ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
731 if (ret < 0) {
732 goto out;
733 }
734 ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
735 qed_opts->backing_file, 0);
736 if (ret < 0) {
737 goto out;
738 }
739
740 l1_table = g_malloc0(l1_size);
741 ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
742 if (ret < 0) {
743 goto out;
744 }
745
746 ret = 0; /* success */
747 out:
748 g_free(l1_table);
749 blk_co_unref(blk);
750 bdrv_co_unref(bs);
751 return ret;
752 }
753
754 static int coroutine_fn GRAPH_RDLOCK
755 bdrv_qed_co_create_opts(BlockDriver *drv, const char *filename,
756 QemuOpts *opts, Error **errp)
757 {
758 BlockdevCreateOptions *create_options = NULL;
759 QDict *qdict;
760 Visitor *v;
761 BlockDriverState *bs = NULL;
762 int ret;
763
764 static const QDictRenames opt_renames[] = {
765 { BLOCK_OPT_BACKING_FILE, "backing-file" },
766 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
767 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
768 { BLOCK_OPT_TABLE_SIZE, "table-size" },
769 { NULL, NULL },
770 };
771
772 /* Parse options and convert legacy syntax */
773 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
774
775 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
776 ret = -EINVAL;
777 goto fail;
778 }
779
780 /* Create and open the file (protocol layer) */
781 ret = bdrv_co_create_file(filename, opts, errp);
782 if (ret < 0) {
783 goto fail;
784 }
785
786 bs = bdrv_co_open(filename, NULL, NULL,
787 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
788 if (bs == NULL) {
789 ret = -EIO;
790 goto fail;
791 }
792
793 /* Now get the QAPI type BlockdevCreateOptions */
794 qdict_put_str(qdict, "driver", "qed");
795 qdict_put_str(qdict, "file", bs->node_name);
796
797 v = qobject_input_visitor_new_flat_confused(qdict, errp);
798 if (!v) {
799 ret = -EINVAL;
800 goto fail;
801 }
802
803 visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
804 visit_free(v);
805 if (!create_options) {
806 ret = -EINVAL;
807 goto fail;
808 }
809
810 /* Silently round up size */
811 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
812 create_options->u.qed.size =
813 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
814
815 /* Create the qed image (format layer) */
816 ret = bdrv_qed_co_create(create_options, errp);
817
818 fail:
819 qobject_unref(qdict);
820 bdrv_co_unref(bs);
821 qapi_free_BlockdevCreateOptions(create_options);
822 return ret;
823 }
824
825 static int coroutine_fn GRAPH_RDLOCK
826 bdrv_qed_co_block_status(BlockDriverState *bs, bool want_zero, int64_t pos,
827 int64_t bytes, int64_t *pnum, int64_t *map,
828 BlockDriverState **file)
829 {
830 BDRVQEDState *s = bs->opaque;
831 size_t len = MIN(bytes, SIZE_MAX);
832 int status;
833 QEDRequest request = { .l2_table = NULL };
834 uint64_t offset;
835 int ret;
836
837 qemu_co_mutex_lock(&s->table_lock);
838 ret = qed_find_cluster(s, &request, pos, &len, &offset);
839
840 *pnum = len;
841 switch (ret) {
842 case QED_CLUSTER_FOUND:
843 *map = offset | qed_offset_into_cluster(s, pos);
844 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
845 *file = bs->file->bs;
846 break;
847 case QED_CLUSTER_ZERO:
848 status = BDRV_BLOCK_ZERO;
849 break;
850 case QED_CLUSTER_L2:
851 case QED_CLUSTER_L1:
852 status = 0;
853 break;
854 default:
855 assert(ret < 0);
856 status = ret;
857 break;
858 }
859
860 qed_unref_l2_cache_entry(request.l2_table);
861 qemu_co_mutex_unlock(&s->table_lock);
862
863 return status;
864 }
865
866 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
867 {
868 return acb->bs->opaque;
869 }
870
871 /**
872 * Read from the backing file or zero-fill if no backing file
873 *
874 * @s: QED state
875 * @pos: Byte position in device
876 * @qiov: Destination I/O vector
877 *
878 * This function reads qiov->size bytes starting at pos from the backing file.
879 * If there is no backing file then zeroes are read.
880 */
881 static int coroutine_fn GRAPH_RDLOCK
882 qed_read_backing_file(BDRVQEDState *s, uint64_t pos, QEMUIOVector *qiov)
883 {
884 if (s->bs->backing) {
885 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
886 return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
887 }
888 qemu_iovec_memset(qiov, 0, 0, qiov->size);
889 return 0;
890 }
891
892 /**
893 * Copy data from backing file into the image
894 *
895 * @s: QED state
896 * @pos: Byte position in device
897 * @len: Number of bytes
898 * @offset: Byte offset in image file
899 */
900 static int coroutine_fn GRAPH_RDLOCK
901 qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos, uint64_t len,
902 uint64_t offset)
903 {
904 QEMUIOVector qiov;
905 int ret;
906
907 /* Skip copy entirely if there is no work to do */
908 if (len == 0) {
909 return 0;
910 }
911
912 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
913
914 ret = qed_read_backing_file(s, pos, &qiov);
915
916 if (ret) {
917 goto out;
918 }
919
920 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
921 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
922 if (ret < 0) {
923 goto out;
924 }
925 ret = 0;
926 out:
927 qemu_vfree(qemu_iovec_buf(&qiov));
928 return ret;
929 }
930
931 /**
932 * Link one or more contiguous clusters into a table
933 *
934 * @s: QED state
935 * @table: L2 table
936 * @index: First cluster index
937 * @n: Number of contiguous clusters
938 * @cluster: First cluster offset
939 *
940 * The cluster offset may be an allocated byte offset in the image file, the
941 * zero cluster marker, or the unallocated cluster marker.
942 *
943 * Called with table_lock held.
944 */
945 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
946 int index, unsigned int n,
947 uint64_t cluster)
948 {
949 int i;
950 for (i = index; i < index + n; i++) {
951 table->offsets[i] = cluster;
952 if (!qed_offset_is_unalloc_cluster(cluster) &&
953 !qed_offset_is_zero_cluster(cluster)) {
954 cluster += s->header.cluster_size;
955 }
956 }
957 }
958
959 /* Called with table_lock held. */
960 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
961 {
962 BDRVQEDState *s = acb_to_s(acb);
963
964 /* Free resources */
965 qemu_iovec_destroy(&acb->cur_qiov);
966 qed_unref_l2_cache_entry(acb->request.l2_table);
967
968 /* Free the buffer we may have allocated for zero writes */
969 if (acb->flags & QED_AIOCB_ZERO) {
970 qemu_vfree(acb->qiov->iov[0].iov_base);
971 acb->qiov->iov[0].iov_base = NULL;
972 }
973
974 /* Start next allocating write request waiting behind this one. Note that
975 * requests enqueue themselves when they first hit an unallocated cluster
976 * but they wait until the entire request is finished before waking up the
977 * next request in the queue. This ensures that we don't cycle through
978 * requests multiple times but rather finish one at a time completely.
979 */
980 if (acb == s->allocating_acb) {
981 s->allocating_acb = NULL;
982 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
983 qemu_co_queue_next(&s->allocating_write_reqs);
984 } else if (s->header.features & QED_F_NEED_CHECK) {
985 qed_start_need_check_timer(s);
986 }
987 }
988 }
989
990 /**
991 * Update L1 table with new L2 table offset and write it out
992 *
993 * Called with table_lock held.
994 */
995 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_l1_update(QEDAIOCB *acb)
996 {
997 BDRVQEDState *s = acb_to_s(acb);
998 CachedL2Table *l2_table = acb->request.l2_table;
999 uint64_t l2_offset = l2_table->offset;
1000 int index, ret;
1001
1002 index = qed_l1_index(s, acb->cur_pos);
1003 s->l1_table->offsets[index] = l2_table->offset;
1004
1005 ret = qed_write_l1_table(s, index, 1);
1006
1007 /* Commit the current L2 table to the cache */
1008 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1009
1010 /* This is guaranteed to succeed because we just committed the entry to the
1011 * cache.
1012 */
1013 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1014 assert(acb->request.l2_table != NULL);
1015
1016 return ret;
1017 }
1018
1019
1020 /**
1021 * Update L2 table with new cluster offsets and write them out
1022 *
1023 * Called with table_lock held.
1024 */
1025 static int coroutine_fn GRAPH_RDLOCK
1026 qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1027 {
1028 BDRVQEDState *s = acb_to_s(acb);
1029 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1030 int index, ret;
1031
1032 if (need_alloc) {
1033 qed_unref_l2_cache_entry(acb->request.l2_table);
1034 acb->request.l2_table = qed_new_l2_table(s);
1035 }
1036
1037 index = qed_l2_index(s, acb->cur_pos);
1038 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1039 offset);
1040
1041 if (need_alloc) {
1042 /* Write out the whole new L2 table */
1043 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1044 if (ret) {
1045 return ret;
1046 }
1047 return qed_aio_write_l1_update(acb);
1048 } else {
1049 /* Write out only the updated part of the L2 table */
1050 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1051 false);
1052 if (ret) {
1053 return ret;
1054 }
1055 }
1056 return 0;
1057 }
1058
1059 /**
1060 * Write data to the image file
1061 *
1062 * Called with table_lock *not* held.
1063 */
1064 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_main(QEDAIOCB *acb)
1065 {
1066 BDRVQEDState *s = acb_to_s(acb);
1067 uint64_t offset = acb->cur_cluster +
1068 qed_offset_into_cluster(s, acb->cur_pos);
1069
1070 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1071
1072 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1073 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1074 &acb->cur_qiov, 0);
1075 }
1076
1077 /**
1078 * Populate untouched regions of new data cluster
1079 *
1080 * Called with table_lock held.
1081 */
1082 static int coroutine_fn GRAPH_RDLOCK qed_aio_write_cow(QEDAIOCB *acb)
1083 {
1084 BDRVQEDState *s = acb_to_s(acb);
1085 uint64_t start, len, offset;
1086 int ret;
1087
1088 qemu_co_mutex_unlock(&s->table_lock);
1089
1090 /* Populate front untouched region of new data cluster */
1091 start = qed_start_of_cluster(s, acb->cur_pos);
1092 len = qed_offset_into_cluster(s, acb->cur_pos);
1093
1094 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1095 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1096 if (ret < 0) {
1097 goto out;
1098 }
1099
1100 /* Populate back untouched region of new data cluster */
1101 start = acb->cur_pos + acb->cur_qiov.size;
1102 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1103 offset = acb->cur_cluster +
1104 qed_offset_into_cluster(s, acb->cur_pos) +
1105 acb->cur_qiov.size;
1106
1107 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1108 ret = qed_copy_from_backing_file(s, start, len, offset);
1109 if (ret < 0) {
1110 goto out;
1111 }
1112
1113 ret = qed_aio_write_main(acb);
1114 if (ret < 0) {
1115 goto out;
1116 }
1117
1118 if (s->bs->backing) {
1119 /*
1120 * Flush new data clusters before updating the L2 table
1121 *
1122 * This flush is necessary when a backing file is in use. A crash
1123 * during an allocating write could result in empty clusters in the
1124 * image. If the write only touched a subregion of the cluster,
1125 * then backing image sectors have been lost in the untouched
1126 * region. The solution is to flush after writing a new data
1127 * cluster and before updating the L2 table.
1128 */
1129 ret = bdrv_co_flush(s->bs->file->bs);
1130 }
1131
1132 out:
1133 qemu_co_mutex_lock(&s->table_lock);
1134 return ret;
1135 }
1136
1137 /**
1138 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1139 */
1140 static bool qed_should_set_need_check(BDRVQEDState *s)
1141 {
1142 /* The flush before L2 update path ensures consistency */
1143 if (s->bs->backing) {
1144 return false;
1145 }
1146
1147 return !(s->header.features & QED_F_NEED_CHECK);
1148 }
1149
1150 /**
1151 * Write new data cluster
1152 *
1153 * @acb: Write request
1154 * @len: Length in bytes
1155 *
1156 * This path is taken when writing to previously unallocated clusters.
1157 *
1158 * Called with table_lock held.
1159 */
1160 static int coroutine_fn GRAPH_RDLOCK
1161 qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1162 {
1163 BDRVQEDState *s = acb_to_s(acb);
1164 int ret;
1165
1166 /* Cancel timer when the first allocating request comes in */
1167 if (s->allocating_acb == NULL) {
1168 qed_cancel_need_check_timer(s);
1169 }
1170
1171 /* Freeze this request if another allocating write is in progress */
1172 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1173 if (s->allocating_acb != NULL) {
1174 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1175 assert(s->allocating_acb == NULL);
1176 }
1177 s->allocating_acb = acb;
1178 return -EAGAIN; /* start over with looking up table entries */
1179 }
1180
1181 acb->cur_nclusters = qed_bytes_to_clusters(s,
1182 qed_offset_into_cluster(s, acb->cur_pos) + len);
1183 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1184
1185 if (acb->flags & QED_AIOCB_ZERO) {
1186 /* Skip ahead if the clusters are already zero */
1187 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1188 return 0;
1189 }
1190 acb->cur_cluster = 1;
1191 } else {
1192 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1193 }
1194
1195 if (qed_should_set_need_check(s)) {
1196 s->header.features |= QED_F_NEED_CHECK;
1197 ret = qed_write_header(s);
1198 if (ret < 0) {
1199 return ret;
1200 }
1201 }
1202
1203 if (!(acb->flags & QED_AIOCB_ZERO)) {
1204 ret = qed_aio_write_cow(acb);
1205 if (ret < 0) {
1206 return ret;
1207 }
1208 }
1209
1210 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1211 }
1212
1213 /**
1214 * Write data cluster in place
1215 *
1216 * @acb: Write request
1217 * @offset: Cluster offset in bytes
1218 * @len: Length in bytes
1219 *
1220 * This path is taken when writing to already allocated clusters.
1221 *
1222 * Called with table_lock held.
1223 */
1224 static int coroutine_fn GRAPH_RDLOCK
1225 qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1226 {
1227 BDRVQEDState *s = acb_to_s(acb);
1228 int r;
1229
1230 qemu_co_mutex_unlock(&s->table_lock);
1231
1232 /* Allocate buffer for zero writes */
1233 if (acb->flags & QED_AIOCB_ZERO) {
1234 struct iovec *iov = acb->qiov->iov;
1235
1236 if (!iov->iov_base) {
1237 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1238 if (iov->iov_base == NULL) {
1239 r = -ENOMEM;
1240 goto out;
1241 }
1242 memset(iov->iov_base, 0, iov->iov_len);
1243 }
1244 }
1245
1246 /* Calculate the I/O vector */
1247 acb->cur_cluster = offset;
1248 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1249
1250 /* Do the actual write. */
1251 r = qed_aio_write_main(acb);
1252 out:
1253 qemu_co_mutex_lock(&s->table_lock);
1254 return r;
1255 }
1256
1257 /**
1258 * Write data cluster
1259 *
1260 * @opaque: Write request
1261 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1262 * @offset: Cluster offset in bytes
1263 * @len: Length in bytes
1264 *
1265 * Called with table_lock held.
1266 */
1267 static int coroutine_fn GRAPH_RDLOCK
1268 qed_aio_write_data(void *opaque, int ret, uint64_t offset, size_t len)
1269 {
1270 QEDAIOCB *acb = opaque;
1271
1272 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1273
1274 acb->find_cluster_ret = ret;
1275
1276 switch (ret) {
1277 case QED_CLUSTER_FOUND:
1278 return qed_aio_write_inplace(acb, offset, len);
1279
1280 case QED_CLUSTER_L2:
1281 case QED_CLUSTER_L1:
1282 case QED_CLUSTER_ZERO:
1283 return qed_aio_write_alloc(acb, len);
1284
1285 default:
1286 g_assert_not_reached();
1287 }
1288 }
1289
1290 /**
1291 * Read data cluster
1292 *
1293 * @opaque: Read request
1294 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1295 * @offset: Cluster offset in bytes
1296 * @len: Length in bytes
1297 *
1298 * Called with table_lock held.
1299 */
1300 static int coroutine_fn GRAPH_RDLOCK
1301 qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1302 {
1303 QEDAIOCB *acb = opaque;
1304 BDRVQEDState *s = acb_to_s(acb);
1305 BlockDriverState *bs = acb->bs;
1306 int r;
1307
1308 qemu_co_mutex_unlock(&s->table_lock);
1309
1310 /* Adjust offset into cluster */
1311 offset += qed_offset_into_cluster(s, acb->cur_pos);
1312
1313 trace_qed_aio_read_data(s, acb, ret, offset, len);
1314
1315 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1316
1317 /* Handle zero cluster and backing file reads, otherwise read
1318 * data cluster directly.
1319 */
1320 if (ret == QED_CLUSTER_ZERO) {
1321 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1322 r = 0;
1323 } else if (ret != QED_CLUSTER_FOUND) {
1324 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1325 } else {
1326 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1327 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1328 &acb->cur_qiov, 0);
1329 }
1330
1331 qemu_co_mutex_lock(&s->table_lock);
1332 return r;
1333 }
1334
1335 /**
1336 * Begin next I/O or complete the request
1337 */
1338 static int coroutine_fn GRAPH_RDLOCK qed_aio_next_io(QEDAIOCB *acb)
1339 {
1340 BDRVQEDState *s = acb_to_s(acb);
1341 uint64_t offset;
1342 size_t len;
1343 int ret;
1344
1345 qemu_co_mutex_lock(&s->table_lock);
1346 while (1) {
1347 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1348
1349 acb->qiov_offset += acb->cur_qiov.size;
1350 acb->cur_pos += acb->cur_qiov.size;
1351 qemu_iovec_reset(&acb->cur_qiov);
1352
1353 /* Complete request */
1354 if (acb->cur_pos >= acb->end_pos) {
1355 ret = 0;
1356 break;
1357 }
1358
1359 /* Find next cluster and start I/O */
1360 len = acb->end_pos - acb->cur_pos;
1361 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1362 if (ret < 0) {
1363 break;
1364 }
1365
1366 if (acb->flags & QED_AIOCB_WRITE) {
1367 ret = qed_aio_write_data(acb, ret, offset, len);
1368 } else {
1369 ret = qed_aio_read_data(acb, ret, offset, len);
1370 }
1371
1372 if (ret < 0 && ret != -EAGAIN) {
1373 break;
1374 }
1375 }
1376
1377 trace_qed_aio_complete(s, acb, ret);
1378 qed_aio_complete(acb);
1379 qemu_co_mutex_unlock(&s->table_lock);
1380 return ret;
1381 }
1382
1383 static int coroutine_fn GRAPH_RDLOCK
1384 qed_co_request(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov,
1385 int nb_sectors, int flags)
1386 {
1387 QEDAIOCB acb = {
1388 .bs = bs,
1389 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1390 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1391 .qiov = qiov,
1392 .flags = flags,
1393 };
1394 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1395
1396 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1397
1398 /* Start request */
1399 return qed_aio_next_io(&acb);
1400 }
1401
1402 static int coroutine_fn GRAPH_RDLOCK
1403 bdrv_qed_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1404 QEMUIOVector *qiov)
1405 {
1406 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1407 }
1408
1409 static int coroutine_fn GRAPH_RDLOCK
1410 bdrv_qed_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
1411 QEMUIOVector *qiov, int flags)
1412 {
1413 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1414 }
1415
1416 static int coroutine_fn GRAPH_RDLOCK
1417 bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1418 BdrvRequestFlags flags)
1419 {
1420 BDRVQEDState *s = bs->opaque;
1421
1422 /*
1423 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1424 * then it will be allocated during request processing.
1425 */
1426 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1427
1428 /*
1429 * QED is not prepared for 63bit write-zero requests, so rely on
1430 * max_pwrite_zeroes.
1431 */
1432 assert(bytes <= INT_MAX);
1433
1434 /* Fall back if the request is not aligned */
1435 if (qed_offset_into_cluster(s, offset) ||
1436 qed_offset_into_cluster(s, bytes)) {
1437 return -ENOTSUP;
1438 }
1439
1440 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1441 bytes >> BDRV_SECTOR_BITS,
1442 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1443 }
1444
1445 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1446 int64_t offset,
1447 bool exact,
1448 PreallocMode prealloc,
1449 BdrvRequestFlags flags,
1450 Error **errp)
1451 {
1452 BDRVQEDState *s = bs->opaque;
1453 uint64_t old_image_size;
1454 int ret;
1455
1456 if (prealloc != PREALLOC_MODE_OFF) {
1457 error_setg(errp, "Unsupported preallocation mode '%s'",
1458 PreallocMode_str(prealloc));
1459 return -ENOTSUP;
1460 }
1461
1462 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1463 s->header.table_size)) {
1464 error_setg(errp, "Invalid image size specified");
1465 return -EINVAL;
1466 }
1467
1468 if ((uint64_t)offset < s->header.image_size) {
1469 error_setg(errp, "Shrinking images is currently not supported");
1470 return -ENOTSUP;
1471 }
1472
1473 old_image_size = s->header.image_size;
1474 s->header.image_size = offset;
1475 ret = qed_write_header_sync(s);
1476 if (ret < 0) {
1477 s->header.image_size = old_image_size;
1478 error_setg_errno(errp, -ret, "Failed to update the image size");
1479 }
1480 return ret;
1481 }
1482
1483 static int64_t coroutine_fn bdrv_qed_co_getlength(BlockDriverState *bs)
1484 {
1485 BDRVQEDState *s = bs->opaque;
1486 return s->header.image_size;
1487 }
1488
1489 static int coroutine_fn
1490 bdrv_qed_co_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1491 {
1492 BDRVQEDState *s = bs->opaque;
1493
1494 memset(bdi, 0, sizeof(*bdi));
1495 bdi->cluster_size = s->header.cluster_size;
1496 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1497 return 0;
1498 }
1499
1500 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1501 const char *backing_file,
1502 const char *backing_fmt)
1503 {
1504 BDRVQEDState *s = bs->opaque;
1505 QEDHeader new_header, le_header;
1506 void *buffer;
1507 size_t buffer_len, backing_file_len;
1508 int ret;
1509
1510 /* Refuse to set backing filename if unknown compat feature bits are
1511 * active. If the image uses an unknown compat feature then we may not
1512 * know the layout of data following the header structure and cannot safely
1513 * add a new string.
1514 */
1515 if (backing_file && (s->header.compat_features &
1516 ~QED_COMPAT_FEATURE_MASK)) {
1517 return -ENOTSUP;
1518 }
1519
1520 memcpy(&new_header, &s->header, sizeof(new_header));
1521
1522 new_header.features &= ~(QED_F_BACKING_FILE |
1523 QED_F_BACKING_FORMAT_NO_PROBE);
1524
1525 /* Adjust feature flags */
1526 if (backing_file) {
1527 new_header.features |= QED_F_BACKING_FILE;
1528
1529 if (qed_fmt_is_raw(backing_fmt)) {
1530 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1531 }
1532 }
1533
1534 /* Calculate new header size */
1535 backing_file_len = 0;
1536
1537 if (backing_file) {
1538 backing_file_len = strlen(backing_file);
1539 }
1540
1541 buffer_len = sizeof(new_header);
1542 new_header.backing_filename_offset = buffer_len;
1543 new_header.backing_filename_size = backing_file_len;
1544 buffer_len += backing_file_len;
1545
1546 /* Make sure we can rewrite header without failing */
1547 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1548 return -ENOSPC;
1549 }
1550
1551 /* Prepare new header */
1552 buffer = g_malloc(buffer_len);
1553
1554 qed_header_cpu_to_le(&new_header, &le_header);
1555 memcpy(buffer, &le_header, sizeof(le_header));
1556 buffer_len = sizeof(le_header);
1557
1558 if (backing_file) {
1559 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1560 buffer_len += backing_file_len;
1561 }
1562
1563 /* Write new header */
1564 ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1565 g_free(buffer);
1566 if (ret == 0) {
1567 memcpy(&s->header, &new_header, sizeof(new_header));
1568 }
1569 return ret;
1570 }
1571
1572 static void coroutine_fn GRAPH_RDLOCK
1573 bdrv_qed_co_invalidate_cache(BlockDriverState *bs, Error **errp)
1574 {
1575 BDRVQEDState *s = bs->opaque;
1576 int ret;
1577
1578 bdrv_qed_close(bs);
1579
1580 bdrv_qed_init_state(bs);
1581 qemu_co_mutex_lock(&s->table_lock);
1582 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1583 qemu_co_mutex_unlock(&s->table_lock);
1584 if (ret < 0) {
1585 error_prepend(errp, "Could not reopen qed layer: ");
1586 }
1587 }
1588
1589 static int coroutine_fn GRAPH_RDLOCK
1590 bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1591 BdrvCheckMode fix)
1592 {
1593 BDRVQEDState *s = bs->opaque;
1594 int ret;
1595
1596 qemu_co_mutex_lock(&s->table_lock);
1597 ret = qed_check(s, result, !!fix);
1598 qemu_co_mutex_unlock(&s->table_lock);
1599
1600 return ret;
1601 }
1602
1603 static QemuOptsList qed_create_opts = {
1604 .name = "qed-create-opts",
1605 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1606 .desc = {
1607 {
1608 .name = BLOCK_OPT_SIZE,
1609 .type = QEMU_OPT_SIZE,
1610 .help = "Virtual disk size"
1611 },
1612 {
1613 .name = BLOCK_OPT_BACKING_FILE,
1614 .type = QEMU_OPT_STRING,
1615 .help = "File name of a base image"
1616 },
1617 {
1618 .name = BLOCK_OPT_BACKING_FMT,
1619 .type = QEMU_OPT_STRING,
1620 .help = "Image format of the base image"
1621 },
1622 {
1623 .name = BLOCK_OPT_CLUSTER_SIZE,
1624 .type = QEMU_OPT_SIZE,
1625 .help = "Cluster size (in bytes)",
1626 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1627 },
1628 {
1629 .name = BLOCK_OPT_TABLE_SIZE,
1630 .type = QEMU_OPT_SIZE,
1631 .help = "L1/L2 table size (in clusters)"
1632 },
1633 { /* end of list */ }
1634 }
1635 };
1636
1637 static BlockDriver bdrv_qed = {
1638 .format_name = "qed",
1639 .instance_size = sizeof(BDRVQEDState),
1640 .create_opts = &qed_create_opts,
1641 .is_format = true,
1642 .supports_backing = true,
1643
1644 .bdrv_probe = bdrv_qed_probe,
1645 .bdrv_open = bdrv_qed_open,
1646 .bdrv_close = bdrv_qed_close,
1647 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1648 .bdrv_child_perm = bdrv_default_perms,
1649 .bdrv_co_create = bdrv_qed_co_create,
1650 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1651 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1652 .bdrv_co_block_status = bdrv_qed_co_block_status,
1653 .bdrv_co_readv = bdrv_qed_co_readv,
1654 .bdrv_co_writev = bdrv_qed_co_writev,
1655 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1656 .bdrv_co_truncate = bdrv_qed_co_truncate,
1657 .bdrv_co_getlength = bdrv_qed_co_getlength,
1658 .bdrv_co_get_info = bdrv_qed_co_get_info,
1659 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1660 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1661 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1662 .bdrv_co_check = bdrv_qed_co_check,
1663 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1664 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1665 .bdrv_drain_begin = bdrv_qed_drain_begin,
1666 };
1667
1668 static void bdrv_qed_init(void)
1669 {
1670 bdrv_register(&bdrv_qed);
1671 }
1672
1673 block_init(bdrv_qed_init);