]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
block: Add block-specific QDict header
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
21 #include "trace.h"
22 #include "qed.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
27
28 static QemuOptsList qed_create_opts;
29
30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31 const char *filename)
32 {
33 const QEDHeader *header = (const QEDHeader *)buf;
34
35 if (buf_size < sizeof(*header)) {
36 return 0;
37 }
38 if (le32_to_cpu(header->magic) != QED_MAGIC) {
39 return 0;
40 }
41 return 100;
42 }
43
44 /**
45 * Check whether an image format is raw
46 *
47 * @fmt: Backing file format, may be NULL
48 */
49 static bool qed_fmt_is_raw(const char *fmt)
50 {
51 return fmt && strcmp(fmt, "raw") == 0;
52 }
53
54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
55 {
56 cpu->magic = le32_to_cpu(le->magic);
57 cpu->cluster_size = le32_to_cpu(le->cluster_size);
58 cpu->table_size = le32_to_cpu(le->table_size);
59 cpu->header_size = le32_to_cpu(le->header_size);
60 cpu->features = le64_to_cpu(le->features);
61 cpu->compat_features = le64_to_cpu(le->compat_features);
62 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
63 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
64 cpu->image_size = le64_to_cpu(le->image_size);
65 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
66 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
67 }
68
69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
70 {
71 le->magic = cpu_to_le32(cpu->magic);
72 le->cluster_size = cpu_to_le32(cpu->cluster_size);
73 le->table_size = cpu_to_le32(cpu->table_size);
74 le->header_size = cpu_to_le32(cpu->header_size);
75 le->features = cpu_to_le64(cpu->features);
76 le->compat_features = cpu_to_le64(cpu->compat_features);
77 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
78 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
79 le->image_size = cpu_to_le64(cpu->image_size);
80 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
81 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
82 }
83
84 int qed_write_header_sync(BDRVQEDState *s)
85 {
86 QEDHeader le;
87 int ret;
88
89 qed_header_cpu_to_le(&s->header, &le);
90 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
91 if (ret != sizeof(le)) {
92 return ret;
93 }
94 return 0;
95 }
96
97 /**
98 * Update header in-place (does not rewrite backing filename or other strings)
99 *
100 * This function only updates known header fields in-place and does not affect
101 * extra data after the QED header.
102 *
103 * No new allocating reqs can start while this function runs.
104 */
105 static int coroutine_fn qed_write_header(BDRVQEDState *s)
106 {
107 /* We must write full sectors for O_DIRECT but cannot necessarily generate
108 * the data following the header if an unrecognized compat feature is
109 * active. Therefore, first read the sectors containing the header, update
110 * them, and write back.
111 */
112
113 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
114 size_t len = nsectors * BDRV_SECTOR_SIZE;
115 uint8_t *buf;
116 struct iovec iov;
117 QEMUIOVector qiov;
118 int ret;
119
120 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
121
122 buf = qemu_blockalign(s->bs, len);
123 iov = (struct iovec) {
124 .iov_base = buf,
125 .iov_len = len,
126 };
127 qemu_iovec_init_external(&qiov, &iov, 1);
128
129 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
130 if (ret < 0) {
131 goto out;
132 }
133
134 /* Update header */
135 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
136
137 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0);
138 if (ret < 0) {
139 goto out;
140 }
141
142 ret = 0;
143 out:
144 qemu_vfree(buf);
145 return ret;
146 }
147
148 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
149 {
150 uint64_t table_entries;
151 uint64_t l2_size;
152
153 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
154 l2_size = table_entries * cluster_size;
155
156 return l2_size * table_entries;
157 }
158
159 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
160 {
161 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
162 cluster_size > QED_MAX_CLUSTER_SIZE) {
163 return false;
164 }
165 if (cluster_size & (cluster_size - 1)) {
166 return false; /* not power of 2 */
167 }
168 return true;
169 }
170
171 static bool qed_is_table_size_valid(uint32_t table_size)
172 {
173 if (table_size < QED_MIN_TABLE_SIZE ||
174 table_size > QED_MAX_TABLE_SIZE) {
175 return false;
176 }
177 if (table_size & (table_size - 1)) {
178 return false; /* not power of 2 */
179 }
180 return true;
181 }
182
183 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
184 uint32_t table_size)
185 {
186 if (image_size % BDRV_SECTOR_SIZE != 0) {
187 return false; /* not multiple of sector size */
188 }
189 if (image_size > qed_max_image_size(cluster_size, table_size)) {
190 return false; /* image is too large */
191 }
192 return true;
193 }
194
195 /**
196 * Read a string of known length from the image file
197 *
198 * @file: Image file
199 * @offset: File offset to start of string, in bytes
200 * @n: String length in bytes
201 * @buf: Destination buffer
202 * @buflen: Destination buffer length in bytes
203 * @ret: 0 on success, -errno on failure
204 *
205 * The string is NUL-terminated.
206 */
207 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
208 char *buf, size_t buflen)
209 {
210 int ret;
211 if (n >= buflen) {
212 return -EINVAL;
213 }
214 ret = bdrv_pread(file, offset, buf, n);
215 if (ret < 0) {
216 return ret;
217 }
218 buf[n] = '\0';
219 return 0;
220 }
221
222 /**
223 * Allocate new clusters
224 *
225 * @s: QED state
226 * @n: Number of contiguous clusters to allocate
227 * @ret: Offset of first allocated cluster
228 *
229 * This function only produces the offset where the new clusters should be
230 * written. It updates BDRVQEDState but does not make any changes to the image
231 * file.
232 *
233 * Called with table_lock held.
234 */
235 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
236 {
237 uint64_t offset = s->file_size;
238 s->file_size += n * s->header.cluster_size;
239 return offset;
240 }
241
242 QEDTable *qed_alloc_table(BDRVQEDState *s)
243 {
244 /* Honor O_DIRECT memory alignment requirements */
245 return qemu_blockalign(s->bs,
246 s->header.cluster_size * s->header.table_size);
247 }
248
249 /**
250 * Allocate a new zeroed L2 table
251 *
252 * Called with table_lock held.
253 */
254 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
255 {
256 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
257
258 l2_table->table = qed_alloc_table(s);
259 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
260
261 memset(l2_table->table->offsets, 0,
262 s->header.cluster_size * s->header.table_size);
263 return l2_table;
264 }
265
266 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
267 {
268 qemu_co_mutex_lock(&s->table_lock);
269
270 /* No reentrancy is allowed. */
271 assert(!s->allocating_write_reqs_plugged);
272 if (s->allocating_acb != NULL) {
273 /* Another allocating write came concurrently. This cannot happen
274 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
275 */
276 qemu_co_mutex_unlock(&s->table_lock);
277 return false;
278 }
279
280 s->allocating_write_reqs_plugged = true;
281 qemu_co_mutex_unlock(&s->table_lock);
282 return true;
283 }
284
285 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
286 {
287 qemu_co_mutex_lock(&s->table_lock);
288 assert(s->allocating_write_reqs_plugged);
289 s->allocating_write_reqs_plugged = false;
290 qemu_co_queue_next(&s->allocating_write_reqs);
291 qemu_co_mutex_unlock(&s->table_lock);
292 }
293
294 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
295 {
296 BDRVQEDState *s = opaque;
297 int ret;
298
299 trace_qed_need_check_timer_cb(s);
300
301 if (!qed_plug_allocating_write_reqs(s)) {
302 return;
303 }
304
305 /* Ensure writes are on disk before clearing flag */
306 ret = bdrv_co_flush(s->bs->file->bs);
307 if (ret < 0) {
308 qed_unplug_allocating_write_reqs(s);
309 return;
310 }
311
312 s->header.features &= ~QED_F_NEED_CHECK;
313 ret = qed_write_header(s);
314 (void) ret;
315
316 qed_unplug_allocating_write_reqs(s);
317
318 ret = bdrv_co_flush(s->bs);
319 (void) ret;
320 }
321
322 static void qed_need_check_timer_cb(void *opaque)
323 {
324 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
325 qemu_coroutine_enter(co);
326 }
327
328 static void qed_start_need_check_timer(BDRVQEDState *s)
329 {
330 trace_qed_start_need_check_timer(s);
331
332 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
333 * migration.
334 */
335 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
336 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
337 }
338
339 /* It's okay to call this multiple times or when no timer is started */
340 static void qed_cancel_need_check_timer(BDRVQEDState *s)
341 {
342 trace_qed_cancel_need_check_timer(s);
343 timer_del(s->need_check_timer);
344 }
345
346 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
347 {
348 BDRVQEDState *s = bs->opaque;
349
350 qed_cancel_need_check_timer(s);
351 timer_free(s->need_check_timer);
352 }
353
354 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
355 AioContext *new_context)
356 {
357 BDRVQEDState *s = bs->opaque;
358
359 s->need_check_timer = aio_timer_new(new_context,
360 QEMU_CLOCK_VIRTUAL, SCALE_NS,
361 qed_need_check_timer_cb, s);
362 if (s->header.features & QED_F_NEED_CHECK) {
363 qed_start_need_check_timer(s);
364 }
365 }
366
367 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
368 {
369 BDRVQEDState *s = bs->opaque;
370
371 /* Fire the timer immediately in order to start doing I/O as soon as the
372 * header is flushed.
373 */
374 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
375 qed_cancel_need_check_timer(s);
376 qed_need_check_timer_entry(s);
377 }
378 }
379
380 static void bdrv_qed_init_state(BlockDriverState *bs)
381 {
382 BDRVQEDState *s = bs->opaque;
383
384 memset(s, 0, sizeof(BDRVQEDState));
385 s->bs = bs;
386 qemu_co_mutex_init(&s->table_lock);
387 qemu_co_queue_init(&s->allocating_write_reqs);
388 }
389
390 /* Called with table_lock held. */
391 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
392 int flags, Error **errp)
393 {
394 BDRVQEDState *s = bs->opaque;
395 QEDHeader le_header;
396 int64_t file_size;
397 int ret;
398
399 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
400 if (ret < 0) {
401 return ret;
402 }
403 qed_header_le_to_cpu(&le_header, &s->header);
404
405 if (s->header.magic != QED_MAGIC) {
406 error_setg(errp, "Image not in QED format");
407 return -EINVAL;
408 }
409 if (s->header.features & ~QED_FEATURE_MASK) {
410 /* image uses unsupported feature bits */
411 error_setg(errp, "Unsupported QED features: %" PRIx64,
412 s->header.features & ~QED_FEATURE_MASK);
413 return -ENOTSUP;
414 }
415 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
416 return -EINVAL;
417 }
418
419 /* Round down file size to the last cluster */
420 file_size = bdrv_getlength(bs->file->bs);
421 if (file_size < 0) {
422 return file_size;
423 }
424 s->file_size = qed_start_of_cluster(s, file_size);
425
426 if (!qed_is_table_size_valid(s->header.table_size)) {
427 return -EINVAL;
428 }
429 if (!qed_is_image_size_valid(s->header.image_size,
430 s->header.cluster_size,
431 s->header.table_size)) {
432 return -EINVAL;
433 }
434 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
435 return -EINVAL;
436 }
437
438 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
439 sizeof(uint64_t);
440 s->l2_shift = ctz32(s->header.cluster_size);
441 s->l2_mask = s->table_nelems - 1;
442 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
443
444 /* Header size calculation must not overflow uint32_t */
445 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
446 return -EINVAL;
447 }
448
449 if ((s->header.features & QED_F_BACKING_FILE)) {
450 if ((uint64_t)s->header.backing_filename_offset +
451 s->header.backing_filename_size >
452 s->header.cluster_size * s->header.header_size) {
453 return -EINVAL;
454 }
455
456 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
457 s->header.backing_filename_size, bs->backing_file,
458 sizeof(bs->backing_file));
459 if (ret < 0) {
460 return ret;
461 }
462
463 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
464 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
465 }
466 }
467
468 /* Reset unknown autoclear feature bits. This is a backwards
469 * compatibility mechanism that allows images to be opened by older
470 * programs, which "knock out" unknown feature bits. When an image is
471 * opened by a newer program again it can detect that the autoclear
472 * feature is no longer valid.
473 */
474 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
475 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
476 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
477
478 ret = qed_write_header_sync(s);
479 if (ret) {
480 return ret;
481 }
482
483 /* From here on only known autoclear feature bits are valid */
484 bdrv_flush(bs->file->bs);
485 }
486
487 s->l1_table = qed_alloc_table(s);
488 qed_init_l2_cache(&s->l2_cache);
489
490 ret = qed_read_l1_table_sync(s);
491 if (ret) {
492 goto out;
493 }
494
495 /* If image was not closed cleanly, check consistency */
496 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
497 /* Read-only images cannot be fixed. There is no risk of corruption
498 * since write operations are not possible. Therefore, allow
499 * potentially inconsistent images to be opened read-only. This can
500 * aid data recovery from an otherwise inconsistent image.
501 */
502 if (!bdrv_is_read_only(bs->file->bs) &&
503 !(flags & BDRV_O_INACTIVE)) {
504 BdrvCheckResult result = {0};
505
506 ret = qed_check(s, &result, true);
507 if (ret) {
508 goto out;
509 }
510 }
511 }
512
513 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
514
515 out:
516 if (ret) {
517 qed_free_l2_cache(&s->l2_cache);
518 qemu_vfree(s->l1_table);
519 }
520 return ret;
521 }
522
523 typedef struct QEDOpenCo {
524 BlockDriverState *bs;
525 QDict *options;
526 int flags;
527 Error **errp;
528 int ret;
529 } QEDOpenCo;
530
531 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
532 {
533 QEDOpenCo *qoc = opaque;
534 BDRVQEDState *s = qoc->bs->opaque;
535
536 qemu_co_mutex_lock(&s->table_lock);
537 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
538 qemu_co_mutex_unlock(&s->table_lock);
539 }
540
541 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
542 Error **errp)
543 {
544 QEDOpenCo qoc = {
545 .bs = bs,
546 .options = options,
547 .flags = flags,
548 .errp = errp,
549 .ret = -EINPROGRESS
550 };
551
552 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
553 false, errp);
554 if (!bs->file) {
555 return -EINVAL;
556 }
557
558 bdrv_qed_init_state(bs);
559 if (qemu_in_coroutine()) {
560 bdrv_qed_open_entry(&qoc);
561 } else {
562 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
563 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
564 }
565 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
566 return qoc.ret;
567 }
568
569 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
570 {
571 BDRVQEDState *s = bs->opaque;
572
573 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
574 }
575
576 /* We have nothing to do for QED reopen, stubs just return
577 * success */
578 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
579 BlockReopenQueue *queue, Error **errp)
580 {
581 return 0;
582 }
583
584 static void bdrv_qed_close(BlockDriverState *bs)
585 {
586 BDRVQEDState *s = bs->opaque;
587
588 bdrv_qed_detach_aio_context(bs);
589
590 /* Ensure writes reach stable storage */
591 bdrv_flush(bs->file->bs);
592
593 /* Clean shutdown, no check required on next open */
594 if (s->header.features & QED_F_NEED_CHECK) {
595 s->header.features &= ~QED_F_NEED_CHECK;
596 qed_write_header_sync(s);
597 }
598
599 qed_free_l2_cache(&s->l2_cache);
600 qemu_vfree(s->l1_table);
601 }
602
603 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
604 Error **errp)
605 {
606 BlockdevCreateOptionsQed *qed_opts;
607 BlockBackend *blk = NULL;
608 BlockDriverState *bs = NULL;
609
610 QEDHeader header;
611 QEDHeader le_header;
612 uint8_t *l1_table = NULL;
613 size_t l1_size;
614 int ret = 0;
615
616 assert(opts->driver == BLOCKDEV_DRIVER_QED);
617 qed_opts = &opts->u.qed;
618
619 /* Validate options and set default values */
620 if (!qed_opts->has_cluster_size) {
621 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
622 }
623 if (!qed_opts->has_table_size) {
624 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
625 }
626
627 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
628 error_setg(errp, "QED cluster size must be within range [%u, %u] "
629 "and power of 2",
630 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
631 return -EINVAL;
632 }
633 if (!qed_is_table_size_valid(qed_opts->table_size)) {
634 error_setg(errp, "QED table size must be within range [%u, %u] "
635 "and power of 2",
636 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
637 return -EINVAL;
638 }
639 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
640 qed_opts->table_size))
641 {
642 error_setg(errp, "QED image size must be a non-zero multiple of "
643 "cluster size and less than %" PRIu64 " bytes",
644 qed_max_image_size(qed_opts->cluster_size,
645 qed_opts->table_size));
646 return -EINVAL;
647 }
648
649 /* Create BlockBackend to write to the image */
650 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
651 if (bs == NULL) {
652 return -EIO;
653 }
654
655 blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
656 ret = blk_insert_bs(blk, bs, errp);
657 if (ret < 0) {
658 goto out;
659 }
660 blk_set_allow_write_beyond_eof(blk, true);
661
662 /* Prepare image format */
663 header = (QEDHeader) {
664 .magic = QED_MAGIC,
665 .cluster_size = qed_opts->cluster_size,
666 .table_size = qed_opts->table_size,
667 .header_size = 1,
668 .features = 0,
669 .compat_features = 0,
670 .l1_table_offset = qed_opts->cluster_size,
671 .image_size = qed_opts->size,
672 };
673
674 l1_size = header.cluster_size * header.table_size;
675
676 /* File must start empty and grow, check truncate is supported */
677 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
678 if (ret < 0) {
679 goto out;
680 }
681
682 if (qed_opts->has_backing_file) {
683 header.features |= QED_F_BACKING_FILE;
684 header.backing_filename_offset = sizeof(le_header);
685 header.backing_filename_size = strlen(qed_opts->backing_file);
686
687 if (qed_opts->has_backing_fmt) {
688 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
689 if (qed_fmt_is_raw(backing_fmt)) {
690 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
691 }
692 }
693 }
694
695 qed_header_cpu_to_le(&header, &le_header);
696 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
697 if (ret < 0) {
698 goto out;
699 }
700 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
701 header.backing_filename_size, 0);
702 if (ret < 0) {
703 goto out;
704 }
705
706 l1_table = g_malloc0(l1_size);
707 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
708 if (ret < 0) {
709 goto out;
710 }
711
712 ret = 0; /* success */
713 out:
714 g_free(l1_table);
715 blk_unref(blk);
716 bdrv_unref(bs);
717 return ret;
718 }
719
720 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
721 QemuOpts *opts,
722 Error **errp)
723 {
724 BlockdevCreateOptions *create_options = NULL;
725 QDict *qdict = NULL;
726 QObject *qobj;
727 Visitor *v;
728 BlockDriverState *bs = NULL;
729 Error *local_err = NULL;
730 int ret;
731
732 static const QDictRenames opt_renames[] = {
733 { BLOCK_OPT_BACKING_FILE, "backing-file" },
734 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
735 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
736 { BLOCK_OPT_TABLE_SIZE, "table-size" },
737 { NULL, NULL },
738 };
739
740 /* Parse options and convert legacy syntax */
741 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
742
743 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
744 ret = -EINVAL;
745 goto fail;
746 }
747
748 /* Create and open the file (protocol layer) */
749 ret = bdrv_create_file(filename, opts, &local_err);
750 if (ret < 0) {
751 error_propagate(errp, local_err);
752 goto fail;
753 }
754
755 bs = bdrv_open(filename, NULL, NULL,
756 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
757 if (bs == NULL) {
758 ret = -EIO;
759 goto fail;
760 }
761
762 /* Now get the QAPI type BlockdevCreateOptions */
763 qdict_put_str(qdict, "driver", "qed");
764 qdict_put_str(qdict, "file", bs->node_name);
765
766 qobj = qdict_crumple(qdict, errp);
767 qobject_unref(qdict);
768 qdict = qobject_to(QDict, qobj);
769 if (qdict == NULL) {
770 ret = -EINVAL;
771 goto fail;
772 }
773
774 v = qobject_input_visitor_new_keyval(QOBJECT(qdict));
775 visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
776 visit_free(v);
777
778 if (local_err) {
779 error_propagate(errp, local_err);
780 ret = -EINVAL;
781 goto fail;
782 }
783
784 /* Silently round up size */
785 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
786 create_options->u.qed.size =
787 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
788
789 /* Create the qed image (format layer) */
790 ret = bdrv_qed_co_create(create_options, errp);
791
792 fail:
793 qobject_unref(qdict);
794 bdrv_unref(bs);
795 qapi_free_BlockdevCreateOptions(create_options);
796 return ret;
797 }
798
799 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
800 bool want_zero,
801 int64_t pos, int64_t bytes,
802 int64_t *pnum, int64_t *map,
803 BlockDriverState **file)
804 {
805 BDRVQEDState *s = bs->opaque;
806 size_t len = MIN(bytes, SIZE_MAX);
807 int status;
808 QEDRequest request = { .l2_table = NULL };
809 uint64_t offset;
810 int ret;
811
812 qemu_co_mutex_lock(&s->table_lock);
813 ret = qed_find_cluster(s, &request, pos, &len, &offset);
814
815 *pnum = len;
816 switch (ret) {
817 case QED_CLUSTER_FOUND:
818 *map = offset | qed_offset_into_cluster(s, pos);
819 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
820 *file = bs->file->bs;
821 break;
822 case QED_CLUSTER_ZERO:
823 status = BDRV_BLOCK_ZERO;
824 break;
825 case QED_CLUSTER_L2:
826 case QED_CLUSTER_L1:
827 status = 0;
828 break;
829 default:
830 assert(ret < 0);
831 status = ret;
832 break;
833 }
834
835 qed_unref_l2_cache_entry(request.l2_table);
836 qemu_co_mutex_unlock(&s->table_lock);
837
838 return status;
839 }
840
841 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
842 {
843 return acb->bs->opaque;
844 }
845
846 /**
847 * Read from the backing file or zero-fill if no backing file
848 *
849 * @s: QED state
850 * @pos: Byte position in device
851 * @qiov: Destination I/O vector
852 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
853 * @cb: Completion function
854 * @opaque: User data for completion function
855 *
856 * This function reads qiov->size bytes starting at pos from the backing file.
857 * If there is no backing file then zeroes are read.
858 */
859 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
860 QEMUIOVector *qiov,
861 QEMUIOVector **backing_qiov)
862 {
863 uint64_t backing_length = 0;
864 size_t size;
865 int ret;
866
867 /* If there is a backing file, get its length. Treat the absence of a
868 * backing file like a zero length backing file.
869 */
870 if (s->bs->backing) {
871 int64_t l = bdrv_getlength(s->bs->backing->bs);
872 if (l < 0) {
873 return l;
874 }
875 backing_length = l;
876 }
877
878 /* Zero all sectors if reading beyond the end of the backing file */
879 if (pos >= backing_length ||
880 pos + qiov->size > backing_length) {
881 qemu_iovec_memset(qiov, 0, 0, qiov->size);
882 }
883
884 /* Complete now if there are no backing file sectors to read */
885 if (pos >= backing_length) {
886 return 0;
887 }
888
889 /* If the read straddles the end of the backing file, shorten it */
890 size = MIN((uint64_t)backing_length - pos, qiov->size);
891
892 assert(*backing_qiov == NULL);
893 *backing_qiov = g_new(QEMUIOVector, 1);
894 qemu_iovec_init(*backing_qiov, qiov->niov);
895 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
896
897 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
898 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
899 if (ret < 0) {
900 return ret;
901 }
902 return 0;
903 }
904
905 /**
906 * Copy data from backing file into the image
907 *
908 * @s: QED state
909 * @pos: Byte position in device
910 * @len: Number of bytes
911 * @offset: Byte offset in image file
912 */
913 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
914 uint64_t pos, uint64_t len,
915 uint64_t offset)
916 {
917 QEMUIOVector qiov;
918 QEMUIOVector *backing_qiov = NULL;
919 struct iovec iov;
920 int ret;
921
922 /* Skip copy entirely if there is no work to do */
923 if (len == 0) {
924 return 0;
925 }
926
927 iov = (struct iovec) {
928 .iov_base = qemu_blockalign(s->bs, len),
929 .iov_len = len,
930 };
931 qemu_iovec_init_external(&qiov, &iov, 1);
932
933 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
934
935 if (backing_qiov) {
936 qemu_iovec_destroy(backing_qiov);
937 g_free(backing_qiov);
938 backing_qiov = NULL;
939 }
940
941 if (ret) {
942 goto out;
943 }
944
945 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
946 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
947 if (ret < 0) {
948 goto out;
949 }
950 ret = 0;
951 out:
952 qemu_vfree(iov.iov_base);
953 return ret;
954 }
955
956 /**
957 * Link one or more contiguous clusters into a table
958 *
959 * @s: QED state
960 * @table: L2 table
961 * @index: First cluster index
962 * @n: Number of contiguous clusters
963 * @cluster: First cluster offset
964 *
965 * The cluster offset may be an allocated byte offset in the image file, the
966 * zero cluster marker, or the unallocated cluster marker.
967 *
968 * Called with table_lock held.
969 */
970 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
971 int index, unsigned int n,
972 uint64_t cluster)
973 {
974 int i;
975 for (i = index; i < index + n; i++) {
976 table->offsets[i] = cluster;
977 if (!qed_offset_is_unalloc_cluster(cluster) &&
978 !qed_offset_is_zero_cluster(cluster)) {
979 cluster += s->header.cluster_size;
980 }
981 }
982 }
983
984 /* Called with table_lock held. */
985 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
986 {
987 BDRVQEDState *s = acb_to_s(acb);
988
989 /* Free resources */
990 qemu_iovec_destroy(&acb->cur_qiov);
991 qed_unref_l2_cache_entry(acb->request.l2_table);
992
993 /* Free the buffer we may have allocated for zero writes */
994 if (acb->flags & QED_AIOCB_ZERO) {
995 qemu_vfree(acb->qiov->iov[0].iov_base);
996 acb->qiov->iov[0].iov_base = NULL;
997 }
998
999 /* Start next allocating write request waiting behind this one. Note that
1000 * requests enqueue themselves when they first hit an unallocated cluster
1001 * but they wait until the entire request is finished before waking up the
1002 * next request in the queue. This ensures that we don't cycle through
1003 * requests multiple times but rather finish one at a time completely.
1004 */
1005 if (acb == s->allocating_acb) {
1006 s->allocating_acb = NULL;
1007 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
1008 qemu_co_queue_next(&s->allocating_write_reqs);
1009 } else if (s->header.features & QED_F_NEED_CHECK) {
1010 qed_start_need_check_timer(s);
1011 }
1012 }
1013 }
1014
1015 /**
1016 * Update L1 table with new L2 table offset and write it out
1017 *
1018 * Called with table_lock held.
1019 */
1020 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1021 {
1022 BDRVQEDState *s = acb_to_s(acb);
1023 CachedL2Table *l2_table = acb->request.l2_table;
1024 uint64_t l2_offset = l2_table->offset;
1025 int index, ret;
1026
1027 index = qed_l1_index(s, acb->cur_pos);
1028 s->l1_table->offsets[index] = l2_table->offset;
1029
1030 ret = qed_write_l1_table(s, index, 1);
1031
1032 /* Commit the current L2 table to the cache */
1033 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1034
1035 /* This is guaranteed to succeed because we just committed the entry to the
1036 * cache.
1037 */
1038 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1039 assert(acb->request.l2_table != NULL);
1040
1041 return ret;
1042 }
1043
1044
1045 /**
1046 * Update L2 table with new cluster offsets and write them out
1047 *
1048 * Called with table_lock held.
1049 */
1050 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1051 {
1052 BDRVQEDState *s = acb_to_s(acb);
1053 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1054 int index, ret;
1055
1056 if (need_alloc) {
1057 qed_unref_l2_cache_entry(acb->request.l2_table);
1058 acb->request.l2_table = qed_new_l2_table(s);
1059 }
1060
1061 index = qed_l2_index(s, acb->cur_pos);
1062 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1063 offset);
1064
1065 if (need_alloc) {
1066 /* Write out the whole new L2 table */
1067 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1068 if (ret) {
1069 return ret;
1070 }
1071 return qed_aio_write_l1_update(acb);
1072 } else {
1073 /* Write out only the updated part of the L2 table */
1074 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1075 false);
1076 if (ret) {
1077 return ret;
1078 }
1079 }
1080 return 0;
1081 }
1082
1083 /**
1084 * Write data to the image file
1085 *
1086 * Called with table_lock *not* held.
1087 */
1088 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1089 {
1090 BDRVQEDState *s = acb_to_s(acb);
1091 uint64_t offset = acb->cur_cluster +
1092 qed_offset_into_cluster(s, acb->cur_pos);
1093
1094 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1095
1096 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1097 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1098 &acb->cur_qiov, 0);
1099 }
1100
1101 /**
1102 * Populate untouched regions of new data cluster
1103 *
1104 * Called with table_lock held.
1105 */
1106 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1107 {
1108 BDRVQEDState *s = acb_to_s(acb);
1109 uint64_t start, len, offset;
1110 int ret;
1111
1112 qemu_co_mutex_unlock(&s->table_lock);
1113
1114 /* Populate front untouched region of new data cluster */
1115 start = qed_start_of_cluster(s, acb->cur_pos);
1116 len = qed_offset_into_cluster(s, acb->cur_pos);
1117
1118 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1119 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1120 if (ret < 0) {
1121 goto out;
1122 }
1123
1124 /* Populate back untouched region of new data cluster */
1125 start = acb->cur_pos + acb->cur_qiov.size;
1126 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1127 offset = acb->cur_cluster +
1128 qed_offset_into_cluster(s, acb->cur_pos) +
1129 acb->cur_qiov.size;
1130
1131 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1132 ret = qed_copy_from_backing_file(s, start, len, offset);
1133 if (ret < 0) {
1134 goto out;
1135 }
1136
1137 ret = qed_aio_write_main(acb);
1138 if (ret < 0) {
1139 goto out;
1140 }
1141
1142 if (s->bs->backing) {
1143 /*
1144 * Flush new data clusters before updating the L2 table
1145 *
1146 * This flush is necessary when a backing file is in use. A crash
1147 * during an allocating write could result in empty clusters in the
1148 * image. If the write only touched a subregion of the cluster,
1149 * then backing image sectors have been lost in the untouched
1150 * region. The solution is to flush after writing a new data
1151 * cluster and before updating the L2 table.
1152 */
1153 ret = bdrv_co_flush(s->bs->file->bs);
1154 }
1155
1156 out:
1157 qemu_co_mutex_lock(&s->table_lock);
1158 return ret;
1159 }
1160
1161 /**
1162 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1163 */
1164 static bool qed_should_set_need_check(BDRVQEDState *s)
1165 {
1166 /* The flush before L2 update path ensures consistency */
1167 if (s->bs->backing) {
1168 return false;
1169 }
1170
1171 return !(s->header.features & QED_F_NEED_CHECK);
1172 }
1173
1174 /**
1175 * Write new data cluster
1176 *
1177 * @acb: Write request
1178 * @len: Length in bytes
1179 *
1180 * This path is taken when writing to previously unallocated clusters.
1181 *
1182 * Called with table_lock held.
1183 */
1184 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1185 {
1186 BDRVQEDState *s = acb_to_s(acb);
1187 int ret;
1188
1189 /* Cancel timer when the first allocating request comes in */
1190 if (s->allocating_acb == NULL) {
1191 qed_cancel_need_check_timer(s);
1192 }
1193
1194 /* Freeze this request if another allocating write is in progress */
1195 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1196 if (s->allocating_acb != NULL) {
1197 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1198 assert(s->allocating_acb == NULL);
1199 }
1200 s->allocating_acb = acb;
1201 return -EAGAIN; /* start over with looking up table entries */
1202 }
1203
1204 acb->cur_nclusters = qed_bytes_to_clusters(s,
1205 qed_offset_into_cluster(s, acb->cur_pos) + len);
1206 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1207
1208 if (acb->flags & QED_AIOCB_ZERO) {
1209 /* Skip ahead if the clusters are already zero */
1210 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1211 return 0;
1212 }
1213 acb->cur_cluster = 1;
1214 } else {
1215 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1216 }
1217
1218 if (qed_should_set_need_check(s)) {
1219 s->header.features |= QED_F_NEED_CHECK;
1220 ret = qed_write_header(s);
1221 if (ret < 0) {
1222 return ret;
1223 }
1224 }
1225
1226 if (!(acb->flags & QED_AIOCB_ZERO)) {
1227 ret = qed_aio_write_cow(acb);
1228 if (ret < 0) {
1229 return ret;
1230 }
1231 }
1232
1233 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1234 }
1235
1236 /**
1237 * Write data cluster in place
1238 *
1239 * @acb: Write request
1240 * @offset: Cluster offset in bytes
1241 * @len: Length in bytes
1242 *
1243 * This path is taken when writing to already allocated clusters.
1244 *
1245 * Called with table_lock held.
1246 */
1247 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1248 size_t len)
1249 {
1250 BDRVQEDState *s = acb_to_s(acb);
1251 int r;
1252
1253 qemu_co_mutex_unlock(&s->table_lock);
1254
1255 /* Allocate buffer for zero writes */
1256 if (acb->flags & QED_AIOCB_ZERO) {
1257 struct iovec *iov = acb->qiov->iov;
1258
1259 if (!iov->iov_base) {
1260 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1261 if (iov->iov_base == NULL) {
1262 r = -ENOMEM;
1263 goto out;
1264 }
1265 memset(iov->iov_base, 0, iov->iov_len);
1266 }
1267 }
1268
1269 /* Calculate the I/O vector */
1270 acb->cur_cluster = offset;
1271 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1272
1273 /* Do the actual write. */
1274 r = qed_aio_write_main(acb);
1275 out:
1276 qemu_co_mutex_lock(&s->table_lock);
1277 return r;
1278 }
1279
1280 /**
1281 * Write data cluster
1282 *
1283 * @opaque: Write request
1284 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1285 * @offset: Cluster offset in bytes
1286 * @len: Length in bytes
1287 *
1288 * Called with table_lock held.
1289 */
1290 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1291 uint64_t offset, size_t len)
1292 {
1293 QEDAIOCB *acb = opaque;
1294
1295 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1296
1297 acb->find_cluster_ret = ret;
1298
1299 switch (ret) {
1300 case QED_CLUSTER_FOUND:
1301 return qed_aio_write_inplace(acb, offset, len);
1302
1303 case QED_CLUSTER_L2:
1304 case QED_CLUSTER_L1:
1305 case QED_CLUSTER_ZERO:
1306 return qed_aio_write_alloc(acb, len);
1307
1308 default:
1309 g_assert_not_reached();
1310 }
1311 }
1312
1313 /**
1314 * Read data cluster
1315 *
1316 * @opaque: Read request
1317 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1318 * @offset: Cluster offset in bytes
1319 * @len: Length in bytes
1320 *
1321 * Called with table_lock held.
1322 */
1323 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1324 uint64_t offset, size_t len)
1325 {
1326 QEDAIOCB *acb = opaque;
1327 BDRVQEDState *s = acb_to_s(acb);
1328 BlockDriverState *bs = acb->bs;
1329 int r;
1330
1331 qemu_co_mutex_unlock(&s->table_lock);
1332
1333 /* Adjust offset into cluster */
1334 offset += qed_offset_into_cluster(s, acb->cur_pos);
1335
1336 trace_qed_aio_read_data(s, acb, ret, offset, len);
1337
1338 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1339
1340 /* Handle zero cluster and backing file reads, otherwise read
1341 * data cluster directly.
1342 */
1343 if (ret == QED_CLUSTER_ZERO) {
1344 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1345 r = 0;
1346 } else if (ret != QED_CLUSTER_FOUND) {
1347 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1348 &acb->backing_qiov);
1349 } else {
1350 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1351 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1352 &acb->cur_qiov, 0);
1353 }
1354
1355 qemu_co_mutex_lock(&s->table_lock);
1356 return r;
1357 }
1358
1359 /**
1360 * Begin next I/O or complete the request
1361 */
1362 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1363 {
1364 BDRVQEDState *s = acb_to_s(acb);
1365 uint64_t offset;
1366 size_t len;
1367 int ret;
1368
1369 qemu_co_mutex_lock(&s->table_lock);
1370 while (1) {
1371 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1372
1373 if (acb->backing_qiov) {
1374 qemu_iovec_destroy(acb->backing_qiov);
1375 g_free(acb->backing_qiov);
1376 acb->backing_qiov = NULL;
1377 }
1378
1379 acb->qiov_offset += acb->cur_qiov.size;
1380 acb->cur_pos += acb->cur_qiov.size;
1381 qemu_iovec_reset(&acb->cur_qiov);
1382
1383 /* Complete request */
1384 if (acb->cur_pos >= acb->end_pos) {
1385 ret = 0;
1386 break;
1387 }
1388
1389 /* Find next cluster and start I/O */
1390 len = acb->end_pos - acb->cur_pos;
1391 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1392 if (ret < 0) {
1393 break;
1394 }
1395
1396 if (acb->flags & QED_AIOCB_WRITE) {
1397 ret = qed_aio_write_data(acb, ret, offset, len);
1398 } else {
1399 ret = qed_aio_read_data(acb, ret, offset, len);
1400 }
1401
1402 if (ret < 0 && ret != -EAGAIN) {
1403 break;
1404 }
1405 }
1406
1407 trace_qed_aio_complete(s, acb, ret);
1408 qed_aio_complete(acb);
1409 qemu_co_mutex_unlock(&s->table_lock);
1410 return ret;
1411 }
1412
1413 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1414 QEMUIOVector *qiov, int nb_sectors,
1415 int flags)
1416 {
1417 QEDAIOCB acb = {
1418 .bs = bs,
1419 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1420 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1421 .qiov = qiov,
1422 .flags = flags,
1423 };
1424 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1425
1426 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1427
1428 /* Start request */
1429 return qed_aio_next_io(&acb);
1430 }
1431
1432 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1433 int64_t sector_num, int nb_sectors,
1434 QEMUIOVector *qiov)
1435 {
1436 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1437 }
1438
1439 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1440 int64_t sector_num, int nb_sectors,
1441 QEMUIOVector *qiov, int flags)
1442 {
1443 assert(!flags);
1444 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1445 }
1446
1447 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1448 int64_t offset,
1449 int bytes,
1450 BdrvRequestFlags flags)
1451 {
1452 BDRVQEDState *s = bs->opaque;
1453 QEMUIOVector qiov;
1454 struct iovec iov;
1455
1456 /* Fall back if the request is not aligned */
1457 if (qed_offset_into_cluster(s, offset) ||
1458 qed_offset_into_cluster(s, bytes)) {
1459 return -ENOTSUP;
1460 }
1461
1462 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1463 * then it will be allocated during request processing.
1464 */
1465 iov.iov_base = NULL;
1466 iov.iov_len = bytes;
1467
1468 qemu_iovec_init_external(&qiov, &iov, 1);
1469 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1470 bytes >> BDRV_SECTOR_BITS,
1471 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1472 }
1473
1474 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset,
1475 PreallocMode prealloc, Error **errp)
1476 {
1477 BDRVQEDState *s = bs->opaque;
1478 uint64_t old_image_size;
1479 int ret;
1480
1481 if (prealloc != PREALLOC_MODE_OFF) {
1482 error_setg(errp, "Unsupported preallocation mode '%s'",
1483 PreallocMode_str(prealloc));
1484 return -ENOTSUP;
1485 }
1486
1487 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1488 s->header.table_size)) {
1489 error_setg(errp, "Invalid image size specified");
1490 return -EINVAL;
1491 }
1492
1493 if ((uint64_t)offset < s->header.image_size) {
1494 error_setg(errp, "Shrinking images is currently not supported");
1495 return -ENOTSUP;
1496 }
1497
1498 old_image_size = s->header.image_size;
1499 s->header.image_size = offset;
1500 ret = qed_write_header_sync(s);
1501 if (ret < 0) {
1502 s->header.image_size = old_image_size;
1503 error_setg_errno(errp, -ret, "Failed to update the image size");
1504 }
1505 return ret;
1506 }
1507
1508 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1509 {
1510 BDRVQEDState *s = bs->opaque;
1511 return s->header.image_size;
1512 }
1513
1514 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1515 {
1516 BDRVQEDState *s = bs->opaque;
1517
1518 memset(bdi, 0, sizeof(*bdi));
1519 bdi->cluster_size = s->header.cluster_size;
1520 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1521 bdi->unallocated_blocks_are_zero = true;
1522 return 0;
1523 }
1524
1525 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1526 const char *backing_file,
1527 const char *backing_fmt)
1528 {
1529 BDRVQEDState *s = bs->opaque;
1530 QEDHeader new_header, le_header;
1531 void *buffer;
1532 size_t buffer_len, backing_file_len;
1533 int ret;
1534
1535 /* Refuse to set backing filename if unknown compat feature bits are
1536 * active. If the image uses an unknown compat feature then we may not
1537 * know the layout of data following the header structure and cannot safely
1538 * add a new string.
1539 */
1540 if (backing_file && (s->header.compat_features &
1541 ~QED_COMPAT_FEATURE_MASK)) {
1542 return -ENOTSUP;
1543 }
1544
1545 memcpy(&new_header, &s->header, sizeof(new_header));
1546
1547 new_header.features &= ~(QED_F_BACKING_FILE |
1548 QED_F_BACKING_FORMAT_NO_PROBE);
1549
1550 /* Adjust feature flags */
1551 if (backing_file) {
1552 new_header.features |= QED_F_BACKING_FILE;
1553
1554 if (qed_fmt_is_raw(backing_fmt)) {
1555 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1556 }
1557 }
1558
1559 /* Calculate new header size */
1560 backing_file_len = 0;
1561
1562 if (backing_file) {
1563 backing_file_len = strlen(backing_file);
1564 }
1565
1566 buffer_len = sizeof(new_header);
1567 new_header.backing_filename_offset = buffer_len;
1568 new_header.backing_filename_size = backing_file_len;
1569 buffer_len += backing_file_len;
1570
1571 /* Make sure we can rewrite header without failing */
1572 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1573 return -ENOSPC;
1574 }
1575
1576 /* Prepare new header */
1577 buffer = g_malloc(buffer_len);
1578
1579 qed_header_cpu_to_le(&new_header, &le_header);
1580 memcpy(buffer, &le_header, sizeof(le_header));
1581 buffer_len = sizeof(le_header);
1582
1583 if (backing_file) {
1584 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1585 buffer_len += backing_file_len;
1586 }
1587
1588 /* Write new header */
1589 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1590 g_free(buffer);
1591 if (ret == 0) {
1592 memcpy(&s->header, &new_header, sizeof(new_header));
1593 }
1594 return ret;
1595 }
1596
1597 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1598 Error **errp)
1599 {
1600 BDRVQEDState *s = bs->opaque;
1601 Error *local_err = NULL;
1602 int ret;
1603
1604 bdrv_qed_close(bs);
1605
1606 bdrv_qed_init_state(bs);
1607 qemu_co_mutex_lock(&s->table_lock);
1608 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1609 qemu_co_mutex_unlock(&s->table_lock);
1610 if (local_err) {
1611 error_propagate(errp, local_err);
1612 error_prepend(errp, "Could not reopen qed layer: ");
1613 return;
1614 } else if (ret < 0) {
1615 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1616 return;
1617 }
1618 }
1619
1620 static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1621 BdrvCheckMode fix)
1622 {
1623 BDRVQEDState *s = bs->opaque;
1624 int ret;
1625
1626 qemu_co_mutex_lock(&s->table_lock);
1627 ret = qed_check(s, result, !!fix);
1628 qemu_co_mutex_unlock(&s->table_lock);
1629
1630 return ret;
1631 }
1632
1633 static QemuOptsList qed_create_opts = {
1634 .name = "qed-create-opts",
1635 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1636 .desc = {
1637 {
1638 .name = BLOCK_OPT_SIZE,
1639 .type = QEMU_OPT_SIZE,
1640 .help = "Virtual disk size"
1641 },
1642 {
1643 .name = BLOCK_OPT_BACKING_FILE,
1644 .type = QEMU_OPT_STRING,
1645 .help = "File name of a base image"
1646 },
1647 {
1648 .name = BLOCK_OPT_BACKING_FMT,
1649 .type = QEMU_OPT_STRING,
1650 .help = "Image format of the base image"
1651 },
1652 {
1653 .name = BLOCK_OPT_CLUSTER_SIZE,
1654 .type = QEMU_OPT_SIZE,
1655 .help = "Cluster size (in bytes)",
1656 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1657 },
1658 {
1659 .name = BLOCK_OPT_TABLE_SIZE,
1660 .type = QEMU_OPT_SIZE,
1661 .help = "L1/L2 table size (in clusters)"
1662 },
1663 { /* end of list */ }
1664 }
1665 };
1666
1667 static BlockDriver bdrv_qed = {
1668 .format_name = "qed",
1669 .instance_size = sizeof(BDRVQEDState),
1670 .create_opts = &qed_create_opts,
1671 .supports_backing = true,
1672
1673 .bdrv_probe = bdrv_qed_probe,
1674 .bdrv_open = bdrv_qed_open,
1675 .bdrv_close = bdrv_qed_close,
1676 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1677 .bdrv_child_perm = bdrv_format_default_perms,
1678 .bdrv_co_create = bdrv_qed_co_create,
1679 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1680 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1681 .bdrv_co_block_status = bdrv_qed_co_block_status,
1682 .bdrv_co_readv = bdrv_qed_co_readv,
1683 .bdrv_co_writev = bdrv_qed_co_writev,
1684 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1685 .bdrv_truncate = bdrv_qed_truncate,
1686 .bdrv_getlength = bdrv_qed_getlength,
1687 .bdrv_get_info = bdrv_qed_get_info,
1688 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1689 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1690 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1691 .bdrv_co_check = bdrv_qed_co_check,
1692 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1693 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1694 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1695 };
1696
1697 static void bdrv_qed_init(void)
1698 {
1699 bdrv_register(&bdrv_qed);
1700 }
1701
1702 block_init(bdrv_qed_init);