]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
Merge remote-tracking branch 'mreitz/tags/pull-block-2017-06-26' into queue-block
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
23
24 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
25 const char *filename)
26 {
27 const QEDHeader *header = (const QEDHeader *)buf;
28
29 if (buf_size < sizeof(*header)) {
30 return 0;
31 }
32 if (le32_to_cpu(header->magic) != QED_MAGIC) {
33 return 0;
34 }
35 return 100;
36 }
37
38 /**
39 * Check whether an image format is raw
40 *
41 * @fmt: Backing file format, may be NULL
42 */
43 static bool qed_fmt_is_raw(const char *fmt)
44 {
45 return fmt && strcmp(fmt, "raw") == 0;
46 }
47
48 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
49 {
50 cpu->magic = le32_to_cpu(le->magic);
51 cpu->cluster_size = le32_to_cpu(le->cluster_size);
52 cpu->table_size = le32_to_cpu(le->table_size);
53 cpu->header_size = le32_to_cpu(le->header_size);
54 cpu->features = le64_to_cpu(le->features);
55 cpu->compat_features = le64_to_cpu(le->compat_features);
56 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
57 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
58 cpu->image_size = le64_to_cpu(le->image_size);
59 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
60 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
61 }
62
63 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
64 {
65 le->magic = cpu_to_le32(cpu->magic);
66 le->cluster_size = cpu_to_le32(cpu->cluster_size);
67 le->table_size = cpu_to_le32(cpu->table_size);
68 le->header_size = cpu_to_le32(cpu->header_size);
69 le->features = cpu_to_le64(cpu->features);
70 le->compat_features = cpu_to_le64(cpu->compat_features);
71 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
72 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
73 le->image_size = cpu_to_le64(cpu->image_size);
74 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
75 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
76 }
77
78 int qed_write_header_sync(BDRVQEDState *s)
79 {
80 QEDHeader le;
81 int ret;
82
83 qed_header_cpu_to_le(&s->header, &le);
84 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
85 if (ret != sizeof(le)) {
86 return ret;
87 }
88 return 0;
89 }
90
91 /**
92 * Update header in-place (does not rewrite backing filename or other strings)
93 *
94 * This function only updates known header fields in-place and does not affect
95 * extra data after the QED header.
96 */
97 static int coroutine_fn qed_write_header(BDRVQEDState *s)
98 {
99 /* We must write full sectors for O_DIRECT but cannot necessarily generate
100 * the data following the header if an unrecognized compat feature is
101 * active. Therefore, first read the sectors containing the header, update
102 * them, and write back.
103 */
104
105 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
106 size_t len = nsectors * BDRV_SECTOR_SIZE;
107 uint8_t *buf;
108 struct iovec iov;
109 QEMUIOVector qiov;
110 int ret;
111
112 buf = qemu_blockalign(s->bs, len);
113 iov = (struct iovec) {
114 .iov_base = buf,
115 .iov_len = len,
116 };
117 qemu_iovec_init_external(&qiov, &iov, 1);
118
119 ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
120 if (ret < 0) {
121 goto out;
122 }
123
124 /* Update header */
125 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
126
127 ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size, &qiov, 0);
128 if (ret < 0) {
129 goto out;
130 }
131
132 ret = 0;
133 out:
134 qemu_vfree(buf);
135 return ret;
136 }
137
138 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
139 {
140 uint64_t table_entries;
141 uint64_t l2_size;
142
143 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
144 l2_size = table_entries * cluster_size;
145
146 return l2_size * table_entries;
147 }
148
149 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
150 {
151 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
152 cluster_size > QED_MAX_CLUSTER_SIZE) {
153 return false;
154 }
155 if (cluster_size & (cluster_size - 1)) {
156 return false; /* not power of 2 */
157 }
158 return true;
159 }
160
161 static bool qed_is_table_size_valid(uint32_t table_size)
162 {
163 if (table_size < QED_MIN_TABLE_SIZE ||
164 table_size > QED_MAX_TABLE_SIZE) {
165 return false;
166 }
167 if (table_size & (table_size - 1)) {
168 return false; /* not power of 2 */
169 }
170 return true;
171 }
172
173 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
174 uint32_t table_size)
175 {
176 if (image_size % BDRV_SECTOR_SIZE != 0) {
177 return false; /* not multiple of sector size */
178 }
179 if (image_size > qed_max_image_size(cluster_size, table_size)) {
180 return false; /* image is too large */
181 }
182 return true;
183 }
184
185 /**
186 * Read a string of known length from the image file
187 *
188 * @file: Image file
189 * @offset: File offset to start of string, in bytes
190 * @n: String length in bytes
191 * @buf: Destination buffer
192 * @buflen: Destination buffer length in bytes
193 * @ret: 0 on success, -errno on failure
194 *
195 * The string is NUL-terminated.
196 */
197 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
198 char *buf, size_t buflen)
199 {
200 int ret;
201 if (n >= buflen) {
202 return -EINVAL;
203 }
204 ret = bdrv_pread(file, offset, buf, n);
205 if (ret < 0) {
206 return ret;
207 }
208 buf[n] = '\0';
209 return 0;
210 }
211
212 /**
213 * Allocate new clusters
214 *
215 * @s: QED state
216 * @n: Number of contiguous clusters to allocate
217 * @ret: Offset of first allocated cluster
218 *
219 * This function only produces the offset where the new clusters should be
220 * written. It updates BDRVQEDState but does not make any changes to the image
221 * file.
222 */
223 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
224 {
225 uint64_t offset = s->file_size;
226 s->file_size += n * s->header.cluster_size;
227 return offset;
228 }
229
230 QEDTable *qed_alloc_table(BDRVQEDState *s)
231 {
232 /* Honor O_DIRECT memory alignment requirements */
233 return qemu_blockalign(s->bs,
234 s->header.cluster_size * s->header.table_size);
235 }
236
237 /**
238 * Allocate a new zeroed L2 table
239 */
240 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
241 {
242 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
243
244 l2_table->table = qed_alloc_table(s);
245 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
246
247 memset(l2_table->table->offsets, 0,
248 s->header.cluster_size * s->header.table_size);
249 return l2_table;
250 }
251
252 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
253 {
254 assert(!s->allocating_write_reqs_plugged);
255
256 s->allocating_write_reqs_plugged = true;
257 }
258
259 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
260 {
261 assert(s->allocating_write_reqs_plugged);
262
263 s->allocating_write_reqs_plugged = false;
264 qemu_co_enter_next(&s->allocating_write_reqs);
265 }
266
267 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
268 {
269 BDRVQEDState *s = opaque;
270 int ret;
271
272 /* The timer should only fire when allocating writes have drained */
273 assert(!s->allocating_acb);
274
275 trace_qed_need_check_timer_cb(s);
276
277 qed_acquire(s);
278 qed_plug_allocating_write_reqs(s);
279
280 /* Ensure writes are on disk before clearing flag */
281 ret = bdrv_co_flush(s->bs->file->bs);
282 qed_release(s);
283 if (ret < 0) {
284 qed_unplug_allocating_write_reqs(s);
285 return;
286 }
287
288 s->header.features &= ~QED_F_NEED_CHECK;
289 ret = qed_write_header(s);
290 (void) ret;
291
292 qed_unplug_allocating_write_reqs(s);
293
294 ret = bdrv_co_flush(s->bs);
295 (void) ret;
296 }
297
298 static void qed_need_check_timer_cb(void *opaque)
299 {
300 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
301 qemu_coroutine_enter(co);
302 }
303
304 void qed_acquire(BDRVQEDState *s)
305 {
306 aio_context_acquire(bdrv_get_aio_context(s->bs));
307 }
308
309 void qed_release(BDRVQEDState *s)
310 {
311 aio_context_release(bdrv_get_aio_context(s->bs));
312 }
313
314 static void qed_start_need_check_timer(BDRVQEDState *s)
315 {
316 trace_qed_start_need_check_timer(s);
317
318 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
319 * migration.
320 */
321 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
322 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
323 }
324
325 /* It's okay to call this multiple times or when no timer is started */
326 static void qed_cancel_need_check_timer(BDRVQEDState *s)
327 {
328 trace_qed_cancel_need_check_timer(s);
329 timer_del(s->need_check_timer);
330 }
331
332 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
333 {
334 BDRVQEDState *s = bs->opaque;
335
336 qed_cancel_need_check_timer(s);
337 timer_free(s->need_check_timer);
338 }
339
340 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
341 AioContext *new_context)
342 {
343 BDRVQEDState *s = bs->opaque;
344
345 s->need_check_timer = aio_timer_new(new_context,
346 QEMU_CLOCK_VIRTUAL, SCALE_NS,
347 qed_need_check_timer_cb, s);
348 if (s->header.features & QED_F_NEED_CHECK) {
349 qed_start_need_check_timer(s);
350 }
351 }
352
353 static void bdrv_qed_drain(BlockDriverState *bs)
354 {
355 BDRVQEDState *s = bs->opaque;
356
357 /* Fire the timer immediately in order to start doing I/O as soon as the
358 * header is flushed.
359 */
360 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
361 qed_cancel_need_check_timer(s);
362 qed_need_check_timer_cb(s);
363 }
364 }
365
366 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
367 Error **errp)
368 {
369 BDRVQEDState *s = bs->opaque;
370 QEDHeader le_header;
371 int64_t file_size;
372 int ret;
373
374 s->bs = bs;
375 qemu_co_queue_init(&s->allocating_write_reqs);
376
377 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
378 if (ret < 0) {
379 return ret;
380 }
381 qed_header_le_to_cpu(&le_header, &s->header);
382
383 if (s->header.magic != QED_MAGIC) {
384 error_setg(errp, "Image not in QED format");
385 return -EINVAL;
386 }
387 if (s->header.features & ~QED_FEATURE_MASK) {
388 /* image uses unsupported feature bits */
389 error_setg(errp, "Unsupported QED features: %" PRIx64,
390 s->header.features & ~QED_FEATURE_MASK);
391 return -ENOTSUP;
392 }
393 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
394 return -EINVAL;
395 }
396
397 /* Round down file size to the last cluster */
398 file_size = bdrv_getlength(bs->file->bs);
399 if (file_size < 0) {
400 return file_size;
401 }
402 s->file_size = qed_start_of_cluster(s, file_size);
403
404 if (!qed_is_table_size_valid(s->header.table_size)) {
405 return -EINVAL;
406 }
407 if (!qed_is_image_size_valid(s->header.image_size,
408 s->header.cluster_size,
409 s->header.table_size)) {
410 return -EINVAL;
411 }
412 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
413 return -EINVAL;
414 }
415
416 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
417 sizeof(uint64_t);
418 s->l2_shift = ctz32(s->header.cluster_size);
419 s->l2_mask = s->table_nelems - 1;
420 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
421
422 /* Header size calculation must not overflow uint32_t */
423 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
424 return -EINVAL;
425 }
426
427 if ((s->header.features & QED_F_BACKING_FILE)) {
428 if ((uint64_t)s->header.backing_filename_offset +
429 s->header.backing_filename_size >
430 s->header.cluster_size * s->header.header_size) {
431 return -EINVAL;
432 }
433
434 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
435 s->header.backing_filename_size, bs->backing_file,
436 sizeof(bs->backing_file));
437 if (ret < 0) {
438 return ret;
439 }
440
441 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
442 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
443 }
444 }
445
446 /* Reset unknown autoclear feature bits. This is a backwards
447 * compatibility mechanism that allows images to be opened by older
448 * programs, which "knock out" unknown feature bits. When an image is
449 * opened by a newer program again it can detect that the autoclear
450 * feature is no longer valid.
451 */
452 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
453 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
454 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
455
456 ret = qed_write_header_sync(s);
457 if (ret) {
458 return ret;
459 }
460
461 /* From here on only known autoclear feature bits are valid */
462 bdrv_flush(bs->file->bs);
463 }
464
465 s->l1_table = qed_alloc_table(s);
466 qed_init_l2_cache(&s->l2_cache);
467
468 ret = qed_read_l1_table_sync(s);
469 if (ret) {
470 goto out;
471 }
472
473 /* If image was not closed cleanly, check consistency */
474 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
475 /* Read-only images cannot be fixed. There is no risk of corruption
476 * since write operations are not possible. Therefore, allow
477 * potentially inconsistent images to be opened read-only. This can
478 * aid data recovery from an otherwise inconsistent image.
479 */
480 if (!bdrv_is_read_only(bs->file->bs) &&
481 !(flags & BDRV_O_INACTIVE)) {
482 BdrvCheckResult result = {0};
483
484 ret = qed_check(s, &result, true);
485 if (ret) {
486 goto out;
487 }
488 }
489 }
490
491 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
492
493 out:
494 if (ret) {
495 qed_free_l2_cache(&s->l2_cache);
496 qemu_vfree(s->l1_table);
497 }
498 return ret;
499 }
500
501 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
502 Error **errp)
503 {
504 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
505 false, errp);
506 if (!bs->file) {
507 return -EINVAL;
508 }
509
510 return bdrv_qed_do_open(bs, options, flags, errp);
511 }
512
513 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
514 {
515 BDRVQEDState *s = bs->opaque;
516
517 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
518 }
519
520 /* We have nothing to do for QED reopen, stubs just return
521 * success */
522 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
523 BlockReopenQueue *queue, Error **errp)
524 {
525 return 0;
526 }
527
528 static void bdrv_qed_close(BlockDriverState *bs)
529 {
530 BDRVQEDState *s = bs->opaque;
531
532 bdrv_qed_detach_aio_context(bs);
533
534 /* Ensure writes reach stable storage */
535 bdrv_flush(bs->file->bs);
536
537 /* Clean shutdown, no check required on next open */
538 if (s->header.features & QED_F_NEED_CHECK) {
539 s->header.features &= ~QED_F_NEED_CHECK;
540 qed_write_header_sync(s);
541 }
542
543 qed_free_l2_cache(&s->l2_cache);
544 qemu_vfree(s->l1_table);
545 }
546
547 static int qed_create(const char *filename, uint32_t cluster_size,
548 uint64_t image_size, uint32_t table_size,
549 const char *backing_file, const char *backing_fmt,
550 QemuOpts *opts, Error **errp)
551 {
552 QEDHeader header = {
553 .magic = QED_MAGIC,
554 .cluster_size = cluster_size,
555 .table_size = table_size,
556 .header_size = 1,
557 .features = 0,
558 .compat_features = 0,
559 .l1_table_offset = cluster_size,
560 .image_size = image_size,
561 };
562 QEDHeader le_header;
563 uint8_t *l1_table = NULL;
564 size_t l1_size = header.cluster_size * header.table_size;
565 Error *local_err = NULL;
566 int ret = 0;
567 BlockBackend *blk;
568
569 ret = bdrv_create_file(filename, opts, &local_err);
570 if (ret < 0) {
571 error_propagate(errp, local_err);
572 return ret;
573 }
574
575 blk = blk_new_open(filename, NULL, NULL,
576 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
577 &local_err);
578 if (blk == NULL) {
579 error_propagate(errp, local_err);
580 return -EIO;
581 }
582
583 blk_set_allow_write_beyond_eof(blk, true);
584
585 /* File must start empty and grow, check truncate is supported */
586 ret = blk_truncate(blk, 0, errp);
587 if (ret < 0) {
588 goto out;
589 }
590
591 if (backing_file) {
592 header.features |= QED_F_BACKING_FILE;
593 header.backing_filename_offset = sizeof(le_header);
594 header.backing_filename_size = strlen(backing_file);
595
596 if (qed_fmt_is_raw(backing_fmt)) {
597 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
598 }
599 }
600
601 qed_header_cpu_to_le(&header, &le_header);
602 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
603 if (ret < 0) {
604 goto out;
605 }
606 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
607 header.backing_filename_size, 0);
608 if (ret < 0) {
609 goto out;
610 }
611
612 l1_table = g_malloc0(l1_size);
613 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
614 if (ret < 0) {
615 goto out;
616 }
617
618 ret = 0; /* success */
619 out:
620 g_free(l1_table);
621 blk_unref(blk);
622 return ret;
623 }
624
625 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
626 {
627 uint64_t image_size = 0;
628 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
629 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
630 char *backing_file = NULL;
631 char *backing_fmt = NULL;
632 int ret;
633
634 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
635 BDRV_SECTOR_SIZE);
636 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
637 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
638 cluster_size = qemu_opt_get_size_del(opts,
639 BLOCK_OPT_CLUSTER_SIZE,
640 QED_DEFAULT_CLUSTER_SIZE);
641 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
642 QED_DEFAULT_TABLE_SIZE);
643
644 if (!qed_is_cluster_size_valid(cluster_size)) {
645 error_setg(errp, "QED cluster size must be within range [%u, %u] "
646 "and power of 2",
647 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
648 ret = -EINVAL;
649 goto finish;
650 }
651 if (!qed_is_table_size_valid(table_size)) {
652 error_setg(errp, "QED table size must be within range [%u, %u] "
653 "and power of 2",
654 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
655 ret = -EINVAL;
656 goto finish;
657 }
658 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
659 error_setg(errp, "QED image size must be a non-zero multiple of "
660 "cluster size and less than %" PRIu64 " bytes",
661 qed_max_image_size(cluster_size, table_size));
662 ret = -EINVAL;
663 goto finish;
664 }
665
666 ret = qed_create(filename, cluster_size, image_size, table_size,
667 backing_file, backing_fmt, opts, errp);
668
669 finish:
670 g_free(backing_file);
671 g_free(backing_fmt);
672 return ret;
673 }
674
675 typedef struct {
676 BlockDriverState *bs;
677 Coroutine *co;
678 uint64_t pos;
679 int64_t status;
680 int *pnum;
681 BlockDriverState **file;
682 } QEDIsAllocatedCB;
683
684 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
685 {
686 QEDIsAllocatedCB *cb = opaque;
687 BDRVQEDState *s = cb->bs->opaque;
688 *cb->pnum = len / BDRV_SECTOR_SIZE;
689 switch (ret) {
690 case QED_CLUSTER_FOUND:
691 offset |= qed_offset_into_cluster(s, cb->pos);
692 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
693 *cb->file = cb->bs->file->bs;
694 break;
695 case QED_CLUSTER_ZERO:
696 cb->status = BDRV_BLOCK_ZERO;
697 break;
698 case QED_CLUSTER_L2:
699 case QED_CLUSTER_L1:
700 cb->status = 0;
701 break;
702 default:
703 assert(ret < 0);
704 cb->status = ret;
705 break;
706 }
707
708 if (cb->co) {
709 aio_co_wake(cb->co);
710 }
711 }
712
713 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
714 int64_t sector_num,
715 int nb_sectors, int *pnum,
716 BlockDriverState **file)
717 {
718 BDRVQEDState *s = bs->opaque;
719 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
720 QEDIsAllocatedCB cb = {
721 .bs = bs,
722 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
723 .status = BDRV_BLOCK_OFFSET_MASK,
724 .pnum = pnum,
725 .file = file,
726 };
727 QEDRequest request = { .l2_table = NULL };
728 uint64_t offset;
729 int ret;
730
731 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
732 qed_is_allocated_cb(&cb, ret, offset, len);
733
734 /* The callback was invoked immediately */
735 assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
736
737 qed_unref_l2_cache_entry(request.l2_table);
738
739 return cb.status;
740 }
741
742 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
743 {
744 return acb->bs->opaque;
745 }
746
747 /**
748 * Read from the backing file or zero-fill if no backing file
749 *
750 * @s: QED state
751 * @pos: Byte position in device
752 * @qiov: Destination I/O vector
753 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
754 * @cb: Completion function
755 * @opaque: User data for completion function
756 *
757 * This function reads qiov->size bytes starting at pos from the backing file.
758 * If there is no backing file then zeroes are read.
759 */
760 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
761 QEMUIOVector *qiov,
762 QEMUIOVector **backing_qiov)
763 {
764 uint64_t backing_length = 0;
765 size_t size;
766 int ret;
767
768 /* If there is a backing file, get its length. Treat the absence of a
769 * backing file like a zero length backing file.
770 */
771 if (s->bs->backing) {
772 int64_t l = bdrv_getlength(s->bs->backing->bs);
773 if (l < 0) {
774 return l;
775 }
776 backing_length = l;
777 }
778
779 /* Zero all sectors if reading beyond the end of the backing file */
780 if (pos >= backing_length ||
781 pos + qiov->size > backing_length) {
782 qemu_iovec_memset(qiov, 0, 0, qiov->size);
783 }
784
785 /* Complete now if there are no backing file sectors to read */
786 if (pos >= backing_length) {
787 return 0;
788 }
789
790 /* If the read straddles the end of the backing file, shorten it */
791 size = MIN((uint64_t)backing_length - pos, qiov->size);
792
793 assert(*backing_qiov == NULL);
794 *backing_qiov = g_new(QEMUIOVector, 1);
795 qemu_iovec_init(*backing_qiov, qiov->niov);
796 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
797
798 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
799 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
800 if (ret < 0) {
801 return ret;
802 }
803 return 0;
804 }
805
806 /**
807 * Copy data from backing file into the image
808 *
809 * @s: QED state
810 * @pos: Byte position in device
811 * @len: Number of bytes
812 * @offset: Byte offset in image file
813 */
814 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
815 uint64_t pos, uint64_t len,
816 uint64_t offset)
817 {
818 QEMUIOVector qiov;
819 QEMUIOVector *backing_qiov = NULL;
820 struct iovec iov;
821 int ret;
822
823 /* Skip copy entirely if there is no work to do */
824 if (len == 0) {
825 return 0;
826 }
827
828 iov = (struct iovec) {
829 .iov_base = qemu_blockalign(s->bs, len),
830 .iov_len = len,
831 };
832 qemu_iovec_init_external(&qiov, &iov, 1);
833
834 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
835
836 if (backing_qiov) {
837 qemu_iovec_destroy(backing_qiov);
838 g_free(backing_qiov);
839 backing_qiov = NULL;
840 }
841
842 if (ret) {
843 goto out;
844 }
845
846 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
847 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
848 if (ret < 0) {
849 goto out;
850 }
851 ret = 0;
852 out:
853 qemu_vfree(iov.iov_base);
854 return ret;
855 }
856
857 /**
858 * Link one or more contiguous clusters into a table
859 *
860 * @s: QED state
861 * @table: L2 table
862 * @index: First cluster index
863 * @n: Number of contiguous clusters
864 * @cluster: First cluster offset
865 *
866 * The cluster offset may be an allocated byte offset in the image file, the
867 * zero cluster marker, or the unallocated cluster marker.
868 */
869 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
870 int index, unsigned int n,
871 uint64_t cluster)
872 {
873 int i;
874 for (i = index; i < index + n; i++) {
875 table->offsets[i] = cluster;
876 if (!qed_offset_is_unalloc_cluster(cluster) &&
877 !qed_offset_is_zero_cluster(cluster)) {
878 cluster += s->header.cluster_size;
879 }
880 }
881 }
882
883 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
884 {
885 BDRVQEDState *s = acb_to_s(acb);
886
887 /* Free resources */
888 qemu_iovec_destroy(&acb->cur_qiov);
889 qed_unref_l2_cache_entry(acb->request.l2_table);
890
891 /* Free the buffer we may have allocated for zero writes */
892 if (acb->flags & QED_AIOCB_ZERO) {
893 qemu_vfree(acb->qiov->iov[0].iov_base);
894 acb->qiov->iov[0].iov_base = NULL;
895 }
896
897 /* Start next allocating write request waiting behind this one. Note that
898 * requests enqueue themselves when they first hit an unallocated cluster
899 * but they wait until the entire request is finished before waking up the
900 * next request in the queue. This ensures that we don't cycle through
901 * requests multiple times but rather finish one at a time completely.
902 */
903 if (acb == s->allocating_acb) {
904 s->allocating_acb = NULL;
905 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
906 qemu_co_enter_next(&s->allocating_write_reqs);
907 } else if (s->header.features & QED_F_NEED_CHECK) {
908 qed_start_need_check_timer(s);
909 }
910 }
911 }
912
913 /**
914 * Update L1 table with new L2 table offset and write it out
915 */
916 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
917 {
918 BDRVQEDState *s = acb_to_s(acb);
919 CachedL2Table *l2_table = acb->request.l2_table;
920 uint64_t l2_offset = l2_table->offset;
921 int index, ret;
922
923 index = qed_l1_index(s, acb->cur_pos);
924 s->l1_table->offsets[index] = l2_table->offset;
925
926 ret = qed_write_l1_table(s, index, 1);
927
928 /* Commit the current L2 table to the cache */
929 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
930
931 /* This is guaranteed to succeed because we just committed the entry to the
932 * cache.
933 */
934 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
935 assert(acb->request.l2_table != NULL);
936
937 return ret;
938 }
939
940
941 /**
942 * Update L2 table with new cluster offsets and write them out
943 */
944 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
945 {
946 BDRVQEDState *s = acb_to_s(acb);
947 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
948 int index, ret;
949
950 if (need_alloc) {
951 qed_unref_l2_cache_entry(acb->request.l2_table);
952 acb->request.l2_table = qed_new_l2_table(s);
953 }
954
955 index = qed_l2_index(s, acb->cur_pos);
956 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
957 offset);
958
959 if (need_alloc) {
960 /* Write out the whole new L2 table */
961 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
962 if (ret) {
963 return ret;
964 }
965 return qed_aio_write_l1_update(acb);
966 } else {
967 /* Write out only the updated part of the L2 table */
968 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
969 false);
970 if (ret) {
971 return ret;
972 }
973 }
974 return 0;
975 }
976
977 /**
978 * Write data to the image file
979 */
980 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
981 {
982 BDRVQEDState *s = acb_to_s(acb);
983 uint64_t offset = acb->cur_cluster +
984 qed_offset_into_cluster(s, acb->cur_pos);
985 int ret;
986
987 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
988
989 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
990 ret = bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
991 &acb->cur_qiov, 0);
992 if (ret < 0) {
993 return ret;
994 }
995
996 if (acb->find_cluster_ret != QED_CLUSTER_FOUND) {
997 if (s->bs->backing) {
998 /*
999 * Flush new data clusters before updating the L2 table
1000 *
1001 * This flush is necessary when a backing file is in use. A crash
1002 * during an allocating write could result in empty clusters in the
1003 * image. If the write only touched a subregion of the cluster,
1004 * then backing image sectors have been lost in the untouched
1005 * region. The solution is to flush after writing a new data
1006 * cluster and before updating the L2 table.
1007 */
1008 ret = bdrv_co_flush(s->bs->file->bs);
1009 if (ret < 0) {
1010 return ret;
1011 }
1012 }
1013 ret = qed_aio_write_l2_update(acb, acb->cur_cluster);
1014 if (ret < 0) {
1015 return ret;
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 /**
1022 * Populate untouched regions of new data cluster
1023 */
1024 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1025 {
1026 BDRVQEDState *s = acb_to_s(acb);
1027 uint64_t start, len, offset;
1028 int ret;
1029
1030 /* Populate front untouched region of new data cluster */
1031 start = qed_start_of_cluster(s, acb->cur_pos);
1032 len = qed_offset_into_cluster(s, acb->cur_pos);
1033
1034 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1035 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1036 if (ret < 0) {
1037 return ret;
1038 }
1039
1040 /* Populate back untouched region of new data cluster */
1041 start = acb->cur_pos + acb->cur_qiov.size;
1042 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1043 offset = acb->cur_cluster +
1044 qed_offset_into_cluster(s, acb->cur_pos) +
1045 acb->cur_qiov.size;
1046
1047 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1048 ret = qed_copy_from_backing_file(s, start, len, offset);
1049 if (ret < 0) {
1050 return ret;
1051 }
1052
1053 return qed_aio_write_main(acb);
1054 }
1055
1056 /**
1057 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1058 */
1059 static bool qed_should_set_need_check(BDRVQEDState *s)
1060 {
1061 /* The flush before L2 update path ensures consistency */
1062 if (s->bs->backing) {
1063 return false;
1064 }
1065
1066 return !(s->header.features & QED_F_NEED_CHECK);
1067 }
1068
1069 /**
1070 * Write new data cluster
1071 *
1072 * @acb: Write request
1073 * @len: Length in bytes
1074 *
1075 * This path is taken when writing to previously unallocated clusters.
1076 */
1077 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1078 {
1079 BDRVQEDState *s = acb_to_s(acb);
1080 int ret;
1081
1082 /* Cancel timer when the first allocating request comes in */
1083 if (s->allocating_acb == NULL) {
1084 qed_cancel_need_check_timer(s);
1085 }
1086
1087 /* Freeze this request if another allocating write is in progress */
1088 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1089 if (s->allocating_acb != NULL) {
1090 qemu_co_queue_wait(&s->allocating_write_reqs, NULL);
1091 assert(s->allocating_acb == NULL);
1092 }
1093 s->allocating_acb = acb;
1094 return -EAGAIN; /* start over with looking up table entries */
1095 }
1096
1097 acb->cur_nclusters = qed_bytes_to_clusters(s,
1098 qed_offset_into_cluster(s, acb->cur_pos) + len);
1099 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1100
1101 if (acb->flags & QED_AIOCB_ZERO) {
1102 /* Skip ahead if the clusters are already zero */
1103 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1104 return 0;
1105 }
1106 } else {
1107 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1108 }
1109
1110 if (qed_should_set_need_check(s)) {
1111 s->header.features |= QED_F_NEED_CHECK;
1112 ret = qed_write_header(s);
1113 if (ret < 0) {
1114 return ret;
1115 }
1116 }
1117
1118 if (acb->flags & QED_AIOCB_ZERO) {
1119 ret = qed_aio_write_l2_update(acb, 1);
1120 } else {
1121 ret = qed_aio_write_cow(acb);
1122 }
1123 if (ret < 0) {
1124 return ret;
1125 }
1126 return 0;
1127 }
1128
1129 /**
1130 * Write data cluster in place
1131 *
1132 * @acb: Write request
1133 * @offset: Cluster offset in bytes
1134 * @len: Length in bytes
1135 *
1136 * This path is taken when writing to already allocated clusters.
1137 */
1138 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1139 size_t len)
1140 {
1141 /* Allocate buffer for zero writes */
1142 if (acb->flags & QED_AIOCB_ZERO) {
1143 struct iovec *iov = acb->qiov->iov;
1144
1145 if (!iov->iov_base) {
1146 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1147 if (iov->iov_base == NULL) {
1148 return -ENOMEM;
1149 }
1150 memset(iov->iov_base, 0, iov->iov_len);
1151 }
1152 }
1153
1154 /* Calculate the I/O vector */
1155 acb->cur_cluster = offset;
1156 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1157
1158 /* Do the actual write */
1159 return qed_aio_write_main(acb);
1160 }
1161
1162 /**
1163 * Write data cluster
1164 *
1165 * @opaque: Write request
1166 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1167 * @offset: Cluster offset in bytes
1168 * @len: Length in bytes
1169 */
1170 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1171 uint64_t offset, size_t len)
1172 {
1173 QEDAIOCB *acb = opaque;
1174
1175 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1176
1177 acb->find_cluster_ret = ret;
1178
1179 switch (ret) {
1180 case QED_CLUSTER_FOUND:
1181 return qed_aio_write_inplace(acb, offset, len);
1182
1183 case QED_CLUSTER_L2:
1184 case QED_CLUSTER_L1:
1185 case QED_CLUSTER_ZERO:
1186 return qed_aio_write_alloc(acb, len);
1187
1188 default:
1189 g_assert_not_reached();
1190 }
1191 }
1192
1193 /**
1194 * Read data cluster
1195 *
1196 * @opaque: Read request
1197 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1198 * @offset: Cluster offset in bytes
1199 * @len: Length in bytes
1200 */
1201 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1202 uint64_t offset, size_t len)
1203 {
1204 QEDAIOCB *acb = opaque;
1205 BDRVQEDState *s = acb_to_s(acb);
1206 BlockDriverState *bs = acb->bs;
1207
1208 /* Adjust offset into cluster */
1209 offset += qed_offset_into_cluster(s, acb->cur_pos);
1210
1211 trace_qed_aio_read_data(s, acb, ret, offset, len);
1212
1213 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1214
1215 /* Handle zero cluster and backing file reads */
1216 if (ret == QED_CLUSTER_ZERO) {
1217 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1218 return 0;
1219 } else if (ret != QED_CLUSTER_FOUND) {
1220 return qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1221 &acb->backing_qiov);
1222 }
1223
1224 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1225 ret = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1226 &acb->cur_qiov, 0);
1227 if (ret < 0) {
1228 return ret;
1229 }
1230 return 0;
1231 }
1232
1233 /**
1234 * Begin next I/O or complete the request
1235 */
1236 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1237 {
1238 BDRVQEDState *s = acb_to_s(acb);
1239 uint64_t offset;
1240 size_t len;
1241 int ret;
1242
1243 while (1) {
1244 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1245
1246 if (acb->backing_qiov) {
1247 qemu_iovec_destroy(acb->backing_qiov);
1248 g_free(acb->backing_qiov);
1249 acb->backing_qiov = NULL;
1250 }
1251
1252 acb->qiov_offset += acb->cur_qiov.size;
1253 acb->cur_pos += acb->cur_qiov.size;
1254 qemu_iovec_reset(&acb->cur_qiov);
1255
1256 /* Complete request */
1257 if (acb->cur_pos >= acb->end_pos) {
1258 ret = 0;
1259 break;
1260 }
1261
1262 /* Find next cluster and start I/O */
1263 len = acb->end_pos - acb->cur_pos;
1264 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1265 if (ret < 0) {
1266 break;
1267 }
1268
1269 if (acb->flags & QED_AIOCB_WRITE) {
1270 ret = qed_aio_write_data(acb, ret, offset, len);
1271 } else {
1272 ret = qed_aio_read_data(acb, ret, offset, len);
1273 }
1274
1275 if (ret < 0 && ret != -EAGAIN) {
1276 break;
1277 }
1278 }
1279
1280 trace_qed_aio_complete(s, acb, ret);
1281 qed_aio_complete(acb);
1282 return ret;
1283 }
1284
1285 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1286 QEMUIOVector *qiov, int nb_sectors,
1287 int flags)
1288 {
1289 QEDAIOCB acb = {
1290 .bs = bs,
1291 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1292 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1293 .qiov = qiov,
1294 .flags = flags,
1295 };
1296 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1297
1298 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1299
1300 /* Start request */
1301 return qed_aio_next_io(&acb);
1302 }
1303
1304 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1305 int64_t sector_num, int nb_sectors,
1306 QEMUIOVector *qiov)
1307 {
1308 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1309 }
1310
1311 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1312 int64_t sector_num, int nb_sectors,
1313 QEMUIOVector *qiov)
1314 {
1315 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1316 }
1317
1318 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1319 int64_t offset,
1320 int bytes,
1321 BdrvRequestFlags flags)
1322 {
1323 BDRVQEDState *s = bs->opaque;
1324 QEMUIOVector qiov;
1325 struct iovec iov;
1326
1327 /* Fall back if the request is not aligned */
1328 if (qed_offset_into_cluster(s, offset) ||
1329 qed_offset_into_cluster(s, bytes)) {
1330 return -ENOTSUP;
1331 }
1332
1333 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1334 * then it will be allocated during request processing.
1335 */
1336 iov.iov_base = NULL;
1337 iov.iov_len = bytes;
1338
1339 qemu_iovec_init_external(&qiov, &iov, 1);
1340 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1341 bytes >> BDRV_SECTOR_BITS,
1342 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1343 }
1344
1345 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, Error **errp)
1346 {
1347 BDRVQEDState *s = bs->opaque;
1348 uint64_t old_image_size;
1349 int ret;
1350
1351 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1352 s->header.table_size)) {
1353 error_setg(errp, "Invalid image size specified");
1354 return -EINVAL;
1355 }
1356
1357 if ((uint64_t)offset < s->header.image_size) {
1358 error_setg(errp, "Shrinking images is currently not supported");
1359 return -ENOTSUP;
1360 }
1361
1362 old_image_size = s->header.image_size;
1363 s->header.image_size = offset;
1364 ret = qed_write_header_sync(s);
1365 if (ret < 0) {
1366 s->header.image_size = old_image_size;
1367 error_setg_errno(errp, -ret, "Failed to update the image size");
1368 }
1369 return ret;
1370 }
1371
1372 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1373 {
1374 BDRVQEDState *s = bs->opaque;
1375 return s->header.image_size;
1376 }
1377
1378 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1379 {
1380 BDRVQEDState *s = bs->opaque;
1381
1382 memset(bdi, 0, sizeof(*bdi));
1383 bdi->cluster_size = s->header.cluster_size;
1384 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1385 bdi->unallocated_blocks_are_zero = true;
1386 bdi->can_write_zeroes_with_unmap = true;
1387 return 0;
1388 }
1389
1390 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1391 const char *backing_file,
1392 const char *backing_fmt)
1393 {
1394 BDRVQEDState *s = bs->opaque;
1395 QEDHeader new_header, le_header;
1396 void *buffer;
1397 size_t buffer_len, backing_file_len;
1398 int ret;
1399
1400 /* Refuse to set backing filename if unknown compat feature bits are
1401 * active. If the image uses an unknown compat feature then we may not
1402 * know the layout of data following the header structure and cannot safely
1403 * add a new string.
1404 */
1405 if (backing_file && (s->header.compat_features &
1406 ~QED_COMPAT_FEATURE_MASK)) {
1407 return -ENOTSUP;
1408 }
1409
1410 memcpy(&new_header, &s->header, sizeof(new_header));
1411
1412 new_header.features &= ~(QED_F_BACKING_FILE |
1413 QED_F_BACKING_FORMAT_NO_PROBE);
1414
1415 /* Adjust feature flags */
1416 if (backing_file) {
1417 new_header.features |= QED_F_BACKING_FILE;
1418
1419 if (qed_fmt_is_raw(backing_fmt)) {
1420 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1421 }
1422 }
1423
1424 /* Calculate new header size */
1425 backing_file_len = 0;
1426
1427 if (backing_file) {
1428 backing_file_len = strlen(backing_file);
1429 }
1430
1431 buffer_len = sizeof(new_header);
1432 new_header.backing_filename_offset = buffer_len;
1433 new_header.backing_filename_size = backing_file_len;
1434 buffer_len += backing_file_len;
1435
1436 /* Make sure we can rewrite header without failing */
1437 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1438 return -ENOSPC;
1439 }
1440
1441 /* Prepare new header */
1442 buffer = g_malloc(buffer_len);
1443
1444 qed_header_cpu_to_le(&new_header, &le_header);
1445 memcpy(buffer, &le_header, sizeof(le_header));
1446 buffer_len = sizeof(le_header);
1447
1448 if (backing_file) {
1449 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1450 buffer_len += backing_file_len;
1451 }
1452
1453 /* Write new header */
1454 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1455 g_free(buffer);
1456 if (ret == 0) {
1457 memcpy(&s->header, &new_header, sizeof(new_header));
1458 }
1459 return ret;
1460 }
1461
1462 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1463 {
1464 BDRVQEDState *s = bs->opaque;
1465 Error *local_err = NULL;
1466 int ret;
1467
1468 bdrv_qed_close(bs);
1469
1470 memset(s, 0, sizeof(BDRVQEDState));
1471 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1472 if (local_err) {
1473 error_propagate(errp, local_err);
1474 error_prepend(errp, "Could not reopen qed layer: ");
1475 return;
1476 } else if (ret < 0) {
1477 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1478 return;
1479 }
1480 }
1481
1482 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1483 BdrvCheckMode fix)
1484 {
1485 BDRVQEDState *s = bs->opaque;
1486
1487 return qed_check(s, result, !!fix);
1488 }
1489
1490 static QemuOptsList qed_create_opts = {
1491 .name = "qed-create-opts",
1492 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1493 .desc = {
1494 {
1495 .name = BLOCK_OPT_SIZE,
1496 .type = QEMU_OPT_SIZE,
1497 .help = "Virtual disk size"
1498 },
1499 {
1500 .name = BLOCK_OPT_BACKING_FILE,
1501 .type = QEMU_OPT_STRING,
1502 .help = "File name of a base image"
1503 },
1504 {
1505 .name = BLOCK_OPT_BACKING_FMT,
1506 .type = QEMU_OPT_STRING,
1507 .help = "Image format of the base image"
1508 },
1509 {
1510 .name = BLOCK_OPT_CLUSTER_SIZE,
1511 .type = QEMU_OPT_SIZE,
1512 .help = "Cluster size (in bytes)",
1513 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1514 },
1515 {
1516 .name = BLOCK_OPT_TABLE_SIZE,
1517 .type = QEMU_OPT_SIZE,
1518 .help = "L1/L2 table size (in clusters)"
1519 },
1520 { /* end of list */ }
1521 }
1522 };
1523
1524 static BlockDriver bdrv_qed = {
1525 .format_name = "qed",
1526 .instance_size = sizeof(BDRVQEDState),
1527 .create_opts = &qed_create_opts,
1528 .supports_backing = true,
1529
1530 .bdrv_probe = bdrv_qed_probe,
1531 .bdrv_open = bdrv_qed_open,
1532 .bdrv_close = bdrv_qed_close,
1533 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1534 .bdrv_child_perm = bdrv_format_default_perms,
1535 .bdrv_create = bdrv_qed_create,
1536 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1537 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1538 .bdrv_co_readv = bdrv_qed_co_readv,
1539 .bdrv_co_writev = bdrv_qed_co_writev,
1540 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1541 .bdrv_truncate = bdrv_qed_truncate,
1542 .bdrv_getlength = bdrv_qed_getlength,
1543 .bdrv_get_info = bdrv_qed_get_info,
1544 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1545 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1546 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1547 .bdrv_check = bdrv_qed_check,
1548 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1549 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1550 .bdrv_drain = bdrv_qed_drain,
1551 };
1552
1553 static void bdrv_qed_init(void)
1554 {
1555 bdrv_register(&bdrv_qed);
1556 }
1557
1558 block_init(bdrv_qed_init);