]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
qed: Add return value to qed_aio_write_l2_update()
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
23
24 static const AIOCBInfo qed_aiocb_info = {
25 .aiocb_size = sizeof(QEDAIOCB),
26 };
27
28 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
29 const char *filename)
30 {
31 const QEDHeader *header = (const QEDHeader *)buf;
32
33 if (buf_size < sizeof(*header)) {
34 return 0;
35 }
36 if (le32_to_cpu(header->magic) != QED_MAGIC) {
37 return 0;
38 }
39 return 100;
40 }
41
42 /**
43 * Check whether an image format is raw
44 *
45 * @fmt: Backing file format, may be NULL
46 */
47 static bool qed_fmt_is_raw(const char *fmt)
48 {
49 return fmt && strcmp(fmt, "raw") == 0;
50 }
51
52 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
53 {
54 cpu->magic = le32_to_cpu(le->magic);
55 cpu->cluster_size = le32_to_cpu(le->cluster_size);
56 cpu->table_size = le32_to_cpu(le->table_size);
57 cpu->header_size = le32_to_cpu(le->header_size);
58 cpu->features = le64_to_cpu(le->features);
59 cpu->compat_features = le64_to_cpu(le->compat_features);
60 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
61 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
62 cpu->image_size = le64_to_cpu(le->image_size);
63 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
64 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
65 }
66
67 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
68 {
69 le->magic = cpu_to_le32(cpu->magic);
70 le->cluster_size = cpu_to_le32(cpu->cluster_size);
71 le->table_size = cpu_to_le32(cpu->table_size);
72 le->header_size = cpu_to_le32(cpu->header_size);
73 le->features = cpu_to_le64(cpu->features);
74 le->compat_features = cpu_to_le64(cpu->compat_features);
75 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
76 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
77 le->image_size = cpu_to_le64(cpu->image_size);
78 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
79 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
80 }
81
82 int qed_write_header_sync(BDRVQEDState *s)
83 {
84 QEDHeader le;
85 int ret;
86
87 qed_header_cpu_to_le(&s->header, &le);
88 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
89 if (ret != sizeof(le)) {
90 return ret;
91 }
92 return 0;
93 }
94
95 /**
96 * Update header in-place (does not rewrite backing filename or other strings)
97 *
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
100 */
101 static int qed_write_header(BDRVQEDState *s)
102 {
103 /* We must write full sectors for O_DIRECT but cannot necessarily generate
104 * the data following the header if an unrecognized compat feature is
105 * active. Therefore, first read the sectors containing the header, update
106 * them, and write back.
107 */
108
109 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
110 size_t len = nsectors * BDRV_SECTOR_SIZE;
111 uint8_t *buf;
112 struct iovec iov;
113 QEMUIOVector qiov;
114 int ret;
115
116 buf = qemu_blockalign(s->bs, len);
117 iov = (struct iovec) {
118 .iov_base = buf,
119 .iov_len = len,
120 };
121 qemu_iovec_init_external(&qiov, &iov, 1);
122
123 ret = bdrv_preadv(s->bs->file, 0, &qiov);
124 if (ret < 0) {
125 goto out;
126 }
127
128 /* Update header */
129 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
130
131 ret = bdrv_pwritev(s->bs->file, 0, &qiov);
132 if (ret < 0) {
133 goto out;
134 }
135
136 ret = 0;
137 out:
138 qemu_vfree(buf);
139 return ret;
140 }
141
142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
143 {
144 uint64_t table_entries;
145 uint64_t l2_size;
146
147 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
148 l2_size = table_entries * cluster_size;
149
150 return l2_size * table_entries;
151 }
152
153 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
154 {
155 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
156 cluster_size > QED_MAX_CLUSTER_SIZE) {
157 return false;
158 }
159 if (cluster_size & (cluster_size - 1)) {
160 return false; /* not power of 2 */
161 }
162 return true;
163 }
164
165 static bool qed_is_table_size_valid(uint32_t table_size)
166 {
167 if (table_size < QED_MIN_TABLE_SIZE ||
168 table_size > QED_MAX_TABLE_SIZE) {
169 return false;
170 }
171 if (table_size & (table_size - 1)) {
172 return false; /* not power of 2 */
173 }
174 return true;
175 }
176
177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
178 uint32_t table_size)
179 {
180 if (image_size % BDRV_SECTOR_SIZE != 0) {
181 return false; /* not multiple of sector size */
182 }
183 if (image_size > qed_max_image_size(cluster_size, table_size)) {
184 return false; /* image is too large */
185 }
186 return true;
187 }
188
189 /**
190 * Read a string of known length from the image file
191 *
192 * @file: Image file
193 * @offset: File offset to start of string, in bytes
194 * @n: String length in bytes
195 * @buf: Destination buffer
196 * @buflen: Destination buffer length in bytes
197 * @ret: 0 on success, -errno on failure
198 *
199 * The string is NUL-terminated.
200 */
201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
202 char *buf, size_t buflen)
203 {
204 int ret;
205 if (n >= buflen) {
206 return -EINVAL;
207 }
208 ret = bdrv_pread(file, offset, buf, n);
209 if (ret < 0) {
210 return ret;
211 }
212 buf[n] = '\0';
213 return 0;
214 }
215
216 /**
217 * Allocate new clusters
218 *
219 * @s: QED state
220 * @n: Number of contiguous clusters to allocate
221 * @ret: Offset of first allocated cluster
222 *
223 * This function only produces the offset where the new clusters should be
224 * written. It updates BDRVQEDState but does not make any changes to the image
225 * file.
226 */
227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
228 {
229 uint64_t offset = s->file_size;
230 s->file_size += n * s->header.cluster_size;
231 return offset;
232 }
233
234 QEDTable *qed_alloc_table(BDRVQEDState *s)
235 {
236 /* Honor O_DIRECT memory alignment requirements */
237 return qemu_blockalign(s->bs,
238 s->header.cluster_size * s->header.table_size);
239 }
240
241 /**
242 * Allocate a new zeroed L2 table
243 */
244 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
245 {
246 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
247
248 l2_table->table = qed_alloc_table(s);
249 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
250
251 memset(l2_table->table->offsets, 0,
252 s->header.cluster_size * s->header.table_size);
253 return l2_table;
254 }
255
256 static void qed_aio_next_io(QEDAIOCB *acb, int ret);
257
258 static void qed_aio_start_io(QEDAIOCB *acb)
259 {
260 qed_aio_next_io(acb, 0);
261 }
262
263 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
264 {
265 assert(!s->allocating_write_reqs_plugged);
266
267 s->allocating_write_reqs_plugged = true;
268 }
269
270 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
271 {
272 QEDAIOCB *acb;
273
274 assert(s->allocating_write_reqs_plugged);
275
276 s->allocating_write_reqs_plugged = false;
277
278 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
279 if (acb) {
280 qed_aio_start_io(acb);
281 }
282 }
283
284 static void qed_clear_need_check(void *opaque, int ret)
285 {
286 BDRVQEDState *s = opaque;
287
288 if (ret) {
289 qed_unplug_allocating_write_reqs(s);
290 return;
291 }
292
293 s->header.features &= ~QED_F_NEED_CHECK;
294 ret = qed_write_header(s);
295 (void) ret;
296
297 qed_unplug_allocating_write_reqs(s);
298
299 ret = bdrv_flush(s->bs);
300 (void) ret;
301 }
302
303 static void qed_need_check_timer_cb(void *opaque)
304 {
305 BDRVQEDState *s = opaque;
306
307 /* The timer should only fire when allocating writes have drained */
308 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
309
310 trace_qed_need_check_timer_cb(s);
311
312 qed_acquire(s);
313 qed_plug_allocating_write_reqs(s);
314
315 /* Ensure writes are on disk before clearing flag */
316 bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
317 qed_release(s);
318 }
319
320 void qed_acquire(BDRVQEDState *s)
321 {
322 aio_context_acquire(bdrv_get_aio_context(s->bs));
323 }
324
325 void qed_release(BDRVQEDState *s)
326 {
327 aio_context_release(bdrv_get_aio_context(s->bs));
328 }
329
330 static void qed_start_need_check_timer(BDRVQEDState *s)
331 {
332 trace_qed_start_need_check_timer(s);
333
334 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
335 * migration.
336 */
337 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
338 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
339 }
340
341 /* It's okay to call this multiple times or when no timer is started */
342 static void qed_cancel_need_check_timer(BDRVQEDState *s)
343 {
344 trace_qed_cancel_need_check_timer(s);
345 timer_del(s->need_check_timer);
346 }
347
348 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
349 {
350 BDRVQEDState *s = bs->opaque;
351
352 qed_cancel_need_check_timer(s);
353 timer_free(s->need_check_timer);
354 }
355
356 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
357 AioContext *new_context)
358 {
359 BDRVQEDState *s = bs->opaque;
360
361 s->need_check_timer = aio_timer_new(new_context,
362 QEMU_CLOCK_VIRTUAL, SCALE_NS,
363 qed_need_check_timer_cb, s);
364 if (s->header.features & QED_F_NEED_CHECK) {
365 qed_start_need_check_timer(s);
366 }
367 }
368
369 static void bdrv_qed_drain(BlockDriverState *bs)
370 {
371 BDRVQEDState *s = bs->opaque;
372
373 /* Fire the timer immediately in order to start doing I/O as soon as the
374 * header is flushed.
375 */
376 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
377 qed_cancel_need_check_timer(s);
378 qed_need_check_timer_cb(s);
379 }
380 }
381
382 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
383 Error **errp)
384 {
385 BDRVQEDState *s = bs->opaque;
386 QEDHeader le_header;
387 int64_t file_size;
388 int ret;
389
390 s->bs = bs;
391 QSIMPLEQ_INIT(&s->allocating_write_reqs);
392
393 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
394 if (ret < 0) {
395 return ret;
396 }
397 qed_header_le_to_cpu(&le_header, &s->header);
398
399 if (s->header.magic != QED_MAGIC) {
400 error_setg(errp, "Image not in QED format");
401 return -EINVAL;
402 }
403 if (s->header.features & ~QED_FEATURE_MASK) {
404 /* image uses unsupported feature bits */
405 error_setg(errp, "Unsupported QED features: %" PRIx64,
406 s->header.features & ~QED_FEATURE_MASK);
407 return -ENOTSUP;
408 }
409 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
410 return -EINVAL;
411 }
412
413 /* Round down file size to the last cluster */
414 file_size = bdrv_getlength(bs->file->bs);
415 if (file_size < 0) {
416 return file_size;
417 }
418 s->file_size = qed_start_of_cluster(s, file_size);
419
420 if (!qed_is_table_size_valid(s->header.table_size)) {
421 return -EINVAL;
422 }
423 if (!qed_is_image_size_valid(s->header.image_size,
424 s->header.cluster_size,
425 s->header.table_size)) {
426 return -EINVAL;
427 }
428 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
429 return -EINVAL;
430 }
431
432 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
433 sizeof(uint64_t);
434 s->l2_shift = ctz32(s->header.cluster_size);
435 s->l2_mask = s->table_nelems - 1;
436 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
437
438 /* Header size calculation must not overflow uint32_t */
439 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
440 return -EINVAL;
441 }
442
443 if ((s->header.features & QED_F_BACKING_FILE)) {
444 if ((uint64_t)s->header.backing_filename_offset +
445 s->header.backing_filename_size >
446 s->header.cluster_size * s->header.header_size) {
447 return -EINVAL;
448 }
449
450 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
451 s->header.backing_filename_size, bs->backing_file,
452 sizeof(bs->backing_file));
453 if (ret < 0) {
454 return ret;
455 }
456
457 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
458 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
459 }
460 }
461
462 /* Reset unknown autoclear feature bits. This is a backwards
463 * compatibility mechanism that allows images to be opened by older
464 * programs, which "knock out" unknown feature bits. When an image is
465 * opened by a newer program again it can detect that the autoclear
466 * feature is no longer valid.
467 */
468 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
469 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
470 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
471
472 ret = qed_write_header_sync(s);
473 if (ret) {
474 return ret;
475 }
476
477 /* From here on only known autoclear feature bits are valid */
478 bdrv_flush(bs->file->bs);
479 }
480
481 s->l1_table = qed_alloc_table(s);
482 qed_init_l2_cache(&s->l2_cache);
483
484 ret = qed_read_l1_table_sync(s);
485 if (ret) {
486 goto out;
487 }
488
489 /* If image was not closed cleanly, check consistency */
490 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
491 /* Read-only images cannot be fixed. There is no risk of corruption
492 * since write operations are not possible. Therefore, allow
493 * potentially inconsistent images to be opened read-only. This can
494 * aid data recovery from an otherwise inconsistent image.
495 */
496 if (!bdrv_is_read_only(bs->file->bs) &&
497 !(flags & BDRV_O_INACTIVE)) {
498 BdrvCheckResult result = {0};
499
500 ret = qed_check(s, &result, true);
501 if (ret) {
502 goto out;
503 }
504 }
505 }
506
507 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
508
509 out:
510 if (ret) {
511 qed_free_l2_cache(&s->l2_cache);
512 qemu_vfree(s->l1_table);
513 }
514 return ret;
515 }
516
517 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
518 Error **errp)
519 {
520 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
521 false, errp);
522 if (!bs->file) {
523 return -EINVAL;
524 }
525
526 return bdrv_qed_do_open(bs, options, flags, errp);
527 }
528
529 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
530 {
531 BDRVQEDState *s = bs->opaque;
532
533 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
534 }
535
536 /* We have nothing to do for QED reopen, stubs just return
537 * success */
538 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
539 BlockReopenQueue *queue, Error **errp)
540 {
541 return 0;
542 }
543
544 static void bdrv_qed_close(BlockDriverState *bs)
545 {
546 BDRVQEDState *s = bs->opaque;
547
548 bdrv_qed_detach_aio_context(bs);
549
550 /* Ensure writes reach stable storage */
551 bdrv_flush(bs->file->bs);
552
553 /* Clean shutdown, no check required on next open */
554 if (s->header.features & QED_F_NEED_CHECK) {
555 s->header.features &= ~QED_F_NEED_CHECK;
556 qed_write_header_sync(s);
557 }
558
559 qed_free_l2_cache(&s->l2_cache);
560 qemu_vfree(s->l1_table);
561 }
562
563 static int qed_create(const char *filename, uint32_t cluster_size,
564 uint64_t image_size, uint32_t table_size,
565 const char *backing_file, const char *backing_fmt,
566 QemuOpts *opts, Error **errp)
567 {
568 QEDHeader header = {
569 .magic = QED_MAGIC,
570 .cluster_size = cluster_size,
571 .table_size = table_size,
572 .header_size = 1,
573 .features = 0,
574 .compat_features = 0,
575 .l1_table_offset = cluster_size,
576 .image_size = image_size,
577 };
578 QEDHeader le_header;
579 uint8_t *l1_table = NULL;
580 size_t l1_size = header.cluster_size * header.table_size;
581 Error *local_err = NULL;
582 int ret = 0;
583 BlockBackend *blk;
584
585 ret = bdrv_create_file(filename, opts, &local_err);
586 if (ret < 0) {
587 error_propagate(errp, local_err);
588 return ret;
589 }
590
591 blk = blk_new_open(filename, NULL, NULL,
592 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
593 &local_err);
594 if (blk == NULL) {
595 error_propagate(errp, local_err);
596 return -EIO;
597 }
598
599 blk_set_allow_write_beyond_eof(blk, true);
600
601 /* File must start empty and grow, check truncate is supported */
602 ret = blk_truncate(blk, 0, errp);
603 if (ret < 0) {
604 goto out;
605 }
606
607 if (backing_file) {
608 header.features |= QED_F_BACKING_FILE;
609 header.backing_filename_offset = sizeof(le_header);
610 header.backing_filename_size = strlen(backing_file);
611
612 if (qed_fmt_is_raw(backing_fmt)) {
613 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
614 }
615 }
616
617 qed_header_cpu_to_le(&header, &le_header);
618 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
619 if (ret < 0) {
620 goto out;
621 }
622 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
623 header.backing_filename_size, 0);
624 if (ret < 0) {
625 goto out;
626 }
627
628 l1_table = g_malloc0(l1_size);
629 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
630 if (ret < 0) {
631 goto out;
632 }
633
634 ret = 0; /* success */
635 out:
636 g_free(l1_table);
637 blk_unref(blk);
638 return ret;
639 }
640
641 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
642 {
643 uint64_t image_size = 0;
644 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
645 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
646 char *backing_file = NULL;
647 char *backing_fmt = NULL;
648 int ret;
649
650 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
651 BDRV_SECTOR_SIZE);
652 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
653 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
654 cluster_size = qemu_opt_get_size_del(opts,
655 BLOCK_OPT_CLUSTER_SIZE,
656 QED_DEFAULT_CLUSTER_SIZE);
657 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
658 QED_DEFAULT_TABLE_SIZE);
659
660 if (!qed_is_cluster_size_valid(cluster_size)) {
661 error_setg(errp, "QED cluster size must be within range [%u, %u] "
662 "and power of 2",
663 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
664 ret = -EINVAL;
665 goto finish;
666 }
667 if (!qed_is_table_size_valid(table_size)) {
668 error_setg(errp, "QED table size must be within range [%u, %u] "
669 "and power of 2",
670 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
671 ret = -EINVAL;
672 goto finish;
673 }
674 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
675 error_setg(errp, "QED image size must be a non-zero multiple of "
676 "cluster size and less than %" PRIu64 " bytes",
677 qed_max_image_size(cluster_size, table_size));
678 ret = -EINVAL;
679 goto finish;
680 }
681
682 ret = qed_create(filename, cluster_size, image_size, table_size,
683 backing_file, backing_fmt, opts, errp);
684
685 finish:
686 g_free(backing_file);
687 g_free(backing_fmt);
688 return ret;
689 }
690
691 typedef struct {
692 BlockDriverState *bs;
693 Coroutine *co;
694 uint64_t pos;
695 int64_t status;
696 int *pnum;
697 BlockDriverState **file;
698 } QEDIsAllocatedCB;
699
700 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
701 {
702 QEDIsAllocatedCB *cb = opaque;
703 BDRVQEDState *s = cb->bs->opaque;
704 *cb->pnum = len / BDRV_SECTOR_SIZE;
705 switch (ret) {
706 case QED_CLUSTER_FOUND:
707 offset |= qed_offset_into_cluster(s, cb->pos);
708 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
709 *cb->file = cb->bs->file->bs;
710 break;
711 case QED_CLUSTER_ZERO:
712 cb->status = BDRV_BLOCK_ZERO;
713 break;
714 case QED_CLUSTER_L2:
715 case QED_CLUSTER_L1:
716 cb->status = 0;
717 break;
718 default:
719 assert(ret < 0);
720 cb->status = ret;
721 break;
722 }
723
724 if (cb->co) {
725 aio_co_wake(cb->co);
726 }
727 }
728
729 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
730 int64_t sector_num,
731 int nb_sectors, int *pnum,
732 BlockDriverState **file)
733 {
734 BDRVQEDState *s = bs->opaque;
735 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
736 QEDIsAllocatedCB cb = {
737 .bs = bs,
738 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
739 .status = BDRV_BLOCK_OFFSET_MASK,
740 .pnum = pnum,
741 .file = file,
742 };
743 QEDRequest request = { .l2_table = NULL };
744 uint64_t offset;
745 int ret;
746
747 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
748 qed_is_allocated_cb(&cb, ret, offset, len);
749
750 /* The callback was invoked immediately */
751 assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
752
753 qed_unref_l2_cache_entry(request.l2_table);
754
755 return cb.status;
756 }
757
758 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
759 {
760 return acb->common.bs->opaque;
761 }
762
763 /**
764 * Read from the backing file or zero-fill if no backing file
765 *
766 * @s: QED state
767 * @pos: Byte position in device
768 * @qiov: Destination I/O vector
769 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
770 * @cb: Completion function
771 * @opaque: User data for completion function
772 *
773 * This function reads qiov->size bytes starting at pos from the backing file.
774 * If there is no backing file then zeroes are read.
775 */
776 static int qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
777 QEMUIOVector *qiov,
778 QEMUIOVector **backing_qiov)
779 {
780 uint64_t backing_length = 0;
781 size_t size;
782 int ret;
783
784 /* If there is a backing file, get its length. Treat the absence of a
785 * backing file like a zero length backing file.
786 */
787 if (s->bs->backing) {
788 int64_t l = bdrv_getlength(s->bs->backing->bs);
789 if (l < 0) {
790 return l;
791 }
792 backing_length = l;
793 }
794
795 /* Zero all sectors if reading beyond the end of the backing file */
796 if (pos >= backing_length ||
797 pos + qiov->size > backing_length) {
798 qemu_iovec_memset(qiov, 0, 0, qiov->size);
799 }
800
801 /* Complete now if there are no backing file sectors to read */
802 if (pos >= backing_length) {
803 return 0;
804 }
805
806 /* If the read straddles the end of the backing file, shorten it */
807 size = MIN((uint64_t)backing_length - pos, qiov->size);
808
809 assert(*backing_qiov == NULL);
810 *backing_qiov = g_new(QEMUIOVector, 1);
811 qemu_iovec_init(*backing_qiov, qiov->niov);
812 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
813
814 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
815 ret = bdrv_preadv(s->bs->backing, pos, *backing_qiov);
816 if (ret < 0) {
817 return ret;
818 }
819 return 0;
820 }
821
822 /**
823 * Copy data from backing file into the image
824 *
825 * @s: QED state
826 * @pos: Byte position in device
827 * @len: Number of bytes
828 * @offset: Byte offset in image file
829 */
830 static int qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
831 uint64_t len, uint64_t offset)
832 {
833 QEMUIOVector qiov;
834 QEMUIOVector *backing_qiov = NULL;
835 struct iovec iov;
836 int ret;
837
838 /* Skip copy entirely if there is no work to do */
839 if (len == 0) {
840 return 0;
841 }
842
843 iov = (struct iovec) {
844 .iov_base = qemu_blockalign(s->bs, len),
845 .iov_len = len,
846 };
847 qemu_iovec_init_external(&qiov, &iov, 1);
848
849 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
850
851 if (backing_qiov) {
852 qemu_iovec_destroy(backing_qiov);
853 g_free(backing_qiov);
854 backing_qiov = NULL;
855 }
856
857 if (ret) {
858 goto out;
859 }
860
861 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
862 ret = bdrv_pwritev(s->bs->file, offset, &qiov);
863 if (ret < 0) {
864 goto out;
865 }
866 ret = 0;
867 out:
868 qemu_vfree(iov.iov_base);
869 return ret;
870 }
871
872 /**
873 * Link one or more contiguous clusters into a table
874 *
875 * @s: QED state
876 * @table: L2 table
877 * @index: First cluster index
878 * @n: Number of contiguous clusters
879 * @cluster: First cluster offset
880 *
881 * The cluster offset may be an allocated byte offset in the image file, the
882 * zero cluster marker, or the unallocated cluster marker.
883 */
884 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
885 unsigned int n, uint64_t cluster)
886 {
887 int i;
888 for (i = index; i < index + n; i++) {
889 table->offsets[i] = cluster;
890 if (!qed_offset_is_unalloc_cluster(cluster) &&
891 !qed_offset_is_zero_cluster(cluster)) {
892 cluster += s->header.cluster_size;
893 }
894 }
895 }
896
897 static void qed_aio_complete_bh(void *opaque)
898 {
899 QEDAIOCB *acb = opaque;
900 BDRVQEDState *s = acb_to_s(acb);
901 BlockCompletionFunc *cb = acb->common.cb;
902 void *user_opaque = acb->common.opaque;
903 int ret = acb->bh_ret;
904
905 qemu_aio_unref(acb);
906
907 /* Invoke callback */
908 qed_acquire(s);
909 cb(user_opaque, ret);
910 qed_release(s);
911 }
912
913 static void qed_resume_alloc_bh(void *opaque)
914 {
915 qed_aio_start_io(opaque);
916 }
917
918 static void qed_aio_complete(QEDAIOCB *acb, int ret)
919 {
920 BDRVQEDState *s = acb_to_s(acb);
921
922 trace_qed_aio_complete(s, acb, ret);
923
924 /* Free resources */
925 qemu_iovec_destroy(&acb->cur_qiov);
926 qed_unref_l2_cache_entry(acb->request.l2_table);
927
928 /* Free the buffer we may have allocated for zero writes */
929 if (acb->flags & QED_AIOCB_ZERO) {
930 qemu_vfree(acb->qiov->iov[0].iov_base);
931 acb->qiov->iov[0].iov_base = NULL;
932 }
933
934 /* Arrange for a bh to invoke the completion function */
935 acb->bh_ret = ret;
936 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
937 qed_aio_complete_bh, acb);
938
939 /* Start next allocating write request waiting behind this one. Note that
940 * requests enqueue themselves when they first hit an unallocated cluster
941 * but they wait until the entire request is finished before waking up the
942 * next request in the queue. This ensures that we don't cycle through
943 * requests multiple times but rather finish one at a time completely.
944 */
945 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
946 QEDAIOCB *next_acb;
947 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
948 next_acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
949 if (next_acb) {
950 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
951 qed_resume_alloc_bh, next_acb);
952 } else if (s->header.features & QED_F_NEED_CHECK) {
953 qed_start_need_check_timer(s);
954 }
955 }
956 }
957
958 /**
959 * Update L1 table with new L2 table offset and write it out
960 */
961 static int qed_aio_write_l1_update(QEDAIOCB *acb)
962 {
963 BDRVQEDState *s = acb_to_s(acb);
964 CachedL2Table *l2_table = acb->request.l2_table;
965 uint64_t l2_offset = l2_table->offset;
966 int index, ret;
967
968 index = qed_l1_index(s, acb->cur_pos);
969 s->l1_table->offsets[index] = l2_table->offset;
970
971 ret = qed_write_l1_table(s, index, 1);
972
973 /* Commit the current L2 table to the cache */
974 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
975
976 /* This is guaranteed to succeed because we just committed the entry to the
977 * cache.
978 */
979 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
980 assert(acb->request.l2_table != NULL);
981
982 return ret;
983 }
984
985
986 /**
987 * Update L2 table with new cluster offsets and write them out
988 */
989 static int qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
990 {
991 BDRVQEDState *s = acb_to_s(acb);
992 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
993 int index, ret;
994
995 if (need_alloc) {
996 qed_unref_l2_cache_entry(acb->request.l2_table);
997 acb->request.l2_table = qed_new_l2_table(s);
998 }
999
1000 index = qed_l2_index(s, acb->cur_pos);
1001 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1002 offset);
1003
1004 if (need_alloc) {
1005 /* Write out the whole new L2 table */
1006 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1007 if (ret) {
1008 return ret;
1009 }
1010 return qed_aio_write_l1_update(acb);
1011 } else {
1012 /* Write out only the updated part of the L2 table */
1013 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1014 false);
1015 if (ret) {
1016 return ret;
1017 }
1018 }
1019 return 0;
1020 }
1021
1022 /**
1023 * Write data to the image file
1024 */
1025 static void qed_aio_write_main(void *opaque, int ret)
1026 {
1027 QEDAIOCB *acb = opaque;
1028 BDRVQEDState *s = acb_to_s(acb);
1029 uint64_t offset = acb->cur_cluster +
1030 qed_offset_into_cluster(s, acb->cur_pos);
1031
1032 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1033
1034 if (ret) {
1035 qed_aio_complete(acb, ret);
1036 return;
1037 }
1038
1039 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1040 ret = bdrv_pwritev(s->bs->file, offset, &acb->cur_qiov);
1041 if (ret >= 0) {
1042 ret = 0;
1043 }
1044
1045 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1046 qed_aio_next_io(acb, ret);
1047 } else {
1048 if (s->bs->backing) {
1049 /*
1050 * Flush new data clusters before updating the L2 table
1051 *
1052 * This flush is necessary when a backing file is in use. A crash
1053 * during an allocating write could result in empty clusters in the
1054 * image. If the write only touched a subregion of the cluster,
1055 * then backing image sectors have been lost in the untouched
1056 * region. The solution is to flush after writing a new data
1057 * cluster and before updating the L2 table.
1058 */
1059 ret = bdrv_flush(s->bs->file->bs);
1060 }
1061 if (ret) {
1062 goto err;
1063 }
1064 ret = qed_aio_write_l2_update(acb, acb->cur_cluster);
1065 if (ret) {
1066 goto err;
1067 }
1068 qed_aio_next_io(acb, 0);
1069 }
1070 return;
1071
1072 err:
1073 qed_aio_complete(acb, ret);
1074 }
1075
1076 /**
1077 * Populate untouched regions of new data cluster
1078 */
1079 static void qed_aio_write_cow(void *opaque, int ret)
1080 {
1081 QEDAIOCB *acb = opaque;
1082 BDRVQEDState *s = acb_to_s(acb);
1083 uint64_t start, len, offset;
1084
1085 /* Populate front untouched region of new data cluster */
1086 start = qed_start_of_cluster(s, acb->cur_pos);
1087 len = qed_offset_into_cluster(s, acb->cur_pos);
1088
1089 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1090 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1091 if (ret) {
1092 qed_aio_complete(acb, ret);
1093 return;
1094 }
1095
1096 /* Populate back untouched region of new data cluster */
1097 start = acb->cur_pos + acb->cur_qiov.size;
1098 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1099 offset = acb->cur_cluster +
1100 qed_offset_into_cluster(s, acb->cur_pos) +
1101 acb->cur_qiov.size;
1102
1103 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1104 ret = qed_copy_from_backing_file(s, start, len, offset);
1105
1106 qed_aio_write_main(acb, ret);
1107 }
1108
1109 /**
1110 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1111 */
1112 static bool qed_should_set_need_check(BDRVQEDState *s)
1113 {
1114 /* The flush before L2 update path ensures consistency */
1115 if (s->bs->backing) {
1116 return false;
1117 }
1118
1119 return !(s->header.features & QED_F_NEED_CHECK);
1120 }
1121
1122 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1123 {
1124 QEDAIOCB *acb = opaque;
1125
1126 if (ret) {
1127 qed_aio_complete(acb, ret);
1128 return;
1129 }
1130
1131 ret = qed_aio_write_l2_update(acb, 1);
1132 if (ret < 0) {
1133 qed_aio_complete(acb, ret);
1134 return;
1135 }
1136 qed_aio_next_io(acb, 0);
1137 }
1138
1139 /**
1140 * Write new data cluster
1141 *
1142 * @acb: Write request
1143 * @len: Length in bytes
1144 *
1145 * This path is taken when writing to previously unallocated clusters.
1146 */
1147 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1148 {
1149 BDRVQEDState *s = acb_to_s(acb);
1150 BlockCompletionFunc *cb;
1151 int ret;
1152
1153 /* Cancel timer when the first allocating request comes in */
1154 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1155 qed_cancel_need_check_timer(s);
1156 }
1157
1158 /* Freeze this request if another allocating write is in progress */
1159 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1160 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1161 }
1162 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1163 s->allocating_write_reqs_plugged) {
1164 return; /* wait for existing request to finish */
1165 }
1166
1167 acb->cur_nclusters = qed_bytes_to_clusters(s,
1168 qed_offset_into_cluster(s, acb->cur_pos) + len);
1169 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1170
1171 if (acb->flags & QED_AIOCB_ZERO) {
1172 /* Skip ahead if the clusters are already zero */
1173 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1174 qed_aio_start_io(acb);
1175 return;
1176 }
1177
1178 cb = qed_aio_write_zero_cluster;
1179 } else {
1180 cb = qed_aio_write_cow;
1181 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1182 }
1183
1184 if (qed_should_set_need_check(s)) {
1185 s->header.features |= QED_F_NEED_CHECK;
1186 ret = qed_write_header(s);
1187 cb(acb, ret);
1188 } else {
1189 cb(acb, 0);
1190 }
1191 }
1192
1193 /**
1194 * Write data cluster in place
1195 *
1196 * @acb: Write request
1197 * @offset: Cluster offset in bytes
1198 * @len: Length in bytes
1199 *
1200 * This path is taken when writing to already allocated clusters.
1201 */
1202 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1203 {
1204 /* Allocate buffer for zero writes */
1205 if (acb->flags & QED_AIOCB_ZERO) {
1206 struct iovec *iov = acb->qiov->iov;
1207
1208 if (!iov->iov_base) {
1209 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1210 if (iov->iov_base == NULL) {
1211 qed_aio_complete(acb, -ENOMEM);
1212 return;
1213 }
1214 memset(iov->iov_base, 0, iov->iov_len);
1215 }
1216 }
1217
1218 /* Calculate the I/O vector */
1219 acb->cur_cluster = offset;
1220 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1221
1222 /* Do the actual write */
1223 qed_aio_write_main(acb, 0);
1224 }
1225
1226 /**
1227 * Write data cluster
1228 *
1229 * @opaque: Write request
1230 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1231 * or -errno
1232 * @offset: Cluster offset in bytes
1233 * @len: Length in bytes
1234 */
1235 static void qed_aio_write_data(void *opaque, int ret,
1236 uint64_t offset, size_t len)
1237 {
1238 QEDAIOCB *acb = opaque;
1239
1240 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1241
1242 acb->find_cluster_ret = ret;
1243
1244 switch (ret) {
1245 case QED_CLUSTER_FOUND:
1246 qed_aio_write_inplace(acb, offset, len);
1247 break;
1248
1249 case QED_CLUSTER_L2:
1250 case QED_CLUSTER_L1:
1251 case QED_CLUSTER_ZERO:
1252 qed_aio_write_alloc(acb, len);
1253 break;
1254
1255 default:
1256 qed_aio_complete(acb, ret);
1257 break;
1258 }
1259 }
1260
1261 /**
1262 * Read data cluster
1263 *
1264 * @opaque: Read request
1265 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1266 * or -errno
1267 * @offset: Cluster offset in bytes
1268 * @len: Length in bytes
1269 */
1270 static void qed_aio_read_data(void *opaque, int ret,
1271 uint64_t offset, size_t len)
1272 {
1273 QEDAIOCB *acb = opaque;
1274 BDRVQEDState *s = acb_to_s(acb);
1275 BlockDriverState *bs = acb->common.bs;
1276
1277 /* Adjust offset into cluster */
1278 offset += qed_offset_into_cluster(s, acb->cur_pos);
1279
1280 trace_qed_aio_read_data(s, acb, ret, offset, len);
1281
1282 if (ret < 0) {
1283 goto err;
1284 }
1285
1286 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1287
1288 /* Handle zero cluster and backing file reads */
1289 if (ret == QED_CLUSTER_ZERO) {
1290 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1291 qed_aio_start_io(acb);
1292 return;
1293 } else if (ret != QED_CLUSTER_FOUND) {
1294 ret = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1295 &acb->backing_qiov);
1296 qed_aio_next_io(acb, ret);
1297 return;
1298 }
1299
1300 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1301 ret = bdrv_preadv(bs->file, offset, &acb->cur_qiov);
1302 if (ret < 0) {
1303 goto err;
1304 }
1305 qed_aio_next_io(acb, 0);
1306 return;
1307
1308 err:
1309 qed_aio_complete(acb, ret);
1310 }
1311
1312 /**
1313 * Begin next I/O or complete the request
1314 */
1315 static void qed_aio_next_io(QEDAIOCB *acb, int ret)
1316 {
1317 BDRVQEDState *s = acb_to_s(acb);
1318 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1319 qed_aio_write_data : qed_aio_read_data;
1320 uint64_t offset;
1321 size_t len;
1322
1323 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1324
1325 if (acb->backing_qiov) {
1326 qemu_iovec_destroy(acb->backing_qiov);
1327 g_free(acb->backing_qiov);
1328 acb->backing_qiov = NULL;
1329 }
1330
1331 /* Handle I/O error */
1332 if (ret) {
1333 qed_aio_complete(acb, ret);
1334 return;
1335 }
1336
1337 acb->qiov_offset += acb->cur_qiov.size;
1338 acb->cur_pos += acb->cur_qiov.size;
1339 qemu_iovec_reset(&acb->cur_qiov);
1340
1341 /* Complete request */
1342 if (acb->cur_pos >= acb->end_pos) {
1343 qed_aio_complete(acb, 0);
1344 return;
1345 }
1346
1347 /* Find next cluster and start I/O */
1348 len = acb->end_pos - acb->cur_pos;
1349 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1350 io_fn(acb, ret, offset, len);
1351 }
1352
1353 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1354 int64_t sector_num,
1355 QEMUIOVector *qiov, int nb_sectors,
1356 BlockCompletionFunc *cb,
1357 void *opaque, int flags)
1358 {
1359 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1360
1361 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1362 opaque, flags);
1363
1364 acb->flags = flags;
1365 acb->qiov = qiov;
1366 acb->qiov_offset = 0;
1367 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1368 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1369 acb->backing_qiov = NULL;
1370 acb->request.l2_table = NULL;
1371 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1372
1373 /* Start request */
1374 qed_aio_start_io(acb);
1375 return &acb->common;
1376 }
1377
1378 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1379 int64_t sector_num,
1380 QEMUIOVector *qiov, int nb_sectors,
1381 BlockCompletionFunc *cb,
1382 void *opaque)
1383 {
1384 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1385 }
1386
1387 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1388 int64_t sector_num,
1389 QEMUIOVector *qiov, int nb_sectors,
1390 BlockCompletionFunc *cb,
1391 void *opaque)
1392 {
1393 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1394 opaque, QED_AIOCB_WRITE);
1395 }
1396
1397 typedef struct {
1398 Coroutine *co;
1399 int ret;
1400 bool done;
1401 } QEDWriteZeroesCB;
1402
1403 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1404 {
1405 QEDWriteZeroesCB *cb = opaque;
1406
1407 cb->done = true;
1408 cb->ret = ret;
1409 if (cb->co) {
1410 aio_co_wake(cb->co);
1411 }
1412 }
1413
1414 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1415 int64_t offset,
1416 int count,
1417 BdrvRequestFlags flags)
1418 {
1419 BlockAIOCB *blockacb;
1420 BDRVQEDState *s = bs->opaque;
1421 QEDWriteZeroesCB cb = { .done = false };
1422 QEMUIOVector qiov;
1423 struct iovec iov;
1424
1425 /* Fall back if the request is not aligned */
1426 if (qed_offset_into_cluster(s, offset) ||
1427 qed_offset_into_cluster(s, count)) {
1428 return -ENOTSUP;
1429 }
1430
1431 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1432 * then it will be allocated during request processing.
1433 */
1434 iov.iov_base = NULL;
1435 iov.iov_len = count;
1436
1437 qemu_iovec_init_external(&qiov, &iov, 1);
1438 blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1439 count >> BDRV_SECTOR_BITS,
1440 qed_co_pwrite_zeroes_cb, &cb,
1441 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1442 if (!blockacb) {
1443 return -EIO;
1444 }
1445 if (!cb.done) {
1446 cb.co = qemu_coroutine_self();
1447 qemu_coroutine_yield();
1448 }
1449 assert(cb.done);
1450 return cb.ret;
1451 }
1452
1453 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, Error **errp)
1454 {
1455 BDRVQEDState *s = bs->opaque;
1456 uint64_t old_image_size;
1457 int ret;
1458
1459 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1460 s->header.table_size)) {
1461 error_setg(errp, "Invalid image size specified");
1462 return -EINVAL;
1463 }
1464
1465 if ((uint64_t)offset < s->header.image_size) {
1466 error_setg(errp, "Shrinking images is currently not supported");
1467 return -ENOTSUP;
1468 }
1469
1470 old_image_size = s->header.image_size;
1471 s->header.image_size = offset;
1472 ret = qed_write_header_sync(s);
1473 if (ret < 0) {
1474 s->header.image_size = old_image_size;
1475 error_setg_errno(errp, -ret, "Failed to update the image size");
1476 }
1477 return ret;
1478 }
1479
1480 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1481 {
1482 BDRVQEDState *s = bs->opaque;
1483 return s->header.image_size;
1484 }
1485
1486 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1487 {
1488 BDRVQEDState *s = bs->opaque;
1489
1490 memset(bdi, 0, sizeof(*bdi));
1491 bdi->cluster_size = s->header.cluster_size;
1492 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1493 bdi->unallocated_blocks_are_zero = true;
1494 bdi->can_write_zeroes_with_unmap = true;
1495 return 0;
1496 }
1497
1498 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1499 const char *backing_file,
1500 const char *backing_fmt)
1501 {
1502 BDRVQEDState *s = bs->opaque;
1503 QEDHeader new_header, le_header;
1504 void *buffer;
1505 size_t buffer_len, backing_file_len;
1506 int ret;
1507
1508 /* Refuse to set backing filename if unknown compat feature bits are
1509 * active. If the image uses an unknown compat feature then we may not
1510 * know the layout of data following the header structure and cannot safely
1511 * add a new string.
1512 */
1513 if (backing_file && (s->header.compat_features &
1514 ~QED_COMPAT_FEATURE_MASK)) {
1515 return -ENOTSUP;
1516 }
1517
1518 memcpy(&new_header, &s->header, sizeof(new_header));
1519
1520 new_header.features &= ~(QED_F_BACKING_FILE |
1521 QED_F_BACKING_FORMAT_NO_PROBE);
1522
1523 /* Adjust feature flags */
1524 if (backing_file) {
1525 new_header.features |= QED_F_BACKING_FILE;
1526
1527 if (qed_fmt_is_raw(backing_fmt)) {
1528 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1529 }
1530 }
1531
1532 /* Calculate new header size */
1533 backing_file_len = 0;
1534
1535 if (backing_file) {
1536 backing_file_len = strlen(backing_file);
1537 }
1538
1539 buffer_len = sizeof(new_header);
1540 new_header.backing_filename_offset = buffer_len;
1541 new_header.backing_filename_size = backing_file_len;
1542 buffer_len += backing_file_len;
1543
1544 /* Make sure we can rewrite header without failing */
1545 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1546 return -ENOSPC;
1547 }
1548
1549 /* Prepare new header */
1550 buffer = g_malloc(buffer_len);
1551
1552 qed_header_cpu_to_le(&new_header, &le_header);
1553 memcpy(buffer, &le_header, sizeof(le_header));
1554 buffer_len = sizeof(le_header);
1555
1556 if (backing_file) {
1557 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1558 buffer_len += backing_file_len;
1559 }
1560
1561 /* Write new header */
1562 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1563 g_free(buffer);
1564 if (ret == 0) {
1565 memcpy(&s->header, &new_header, sizeof(new_header));
1566 }
1567 return ret;
1568 }
1569
1570 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1571 {
1572 BDRVQEDState *s = bs->opaque;
1573 Error *local_err = NULL;
1574 int ret;
1575
1576 bdrv_qed_close(bs);
1577
1578 memset(s, 0, sizeof(BDRVQEDState));
1579 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1580 if (local_err) {
1581 error_propagate(errp, local_err);
1582 error_prepend(errp, "Could not reopen qed layer: ");
1583 return;
1584 } else if (ret < 0) {
1585 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1586 return;
1587 }
1588 }
1589
1590 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1591 BdrvCheckMode fix)
1592 {
1593 BDRVQEDState *s = bs->opaque;
1594
1595 return qed_check(s, result, !!fix);
1596 }
1597
1598 static QemuOptsList qed_create_opts = {
1599 .name = "qed-create-opts",
1600 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1601 .desc = {
1602 {
1603 .name = BLOCK_OPT_SIZE,
1604 .type = QEMU_OPT_SIZE,
1605 .help = "Virtual disk size"
1606 },
1607 {
1608 .name = BLOCK_OPT_BACKING_FILE,
1609 .type = QEMU_OPT_STRING,
1610 .help = "File name of a base image"
1611 },
1612 {
1613 .name = BLOCK_OPT_BACKING_FMT,
1614 .type = QEMU_OPT_STRING,
1615 .help = "Image format of the base image"
1616 },
1617 {
1618 .name = BLOCK_OPT_CLUSTER_SIZE,
1619 .type = QEMU_OPT_SIZE,
1620 .help = "Cluster size (in bytes)",
1621 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1622 },
1623 {
1624 .name = BLOCK_OPT_TABLE_SIZE,
1625 .type = QEMU_OPT_SIZE,
1626 .help = "L1/L2 table size (in clusters)"
1627 },
1628 { /* end of list */ }
1629 }
1630 };
1631
1632 static BlockDriver bdrv_qed = {
1633 .format_name = "qed",
1634 .instance_size = sizeof(BDRVQEDState),
1635 .create_opts = &qed_create_opts,
1636 .supports_backing = true,
1637
1638 .bdrv_probe = bdrv_qed_probe,
1639 .bdrv_open = bdrv_qed_open,
1640 .bdrv_close = bdrv_qed_close,
1641 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1642 .bdrv_child_perm = bdrv_format_default_perms,
1643 .bdrv_create = bdrv_qed_create,
1644 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1645 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1646 .bdrv_aio_readv = bdrv_qed_aio_readv,
1647 .bdrv_aio_writev = bdrv_qed_aio_writev,
1648 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1649 .bdrv_truncate = bdrv_qed_truncate,
1650 .bdrv_getlength = bdrv_qed_getlength,
1651 .bdrv_get_info = bdrv_qed_get_info,
1652 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1653 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1654 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1655 .bdrv_check = bdrv_qed_check,
1656 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1657 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1658 .bdrv_drain = bdrv_qed_drain,
1659 };
1660
1661 static void bdrv_qed_init(void)
1662 {
1663 bdrv_register(&bdrv_qed);
1664 }
1665
1666 block_init(bdrv_qed_init);