]> git.proxmox.com Git - mirror_qemu.git/blob - block/qed.c
qed: Make qed_read_backing_file() synchronous
[mirror_qemu.git] / block / qed.c
1 /*
2 * QEMU Enhanced Disk Format
3 *
4 * Copyright IBM, Corp. 2010
5 *
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
19 #include "trace.h"
20 #include "qed.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
23
24 static const AIOCBInfo qed_aiocb_info = {
25 .aiocb_size = sizeof(QEDAIOCB),
26 };
27
28 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
29 const char *filename)
30 {
31 const QEDHeader *header = (const QEDHeader *)buf;
32
33 if (buf_size < sizeof(*header)) {
34 return 0;
35 }
36 if (le32_to_cpu(header->magic) != QED_MAGIC) {
37 return 0;
38 }
39 return 100;
40 }
41
42 /**
43 * Check whether an image format is raw
44 *
45 * @fmt: Backing file format, may be NULL
46 */
47 static bool qed_fmt_is_raw(const char *fmt)
48 {
49 return fmt && strcmp(fmt, "raw") == 0;
50 }
51
52 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
53 {
54 cpu->magic = le32_to_cpu(le->magic);
55 cpu->cluster_size = le32_to_cpu(le->cluster_size);
56 cpu->table_size = le32_to_cpu(le->table_size);
57 cpu->header_size = le32_to_cpu(le->header_size);
58 cpu->features = le64_to_cpu(le->features);
59 cpu->compat_features = le64_to_cpu(le->compat_features);
60 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
61 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
62 cpu->image_size = le64_to_cpu(le->image_size);
63 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
64 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
65 }
66
67 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
68 {
69 le->magic = cpu_to_le32(cpu->magic);
70 le->cluster_size = cpu_to_le32(cpu->cluster_size);
71 le->table_size = cpu_to_le32(cpu->table_size);
72 le->header_size = cpu_to_le32(cpu->header_size);
73 le->features = cpu_to_le64(cpu->features);
74 le->compat_features = cpu_to_le64(cpu->compat_features);
75 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
76 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
77 le->image_size = cpu_to_le64(cpu->image_size);
78 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
79 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
80 }
81
82 int qed_write_header_sync(BDRVQEDState *s)
83 {
84 QEDHeader le;
85 int ret;
86
87 qed_header_cpu_to_le(&s->header, &le);
88 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
89 if (ret != sizeof(le)) {
90 return ret;
91 }
92 return 0;
93 }
94
95 typedef struct {
96 GenericCB gencb;
97 BDRVQEDState *s;
98 struct iovec iov;
99 QEMUIOVector qiov;
100 int nsectors;
101 uint8_t *buf;
102 } QEDWriteHeaderCB;
103
104 static void qed_write_header_cb(void *opaque, int ret)
105 {
106 QEDWriteHeaderCB *write_header_cb = opaque;
107
108 qemu_vfree(write_header_cb->buf);
109 gencb_complete(write_header_cb, ret);
110 }
111
112 static void qed_write_header_read_cb(void *opaque, int ret)
113 {
114 QEDWriteHeaderCB *write_header_cb = opaque;
115 BDRVQEDState *s = write_header_cb->s;
116
117 if (ret) {
118 qed_write_header_cb(write_header_cb, ret);
119 return;
120 }
121
122 /* Update header */
123 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
124
125 bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
126 write_header_cb->nsectors, qed_write_header_cb,
127 write_header_cb);
128 }
129
130 /**
131 * Update header in-place (does not rewrite backing filename or other strings)
132 *
133 * This function only updates known header fields in-place and does not affect
134 * extra data after the QED header.
135 */
136 static void qed_write_header(BDRVQEDState *s, BlockCompletionFunc cb,
137 void *opaque)
138 {
139 /* We must write full sectors for O_DIRECT but cannot necessarily generate
140 * the data following the header if an unrecognized compat feature is
141 * active. Therefore, first read the sectors containing the header, update
142 * them, and write back.
143 */
144
145 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
146 size_t len = nsectors * BDRV_SECTOR_SIZE;
147 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
148 cb, opaque);
149
150 write_header_cb->s = s;
151 write_header_cb->nsectors = nsectors;
152 write_header_cb->buf = qemu_blockalign(s->bs, len);
153 write_header_cb->iov.iov_base = write_header_cb->buf;
154 write_header_cb->iov.iov_len = len;
155 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
156
157 bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
158 qed_write_header_read_cb, write_header_cb);
159 }
160
161 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
162 {
163 uint64_t table_entries;
164 uint64_t l2_size;
165
166 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
167 l2_size = table_entries * cluster_size;
168
169 return l2_size * table_entries;
170 }
171
172 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
173 {
174 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
175 cluster_size > QED_MAX_CLUSTER_SIZE) {
176 return false;
177 }
178 if (cluster_size & (cluster_size - 1)) {
179 return false; /* not power of 2 */
180 }
181 return true;
182 }
183
184 static bool qed_is_table_size_valid(uint32_t table_size)
185 {
186 if (table_size < QED_MIN_TABLE_SIZE ||
187 table_size > QED_MAX_TABLE_SIZE) {
188 return false;
189 }
190 if (table_size & (table_size - 1)) {
191 return false; /* not power of 2 */
192 }
193 return true;
194 }
195
196 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
197 uint32_t table_size)
198 {
199 if (image_size % BDRV_SECTOR_SIZE != 0) {
200 return false; /* not multiple of sector size */
201 }
202 if (image_size > qed_max_image_size(cluster_size, table_size)) {
203 return false; /* image is too large */
204 }
205 return true;
206 }
207
208 /**
209 * Read a string of known length from the image file
210 *
211 * @file: Image file
212 * @offset: File offset to start of string, in bytes
213 * @n: String length in bytes
214 * @buf: Destination buffer
215 * @buflen: Destination buffer length in bytes
216 * @ret: 0 on success, -errno on failure
217 *
218 * The string is NUL-terminated.
219 */
220 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
221 char *buf, size_t buflen)
222 {
223 int ret;
224 if (n >= buflen) {
225 return -EINVAL;
226 }
227 ret = bdrv_pread(file, offset, buf, n);
228 if (ret < 0) {
229 return ret;
230 }
231 buf[n] = '\0';
232 return 0;
233 }
234
235 /**
236 * Allocate new clusters
237 *
238 * @s: QED state
239 * @n: Number of contiguous clusters to allocate
240 * @ret: Offset of first allocated cluster
241 *
242 * This function only produces the offset where the new clusters should be
243 * written. It updates BDRVQEDState but does not make any changes to the image
244 * file.
245 */
246 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
247 {
248 uint64_t offset = s->file_size;
249 s->file_size += n * s->header.cluster_size;
250 return offset;
251 }
252
253 QEDTable *qed_alloc_table(BDRVQEDState *s)
254 {
255 /* Honor O_DIRECT memory alignment requirements */
256 return qemu_blockalign(s->bs,
257 s->header.cluster_size * s->header.table_size);
258 }
259
260 /**
261 * Allocate a new zeroed L2 table
262 */
263 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
264 {
265 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
266
267 l2_table->table = qed_alloc_table(s);
268 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
269
270 memset(l2_table->table->offsets, 0,
271 s->header.cluster_size * s->header.table_size);
272 return l2_table;
273 }
274
275 static void qed_aio_next_io(QEDAIOCB *acb, int ret);
276
277 static void qed_aio_start_io(QEDAIOCB *acb)
278 {
279 qed_aio_next_io(acb, 0);
280 }
281
282 static void qed_aio_next_io_cb(void *opaque, int ret)
283 {
284 QEDAIOCB *acb = opaque;
285
286 qed_aio_next_io(acb, ret);
287 }
288
289 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
290 {
291 assert(!s->allocating_write_reqs_plugged);
292
293 s->allocating_write_reqs_plugged = true;
294 }
295
296 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
297 {
298 QEDAIOCB *acb;
299
300 assert(s->allocating_write_reqs_plugged);
301
302 s->allocating_write_reqs_plugged = false;
303
304 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
305 if (acb) {
306 qed_aio_start_io(acb);
307 }
308 }
309
310 static void qed_finish_clear_need_check(void *opaque, int ret)
311 {
312 /* Do nothing */
313 }
314
315 static void qed_flush_after_clear_need_check(void *opaque, int ret)
316 {
317 BDRVQEDState *s = opaque;
318
319 bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
320
321 /* No need to wait until flush completes */
322 qed_unplug_allocating_write_reqs(s);
323 }
324
325 static void qed_clear_need_check(void *opaque, int ret)
326 {
327 BDRVQEDState *s = opaque;
328
329 if (ret) {
330 qed_unplug_allocating_write_reqs(s);
331 return;
332 }
333
334 s->header.features &= ~QED_F_NEED_CHECK;
335 qed_write_header(s, qed_flush_after_clear_need_check, s);
336 }
337
338 static void qed_need_check_timer_cb(void *opaque)
339 {
340 BDRVQEDState *s = opaque;
341
342 /* The timer should only fire when allocating writes have drained */
343 assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
344
345 trace_qed_need_check_timer_cb(s);
346
347 qed_acquire(s);
348 qed_plug_allocating_write_reqs(s);
349
350 /* Ensure writes are on disk before clearing flag */
351 bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
352 qed_release(s);
353 }
354
355 void qed_acquire(BDRVQEDState *s)
356 {
357 aio_context_acquire(bdrv_get_aio_context(s->bs));
358 }
359
360 void qed_release(BDRVQEDState *s)
361 {
362 aio_context_release(bdrv_get_aio_context(s->bs));
363 }
364
365 static void qed_start_need_check_timer(BDRVQEDState *s)
366 {
367 trace_qed_start_need_check_timer(s);
368
369 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
370 * migration.
371 */
372 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
373 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
374 }
375
376 /* It's okay to call this multiple times or when no timer is started */
377 static void qed_cancel_need_check_timer(BDRVQEDState *s)
378 {
379 trace_qed_cancel_need_check_timer(s);
380 timer_del(s->need_check_timer);
381 }
382
383 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
384 {
385 BDRVQEDState *s = bs->opaque;
386
387 qed_cancel_need_check_timer(s);
388 timer_free(s->need_check_timer);
389 }
390
391 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
392 AioContext *new_context)
393 {
394 BDRVQEDState *s = bs->opaque;
395
396 s->need_check_timer = aio_timer_new(new_context,
397 QEMU_CLOCK_VIRTUAL, SCALE_NS,
398 qed_need_check_timer_cb, s);
399 if (s->header.features & QED_F_NEED_CHECK) {
400 qed_start_need_check_timer(s);
401 }
402 }
403
404 static void bdrv_qed_drain(BlockDriverState *bs)
405 {
406 BDRVQEDState *s = bs->opaque;
407
408 /* Fire the timer immediately in order to start doing I/O as soon as the
409 * header is flushed.
410 */
411 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
412 qed_cancel_need_check_timer(s);
413 qed_need_check_timer_cb(s);
414 }
415 }
416
417 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
418 Error **errp)
419 {
420 BDRVQEDState *s = bs->opaque;
421 QEDHeader le_header;
422 int64_t file_size;
423 int ret;
424
425 s->bs = bs;
426 QSIMPLEQ_INIT(&s->allocating_write_reqs);
427
428 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
429 if (ret < 0) {
430 return ret;
431 }
432 qed_header_le_to_cpu(&le_header, &s->header);
433
434 if (s->header.magic != QED_MAGIC) {
435 error_setg(errp, "Image not in QED format");
436 return -EINVAL;
437 }
438 if (s->header.features & ~QED_FEATURE_MASK) {
439 /* image uses unsupported feature bits */
440 error_setg(errp, "Unsupported QED features: %" PRIx64,
441 s->header.features & ~QED_FEATURE_MASK);
442 return -ENOTSUP;
443 }
444 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
445 return -EINVAL;
446 }
447
448 /* Round down file size to the last cluster */
449 file_size = bdrv_getlength(bs->file->bs);
450 if (file_size < 0) {
451 return file_size;
452 }
453 s->file_size = qed_start_of_cluster(s, file_size);
454
455 if (!qed_is_table_size_valid(s->header.table_size)) {
456 return -EINVAL;
457 }
458 if (!qed_is_image_size_valid(s->header.image_size,
459 s->header.cluster_size,
460 s->header.table_size)) {
461 return -EINVAL;
462 }
463 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
464 return -EINVAL;
465 }
466
467 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
468 sizeof(uint64_t);
469 s->l2_shift = ctz32(s->header.cluster_size);
470 s->l2_mask = s->table_nelems - 1;
471 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
472
473 /* Header size calculation must not overflow uint32_t */
474 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
475 return -EINVAL;
476 }
477
478 if ((s->header.features & QED_F_BACKING_FILE)) {
479 if ((uint64_t)s->header.backing_filename_offset +
480 s->header.backing_filename_size >
481 s->header.cluster_size * s->header.header_size) {
482 return -EINVAL;
483 }
484
485 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
486 s->header.backing_filename_size, bs->backing_file,
487 sizeof(bs->backing_file));
488 if (ret < 0) {
489 return ret;
490 }
491
492 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
493 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
494 }
495 }
496
497 /* Reset unknown autoclear feature bits. This is a backwards
498 * compatibility mechanism that allows images to be opened by older
499 * programs, which "knock out" unknown feature bits. When an image is
500 * opened by a newer program again it can detect that the autoclear
501 * feature is no longer valid.
502 */
503 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
504 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
505 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
506
507 ret = qed_write_header_sync(s);
508 if (ret) {
509 return ret;
510 }
511
512 /* From here on only known autoclear feature bits are valid */
513 bdrv_flush(bs->file->bs);
514 }
515
516 s->l1_table = qed_alloc_table(s);
517 qed_init_l2_cache(&s->l2_cache);
518
519 ret = qed_read_l1_table_sync(s);
520 if (ret) {
521 goto out;
522 }
523
524 /* If image was not closed cleanly, check consistency */
525 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
526 /* Read-only images cannot be fixed. There is no risk of corruption
527 * since write operations are not possible. Therefore, allow
528 * potentially inconsistent images to be opened read-only. This can
529 * aid data recovery from an otherwise inconsistent image.
530 */
531 if (!bdrv_is_read_only(bs->file->bs) &&
532 !(flags & BDRV_O_INACTIVE)) {
533 BdrvCheckResult result = {0};
534
535 ret = qed_check(s, &result, true);
536 if (ret) {
537 goto out;
538 }
539 }
540 }
541
542 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
543
544 out:
545 if (ret) {
546 qed_free_l2_cache(&s->l2_cache);
547 qemu_vfree(s->l1_table);
548 }
549 return ret;
550 }
551
552 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
553 Error **errp)
554 {
555 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
556 false, errp);
557 if (!bs->file) {
558 return -EINVAL;
559 }
560
561 return bdrv_qed_do_open(bs, options, flags, errp);
562 }
563
564 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
565 {
566 BDRVQEDState *s = bs->opaque;
567
568 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
569 }
570
571 /* We have nothing to do for QED reopen, stubs just return
572 * success */
573 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
574 BlockReopenQueue *queue, Error **errp)
575 {
576 return 0;
577 }
578
579 static void bdrv_qed_close(BlockDriverState *bs)
580 {
581 BDRVQEDState *s = bs->opaque;
582
583 bdrv_qed_detach_aio_context(bs);
584
585 /* Ensure writes reach stable storage */
586 bdrv_flush(bs->file->bs);
587
588 /* Clean shutdown, no check required on next open */
589 if (s->header.features & QED_F_NEED_CHECK) {
590 s->header.features &= ~QED_F_NEED_CHECK;
591 qed_write_header_sync(s);
592 }
593
594 qed_free_l2_cache(&s->l2_cache);
595 qemu_vfree(s->l1_table);
596 }
597
598 static int qed_create(const char *filename, uint32_t cluster_size,
599 uint64_t image_size, uint32_t table_size,
600 const char *backing_file, const char *backing_fmt,
601 QemuOpts *opts, Error **errp)
602 {
603 QEDHeader header = {
604 .magic = QED_MAGIC,
605 .cluster_size = cluster_size,
606 .table_size = table_size,
607 .header_size = 1,
608 .features = 0,
609 .compat_features = 0,
610 .l1_table_offset = cluster_size,
611 .image_size = image_size,
612 };
613 QEDHeader le_header;
614 uint8_t *l1_table = NULL;
615 size_t l1_size = header.cluster_size * header.table_size;
616 Error *local_err = NULL;
617 int ret = 0;
618 BlockBackend *blk;
619
620 ret = bdrv_create_file(filename, opts, &local_err);
621 if (ret < 0) {
622 error_propagate(errp, local_err);
623 return ret;
624 }
625
626 blk = blk_new_open(filename, NULL, NULL,
627 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
628 &local_err);
629 if (blk == NULL) {
630 error_propagate(errp, local_err);
631 return -EIO;
632 }
633
634 blk_set_allow_write_beyond_eof(blk, true);
635
636 /* File must start empty and grow, check truncate is supported */
637 ret = blk_truncate(blk, 0, errp);
638 if (ret < 0) {
639 goto out;
640 }
641
642 if (backing_file) {
643 header.features |= QED_F_BACKING_FILE;
644 header.backing_filename_offset = sizeof(le_header);
645 header.backing_filename_size = strlen(backing_file);
646
647 if (qed_fmt_is_raw(backing_fmt)) {
648 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
649 }
650 }
651
652 qed_header_cpu_to_le(&header, &le_header);
653 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
654 if (ret < 0) {
655 goto out;
656 }
657 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
658 header.backing_filename_size, 0);
659 if (ret < 0) {
660 goto out;
661 }
662
663 l1_table = g_malloc0(l1_size);
664 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
665 if (ret < 0) {
666 goto out;
667 }
668
669 ret = 0; /* success */
670 out:
671 g_free(l1_table);
672 blk_unref(blk);
673 return ret;
674 }
675
676 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
677 {
678 uint64_t image_size = 0;
679 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
680 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
681 char *backing_file = NULL;
682 char *backing_fmt = NULL;
683 int ret;
684
685 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
686 BDRV_SECTOR_SIZE);
687 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
688 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
689 cluster_size = qemu_opt_get_size_del(opts,
690 BLOCK_OPT_CLUSTER_SIZE,
691 QED_DEFAULT_CLUSTER_SIZE);
692 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
693 QED_DEFAULT_TABLE_SIZE);
694
695 if (!qed_is_cluster_size_valid(cluster_size)) {
696 error_setg(errp, "QED cluster size must be within range [%u, %u] "
697 "and power of 2",
698 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
699 ret = -EINVAL;
700 goto finish;
701 }
702 if (!qed_is_table_size_valid(table_size)) {
703 error_setg(errp, "QED table size must be within range [%u, %u] "
704 "and power of 2",
705 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
706 ret = -EINVAL;
707 goto finish;
708 }
709 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
710 error_setg(errp, "QED image size must be a non-zero multiple of "
711 "cluster size and less than %" PRIu64 " bytes",
712 qed_max_image_size(cluster_size, table_size));
713 ret = -EINVAL;
714 goto finish;
715 }
716
717 ret = qed_create(filename, cluster_size, image_size, table_size,
718 backing_file, backing_fmt, opts, errp);
719
720 finish:
721 g_free(backing_file);
722 g_free(backing_fmt);
723 return ret;
724 }
725
726 typedef struct {
727 BlockDriverState *bs;
728 Coroutine *co;
729 uint64_t pos;
730 int64_t status;
731 int *pnum;
732 BlockDriverState **file;
733 } QEDIsAllocatedCB;
734
735 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
736 {
737 QEDIsAllocatedCB *cb = opaque;
738 BDRVQEDState *s = cb->bs->opaque;
739 *cb->pnum = len / BDRV_SECTOR_SIZE;
740 switch (ret) {
741 case QED_CLUSTER_FOUND:
742 offset |= qed_offset_into_cluster(s, cb->pos);
743 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
744 *cb->file = cb->bs->file->bs;
745 break;
746 case QED_CLUSTER_ZERO:
747 cb->status = BDRV_BLOCK_ZERO;
748 break;
749 case QED_CLUSTER_L2:
750 case QED_CLUSTER_L1:
751 cb->status = 0;
752 break;
753 default:
754 assert(ret < 0);
755 cb->status = ret;
756 break;
757 }
758
759 if (cb->co) {
760 aio_co_wake(cb->co);
761 }
762 }
763
764 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
765 int64_t sector_num,
766 int nb_sectors, int *pnum,
767 BlockDriverState **file)
768 {
769 BDRVQEDState *s = bs->opaque;
770 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
771 QEDIsAllocatedCB cb = {
772 .bs = bs,
773 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
774 .status = BDRV_BLOCK_OFFSET_MASK,
775 .pnum = pnum,
776 .file = file,
777 };
778 QEDRequest request = { .l2_table = NULL };
779 uint64_t offset;
780 int ret;
781
782 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
783 qed_is_allocated_cb(&cb, ret, offset, len);
784
785 /* The callback was invoked immediately */
786 assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
787
788 qed_unref_l2_cache_entry(request.l2_table);
789
790 return cb.status;
791 }
792
793 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
794 {
795 return acb->common.bs->opaque;
796 }
797
798 /**
799 * Read from the backing file or zero-fill if no backing file
800 *
801 * @s: QED state
802 * @pos: Byte position in device
803 * @qiov: Destination I/O vector
804 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
805 * @cb: Completion function
806 * @opaque: User data for completion function
807 *
808 * This function reads qiov->size bytes starting at pos from the backing file.
809 * If there is no backing file then zeroes are read.
810 */
811 static int qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
812 QEMUIOVector *qiov,
813 QEMUIOVector **backing_qiov)
814 {
815 uint64_t backing_length = 0;
816 size_t size;
817 int ret;
818
819 /* If there is a backing file, get its length. Treat the absence of a
820 * backing file like a zero length backing file.
821 */
822 if (s->bs->backing) {
823 int64_t l = bdrv_getlength(s->bs->backing->bs);
824 if (l < 0) {
825 return l;
826 }
827 backing_length = l;
828 }
829
830 /* Zero all sectors if reading beyond the end of the backing file */
831 if (pos >= backing_length ||
832 pos + qiov->size > backing_length) {
833 qemu_iovec_memset(qiov, 0, 0, qiov->size);
834 }
835
836 /* Complete now if there are no backing file sectors to read */
837 if (pos >= backing_length) {
838 return 0;
839 }
840
841 /* If the read straddles the end of the backing file, shorten it */
842 size = MIN((uint64_t)backing_length - pos, qiov->size);
843
844 assert(*backing_qiov == NULL);
845 *backing_qiov = g_new(QEMUIOVector, 1);
846 qemu_iovec_init(*backing_qiov, qiov->niov);
847 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
848
849 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
850 ret = bdrv_preadv(s->bs->backing, pos, *backing_qiov);
851 if (ret < 0) {
852 return ret;
853 }
854 return 0;
855 }
856
857 typedef struct {
858 GenericCB gencb;
859 BDRVQEDState *s;
860 QEMUIOVector qiov;
861 QEMUIOVector *backing_qiov;
862 struct iovec iov;
863 uint64_t offset;
864 } CopyFromBackingFileCB;
865
866 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
867 {
868 CopyFromBackingFileCB *copy_cb = opaque;
869 qemu_vfree(copy_cb->iov.iov_base);
870 gencb_complete(&copy_cb->gencb, ret);
871 }
872
873 static void qed_copy_from_backing_file_write(void *opaque, int ret)
874 {
875 CopyFromBackingFileCB *copy_cb = opaque;
876 BDRVQEDState *s = copy_cb->s;
877
878 if (copy_cb->backing_qiov) {
879 qemu_iovec_destroy(copy_cb->backing_qiov);
880 g_free(copy_cb->backing_qiov);
881 copy_cb->backing_qiov = NULL;
882 }
883
884 if (ret) {
885 qed_copy_from_backing_file_cb(copy_cb, ret);
886 return;
887 }
888
889 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
890 bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
891 &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
892 qed_copy_from_backing_file_cb, copy_cb);
893 }
894
895 /**
896 * Copy data from backing file into the image
897 *
898 * @s: QED state
899 * @pos: Byte position in device
900 * @len: Number of bytes
901 * @offset: Byte offset in image file
902 * @cb: Completion function
903 * @opaque: User data for completion function
904 */
905 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
906 uint64_t len, uint64_t offset,
907 BlockCompletionFunc *cb,
908 void *opaque)
909 {
910 CopyFromBackingFileCB *copy_cb;
911 int ret;
912
913 /* Skip copy entirely if there is no work to do */
914 if (len == 0) {
915 cb(opaque, 0);
916 return;
917 }
918
919 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
920 copy_cb->s = s;
921 copy_cb->offset = offset;
922 copy_cb->backing_qiov = NULL;
923 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
924 copy_cb->iov.iov_len = len;
925 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
926
927 ret = qed_read_backing_file(s, pos, &copy_cb->qiov,
928 &copy_cb->backing_qiov);
929 qed_copy_from_backing_file_write(copy_cb, ret);
930 }
931
932 /**
933 * Link one or more contiguous clusters into a table
934 *
935 * @s: QED state
936 * @table: L2 table
937 * @index: First cluster index
938 * @n: Number of contiguous clusters
939 * @cluster: First cluster offset
940 *
941 * The cluster offset may be an allocated byte offset in the image file, the
942 * zero cluster marker, or the unallocated cluster marker.
943 */
944 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
945 unsigned int n, uint64_t cluster)
946 {
947 int i;
948 for (i = index; i < index + n; i++) {
949 table->offsets[i] = cluster;
950 if (!qed_offset_is_unalloc_cluster(cluster) &&
951 !qed_offset_is_zero_cluster(cluster)) {
952 cluster += s->header.cluster_size;
953 }
954 }
955 }
956
957 static void qed_aio_complete_bh(void *opaque)
958 {
959 QEDAIOCB *acb = opaque;
960 BDRVQEDState *s = acb_to_s(acb);
961 BlockCompletionFunc *cb = acb->common.cb;
962 void *user_opaque = acb->common.opaque;
963 int ret = acb->bh_ret;
964
965 qemu_aio_unref(acb);
966
967 /* Invoke callback */
968 qed_acquire(s);
969 cb(user_opaque, ret);
970 qed_release(s);
971 }
972
973 static void qed_resume_alloc_bh(void *opaque)
974 {
975 qed_aio_start_io(opaque);
976 }
977
978 static void qed_aio_complete(QEDAIOCB *acb, int ret)
979 {
980 BDRVQEDState *s = acb_to_s(acb);
981
982 trace_qed_aio_complete(s, acb, ret);
983
984 /* Free resources */
985 qemu_iovec_destroy(&acb->cur_qiov);
986 qed_unref_l2_cache_entry(acb->request.l2_table);
987
988 /* Free the buffer we may have allocated for zero writes */
989 if (acb->flags & QED_AIOCB_ZERO) {
990 qemu_vfree(acb->qiov->iov[0].iov_base);
991 acb->qiov->iov[0].iov_base = NULL;
992 }
993
994 /* Arrange for a bh to invoke the completion function */
995 acb->bh_ret = ret;
996 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
997 qed_aio_complete_bh, acb);
998
999 /* Start next allocating write request waiting behind this one. Note that
1000 * requests enqueue themselves when they first hit an unallocated cluster
1001 * but they wait until the entire request is finished before waking up the
1002 * next request in the queue. This ensures that we don't cycle through
1003 * requests multiple times but rather finish one at a time completely.
1004 */
1005 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1006 QEDAIOCB *next_acb;
1007 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
1008 next_acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
1009 if (next_acb) {
1010 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
1011 qed_resume_alloc_bh, next_acb);
1012 } else if (s->header.features & QED_F_NEED_CHECK) {
1013 qed_start_need_check_timer(s);
1014 }
1015 }
1016 }
1017
1018 /**
1019 * Commit the current L2 table to the cache
1020 */
1021 static void qed_commit_l2_update(void *opaque, int ret)
1022 {
1023 QEDAIOCB *acb = opaque;
1024 BDRVQEDState *s = acb_to_s(acb);
1025 CachedL2Table *l2_table = acb->request.l2_table;
1026 uint64_t l2_offset = l2_table->offset;
1027
1028 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1029
1030 /* This is guaranteed to succeed because we just committed the entry to the
1031 * cache.
1032 */
1033 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1034 assert(acb->request.l2_table != NULL);
1035
1036 qed_aio_next_io(acb, ret);
1037 }
1038
1039 /**
1040 * Update L1 table with new L2 table offset and write it out
1041 */
1042 static void qed_aio_write_l1_update(void *opaque, int ret)
1043 {
1044 QEDAIOCB *acb = opaque;
1045 BDRVQEDState *s = acb_to_s(acb);
1046 int index;
1047
1048 if (ret) {
1049 qed_aio_complete(acb, ret);
1050 return;
1051 }
1052
1053 index = qed_l1_index(s, acb->cur_pos);
1054 s->l1_table->offsets[index] = acb->request.l2_table->offset;
1055
1056 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
1057 }
1058
1059 /**
1060 * Update L2 table with new cluster offsets and write them out
1061 */
1062 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
1063 {
1064 BDRVQEDState *s = acb_to_s(acb);
1065 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1066 int index;
1067
1068 if (ret) {
1069 goto err;
1070 }
1071
1072 if (need_alloc) {
1073 qed_unref_l2_cache_entry(acb->request.l2_table);
1074 acb->request.l2_table = qed_new_l2_table(s);
1075 }
1076
1077 index = qed_l2_index(s, acb->cur_pos);
1078 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1079 offset);
1080
1081 if (need_alloc) {
1082 /* Write out the whole new L2 table */
1083 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
1084 qed_aio_write_l1_update, acb);
1085 } else {
1086 /* Write out only the updated part of the L2 table */
1087 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
1088 qed_aio_next_io_cb, acb);
1089 }
1090 return;
1091
1092 err:
1093 qed_aio_complete(acb, ret);
1094 }
1095
1096 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
1097 {
1098 QEDAIOCB *acb = opaque;
1099 qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
1100 }
1101
1102 /**
1103 * Flush new data clusters before updating the L2 table
1104 *
1105 * This flush is necessary when a backing file is in use. A crash during an
1106 * allocating write could result in empty clusters in the image. If the write
1107 * only touched a subregion of the cluster, then backing image sectors have
1108 * been lost in the untouched region. The solution is to flush after writing a
1109 * new data cluster and before updating the L2 table.
1110 */
1111 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
1112 {
1113 QEDAIOCB *acb = opaque;
1114 BDRVQEDState *s = acb_to_s(acb);
1115
1116 if (!bdrv_aio_flush(s->bs->file->bs, qed_aio_write_l2_update_cb, opaque)) {
1117 qed_aio_complete(acb, -EIO);
1118 }
1119 }
1120
1121 /**
1122 * Write data to the image file
1123 */
1124 static void qed_aio_write_main(void *opaque, int ret)
1125 {
1126 QEDAIOCB *acb = opaque;
1127 BDRVQEDState *s = acb_to_s(acb);
1128 uint64_t offset = acb->cur_cluster +
1129 qed_offset_into_cluster(s, acb->cur_pos);
1130 BlockCompletionFunc *next_fn;
1131
1132 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1133
1134 if (ret) {
1135 qed_aio_complete(acb, ret);
1136 return;
1137 }
1138
1139 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1140 next_fn = qed_aio_next_io_cb;
1141 } else {
1142 if (s->bs->backing) {
1143 next_fn = qed_aio_write_flush_before_l2_update;
1144 } else {
1145 next_fn = qed_aio_write_l2_update_cb;
1146 }
1147 }
1148
1149 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1150 bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1151 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1152 next_fn, acb);
1153 }
1154
1155 /**
1156 * Populate back untouched region of new data cluster
1157 */
1158 static void qed_aio_write_postfill(void *opaque, int ret)
1159 {
1160 QEDAIOCB *acb = opaque;
1161 BDRVQEDState *s = acb_to_s(acb);
1162 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1163 uint64_t len =
1164 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1165 uint64_t offset = acb->cur_cluster +
1166 qed_offset_into_cluster(s, acb->cur_pos) +
1167 acb->cur_qiov.size;
1168
1169 if (ret) {
1170 qed_aio_complete(acb, ret);
1171 return;
1172 }
1173
1174 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1175 qed_copy_from_backing_file(s, start, len, offset,
1176 qed_aio_write_main, acb);
1177 }
1178
1179 /**
1180 * Populate front untouched region of new data cluster
1181 */
1182 static void qed_aio_write_prefill(void *opaque, int ret)
1183 {
1184 QEDAIOCB *acb = opaque;
1185 BDRVQEDState *s = acb_to_s(acb);
1186 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1187 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1188
1189 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1190 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1191 qed_aio_write_postfill, acb);
1192 }
1193
1194 /**
1195 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1196 */
1197 static bool qed_should_set_need_check(BDRVQEDState *s)
1198 {
1199 /* The flush before L2 update path ensures consistency */
1200 if (s->bs->backing) {
1201 return false;
1202 }
1203
1204 return !(s->header.features & QED_F_NEED_CHECK);
1205 }
1206
1207 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1208 {
1209 QEDAIOCB *acb = opaque;
1210
1211 if (ret) {
1212 qed_aio_complete(acb, ret);
1213 return;
1214 }
1215
1216 qed_aio_write_l2_update(acb, 0, 1);
1217 }
1218
1219 /**
1220 * Write new data cluster
1221 *
1222 * @acb: Write request
1223 * @len: Length in bytes
1224 *
1225 * This path is taken when writing to previously unallocated clusters.
1226 */
1227 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1228 {
1229 BDRVQEDState *s = acb_to_s(acb);
1230 BlockCompletionFunc *cb;
1231
1232 /* Cancel timer when the first allocating request comes in */
1233 if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1234 qed_cancel_need_check_timer(s);
1235 }
1236
1237 /* Freeze this request if another allocating write is in progress */
1238 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1239 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1240 }
1241 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1242 s->allocating_write_reqs_plugged) {
1243 return; /* wait for existing request to finish */
1244 }
1245
1246 acb->cur_nclusters = qed_bytes_to_clusters(s,
1247 qed_offset_into_cluster(s, acb->cur_pos) + len);
1248 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1249
1250 if (acb->flags & QED_AIOCB_ZERO) {
1251 /* Skip ahead if the clusters are already zero */
1252 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1253 qed_aio_start_io(acb);
1254 return;
1255 }
1256
1257 cb = qed_aio_write_zero_cluster;
1258 } else {
1259 cb = qed_aio_write_prefill;
1260 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1261 }
1262
1263 if (qed_should_set_need_check(s)) {
1264 s->header.features |= QED_F_NEED_CHECK;
1265 qed_write_header(s, cb, acb);
1266 } else {
1267 cb(acb, 0);
1268 }
1269 }
1270
1271 /**
1272 * Write data cluster in place
1273 *
1274 * @acb: Write request
1275 * @offset: Cluster offset in bytes
1276 * @len: Length in bytes
1277 *
1278 * This path is taken when writing to already allocated clusters.
1279 */
1280 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1281 {
1282 /* Allocate buffer for zero writes */
1283 if (acb->flags & QED_AIOCB_ZERO) {
1284 struct iovec *iov = acb->qiov->iov;
1285
1286 if (!iov->iov_base) {
1287 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1288 if (iov->iov_base == NULL) {
1289 qed_aio_complete(acb, -ENOMEM);
1290 return;
1291 }
1292 memset(iov->iov_base, 0, iov->iov_len);
1293 }
1294 }
1295
1296 /* Calculate the I/O vector */
1297 acb->cur_cluster = offset;
1298 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1299
1300 /* Do the actual write */
1301 qed_aio_write_main(acb, 0);
1302 }
1303
1304 /**
1305 * Write data cluster
1306 *
1307 * @opaque: Write request
1308 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1309 * or -errno
1310 * @offset: Cluster offset in bytes
1311 * @len: Length in bytes
1312 */
1313 static void qed_aio_write_data(void *opaque, int ret,
1314 uint64_t offset, size_t len)
1315 {
1316 QEDAIOCB *acb = opaque;
1317
1318 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1319
1320 acb->find_cluster_ret = ret;
1321
1322 switch (ret) {
1323 case QED_CLUSTER_FOUND:
1324 qed_aio_write_inplace(acb, offset, len);
1325 break;
1326
1327 case QED_CLUSTER_L2:
1328 case QED_CLUSTER_L1:
1329 case QED_CLUSTER_ZERO:
1330 qed_aio_write_alloc(acb, len);
1331 break;
1332
1333 default:
1334 qed_aio_complete(acb, ret);
1335 break;
1336 }
1337 }
1338
1339 /**
1340 * Read data cluster
1341 *
1342 * @opaque: Read request
1343 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1344 * or -errno
1345 * @offset: Cluster offset in bytes
1346 * @len: Length in bytes
1347 */
1348 static void qed_aio_read_data(void *opaque, int ret,
1349 uint64_t offset, size_t len)
1350 {
1351 QEDAIOCB *acb = opaque;
1352 BDRVQEDState *s = acb_to_s(acb);
1353 BlockDriverState *bs = acb->common.bs;
1354
1355 /* Adjust offset into cluster */
1356 offset += qed_offset_into_cluster(s, acb->cur_pos);
1357
1358 trace_qed_aio_read_data(s, acb, ret, offset, len);
1359
1360 if (ret < 0) {
1361 goto err;
1362 }
1363
1364 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1365
1366 /* Handle zero cluster and backing file reads */
1367 if (ret == QED_CLUSTER_ZERO) {
1368 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1369 qed_aio_start_io(acb);
1370 return;
1371 } else if (ret != QED_CLUSTER_FOUND) {
1372 ret = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1373 &acb->backing_qiov);
1374 qed_aio_next_io(acb, ret);
1375 return;
1376 }
1377
1378 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1379 bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1380 &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1381 qed_aio_next_io_cb, acb);
1382 return;
1383
1384 err:
1385 qed_aio_complete(acb, ret);
1386 }
1387
1388 /**
1389 * Begin next I/O or complete the request
1390 */
1391 static void qed_aio_next_io(QEDAIOCB *acb, int ret)
1392 {
1393 BDRVQEDState *s = acb_to_s(acb);
1394 QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1395 qed_aio_write_data : qed_aio_read_data;
1396 uint64_t offset;
1397 size_t len;
1398
1399 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1400
1401 if (acb->backing_qiov) {
1402 qemu_iovec_destroy(acb->backing_qiov);
1403 g_free(acb->backing_qiov);
1404 acb->backing_qiov = NULL;
1405 }
1406
1407 /* Handle I/O error */
1408 if (ret) {
1409 qed_aio_complete(acb, ret);
1410 return;
1411 }
1412
1413 acb->qiov_offset += acb->cur_qiov.size;
1414 acb->cur_pos += acb->cur_qiov.size;
1415 qemu_iovec_reset(&acb->cur_qiov);
1416
1417 /* Complete request */
1418 if (acb->cur_pos >= acb->end_pos) {
1419 qed_aio_complete(acb, 0);
1420 return;
1421 }
1422
1423 /* Find next cluster and start I/O */
1424 len = acb->end_pos - acb->cur_pos;
1425 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1426 io_fn(acb, ret, offset, len);
1427 }
1428
1429 static BlockAIOCB *qed_aio_setup(BlockDriverState *bs,
1430 int64_t sector_num,
1431 QEMUIOVector *qiov, int nb_sectors,
1432 BlockCompletionFunc *cb,
1433 void *opaque, int flags)
1434 {
1435 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1436
1437 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1438 opaque, flags);
1439
1440 acb->flags = flags;
1441 acb->qiov = qiov;
1442 acb->qiov_offset = 0;
1443 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1444 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1445 acb->backing_qiov = NULL;
1446 acb->request.l2_table = NULL;
1447 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1448
1449 /* Start request */
1450 qed_aio_start_io(acb);
1451 return &acb->common;
1452 }
1453
1454 static BlockAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1455 int64_t sector_num,
1456 QEMUIOVector *qiov, int nb_sectors,
1457 BlockCompletionFunc *cb,
1458 void *opaque)
1459 {
1460 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1461 }
1462
1463 static BlockAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1464 int64_t sector_num,
1465 QEMUIOVector *qiov, int nb_sectors,
1466 BlockCompletionFunc *cb,
1467 void *opaque)
1468 {
1469 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1470 opaque, QED_AIOCB_WRITE);
1471 }
1472
1473 typedef struct {
1474 Coroutine *co;
1475 int ret;
1476 bool done;
1477 } QEDWriteZeroesCB;
1478
1479 static void coroutine_fn qed_co_pwrite_zeroes_cb(void *opaque, int ret)
1480 {
1481 QEDWriteZeroesCB *cb = opaque;
1482
1483 cb->done = true;
1484 cb->ret = ret;
1485 if (cb->co) {
1486 aio_co_wake(cb->co);
1487 }
1488 }
1489
1490 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1491 int64_t offset,
1492 int count,
1493 BdrvRequestFlags flags)
1494 {
1495 BlockAIOCB *blockacb;
1496 BDRVQEDState *s = bs->opaque;
1497 QEDWriteZeroesCB cb = { .done = false };
1498 QEMUIOVector qiov;
1499 struct iovec iov;
1500
1501 /* Fall back if the request is not aligned */
1502 if (qed_offset_into_cluster(s, offset) ||
1503 qed_offset_into_cluster(s, count)) {
1504 return -ENOTSUP;
1505 }
1506
1507 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1508 * then it will be allocated during request processing.
1509 */
1510 iov.iov_base = NULL;
1511 iov.iov_len = count;
1512
1513 qemu_iovec_init_external(&qiov, &iov, 1);
1514 blockacb = qed_aio_setup(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1515 count >> BDRV_SECTOR_BITS,
1516 qed_co_pwrite_zeroes_cb, &cb,
1517 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1518 if (!blockacb) {
1519 return -EIO;
1520 }
1521 if (!cb.done) {
1522 cb.co = qemu_coroutine_self();
1523 qemu_coroutine_yield();
1524 }
1525 assert(cb.done);
1526 return cb.ret;
1527 }
1528
1529 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, Error **errp)
1530 {
1531 BDRVQEDState *s = bs->opaque;
1532 uint64_t old_image_size;
1533 int ret;
1534
1535 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1536 s->header.table_size)) {
1537 error_setg(errp, "Invalid image size specified");
1538 return -EINVAL;
1539 }
1540
1541 if ((uint64_t)offset < s->header.image_size) {
1542 error_setg(errp, "Shrinking images is currently not supported");
1543 return -ENOTSUP;
1544 }
1545
1546 old_image_size = s->header.image_size;
1547 s->header.image_size = offset;
1548 ret = qed_write_header_sync(s);
1549 if (ret < 0) {
1550 s->header.image_size = old_image_size;
1551 error_setg_errno(errp, -ret, "Failed to update the image size");
1552 }
1553 return ret;
1554 }
1555
1556 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1557 {
1558 BDRVQEDState *s = bs->opaque;
1559 return s->header.image_size;
1560 }
1561
1562 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1563 {
1564 BDRVQEDState *s = bs->opaque;
1565
1566 memset(bdi, 0, sizeof(*bdi));
1567 bdi->cluster_size = s->header.cluster_size;
1568 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1569 bdi->unallocated_blocks_are_zero = true;
1570 bdi->can_write_zeroes_with_unmap = true;
1571 return 0;
1572 }
1573
1574 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1575 const char *backing_file,
1576 const char *backing_fmt)
1577 {
1578 BDRVQEDState *s = bs->opaque;
1579 QEDHeader new_header, le_header;
1580 void *buffer;
1581 size_t buffer_len, backing_file_len;
1582 int ret;
1583
1584 /* Refuse to set backing filename if unknown compat feature bits are
1585 * active. If the image uses an unknown compat feature then we may not
1586 * know the layout of data following the header structure and cannot safely
1587 * add a new string.
1588 */
1589 if (backing_file && (s->header.compat_features &
1590 ~QED_COMPAT_FEATURE_MASK)) {
1591 return -ENOTSUP;
1592 }
1593
1594 memcpy(&new_header, &s->header, sizeof(new_header));
1595
1596 new_header.features &= ~(QED_F_BACKING_FILE |
1597 QED_F_BACKING_FORMAT_NO_PROBE);
1598
1599 /* Adjust feature flags */
1600 if (backing_file) {
1601 new_header.features |= QED_F_BACKING_FILE;
1602
1603 if (qed_fmt_is_raw(backing_fmt)) {
1604 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1605 }
1606 }
1607
1608 /* Calculate new header size */
1609 backing_file_len = 0;
1610
1611 if (backing_file) {
1612 backing_file_len = strlen(backing_file);
1613 }
1614
1615 buffer_len = sizeof(new_header);
1616 new_header.backing_filename_offset = buffer_len;
1617 new_header.backing_filename_size = backing_file_len;
1618 buffer_len += backing_file_len;
1619
1620 /* Make sure we can rewrite header without failing */
1621 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1622 return -ENOSPC;
1623 }
1624
1625 /* Prepare new header */
1626 buffer = g_malloc(buffer_len);
1627
1628 qed_header_cpu_to_le(&new_header, &le_header);
1629 memcpy(buffer, &le_header, sizeof(le_header));
1630 buffer_len = sizeof(le_header);
1631
1632 if (backing_file) {
1633 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1634 buffer_len += backing_file_len;
1635 }
1636
1637 /* Write new header */
1638 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1639 g_free(buffer);
1640 if (ret == 0) {
1641 memcpy(&s->header, &new_header, sizeof(new_header));
1642 }
1643 return ret;
1644 }
1645
1646 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1647 {
1648 BDRVQEDState *s = bs->opaque;
1649 Error *local_err = NULL;
1650 int ret;
1651
1652 bdrv_qed_close(bs);
1653
1654 memset(s, 0, sizeof(BDRVQEDState));
1655 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1656 if (local_err) {
1657 error_propagate(errp, local_err);
1658 error_prepend(errp, "Could not reopen qed layer: ");
1659 return;
1660 } else if (ret < 0) {
1661 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1662 return;
1663 }
1664 }
1665
1666 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1667 BdrvCheckMode fix)
1668 {
1669 BDRVQEDState *s = bs->opaque;
1670
1671 return qed_check(s, result, !!fix);
1672 }
1673
1674 static QemuOptsList qed_create_opts = {
1675 .name = "qed-create-opts",
1676 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1677 .desc = {
1678 {
1679 .name = BLOCK_OPT_SIZE,
1680 .type = QEMU_OPT_SIZE,
1681 .help = "Virtual disk size"
1682 },
1683 {
1684 .name = BLOCK_OPT_BACKING_FILE,
1685 .type = QEMU_OPT_STRING,
1686 .help = "File name of a base image"
1687 },
1688 {
1689 .name = BLOCK_OPT_BACKING_FMT,
1690 .type = QEMU_OPT_STRING,
1691 .help = "Image format of the base image"
1692 },
1693 {
1694 .name = BLOCK_OPT_CLUSTER_SIZE,
1695 .type = QEMU_OPT_SIZE,
1696 .help = "Cluster size (in bytes)",
1697 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1698 },
1699 {
1700 .name = BLOCK_OPT_TABLE_SIZE,
1701 .type = QEMU_OPT_SIZE,
1702 .help = "L1/L2 table size (in clusters)"
1703 },
1704 { /* end of list */ }
1705 }
1706 };
1707
1708 static BlockDriver bdrv_qed = {
1709 .format_name = "qed",
1710 .instance_size = sizeof(BDRVQEDState),
1711 .create_opts = &qed_create_opts,
1712 .supports_backing = true,
1713
1714 .bdrv_probe = bdrv_qed_probe,
1715 .bdrv_open = bdrv_qed_open,
1716 .bdrv_close = bdrv_qed_close,
1717 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1718 .bdrv_child_perm = bdrv_format_default_perms,
1719 .bdrv_create = bdrv_qed_create,
1720 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1721 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1722 .bdrv_aio_readv = bdrv_qed_aio_readv,
1723 .bdrv_aio_writev = bdrv_qed_aio_writev,
1724 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1725 .bdrv_truncate = bdrv_qed_truncate,
1726 .bdrv_getlength = bdrv_qed_getlength,
1727 .bdrv_get_info = bdrv_qed_get_info,
1728 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1729 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1730 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1731 .bdrv_check = bdrv_qed_check,
1732 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1733 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1734 .bdrv_drain = bdrv_qed_drain,
1735 };
1736
1737 static void bdrv_qed_init(void)
1738 {
1739 bdrv_register(&bdrv_qed);
1740 }
1741
1742 block_init(bdrv_qed_init);